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Abstract

Codeletion of chromosomal arms 1p and 19q, in conjunction with a mutation in the
isocitrate dehydrogenase 1 or 2 gene, is the molecular diagnostic criterion for
oligodendroglioma, IDH mutant and 1p/19q codeleted. 1p/19q codeletion is a diagnostic
marker and allows prognostication and prediction of the best drug response within
IDH-mutant tumours. We performed a Cochrane review and simple economic analysis
to establish the most sensitive, specific and cost-effective techniques for determining
1p/19q codeletion status. Fluorescent in situ hybridisation (FISH) and polymerase chain
reaction (PCR)-based loss of heterozygosity (LOH) test methods were considered as
reference standard. Most techniques (FISH, chromogenic in situ hybridisation [CISH],
PCR, real-time PCR, multiplex ligation-dependent probe amplification [MLPA], single
nucleotide polymorphism [SNP] array, comparative genomic hybridisation [CGH], array
CGH, next-generation sequencing [NGS], mass spectrometry and NanoString) showed
good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma,
irrespective of whether FISH or PCR-based LOH was used as the reference standard.
Both NGS and SNP array had a high specificity (fewer false positives) for 1p/19q
codeletion when considered against FISH as the reference standard. Our findings
suggest that G banding is not a suitable test for 1p/19q analysis. Within these limits,
considering cost per diagnosis and using FISH as a reference, MLPA was marginally
more cost-effective than other tests, although these economic analyses were limited by
the range of available parameters, time horizon and data from multiple healthcare

organisations.
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Complete deletion of both the short arm of chromosome 1 (1p) and
the long arm of chromosome 19 (19q) (1p/19q codeletion) is a chro-
mosomal alteration that occurs in oligodendrogliomas, but to date, the
best method to detect such deletions is unclear. The codeletion is
thought to be an early event in oligodendroglioma tumourigenesis [1]
and is thought to be a result of an unbalanced whole-arm transloca-
tion between chromosomes 1 and 19 with the loss of the resulting
hybrid chromosome [2, 3] (Figure 1). The combined presence of an
IDH1 or IDH2 mutation and a 1p/19q codeletion is a diagnostic crite-
rion for oligodendroglioma, IDH mutant and 1p/19q codeleted [8].
The diagnostic test algorithm of IDH-mutant gliomas has been
streamlined in a recent consensus publication cIMPACt-NOW update
5 [9], recommending that 1p/19q testing is not required in IDH-
mutant astrocytic tumours with loss of nuclear ATRX expression.
Although this recommendation reduces the number of 1p/19q tests
in IDH-mutant gliomas, the diagnosis of oligodendroglioma, IDH
mutant and 1p/19q codeleted, central nervous system (CNS) World
Health Organization (WHO) Grade 2 or 3 still requires the detection
of an IDH mutation and a 1p/19q codeletion. The European guide-
lines recommend that 1p/19q status is evaluated to support a diagno-
sis of oligodendroglioma, IDH mutant and 1p/19q codeleted, and for
prognosis, and that treatment decisions are based on the 1p/19q
status [10-12]. Current guidance from the National Institute for
Health and Care Excellence (NICE) (United Kingdom) recommends
and the 2021 CNS WHO classification [13] mandates testing 1p/19q
codeletion to identify oligodendrogliomas, and the adjuvant chemo-
therapeutic recommended after surgery for people with CNS WHO
Grade 3 glioma varies according to 1p/19q status (NICE 2018) [14].

1p/19q status can be determined by several different methods,
and there is no consensus regarding the optimal method. The two
most common methods for routine diagnostic use are FISH- and
polymerase chain reaction (PCR)-based loss of heterozygosity (LOH)
assays [15]. In the 2017 UK Cytogenomic External Quality Assess-
ment Service (CEQAS) report, of the 35 enrolled laboratories,
25 laboratories used FISH, 1 laboratory used multiplex ligation-
dependent probe amplification (MLPA), 4 laboratories used arrays and
1 laboratory used quantitative PCR.

Implementation and use of these techniques depend on infra-
structure and economic circumstances of a country and of individual
pathology departments. Therefore, the review considered the costs
and the cost-effectiveness of alternative methods assessing 1p/19q
status. Each method incurs costs for laboratory, hospital occupancy
and subsequent treatment. The benefits of targeted treatment may
include greater survival and less exposure to potentially toxic
treatments.

A recent systematic review and meta-analysis of the prognostic
value of chromosomal 1p/19q codeletion in CNS WHO Grade 2 and
3 oligodendrogliomas found a summary hazard ratio (HR) for mortality
of 0.28 (95% confidence interval [CI] 0.13 to 0.62; 9 studies)
favouring 1p/19q codeletion after adjusting for age, extent of resec-
tion, IDH mutation and type of therapy [16]. Another systematic

Key Points

e In a Cochrane review, we established the most sensitive,
specific and cost-effective techniques for determining
1p/19q codeletion status.

e Fluorescent in situ hybridisation (FISH) and polymerase
chain reaction (PCR)-based loss of heterozygosity (LOH)
test methods were considered as reference standard.

o Next-generation sequencing and single nucleotide poly-
morphism arrays have high specificity.

¢ No difference in the hazard ratio for overall survival was
found between studies using two different techniques,
PCR-based LOH and FISH.

review and meta-analysis found that 1p/19q codeletion was associ-
ated with increased overall survival (HR 0.43; 95% CI 0.35-0.53;
14 studies) [17], both in WHO low-grade (HR 0.45; 95% CI
0.30-0.68; 5 studies) and high-grade oligodendrogliomas (HR 0.41;
95% Cl 0.31-0.53; 6 studies), and for astrocytic tumours (HR 0.52;
95% Cl 0.36-0.75; 3 studies) and oligodendroglial tumours (HR 0.41;
95% Cl 0.30-0.56; 9 studies) [17]. This review also observed no
evidence of difference in the HR for overall survival between studies
using two different techniques (PCR-based LOH and FISH) to assess
the status of chromosomal arms 1p and 19q [17]. It is important to
note that these studies were carried out before the current definition
of oligodendroglioma, which now mandates the presence of an IDH
mutation and a 1p/19q codeletion.

1p/19q codeletion can be absolute, that is, loss in the presence of
the normal number of other chromosomes, or relative if it occurs in
the presence of polysomy (when cells contain at least one more copy
of a chromosome than normal) or polyploidy (when cells contain more
than two sets of chromosomes) (Figure 1B-D). Several studies have
suggested that people with relative 1p/19q codeletions (deletions in
the presence of polysomy or polyploidy) have a worse prognosis (pro-
gression free survival or overall survival) than people with absolute
1p/19q codeletions, with some studies suggesting that prognosis in
patients with relative codeletions may be similar to that of people
with no codeletion at all [4-6, 18]. In all these studies, classification of
polysomy occurred when more than 30% of nuclei had more than two
1qg and 19p signals, as assessed by FISH (Figure 1E). Although there
are limitations to these studies, for example, non-standardised treat-
ment, these findings suggest that diagnosing absolute deletions is
more important. The Cochrane review focuses primarily on detection
of absolute deletions and in diagnosing situations where one copy of
1p/19q has been lost and the other copy duplicated (also termed
copy-neutral LOH). Combinations of chromosomal deletions in
oligodendrogliomas and the corresponding signals in FISH are pres-
ented in a schematic representation in Figure 1.

In addition to the significant clinical implications associated with

the diagnostic accuracy of techniques to diagnose 1p/19q codeletion
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FIGURE 1 Graphical representation of absolute and relative 1p/19q codeletions. In all parts of the figure, chromosomes 1 and 19 are
presented in separate frames to visualise the combination of FISH signals. The 1p and the 19q probes are red, and the reference probes (1q and
19p) are green. The approximate labelling sites are indicated in the chromosomal schematics. An unrelated chromosome (2) is also shown, and
appearances as FISH images on the bottom of each frame. (A) Cell with diploid set of chromosomes, with two red signals each, for chromosomal
arms 1p and 19q, as well as two green signals each for chromosomal arms 1q and 19p. (B) Absolute 1p/19q codeletion in a diploid set of
chromosomes. Loss of one red signal in chromosome 1p and in 19q and two green signals for each 1g and 19p. (C) Relative codeletion with
example of polysomy of chromosome 19 and chromosome 2, which has been suggested to indicate a worse prognosis [4-7]. (D) 1p/19q
codeletion in tetraploid cells, resulting in two red and four green signals for both 1p and 19q tests. (E) Complex deletion patterns as found in a
small proportion of oligodendrogliomas, often associated with anaplastic histological types. In this example, there are diploid cells (left, 30%)

triploid cells (centre, 30%) and tetraploid cells (right, 40%)

status in oligodendroglioma patients, there are also significant poten-
tial resource implications regarding the accuracy of the test. The esti-
mated costs associated with clinical care for a patient with glioma
ranged between US$ 4755 and US$ 42,907, with reported costs
converted into 2013 US $ using an exchange rate based on purchas-
ing power parities [19]. It was also estimated that 55% of these costs
were attributable to chemotherapy drugs, chiefly temozolomide. If
these therapies can be targeted at those patients who will obtain the
greatest benefit, this will make better use of limited healthcare
resources.

This review will assess the sensitivity and specificity of any DNA-
based techniques that can be used on tumour tissue to evaluate
1p/19q codeletion status directly involved when performing the dif-
ferent test methods. In addition, a cost-effectiveness model was
developed to equate costs against the diagnostic performance of each

of the diagnostic test methods.

METHODS

The protocol for the review was published in the Cochrane Database
of Systematic Reviews [20], and the review was undertaken and
reported following Cochrane’s guidance (which is consistent with the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
[PRISMA]) [21]. A more detailed account of the methods and results
can be found in the full Cochrane publication [20].

Study eligibility

We included cross-sectional studies that use two or more tests to
assess 1p/19q status in tumour tissue from the same set of people.
Studies needed to present either raw data or classified results for
patients for at least two tests. Studies that reported only on concor-
dance of test results were not included. Studies with data for just one
person were excluded. For the integrated review of economic evi-
dence, we sought cost and full economic evaluations (cost-
effectiveness analyses, cost-utility analyses and cost-benefit analyses)
that had been conducted alongside any study designs or as part of a
modelling exercise. Participants were adults (218 years old) with gli-
oma. Studies in which participants were recruited on the basis of their

1p/19q codeletion status were excluded.

Search methodology

Searches included MEDLINE Ovid (1946-2019), Embase Ovid
(1974-2019) and BIOSIS Citation Index (1969-2019). No restriction
of language or date of publication was applied. Further searches
included OpenGrey (http://www.opengrey.eu/), dissertations and the-
ses (ProQuest Dissertations & Theses Global [https://search.proquest.
com/pqdtglobal/dissertations/]) and the Networked Digital Library of
(http://search.ndltd.org/index.php).
Abstracts from meetings of the Society for Neuro-Oncology (SNO)

Theses and  Dissertations
and its partner associations, the European Association of Neuro-
Oncology (EANO) and the Japan Society of Neuro-Oncology, were
searched via the Web of Science Conference Proceedings Citation
Index (CPCI-S) (1990-2019). We also searched for any ongoing
studies via the WHO International Clinical Trials Registry Platform
(ICTRP) (all available years to 2019). Further studies were identified
from reference lists of included studies. For the integrated review of
economic evidence, suitable studies were searched in MEDLINE and
Embase, and the National Health Service (NHS) Economic Evaluation
Database (EED).

Study selection, data extraction and quality
assessment

We used EPPI-Reviewer 4 (https://eppi.ioe.ac.uk) for processes of
screening and selection of studies and for part of the data extraction
[22]. Data were extracted and further analysed in Microsoft Excel.
Two review authors (‘reviewers’) independently screened titles and
abstracts of all identified search results and determined whether full
texts should be retrieved. Then, two reviewers independently
assessed the full-text articles. Disagreements were resolved either by
consensus or by consulting a third reviewer. A PRISMA [21] flow
diagram was established to describe the flow of information through
the different phases of the review (Figure 2).

Studies that met the inclusion criteria for diagnostic test accuracy
(DTA) were screened by one reviewer to assess if any could possibly
meet the economic inclusion criteria. Had any potentially relevant
studies been identified, they would have been screened by two
reviewers.

Two reviewers assessed risk of bias and applicability of the DTA
studies using the QUADAS-2 tool [23] tailored to our review.

95U8917 SUOWWIOD 9AIE81D) 8|qea!|dde sy Ag peusenob ae Sejoilie O ‘8N JO Sajnl Joj AkelqiauljUQ 481\ UO (SUONIPUO-PUe-SLLB)/L0D A8 1M Alelg Ul |uoy//Sdny) SUONIPUOD pue WS 18U 89S *[¢Z02/90/TT] uo ARiqiauliuo As|iM 891 Aq 06T Ueu/TTTT OT/I0p/Wod Ao IM Arelq 1 pUljUO//:ScNy Wo) papeojumod ‘v ‘2202 ‘0662S9ET


http://www.opengrey.eu/
https://search.proquest.com/pqdtglobal/dissertations/
https://search.proquest.com/pqdtglobal/dissertations/
http://search.ndltd.org/index.php
https://eppi.ioe.ac.uk

DIAGNOSTIC ACCURACY OF 1P/19Q CODELETION: META-ANALYSIS BASED ON

COCHRANE REVIEW

Neuropathology and
Applied Neurobiplggy

JOURNAL OF THE

50f 19

WILEY

FIGURE 2 PRISMA flow
chart illustrating the selection
process of inclusions and .
exclusions of studies .
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Disagreements were resolved by consensus, with discussion with a
third review author if necessary.

Index tests and target conditions

Studies using any DNA-based technique to determine 1p/19q status

in  tumour tissue were included, whereas studies using

immunohistochemically detection of 1p/19q status, or studies
assessing 1p/19q status from blood samples of imaging, were
excluded. The target condition was an absolute 1p/19q codeletion,

that is, in the absence of polysomy. As described in Table 1, each of

the tests can potentially generate false positive and false negative
results. As such, there is no true ‘gold standard’ reference test and all
tests are considered to be ‘index tests’. However, in order to estimate
the sensitivity and specificity of each test, we considered two alterna-
tive reference standards: (i) using FISH as the reference standard, that
is, assuming that FISH has 100% sensitivity and specificity, and
(i) using PCR-based LOH assays as the reference standard, that is,
assuming that PCR-based LOH assays have 100% sensitivity and
specificity. The use of FISH or PCR-based LOH assays was not an
inclusion criterion: All studies that used two or more tests to assess
1p/19q status in tumour tissue from the same set of people were

included in the review.
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Statistical analysis and data synthesis

For analysis with each of the respective reference standards (FISH or
PCR-based LOH tests), we performed bivariate meta-analyses of the
sensitivity and false positive rate (1—specificity) of each index test,
assuming binomial likelihoods for the number of ‘true positive’ and
‘true negative’ test results (2 x 2 table) [24, 25]. This approach allows
for heterogeneity in sensitivity and specificity across studies and for
between-study correlation in these measures. In our main analyses,
we assumed that this between-study correlation and the standard
deviation (heterogeneity) parameters were shared (i.e., identical)
across tests. For studies comparing more than one test with the refer-
ence standard, multiple 2 x 2 tables were derived.

Economic model: Base-case analysis

In addition to the clinical analysis of the results, this study includes a
model-based cost-effectiveness analysis to compare the costs and
diagnostic performance of the different tests. The model is a mathe-
matical framework that can be used to estimate the consequences of
healthcare decisions [26]. This model took the form of a decision tree,
and the time horizon for this model was until diagnosis. As such, this
model does not include costs and health outcomes beyond diagnosis.
The data required for the model included the prevalence of gli-
oma, the sensitivity and specificity of the tests, and the cost of provid-
ing the tests. Prevalence of glioma was derived from the results of the
meta-analysis. The sensitivity and specificity values that were calcu-
lated in the meta-analysis were utilised in the decision model. For the
cost values, intervention costs were derived from both expert opin-
ions from within the Newcastle upon Tyne Hospitals NHS Foundation
Trust based on internal costings (costs for FISH and chromogenic in
situ hybridisation [CISH], real-time PCR and PCR-based LOH, MLPA
and single nucleotide polymorphism [SNP] array), whereas cost for
next-generation sequencing (NGS) and array CGH (aCGH) were
derived from existing literature [27, 28]. These costs were then
checked for face validity with other members of the review team with
experience of the provision. All costs are reported in 2020 Great Brit-
ain pound sterling (GBP), and where necessary cost were converted
into 2020 GBP using the EPPI-Centre Cost Converter [29]. No cost
for the G banding, karyotyping, mass spectrometry (MS) and
NanoString techniques and comparative genomic hybridisation (CGH)
was identified, as they are currently not routinely performed in the
UK NHS and thus were not included. The model parameters are pres-
ented in Tables S1 and S2. The model was designed to generate the
expected costs per true positive diagnosis, per true negative diagnosis

and per correct diagnosis.

Economic model: Sensitivity analysis

A probabilistic sensitivity analysis (PSA) was carried out to address the

uncertainty around the conclusions of the economic model. A PSA

allows uncertainty caused by the imprecision surrounding the
estimates used in the model examined simultaneously. Therefore, for
each model parameter, a distribution was defined. A triangular distri-
bution was used for cost values, and beta distributions were used for
the prevalence, sensitivity and specificity values. Monte Carlo simula-
tion was used to derive a distribution for cost and cost-effectiveness.
In the Monte Carlo simulation, a set of parameter values is then drawn
by randomly sampling from each distribution. For each iteration of
model parameters, the model outputs were estimated. This sampling
process was repeated 10,000 times to produce distributions for each

of the specified model outputs.

Deviation from protocol

We had planned to perform a latent class analysis of all available data.
We did not do this due to the complex structure of the data (with
multiple studies involving different selections of test and different
numbers of tests), which would involve development and validation of
novel statistical methods. However, results from a limited latent class
analysis of just FISH and PCR-based LOH are reported in the full

Cochrane review.

RESULTS
Search results and included studies

Using the search methodology (Section 2), 5427 records were identi-
fied, and after removing duplicates, 3010 records were screened at
title and abstract; 237 records were selected for full-text review, and
53 studies (in 78 publications) met the inclusion criteria. Assessments
of risk of bias were mixed, due largely to lack of information about
procedures in the study reports. The main issue of applicability was
that many studies included only patients with specific subtypes of
glioma.

Presentation of study findings

A network plot illustrates comparisons of test methods that were
made among the included studies (Figure 3). A summary of the study
findings and meta-analysis results is presented in Table 1. Tests that
are relevant in clinical practice (PCR-based LOH, FISH, aCGH, SNP
array, NGS, MLPA and real-time PCR) are shown with a brief explana-
tion of the technique, and each test has been compared with one of
the two index tests, FISH and PCR-based LOH, with separate listing
of the quality of evidence, number of participants in the study, sensi-
tivity, specificity, and an explanatory indication of the sensitivity and
specificity, putting into a more intuitive context how many people
with a positive test result achieved with index test (‘codeletion FISH
detected’ or ‘codeletion PCR detected’) will have a correct positive,

or a false positive result, and how many people with a detected non-
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MLPA FIGURE 3 Network plot of the included

studies. The colour scheme of the circles
corresponds to the colour scheme of the test
methods represented in Figures 4-7. The size of
the circles represents the number of test results
for a test category. The thickness of the lines is
proportional to the number of studies making the
comparison. Note that the FISH and PCR-based
LOH circles include within-test category

NGS O comparisons

aCGH

PCR-based LOH >
Two or more tests

O
RT-PCR SNP array
(A) Four-test comparison (B) Three-test comparison
aCGH Blesa 2009 see four comparison figure
FISH Mohapatra 2006
:/ICLRPA aCGH
FISH
PCR
CGH Pesenti 2017
FISH 8 <4 AR
PCR (w/ DNA) aCGH
PCR (w/o DNA Ms
PCR
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¢ FISH Non-commercial RFLP == Methylation array FISH (m)
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< PCR =) CGH and aCGH
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FISH(<0.75) | @ ___________
PCR
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MS R OO B® & e ]
PCR
Hatanpaa 2003 see four comparison figure

FIGURE 4 (A) Graphical representation of regions analysed in studies comparing four tests: Blesa 2009 [30], Hatanpaa 2003 [31] and Duval
2014 [32], and (B) studies comparing three tests: Mohapatra 2006 [33], Pesenti 2017 [34], Burger 2001 [35], Smith 1999 [36], Dahlback 2011
[37], Belaud-Rotureau 2006 [38], Horbinski 2012 [39] and Pesenti 2017 [34]. The top on both figures indicates a graphical representation of
chromosome 1 (adapted from the GRCh38/hg38 Assembly). The figure legend indicates the different methods, with different colour codes for
FISH, depending on the origin or manufacturer of the probes. In each section, the first author of the study is represented on top, and the
techniques on the left of the table. All acronyms are explained in the main text
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* Dahlback 2011 see three-test comparison table

FIGURE 5

*Belaud-Rotureau 2006 see three-test comparison table

(A) Graphical representation of regions analysed in studies comparing two tests: aCGH and FISH (Byeon 2014 [40]), aCGH and
PCR (Blesa 2009 [30] and Byeon 2014 [40]), CGH and FISH (Smith 1999 [36]), CGH and G banding (Dahlback 2009 [41] and Schrock 1994 [42]),
CGH and MLPA (Jeuken 2006 [43]), and CGH and PCR (Bigner 1999 [44] and Smith 1999 [36]), and (B) CISH and FISH (Lass 2013 [45]), FISH and
FISH (Duval 2015 [46], Senetta 2013 [47], Srebotnik-Kirbis 2016 [48] and Uchida 2019 [49]), FISH and MLPA (Natté 2005 [50]), and FISH and
NGS (D'Haene [51], Na 2019 [52], Park 2019 [53] and Sim 2018 [54]). The top of the figure indicates a graphical representation of chromosome
1 (adapted from the GRCh38/hg38 Assembly). For legend to symbols, see Figure 4
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(A) Graphical representation of regions analysed in studies comparing two tests: FISH and PCR (Bouvier 2004 [55], Broholm 2008
[56], Clark 2013 [57], Gadji 2009 [58], Jha 2011 [59] and Scheie 2006 [60]), FISH and real-time PCR (Chaturbedi 2011 [61] and Nigro 2001 [62]),
and FISH and SNP array (Ghasimi 2016 [63], Hinrichs 2016 [64] and Lhotska 2015 [65]), and (B) G banding and RFLP (Ransom 1992 [66] and

Ransom 1992 [67]), methylation array (SNP readout) and MLPA (Wiestler 2014 [68]), NGS and PCR (Dubbink 2016 [69]), and SNP array and PCR
(Harada 2011 [70] and Tsiatis 2010 [71]). The top of the figure indicates a graphical representation of chromosome 1 (adapted from the GRCh38/
hg38 Assembly). For legend to symbols, see Figure 4
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FIGURE 7 (A) Graphical representation of PCR primer locations used in studies comparing PCR with other methods. Studies appear in
alphabetical order of first author: Bigner 1999 [44], Blesa 2009 [30], Bouvier 2004 [55], Broholm 2008 [56], Burger 2001 [35], Clark 2013 [57],
Cowell 2004 [72], Dahlback 2011 [37], Dubbink 2016 [69], Gadji 2009 [58], Harada 2011 [70], Hatanpaa 2003 [31], Horbinski 2012 [39], Jha
2011 [59], Mohapatra 2006 [33], Pesenti 2017 [34], Scheie 2006 [60], Smith 1999 [36] and Tsiatis 2010 [71]. (B) Graphical representation of
FISH probe locations used in studies comparing FISH with other methods: Belaud-Rotureau 2006 [38], Blesa 2009 [30], Bouvier 2004 [55],
Broholm 2008 [56], Burger 2001 [35], Byeon 2014 [40], Chaturbedi 2011 [61], Clark 2013 [57], D’Haene 2019 [51], Duval 2014 [32], Duval
2015 [46], Gadji 2009 [58], Ghasimi 2016 [63], Hatanpaa 2003 [31], Hinrichs 2016 [64], Horbinski 2012 [39], Jha 2011 [59], Lass 2013 [45],
Lhotska 2015 [65], Mohapatra 2006 [33], Na 2019 [52], Natté 2005 [50], Nigro 2001 [62], Park 2019 [53], Pesenti 2017 [34], Scheie 2006 [60],
Senetta 2013 [47], Sim 2018 [54], Smith 1999 [36], Srebotnik-Kirbis 2016 [48] and Uchida 2019 [49]. The top of the figure indicates a graphical
representation of chromosome 1 (adapted from the GRCh38/hg38 Assembly). For legend to symbols, see Figure 4

codeletion have a correct negative or a false negative result. The table
indicates the outcome from the assessment using the GRADE
approach [73, 74] with certainty of evidence (‘high’, ‘moderate’, ‘low’
or ‘very low’), considering risk of bias, imprecision, inconsistency, indi-
rectness and publication bias, all of which may lead to downgrading
the quality of the evidence. All tests performed are also graphically
represented in Figures 4-7.

Comparison of studies with FISH as reference
standard

From the included studies that performed FISH (Figure 7B) and at
least one other test that was not a FISH variant, we created 41 cross-
classified 2 x 2 tables, with FISH as the reference standard (Table 1).
FISH was compared with 10 different test categories: PCR-based
LOH (15 comparisons), SNP array (6), NGS (6), CGH (4), aCGH (3),

MLPA (2), real-time PCR (2), CISH (1), MS (1) and NanoString (1). The
forty-one 2 x 2 tables came from 33 studies: 26 studies compared
FISH with one other test, 6 studies compared FISH with two other
test categories and 1 study compared FISH with three other test cate-
gories (Figures 4-7). The main results from the bivariate meta-analysis
model indicate that sensitivity and specificity were generally high,
though with wide credible intervals for most tests, and some results
are based on very small numbers of patients, such as the result for
mass spectrometry, which is based on a single study of 10 people.

Our GRADE assessments for all tests were either ‘low’ or ‘very low’.
Comparison of studies with PCR-based LOH as
reference standard

From the included studies that performed PCR-based LOH
(Figure 7B) and at least one other test that was not a PCR-based LOH
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variant, we created 32 cross-classified 2 x 2 tables, treating PCR-
based LOH as a reference standard (Table 1). PCR-based LOH was
compared with nine different test categories: FISH (15 comparisons),
CGH (6), aCGH (4), SNP array (2) and NGS, G banding, MLPA, real-
time PCR and MS (1 each). The thirty-two 2 x 2 tables came from
22 studies: 14 studies compared PCR-based LOH with one other test,
6 studies compared PCR-based LOH with two other test categories
and 2 studies compared PCR-based LOH with three other test catego-
ries (Figures 4-7). Results from the main bivariate meta-analyses are
again based on very low numbers of patients. A poor estimate of
sensitivity for G banding/karyotyping is based on a single study in
which none of 13 PCR-detected 1p/19q codeletions were identified.
Our GRADE assessments for all tests were either ‘low’ or ‘very low’.

Results from economic model

The results for the base case of the economic model are summarised
in Table S1 (FISH as reference standard) and Table S2 (PCR-based
LOH as reference standard). A prevalence of 0.31 was used on the
basis of the included studies in the meta-analysis. For several of the
techniques in the meta-analysis, there is a smaller number of studies
or participants, and therefore, the point estimates in Tables S1 and S2
must be interpreted with caution.

Sensitivity analysis

The results of the sensitivity analysis are displayed in Tables S1 and
S2. The cost-effectiveness was compared with a number of different
thresholds of societal willingness to pay (WTP) for the three out-
comes: (i) cost per true positive, (i) cost per true negative or (iii) cost
per case detected. These thresholds ranged from GBP (£) O (i.e., the
decision is made on cost alone, and the test with the lowest cost
would always be considered the most cost-effective) to £10,000
(i.e., the amount willing to be paid for an additional unit of effect such
as an additional true positive detected). When considering FISH as
the reference standard, MLPA is the most likely to be considered
cost-effective. The other tests do have greater likelihood becoming
cost-effective at higher financial thresholds, but MLPA remains the
most likely to be cost-effective. The same is true for cost per true
negative: For correct diagnosis, real-time PCR had the highest proba-
bility of being cost-effective at a WTP of £500 and £1000, and aCGH
had the highest probability of being cost-effective at a WTP of £5000
and £10,000. However, none of the seven tests compared over a
range of thresholds had a probability of test being cost-effective over
60%. By comparison, when PCR-LOH was used as the reference stan-
dard, MLPA had a 100% probability of being considered the least
costly of the five tests. MLPA also had the highest probability of being
cost-effective in terms of true positives, true negative and correct
diagnoses at a WTP up to £10,000. However, at £5000 and £10,000,

no test had a probability of being cost-effective above 55%.

DISCUSSION

To our knowledge, this is the first systematic review of the DTA of
different techniques for assessing 1p/19q codeletion in glioma. We
undertook a thorough search, applied systematic methods and
assessed results for risk of bias using the QUADAS-2 tool.

The systematic review found that most techniques, except G
banding, have a very good sensitivity when comparing with FISH or
PCR-based LOH assay. G banding has a low sensitivity and specificity,
but is no longer in routine laboratory use. Mass spectroscopy has a
high sensitivity and specificity based on comparison with FISH and
PCR-based LOH, but data are based on a single study and the technol-
ogy is not used in clinical diagnostic use. NGS and SNP array had high
specificity when compared against FISH and also PCR-based LOH,
which is expected as these techniques determine entire chromosomal
arms. This is of clinical importance, as in particular NGS is an expan-
ding technology and increasingly used in diagnostic services. Whilst
SNP arrays as such are rarely used nowadays, SNP data are deter-
mined from DNA methylation arrays, which are commonly used in
brain tumour diagnostics [75-80]. The illustration in Figure 1 shows
the location of probes on the 1p chromosome. Our test accuracy
results confirm previous studies [17], showing that there is no
difference in the HR for overall survival between studies using two
different techniques, PCR-based LOH and FISH.

A technique of increasing importance is methylation array profil-
ing. It is primarily used to establish epigenetic profiles of brain
tumours, but the array data also generate a copy number profile with
the added benefit of visualising chromosomal aberrations including
1p/19q codeletion [75, 76, 78-80]. This has been reported in two
comparative studies [81, 82].

The limitation of our evaluation is the analysis of studies with
FISH and PCR-based LOH as reference standards, and none of the
investigated tests can be found to be superior to the reference stan-
dard assumed. Consequentially, we were unable to include the results
of studies that did not investigate either FISH or PCR-based LOH in
the statistical synthesis. Most studies did not distinguish between
absolute and relative deletions, and even if technically possible, it was
rarely reported. Furthermore, loss of 1p and 199 in combination with
1q and/or 19p was considered by some studies to count as 1p/19q
codeletion, but not in others. When we had to interpret the results of
techniques, we did so by looking for the presence/absence of 1p and
199 without consideration of 1q and 19p.

The current definition of oligodendrogliomas requires the pres-
ence of an IDH mutation combined with a 1p/19q codeletion [13],
and therefore, the inclusion criteria of previous studies and clinical
trials, when based on histological diagnosis, would not be valid
nowadays. Therefore, statements such as ‘1p/19q codeletion allow
for prognostication and prediction of the best drug response’ have to
be viewed also in historical context. However, this statement could
still be considered as adequate in the context of IDH-mutant tumours
as the 1p/19q codeletion delineates oligodendrogliomas from

IDH-mutant astrocytomas.
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This economic decision model was the first to consider the costs
and benefits of diagnostic test methods of identifying 1p and 19q
status. When evaluating the results generated by the economic model,
it is important to consider its limitations. One such limitation is around
certain model inputs, some of which were derived from a single
hospital estimate (laboratory costs, though we did conduct some
checks on the face validity of these estimates) or study (some
sensitivity and specificity estimates). To address this, distributions
were attached to parameter estimates as part of the PSA, but future
research could provide a wider range of real-world parameters to
explore the certainty of the model conclusions. Another limitation of
this model is the limited time horizon. The model at present includes
healthcare costs to derive the diagnosis of 1p and 19q status.
However, assessing the long-term costs and consequences of the
diagnosis could have significant resource implications. For example,
the costs and health impacts of outcomes such as a correct
diagnosis or impacts of a false negative are not included in this
model. Future research could focus on the long-term implications
of diagnosis of 1p/19q status and the impacts on treatment and
health outcomes. This would allow testing strategies to be more
fully evaluated and inform future decisions regarding diagnostic
techniques.

Another parameter of practical importance, which could not be
explored in the review is the time required to perform tests, which
can indirectly impact cost-effectiveness. Depending on the laboratory
setting, PCR-based tests for codeletion are considered less time-
consuming than FISH [83], in particular when performed alongside
other tests requiring DNA extraction (IDH1 and IDH2 sequencing, and
MGMT promoter methylation), whereas another study has reported
no difference of turnaround time between FISH and real-time reverse
transcription PCR [84]. FISH may still be time effective in small-
volume settings and where dedicated technical staff are readily
available. NGS approaches or methylation arrays require batching of
samples and are currently less time effective, perhaps with the
exception in high-volume services. These techniques however offer a
such significant additional information content, often allowing a
conclusive diagnosis in a single assay, that this can compensate for
the longer turnaround. Novel technologies, such as nanopore
sequencing, are emerging, and these could significantly reduce testing
times [85, 86].

In conclusion, the diagnosis of oligodendroglioma, IDH mutant
and 1p/19g codeleted requires the demonstration of 1p/19q
codeletion [10, 11, 87], but there is little consensus regarding the best
approach. Our review suggests that all techniques except G banding
have high sensitivity when compared against FISH or PCR-based LOH
as a reference standard, with NGS and SNP array having high specific-
ity against FISH and PCR-based LOH. This suggests that NGS and
SNP array techniques can be used with confidence for detection of
1p/19q codeletion in the place of FISH or PCR-based LOH, which
may be advantageous as these techniques are capable of simulta-
neously detecting other abnormalities. The use of methylation arrays
for brain tumour diagnostics is a recent development. The copy

number information (equivalent to SNP data) of the arrays generates

a diagnostic readout in addition to the high diagnostic value of a
methylation class as described in the Cochrane review. The results of
an accompanying economic model highlight potentially promising
strategies for future research, but these results are compounded by a
lack of data to parameterise the model and a limited time horizon.
Future research can focus on deriving more longitudinal data to
inform future economic evaluation studies assessing the long-term

health costs and consequences of such strategies.
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