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Background. Quantitative polymerase chain reaction (qPCR) targeting ipaH has been proven to be highly efficient in detecting 
Shigella in clinical samples compared to culture-based methods, which underestimate Shigella burden by 2- to 3-fold. qPCR assays 
have also been developed for Shigella speciation and serotyping, which is critical for both vaccine development and evaluation.

Methods. The Enterics for Global Health (EFGH) Shigella surveillance study will utilize a customized real-time PCR–based 
TaqMan Array Card (TAC) interrogating 82 targets, for the detection and differentiation of Shigella spp, Shigella sonnei, 
Shigella flexneri serotypes, other diarrhea-associated enteropathogens, and antimicrobial resistance (AMR) genes. Total nucleic 
acid will be extracted from rectal swabs or stool samples, and assayed on TAC. Quantitative analysis will be performed to 
determine the likely attribution of Shigella and other particular etiologies of diarrhea using the quantification cycle cutoffs 
derived from previous studies. The qPCR results will be compared to conventional culture, serotyping, and phenotypic 
susceptibility approaches in EFGH.

Conclusions. TAC enables simultaneous detection of diarrheal etiologies, the principal pathogen subtypes, and AMR genes. 
The high sensitivity of the assay enables more accurate estimation of Shigella-attributed disease burden, which is critical to 
informing policy and in the design of future clinical trials.
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The genus Shigella consists of 4 species: S. dysenteriae, S. flex-
neri, S. boydii, and S. sonnei [1]. Globally, S. flexneri is the 
most predominant species, accounting for approximately 60% 
of Shigella infections in low- and middle-income countries, 
and S. sonnei is the second most common, responsible for an 

estimated 10%–20% of Shigella infections in such settings [2–4]. 
Shigella flexneri possesses at least 19 known different serotypes 
based on the structure of its surface lipopolysaccharide 
O-antigen [5]. Traditionally, culture-based methods and bio-
chemical properties have been used to isolate and differentiate 
Shigella spp from clinical samples [6]. The Enterics for Global 
Health (EFGH): Shigella surveillance study will perform molec-
ular testing for Shigella as an adjunct to culture for several rea-
sons [7]. First, stool culture has limited sensitivity for detecting 
bacterial enteropathogens, including Shigella, and takes 2–3 
days [8]. Culture is also challenging as Shigella requires strin-
gent sampling, transport, and growth conditions for optimal 
recovery and can also be sensitive to changes in pH [9], temper-
ature, and oxygen levels [10]. Delayed placement in transport 
media, prolonged transport times, and unstable cold chain 
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may compromise the yield. Additionally, Shigella can be easily 
overgrown by other bacteria, leading to difficulties in its isola-
tion and identification [11]. Last, culture methods may yield 
false-negative results due to the low bacterial load of Shigella 
present in clinical specimens [12], or antibiotic use prior to 
seeking care/sample collection [13]—a more common practice 
in some of the EFGH sites [14, 15].

The current Shigella vaccine candidates mostly target partic-
ular S. flexneri serotypes and S. sonnei; therefore, speciation and 
serotyping are critical for both vaccine development and eval-
uation. Conventionally, serotyping of Shigella isolates by anti-
sera agglutination has been used as the standard method. 
This method is time consuming, expensive, and sometimes in-
accurate due to variation in performance of antisera produced 
by different companies or unavailability of antisera [16]. Test 
interpretation requires visual assessment of agglutination reac-
tions and an interpretation scheme that can be ambiguous. In 
addition, conventional antisera serotyping must be done on 
pure isolates and cannot be done directly on stool. These defi-
ciencies led to the development of polymerase chain reaction 
(PCR) serotyping assays for S. flexneri targeting specific gtr 
and oac O-antigen modification genes [5, 17–20], which will 
be utilized in this study.

After Shigella or other pathogens are detected by molecular 
methods, another important component to consider is disease 
attribution. For instance, coinfections are common in resource- 
limited settings [21, 22]. Previous studies using molecular de-
tection methods detected >3 pathogens in >70% of children 
presenting with diarrhea in Malawi [23], up to 5 pathogens co-
existing in 1 single specimen in a Bangladeshi population [24], 
and up to 6 pathogens in India [25]. A few studies have 
suggested that coinfections may cause worse clinical outcomes 
[26–28].

Therefore, to detect Shigella, provide speciation and serotyping 
data, and test for multiple enteropathogens, we have chosen to use 
the 384-well microfluidic TaqMan Array Card (TAC) as the diag-
nostic platform. The platform has high sensitivity and specificity 
compared to other singleplex real-time PCR systems and offers 
simplified operational procedures [29–31]. Numerous studies 
have validated the use of this technique and shown it to be robust 
across laboratories and sample types [31–37]. TAC provides flex-
ibility to adjust for targets, a strategy that would not be possible if 
commercially designed platforms for enteric multiplex assays 
were employed. Leveraging the rich pathogen data, in secondary 
analysis we also intend to explore the impact of coinfection on bur-
den and consequences.

METHODS

Protocol Development and Training

Standard operating procedures were adapted from previous 
studies and reviewed by representatives from all EFGH 

participating sites during monthly EFGH laboratory working 
group meetings that occurred during the 12-month planning 
phase of EFGH. A 5-day on-site training was conducted by a 
research scientist from the University of Virginia (UVA) at 
the beginning of the study at each of the 7 EFGH recruiting 
sites. It included review and hands-on practice of all study pro-
tocols, from sample extraction to data analysis and data man-
agement. The training also covered instrument calibration 
and maintenance and preparing the laboratory environment 
for molecular testing. Proficiency testing of all laboratory 
team members who would be performing the assay for the 
study was done either during the training for bench activities 
by assaying the external quality assessment (EQA) samples or 
after the training for data analysis by analyzing the EQA data 
files. Follow-up site visits are scheduled on an annual basis or 
per site request, with Zoom refresher trainings or troubleshoot-
ing emails occuring any time the need arises.

Sample Collection

Rectal swabs (Pediatric FLOQswab®, Copan Diagnostics) have 
been chosen as the primary specimen collection modality in 
the EFGH study. In healthcare-based settings, rectal swabs al-
low for a high specimen collection rate across study sites and 
will facilitate a shorter time period between collection and stor-
age or placement into transport media for stool culture [38]. 
Rectal swab samples, unsurprisingly given their smaller stool 
volume, generally showed a higher quantification cycle (Cq) 
in quantitative PCR (qPCR) for most targets versus the corre-
sponding whole stool [37, 39–41]. A good correlation was ob-
served for Cq values between paired swab and stool samples, 
with swab Cqs usually 1–3 cycles higher than stool. 
Nonetheless, as a Cq of 35 is used as the analytical cutoff of 
TAC, and diarrhea-associated Cq cutoffs on stool are generally 
<30 [21, 42], swabs are sufficiently sensitive to detect 
diarrhea-associated pathogens. To confirm the correlation be-
tween rectal swabs and stool, and quantitative detection differ-
ences between the 2 specimen types, 2 of the 7 EFGH study sites 
(Bangladesh and The Gambia) will collect paired swab and 
stool samples for an internal swab-stool comparison substudy 
to refine the pathogen-specific Cq conversion between swab 
and stool. All caregivers of children participating in this study 
will provide parental consent following the informed consent 
process and provide written informed consent prior to any 
study procedures.

Total Nucleic Acid Extraction

Upon sample collection, the bottom flocked portion of the rec-
tal swab is stored frozen at −80°C in a 2-mL Sarstedt (Sarstedt, 
Nümbrecht, Germany) tube after the shaft of the swab is 
snapped off. For whole stool, 200 mg (180–220 mg) or 200 µL 
if watery is aliquoted into the same type of Sarstedt tube that 
is compatible with a bead beater. Total nucleic acid is extracted 
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directly from stored rectal swab or stool samples using a mod-
ified QIAamp Fast DNA Stool mini kit (Qiagen, Hilden, 
Germany) [37] with pretreatment, including bead beating 
and 95°C incubation to increase the yield. Nucleic acid is 
then eluted with 200 μL of elution buffer (ATE). External con-
trols, 106 phocine herpes virus (PhHV) and 107 MS2 bacterio-
phage, are spiked into each sample during the initial lysis step 
to monitor the extraction and amplification efficiency. One ex-
traction blank is included per batch of extraction to monitor 
contamination.

TAC Setup

TAC is a real-time PCR system consisting of 384 wells that al-
lows the simultaneous processing of 8 samples, each of which 
can be tested for 48 targets or more if duplex tests with different 
fluorophores are employed [43]. The qPCR primers and probes 
were derived from previous research [36, 37] and are manufac-
tured along with the card. In this study, 82 targets were selected 
(Table 1), including genomic targets from bacteria, viruses, and 
parasites, Shigella speciation (for S. flexneri and S. sonnei only) 
and serotyping targets (for S. flexneri only), colonization factors 
of enterotoxigenic Escherichia coli, and gene targets associated 
with antimicrobial resistance (AMR), in addition to 2 external 
controls (MS2 and PhHV). qPCR reactions are performed with 
the Ag-Path-ID One Step RT-PCR kit (Life Technologies, 
Carlsbad, California). The master mix is prepared by mixing 
425 µL of Ag-Path-ID 2X RT-PCR buffer and 34 µL 
Ag-Path-ID enzyme mix, then 54 µL aliquoted into 8 tubes. 
Forty-six microliters of the total nucleic acid extract from 
swab (or extraction blank, or nuclease-free water as no template 
control) or 20 µL from stool (supplemented with 26 µL of 
nuclease-free water) are added to each tube. The mixture is 
loaded into the TAC card following the manufacturer's instruc-
tion. The TAC card is then loaded onto the ViiA 7 or 
QuantStudio 7 real-time PCR instrument (Life Technologies) 
and analyzed using QuantStudio real-time PCR software. The 
qPCR experiment is set up with a template pre-populated 
with layout, cycling conditions, assay thresholds, and flag set-
ting, etc. qPCR is programmed to run under the following con-
ditions: 45°C for 20 minutes and 95°C for 10 minutes, followed 
by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute.

Run Analysis

With QuantStudio real-time PCR software, amplification 
curves are examined target by target, and baselines are adjusted 
as needed to correct false-positive/negative or inaccurate Cq 
values. It is required that each file be examined sequentially 
by 2 individuals. The results are exported into an Excel file 
when all of the targets are examined and adjusted to 
satisfaction. The export file is uploaded onto the MuSIC 
(Multi-Schema Information Capture) database housed at 
UVA [46]. An automated TAC analysis program is also under 

development and may be used to speed these manual run 
analyses.

Data Quality Control

Four types of controls are incorporated throughout the testing 
procedure: TAC positive control, no template control, external 
controls, and extraction blank. The TAC positive control com-
bines synthetic constructs containing the concatenated target 

Table 1. Quantitative Polymerase Chain Reaction Targets to Be Used in 
the Enterics for Global Health: Shigella Surveillance Project

Target Type Target Gene

Virus Adenovirus 40/41 Fiber

Astrovirus Capsid

Norovirus GI ORF1/ORF2

Norovirus GII ORF1/ORF2

Rotavirus NSP3

Sapovirus RdRp

Bacteria Aeromonas Aerolysin

Campylobacter jejuni/coli cadF

Helicobacter pylori ureC

Plesiomonas gyrB

Salmonella enterica ttr, invA

Shigella/Enteroinvasive  
E. coli

ipaH

Vibrio cholerae hlyA

Enteroaggregative E. coli aaiC, aatA

Enteropathogenic E. coli bfpA, eae

Enterotoxigenic E. coli LT, STh, STp

Shiga toxin–producing 
E. coli

Stx1, Stx2

ETEC colonization factor CFA/I, CS1, CS2, CS3,  
CS5, CS6

Shigella flexneri serotypinga gtrI, gtrIc, gtrII, gtrIV,  
gtrV, gtrX, oac, wzx6

Shigella sonnei Rhs, pm

Macrolide resistance ermA, ermB, ermC, mphA,  
mphB, mefA, msrA, msrD

Fluoroquinolone resistance Shigella/E. coli gyrA S83L

Polymyxin resistance MCR1, MCR2

β-lactam resistance CTX-M M1, M2, M74,  
M8, M25, M9

OXA48

SHV, SHV23840

TEM E104K, R164SC, 
G238S

Fungus Enterocytozoon bieneusi ITS

Protozoa Cryptosporidium 18S rRNA

Entamoeba histolytica 18S rRNA

Giardia lamblia 18S rRNA

Cyclospora cayetanensis 18S rRNA

Cystoisospora belli 18S rRNA

External 
control

MS2 MS2g1

PhHV gB

The primers and probes designed are adapted from previous studies [17, 18, 34, 44, 45].  

Abbreviations: ETEC, enterotoxigenic Escherichia coli; MS2, MS2 bacteriophage; PhHV, 
phocine herpes virus; rRNA, ribosomal RNA.  
aTable 2 shows the serotyping scheme with these gene targets.
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fragments (plasmid for DNA targets and in vitro transcripts for 
RNA viruses) [36]. A 10-fold serial dilution of TAC positive 
control is prepared and run at 3 replicates every 6 months 
(or after instrument maintenance or repair). This serves as a 
performance check and generates standard curves to derive 
copy numbers from Cqs if needed. A no template control (ie, 
nuclease-free water) is run every 10 cards to monitor for 
qPCR reagent contamination.

A Cq of 35 is set as the analytical cutoff for the pathogen 
targets. External controls and extraction blanks are used to val-
idate the negative and positive results, respectively. Specifically, 
the negative results (no amplification or Cq >35) of a sample 
are valid only when the external controls amplify with Cq 
<35 (PhHV for DNA targets, MS2 for RNA targets). The pos-
itive results of a sample are valid only when the extraction blank 
that is extracted along with the sample is negative for the rele-
vant targets. Otherwise, the results are deemed to be invalid, 
and excluded from data analysis.

Fluorescence fluctuation during qPCR is monitored by the 
system and reflected in the quality control (QC) summary of 
QuantStudio real-time PCR software. The QC items 
BADROX (bad passive reference signal) combined with 
NOISE (noise higher than others in plate) or SPIKE (noise 
spikes) have been found to affect the accuracy of the results; 
thus, any data with these flags are determined to be invalid.

The laboratory surfaces and equipment used for sample pro-
cessing are periodically tested using a swipe test kit provided 
centrally to determine the potential source of contamination. 
Swipe testing and cleaning/decontamination procedures 
should occur after any pathogen target is detected in an extrac-
tion blank or no template amplification control.

Quality Assessment

Stool samples for the EQA are prepared at UVA by spiking a 
combination of bacterial, viral, and protozoan targets at various 

concentrations into stool samples from healthy donors, then 
shipping blinded samples to the study sites on dry ice. 
Bacterial culture and commercial Cryptosporidium oocysts 
are spiked directly into stool, followed by incubation at 95°C 
for 30 minutes to inactivate the infectious agents. In vitro tran-
scripts for RNA viruses are lyophilized and spiked into the 
Inhibitex buffer during extraction. One set of 5 EQA samples 
is tested at each study site every 6 months. The test results 
are evaluated by the UVA laboratory and 80% concordance is 
required prior to testing clinical samples. Additionally, UVA 
provides TAC run files for data analysis EQA to evaluate the ac-
curacy of the test results. All of the laboratory personnel per-
forming TAC testing are trained by a UVA scientist on the 
entire procedure and are required to pass their proficiency tests 
before performing their own sample runs.

Data Analysis

For EFGH, Cq cutoffs will be used to determine the likely attri-
bution of particular etiologies of diarrhea, leveraging previous 
studies that performed qPCR testing of both diarrheal and non-
diarrheal stools, specifically the 7-site Global Enteric 
Multicenter Study (GEMS) and the 8-site Malnutrition and 
the Consequences for Child Health and Development 
(MAL-ED) cohort study [21, 42]. Using models identical to 
those used in those studies but limited to children <36 months 
of age, quantity-specific odds ratios were estimated from each 
of GEMS and MAL-ED independently for Cq values ranging 
from 35 to 15 by 0.001 increments by taking the median odds 
ratio from 10 000 random permutations of the model coeffi-
cients, drawn equally from each of the site-specific models. 
For each quantity, the episode-specific attributable fraction 
(AFe) was then calculated, where AFei = 1/j∗(1–1/ORi), and 
ORi is the quantity-specific median odds ratio. A LOESS regres-
sion was fitted and the highest Cq value with an AFe ≥0.5 (ie, 
majority attribution) was picked. Finally, in the case that a cut-
off was derived from both studies, the mean Cq value was cal-
culated, and if a cutoff was identified in only 1 of GEMS and 
MAL-ED, that cutoff from that single study was used directly 
(Table 3). To account for the lower sensitivity of rectal swab, 
we applied a correction to determine swab-specific cutoffs, 
also outlined in Table 3.

For Shigella, previous studies have determined a 
diarrhea-associated Shigella amount of approximately 107 or 
more copies of the ipaH gene per gram of stool, equivalent to 
an ipaH Cq of 29 with TAC [21], and the cutoff derived for 
EFGH (stool 29.8, swab 31.1) is extremely close to this. For 
pathogen assays, a Cq of 35 will be used as the limit of detection, 
as we have previously shown that detections on the TAC plat-
form with a Cq >35 are at the limit of detection and not repro-
ducible [31]. Primary analyses will ignore other attributable 
etiologies; therefore, a child with Shigella at or below the etio-
logic cutoff will be considered to have attributable Shigella. 

Table 2. Shigella flexneri Serotyping Scheme for the Enterics for Global 
Health: Shigella Surveillance Project

Shigella Serotype Gene Target

S. flexneri 1a gtrI

S. flexneri 1b gtrI, oac

S. flexneri 1d gtrI, gtrX

S. flexneri 2a gtrII

S. flexneri 2b gtrII, gtrX

S. flexneri 3a gtrX, oac

S. flexneri 3b oac

S. flexneri 4a gtrIV

S. flexneri 4b gtrIV, oac

S. flexneri 5a gtrV, oac

S. flexneri 5b gtrV, gtrX, oac

S. flexneri 6 wzx6

S. flexneri 7a gtrI, gtrIc

S. flexneri X gtrX
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In secondary analyses, Shigella molecular data will be stratified 
by presence/absence of 1 or more other pathogens at or below a 
Cq threshold. Also in secondary analyses, attributable patho-
gens will be reported using a standard Cq attribution cutoff 
of 30 across the pathogens, a cutoff that adds specificity to 
the sensitive molecular assay without conditioning on previous 
data to arrive at pathogen-specific cutoffs.

To identify Shigella species and serotypes, we will consider all 
samples with a swab ipaH Cq <31.1. Then additionally we will 
require the following [20]: 

1. The Cq of the S. flexneri serotyping target or S. sonnei target 
must be within 7 Cq of the ipaH Cq (ie, Cq values of up to 
38.1).

2. If ≥2 targets are required to determine the serotype, the Cq 
difference between the targets must be ≤2 Cq.

3. If multiple S. flexneri serotypes and/or S. sonnei are detected 
using the above criteria, the target(s) with the lower Cq de-
termines the primary species present.

4. This algorithm will be compared to culture and may be re-
fined. For example, the Bangladesh and The Gambia sites 
will be providing additional swab-stool comparative data 
that could slightly alter the swab adjustment.

DISCUSSION

Here we have described the rationale and methodology that will 
be used for molecular detection of Shigella and attribution of 
etiology. Of note, the PCR target for Shigella has typically 
been ipaH [47]. Shigella possesses 12 unique invasion plasmid 
antigen H (ipaH) genes [48], which are important for pathogen-
esis by encoding proteins used to evade the host immune re-
sponse during infection [49–51]. These genes are present in all 
4 Shigella spp as well as enteroinvasive E. coli (EIEC) [44]. 
Therefore, while the ipaH gene cannot differentiate Shigella 
from EIEC, the prevalence of EIEC has typically been much low-
er [45], and metagenomic sequencing results indicated that ipaH 
qPCR-positive samples are similar to those of Shigella culture- 
positive samples in Shigella sequence composition, supporting 
ipaH qPCR as an accurate method for detecting Shigella [52]. 
Numerous studies have demonstrated ipaH qPCR to be highly 
efficient in detecting Shigella in clinical samples compared to 
culture-based methods, which underestimated Shigella burden 
by 2- to 3-fold [21, 43, 53, 54].

The 82 targets interrogated in this study cover the main 
diarrhea-associated enteropathogens, important pathogen sub-
typing targets, and AMR genes. As for AMR genes, we will eval-
uate genotypic resistance markers directly in rectal swab/stool 
for 4 classes of antibiotics, including fluoroquinolones, macro-
lides, polymyxin, and for β-lactamases. The gene targets were 
chosen based on previously reported genes or mutations 
[13, 55]. Because AMR genes are often shared between bacteria 
on plasmids, studies have shown that the molecular detection 
of drug resistance genes in stools does not implicate a particular 
organism. That said, a study of Shigella treatment showed that 
the lack of detection of macrolide resistance genes mphA or 
ermB genes has a high negative predictive value for macrolide 
resistance [13]. In this study we will be able to further compare 
the conventional susceptibility results performed on the 
Shigella isolates with that found in stool.

In summary, the TAC approach allows for the improved de-
tection of Shigella relative to the historic standard of culture 
and comparable to that of other nucleic acid detection systems. 
Furthermore, the method allows for speciation and serotyping 
of Shigella, detection of other pathogens, and detection of AMR 
genes in one run. This combination of diagnostic characteris-
tics will be directly compared to traditional culture, serotyping, 
and phenotypic susceptibility approaches in EFGH and will 
provide critical data for subsequent field studies.

Notes
Author contributions. J. L., P. F. G. B., K. I., S. J., J. J., C. M., Q. N., S. Q., 

C. S., M. A., J. E. C., F. Kab., F. Kh., M. N. K., J. B. O., J. A. P.-M., S. M. T., 
and E. R. H. actively participated in monthly working group meetings dur-
ing which the conceptualization and outline was discussed and agreed 
upon. J. L., P. F. G. B., K. I., S. J., J. J., C. M., Q. N., S. Q., and C. S. wrote 
the first draft of the manuscript, and M. A., J. E. C., F. Kab., F. Kh., 
M. N. K., J. B. O., J. A. P.-M., S. M. T., and E. R. H. provided review, 

Table 3. Diarrhea-Associated Quantification Cycle Cutoffs Derived From 
the Global Enteric Multicenter Study and Malnutrition and the 
Consequences for Child Health and Development Study

Pathogen

Quantification Cycle Cutoff

Whole Stool
Rectal Swab

GEMS MAL-ED EFGHa EFGHb

Adenovirus 40/41 24.7 22.3 23.5 25.5

Aeromonas 21.2 22 21.6 23.6

Astrovirus 23.8 24.9 24.4 26.7

Campylobacter jejuni/coli None 19.9 19.9 20.7

Cryptosporidium 26.9 23.7 25.3 27.1

Cyclospora cayetanensis 31.9 None 31.9 33.9

Entamoeba histolytica 31.3 29.8 30.6 32.6

Cystoisospora belli None 32.4 32.4 34.4

Norovirus GII 20.6 27.7 24.2 26.6

Rotavirus 32.3 31.3 31.8 34.2

Salmonella 31.3 None 31.3 33.3

Sapovirus 17.1 26.8 21.9 24.4

Shigella/EIEC 29.4 30.1 29.8 31.1

ST-ETEC 23 25.2 24.2 27.9

Typical EPEC None 17.4 17.4 20.7

Vibrio cholerae 33.4 30.3 31.9 33.9

Abbreviations: EFGH, Enterics for Global Health; EIEC, enteroinvasive Escherichia coli; 
EPEC, enteropathogenic Escherichia coli; GEMS, Global Enteric Multicenter Study; 
MAL-ED, Malnutrition and the Consequences for Child Health and Development; 
ST-ETEC, enterotoxigenic Escherichia coli producing heat-stable enterotoxins.  
aCalculated as the mean of GEMS and MAL-ED whole stool quantification cycle value 
cutoffs.  
bCalculated as the mean of GEMS and MAL-ED Cq cutoffs plus the rectal swab conversion. 
Note that the Bangladesh and The Gambia sites will be providing additional swab-stool 
comparative data that could slightly alter the swab adjustment.
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