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ABSTRACT The average age of infant deaths, 𝑎%	 &, and the average number of years lived—

in the age interval—by those dying between ages 1 and 5, 𝑎'	 %, are important quantities 

allowing the construction of any life table including these ages. In many applications, the 

direct calculation of these parameters is not possible, so they are estimated using the infant 

mortality rate—or the death rate from 0 to 1—as a predictor. Existing methods are general 

approximations that do not consider the full variability in the age patterns of mortality below 

the age of 5. However, at the same level of mortality, under-five deaths can be more or less 

concentrated during the first weeks and months of life, thus resulting in very different values 

of 𝑎%	 & and 𝑎'	 %. This article proposes an indirect estimation of these parameters by using a 

recently developed model of under-five mortality and taking advantage of a new, 

comprehensive database by detailed age—which is used for validation. The model adapts to a 

variety of inputs (e.g., rates, probabilities, or the proportion of deaths by sex or for both sexes 

combined), providing more flexibility for the users and increasing the precision of the 

estimates. This fresh perspective consolidates a new method that outperforms all previous 

approaches. 
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Introduction and Background 

In life table construction, probabilities of dying, 𝑞(	 ), are usually calculated from central 

death rates, 𝑚(	 ), and the distribution of deaths in the age interval [𝑥, 𝑥 + 𝑛). This 

distribution is informed by 𝑎(	 ), which is the average number of years lived from 𝑥 to 𝑥 + 𝑛, 

by those who do not survive to the end of the interval (Keyfitz 1970). When individual 

records are available or deaths are tabulated by detailed ages, 𝑎(	 ) can be calculated directly 

from reliable sources (Chiang 1978; Shryock et al. 1976). Because this is not always the case, 

𝑎(	 ) is sometimes approximated to be one half the length of the interval !", assuming deaths 

are uniformly distributed or concentrated at the midpoint of the age interval. However, owing 

to the fast age-specific decline in the force of mortality between ages 0 and 5, deaths are more 

concentrated at the beginning of the age intervals, and thus the uniform assumption is not 

tenable. 

In the absence of information on deaths by detailed age, the average age of infant 

deaths, 𝑎%	 &, and the average number of years lived by those dying during childhood, 𝑎'	 %, are: 

(1) estimated from the central death rate from 0 to 1—denoted by 𝑚%	 &, or the resulting infant 

mortality rate, 𝑞%	 &—defined as the probability of dying within the first year of life, using 

empirical formulae validated from other populations (Alexander and Root 2022; Andreev and 

Kingkade 2015; Coale and Demeny 1966; Keyfitz 1970); (2) approximated to other observed 

values, such as the separation factor of infant deaths in the case of 𝑎%	 & (Arias and Xu 2019; 

Keyfitz 1968; Wolfenden 1954); or (3) indexed to certain values as a rule of thumb or by 

consensus (Hinde 1998; Keyfitz and Flieger 1971; Newell 1988). 

The classic approach for predicting the average age of infant deaths is the monotonic 

function of Coale and Demeny’s Regional Model Life Tables and Stable Populations, 

depending on the infant mortality rate and a regional family, that would inform the age 

patterns of mortality (Coale and Demeny 1966). Because 𝑞%	 & is not directly observable in 
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period life tables, applying the formula requires one to iterate its value, given the observed 

value of 𝑚%	 &. Hence, similar functions were proposed using 𝑚%	 & as a predictor (Keyfitz 

1970; Preston et al. 2001), and the two approaches have been disseminated by several 

demographic textbooks over the last five decades (Carmichael 2016; Keyfitz and Flieger 

1971; Kintner 2004; Land et al. 2005; Preston et al. 2001; Preston et al. 1972; Rowland 2003; 

Smith 1992; United Nations 1982; Wachter 2014). Considering the time when these 

equations were calibrated, the monotonic assumption was well justified. As mortality 

historically declined, infant deaths became more concentrated at the first weeks and months 

of life, leading to permanent reductions in the average age of infant deaths. Yet, the recent 

experience of high-income countries shows that the continuous decline in infant mortality has 

not always implied a decreasing average age of infant deaths. 

To address this issue, Andreev and Kingkade developed new formulae accounting for 

a modest increase in 𝑎%	 & as infant mortality reaches very low levels (Andreev and Kingkade 

2015). Nevertheless, these new equations are concerned with the central tendency of 

predicting 𝑎%	 &, disregarding the factors explaining the overdispersion of data. Indeed, at the 

same level of infant mortality, two independent populations can have very different values of 

𝑎%	 & as a result of the different age patterns of mortality early in life. Therefore, generic 

equations—such as those proposed by Andreev and Kingkade—are limited by large errors of 

prediction. 

Recently, Alexander and Root proposed a new formula that accounts for different age 

patterns of mortality, defining 𝑎%	 & as a linear function of 𝑞%	 & and the ratio of the infant to the 

under-five mortality rate 𝑞%	 & 𝑞*	 &⁄  (Alexander and Root 2022). However, this approach 

implicitly assumes that 𝑞%	 & and 𝑞*	 & are observed quantities and that their ratio is the best 

predictor of the age pattern of under-five mortality, which is a condition that was not actually 

tested. However, in most applications 𝑞%	 & and 𝑞*	 & are unknown quantities that researchers 
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calculate from the death rate from 0 to 1, 𝑚%	 &, and the death rate from 1 to 5, 𝑚'	 %, with the 

help of 𝑎%	 & and 𝑎'	 %. Then, the precision in 𝑞%	 & and 𝑞*	 & might be affected by the assumptions 

on 𝑎%	 & and 𝑎'	 %. Although the estimation of these two parameters is particularly relevant, 𝑎'	 % 

has received less attention and, to our knowledge, no method has been proposed since Preston 

et al. (2001) adapted the Coale and Demeny (1966) equations. 

In this article, we describe a new method for estimating the average age of infant 

deaths, 𝑎%	 &, and the average number of years lived—in the age interval—by those dying 

during childhood, 𝑎'	 %, using a flexible, two-dimensional, log-quadratic model of under-five 

mortality (henceforth, the log-quadratic model). The log-quadratic model works as a model 

life table: it predicts a mortality schedule below age 5—with details by weeks and months of 

life—given one or two parameters related to the level and the age pattern of under-five 

mortality (Guillot et al. 2022a). We calculate these parameters by matching the model to one 

or two observed inputs, which can be either death rates or probabilities of dying. As a 

contribution, we adapt the log-quadratic model to deal with less conventional metrics of 

mortality—which have received no attention in the literature but increase the precision when 

they are available—such as the proportion of infant deaths below certain ages (e.g., 28 days 

or three months). Hence, our contention is that the values of 𝑎%	 & and 𝑎'	 % should be estimated 

indirectly from the age patterns of under-five mortality that any two observed inputs can 

predict; our analysis orients the researcher on the choice of these inputs. 

We demonstrate that our indirect approach produces feasible solutions to the problem 

of matching one or two inputs, and we estimate the accuracy and the precision of our 

proposed method using Bayesian analysis. The main advantage of this perspective is the 

estimation of credible intervals used for evaluation, when comparing the observed and 

predicted values of 𝑎%	 & and 𝑎'	 %. Particularly, we evaluate the effectiveness of our indirect 

approach by comparing our results with the observed values that were directly calculated 
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from the Under-5 Mortality Database, which is a newly collected source of national 

distributions of deaths by detailed ages and the same selection of 1,219 life tables used to 

calibrate the log-quadratic model (Guillot et al. 2022a). The use of granular data is a clear 

improvement over the most recent approaches that have substituted the value of 𝑎%	 & by the 

separation factor of infant deaths (Alexander and Root 2022; Andreev and Kingkade 2015), 

which is assuming a uniform distribution of births within a calendar year. Finally, we contrast 

the accuracy and the precision of our method with all previous approaches to estimate the 

values of 𝑎%	 & and 𝑎'	 % for each sex and for both sexes combined, when one or two inputs are 

available. Our proposed method brings more flexibility, adapts remarkably to the available 

inputs, provides solutions for each sex and for both sexes combined, and outperforms all 

previous approaches. 

 

Data 

We use a collection of 1,219 life tables of under-five mortality that are available at the 

Under-5 Mortality Database (U5MD). These period life tables were calculated—

empirically—from the civil registration and vital statistics of 25 countries and exhibit some 

historical variation (from 1920 to 2016), as shown in Table 1. The U5MD compiles a broad 

range of levels and age patterns of under-five mortality. However, the most relevant feature is 

the detailed age distribution of mortality from 0 to 5 (e.g., weeks and months, during the first 

year of life; and trimesters, during the second), allowing the direct calculation of the average 

age of infant deaths 𝑎%	 & and the average number of years lived—in the age interval—by 

those dying during childhood 𝑎'	 %. We calculate the values of 𝑎%	 & and 𝑎'	 % for each country-

year using the outputs of a life table indicated by Eq. (1). The cumulative probabilities of 

dying 𝑞(𝑥) and the number of person-years lived between ages 𝐿(	 + were both calculated 

from central death rates, assuming a synthetic cohort and a constant force of mortality within 
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each age interval. This is considered by no means a restrictive assumption, given the narrow 

length of the age intervals of the U5MD. 

 𝑎(	 + =
,!	 $	-	(	∙	[%	-	0(+	2	()]
0(+	2	()	-	0(+)

.       (1) 

--- Set Table 1 about here --- 

In contrast, when detailed ages at death are not available and yearly deaths are simply 

tabulated by age and cohort, the separation factor of infant deaths (i.e., the proportion of 

infant deaths of a birth cohort occurring in the following calendar year, calculated from Lexis 

triangles) is used as a rough approximation to the average age of infant deaths, relying on the 

assumption of a constant flow of births. As a consistency check, we contrast the direct 

calculation of 𝑎%	 & with the estimated value informed by the separation factor of infant deaths, 

using a selection of life tables of the U5MD that also have directly observed separation 

factors in the Human Mortality Database (HMD 2020). This is a pertinent comparison, 

considering that separation factors are the main source of data used to calibrate the most 

recent formulae (Alexander and Root 2022; Andreev and Kingkade 2015). For a selection of 

847 life tables that are part of the U5MD and that have observed Lexis triangles in the HMD, 

the mean difference of these two sources is approximately 0.45 days, and the standard 

deviation is estimated to be 7.89 days (using the values for the two sexes combined). Despite 

the similarity, the preferred source for calculating the average age of infant deaths and the 

average number of years lived by those dying during childhood is the U5MD. 

The granularity of the U5MD allows for the possibility to predict the average age of 

infant deaths from the most relevant indicators of mortality in early ages and not just from the 

most available inputs, such us the infant mortality rate 𝑞%	 & or central death rate of the first 

year of life 𝑚%	 &. Although these traditional and most available inputs would inform the level 

of mortality early in life, they conceal the features of the age patterns of mortality and the 

resulting age distribution of under-five deaths. Variation in the age pattern of under-five 
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mortality does indeed explain why two populations with the same level of mortality can have 

quite different values of 𝑎%	 & and 𝑎'	 %.  

 

Methods 

We propose the indirect estimation of the average age of infant deaths, 𝑎%	 &, and the average 

number of years lived—in the age interval—by those dying during childhood, 𝑎'	 %, using a 

model life table of mortality in early ages. These models consist of a set of coefficients and 

are used as auxiliary methods—in a context of incomplete or unreliable data—to calculate 

mortality schedules depending on few parameters related to the level and age pattern of 

mortality. Hence, the aim of the indirect estimation is to adjust these parameters, fitting or 

matching the model life table to some observed mortality inputs and keeping constant the 

model’s coefficients. Then, estimates of 𝑎%	 & and 𝑎'	 % are simply calculated from the predicted 

mortality schedule. 

We use the coefficients of a flexible, two-dimensional, log-quadratic model of under-

five mortality estimated by another publication (Guillot et al. 2022a) and fitting the model to 

the same collection of 1,219 life tables that we use here. The use of the log-quadratic model 

is justified by the fact that researchers can have very different inputs or request different 

outputs when they are constructing life tables. Existing methods deal with only a few inputs 

(e.g., only  𝑞%	 & or 𝑚%	 &, or 𝑞%	 & and 𝑞*	 &), which often imposes a severe limitation on users. In 

contrast, the log-quadratic model provides a flexible framework that deals with different 

forms of data, such as death rates and probabilities of dying, and we adapt the model to deal 

with less conventional metrics of mortality, such as the percentage of infant deaths below a 

certain age. One clear advantage of our approach is that it is simply more efficient to fit a 

model providing a general solution than to use one formula for each possible input and output 

of mortality. 
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Estimation of 𝒂𝟏	 𝟎 and 𝒂𝟒	 𝟏, Using a Model Life Table of Under-Five Mortality 

The log-quadratic model predicts a mortality schedule by detailed age between 0 and 5 years 

for a given set of two values: (1) the probability of dying before the age 5, 𝑞*	 &, controlling 

the level of mortality; and (2) the parameter 𝑘, related to the age patterns of under-five 

mortality (Guillot et al. 2022a). The predicted mortality schedule is given in the form of 

cumulative probabilities of dying from 0 to 5, as defined by 𝑞(𝑥; 𝑞*	 &, 𝑘): 

ln[𝑞(𝑥; 𝑞*	 &, 𝑘)] = 𝑎+ + 𝑏+ ∙ ln[ 𝑞*	 &] + 𝑐+ ∙ ln[ 𝑞*	 &]5 + 𝑣+ ∙ 𝑘.  (2) 

The log-quadratic model constitutes a life table approach of mortality at early ages—

described by a system of 22 equations—given the following exact ages: 7, 14, 21, and 28 

days; 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, and 21 months; and 2, 3, 4, and 5 years. As 

shown by Eq. (2), the model depends on a set of age-specific coefficients {𝑎+ , 𝑏+ , 𝑐+ , 𝑣+}, 

derived from the U5MD and following a procedure described elsewhere. The coefficient 𝑣+, 

intensified—or attenuated—by the parameter 𝑘, would adjust the mortality schedule at a 

fixed value of 𝑞*	 &. 

Given the coefficients of the log-quadratic model and the value of the two parameters 

𝑞*	 & and 𝑘, a predicted mortality schedule can be used to recover the different functions—or 

columns—of a life table for 0 to 5. For example, Eq. (1), quantifying the average number of 

years lived—in the age interval—by those dying between ages 𝑥 and 𝑥 + 𝑛, can be redefined 

as function of the parameters 𝑞*	 & and 𝑘: 

 𝑎(	 +( 𝑞*	 &, 𝑘) =
,!	 $( 0%

	
&,7)	-	(	∙	[%	-	0(+	2	(; 0%

	
&,7)]

09+	2	(; 0%	 &,7:	-	09+; 0%	 &,7:
.   (3) 

Using Eq. (3) requires an additional quantity, which is the number of person-years 

lived between ages	𝑥 and 𝑥 + 𝑛, indicated by 𝐿(	 +( 𝑞*	 &, 𝑘). This measure of exposure can be 

estimated—for each of the 22 age intervals—as a function of the parameters 𝑞*	 & and 𝑘, 

assuming a constant force of mortality within each age interval: 



 9 

 𝐿(	 +( 𝑞*	 &, 𝑘) =
!	∙	()*$	+	!; )%

	 &,./	0	)*$; )%
	 &,./1

23(4	0	)*$; )%
	 &,./1	0	23(4	0	)*$	+	!; )%

	 &,./1
.   (4) 

The outcomes of Eqs. (3) and (4) are both indirect estimates, depending on the level 

and age pattern of under-five mortality. The main intuition is as follow. At a given level of 

mortality, under-five deaths can be even more concentrated right after birth and the first 

weeks of life, or conversely, more broadly distributed with a relatively high number of deaths 

during childhood (e.g., from ages 1 to 4), thus increasing the estimated values of 𝑎%	 & and 𝑎'	 %. 

 

Comparison of Existing Methods to Estimate 𝒂𝟏	 𝟎 and 𝒂𝟒	 𝟏 

Figure 1 shows the relationship between the average age of infant deaths 𝑎%	 & and the 

probability of dying within the first year of life 𝑞%	 &. Panel a compares the formula proposed 

by Andreev and Kingkade in 2015 (henceforth AK) with the classic approach of Coale and 

Demeny of 1966 (CD and CD–East); the adaptation suggested by Preston, Heuveline, and 

Guillot in 2001 (PHG), using the central death rate 𝑚%	 &, as an input; and the generic equation 

proposed by Keyfitz in 1970 (K), following the same simplification. To make the latter two 

approaches comparable, a given value of 𝑚%	 & was used to calculate 𝑎%	 &, followed by the 

corresponding value of 𝑞%	 & that is finally described in the figure. As expected, the PHG 

reproduces virtually the same trajectory of the CD equation but facilitates a direct solution 

when the researcher relies on central death rates to calculate probabilities of dying and does 

not want to deal with iterations. 

--- Set Figure 1 about here --- 

In addition to the predicted values of 𝑎%	 &, Figure 1 shows the empirical values of 

1,219 country-years from the U5MD directly estimated, as explained in the Data section, and 

the indirect estimation of the log-quadratic model—given five values of 𝑘 that represent 

different age patterns of under-five mortality. Panel a makes evident the contribution of 

Andreev and Kingkade (2015) of avoiding a monotonic function that has no empirical 
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support at very low levels of infant mortality. Although the segmented AK formula 

incorporates a modest increase in the average age of infant deaths, 𝑎%	 & is overdispersed at 

low levels of infant mortality and predictions based on 𝑞%	 & alone are not precise. Conversely, 

the log-quadratic model has the flexibility to move from the central tendency by adjusting the 

value of 𝑘. A combination of 𝑞%	 & and 𝑘 increases the accuracy in estimating the average age 

of infant deaths 𝑎%	 &, but fitting the log-quadratic requires some knowledge or inference on 

the value of 𝑘. 

Panel b of Figure 1 compares the new formula proposed by Alexander and Root in 

2022 (hereafter AR) with the indirect estimation of the log-quadratic model. Since these two 

approaches include more than one parameter, the estimated value of 𝑎%	 & should be specific to 

a given age pattern of under-five mortality. While the log-quadratic model is a system of 

equations depending on the level of the under-five mortality and the value of 𝑘, AR’s 

equation is a direct equation regressing the average age of infant deaths on the probability of 

dying during the first year of life and the ratio of this probability to the under-five mortality. 

To make these two approaches comparable, AR’s equation has been plotted to indicate the 

same range of values of 𝑘 (i.e., the same variation of the age pattern). For a given pair of 𝑞%	 & 

and 𝑘, the corresponding value of the under-five mortality is calculated by matching the log-

quadratic model to this information. As shown in the following section (see Figure 3), there is 

only one value of 𝑞*	 & for a given pair of 𝑞%	 & and 𝑘, thus ensuring a unique solution. Finally, 

𝑎%	 & is estimated from 𝑞%	 & and 𝑞*	 &, using the AR’s ratio equation and plotting against the 

chosen level of 𝑞%	 &. 

Panel b of Figure 1 also shows that AR’s formula is not covering the full range of 

variation of the mean age of infant deaths, given the expected variation in 𝑞%	 & 𝑞*	 &⁄  and the 

level of infant mortality. The most likely explanation is that 𝑞%	 & and 𝑞*	 &—as well as 𝑚%	 & and 

𝑚'	 %—is not an ideal combination for inferring the age pattern of under-five mortality. 
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Indeed, the level of the under-five mortality is strongly determined by the value of the infant 

mortality, and the ratio of the infant to the under-five mortality is not strongly correlated with 

the average age of infant deaths. Hence, to improve on the estimation of the average age of 

infant deaths, the researcher must rely on inputs that better inform the age distribution of 

deaths during the first year of life. 

The same inputs of 𝑎%	 &( 𝑞*	 &, 𝑘) can be used to estimate the average number of years 

lived—in the age interval—by those dying during childhood. Although 𝑎'	 % is also a 

necessary component of an abridged life table, its empirical validation has received less 

attention. In addition to the formulae proposed by Coale and Demeny (1966), imposing a 

value of 1.5 years has been used as a raw assumption (Keyfitz and Flieger 1971), 

disregarding the level and the age pattern of mortality. One of the reasons might be the lesser 

influence of this value on the resulting under-five mortality rate. 

--- Set Figure 2 about here --- 

Figure 2 shows observed and predicted values of 𝑎'	 % as a function of the infant 

mortality rate. Panel a illustrates the four regional families of mortality (i.e., North, South, 

West, and East) initially proposed by Coale and Demeny (1966); the alternative West formula 

by Preston et al. (2001), depending on 𝑚%	 &; and the predictions of the log-quadratic model of 

under-five mortality for five given values of 𝑘. Panel b emphasizes the flexibility of the 

model and the effect of modifying the age patterns at different levels of mortality. Figure 2 

also shows that the classic approach is only partially supported by the empirical data, and 

there are important gaps between one regional family and the other. Assuming 1.5 years is 

not unrealistic but sacrifices accuracy and precision. As in the case of the average age of 

infant deaths, the graduation of 𝑘 improves the estimation of 𝑎'	 %, when the researcher relies 

on the log-quadratic model. In addition to the flexibility, one advantage of the log-quadratic 
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model is to show a modest reduction in the estimated value of 𝑎'	 % at very low levels of 

mortality, where child deaths tend to concentrate more at the beginning of the age interval. 

 

Optimal Values of 𝒒𝟓	 𝟎 and 𝒌, Matching the Model to Observed Data 

Model estimates—denoted as a function of 𝑞*	 & and 𝑘—implicitly assume that the researcher 

knows the value of the parameters. Considering that these parameters might not be directly 

observed quantities, they can be recovered by fitting the model to some observed inputs 

(Guillot et al. 2022a). In this article, our proposal is to find the optimal values of 𝑞*	 & and 𝑘 by 

adapting a log-quadratic model to reproduce exactly one or two observed inputs; for example, 

central death rates and the age distribution of infant deaths, when the latter is available. 

Following the same principle as Eqs. (3) and (4), death rates—depending on the estimated 

number of deaths and the number of person-years lived between ages	𝑥 and 𝑥 + 𝑛—can be 

calculated with 

 𝑚(	 +( 𝑞*	 &, 𝑘) =
)*$	+	!; )%

	 &,./	0	)*$; )%
	 &,./

5!
	 $* )%

	 &,./
.     (5) 

Given two key assumptions of the log-quadratic model of under-five mortality (i.e., 

constant force of mortality within the age subinterval and proportional exposure to the length 

of each subinterval of age), the observed proportion of infant deaths below a certain age 𝑥 <

12𝑚—denoted by 𝑧(𝑥; 𝑞*	 &, 𝑘)—can be calculated by  

 𝑧(𝑥; 𝑞*	 &, 𝑘) =
<(+)

<(%5=)
= >?[%	-	0(+; 0%

	
&,7)]

>?@%	-	09%	ABCD; 0%	 &,7:E
.    (6) 

Since the proportion of infant deaths from 0 to age 𝑥 depends exclusively on the 

probability of dying below the same age and the infant mortality rate, knowing just two of 

these quantities is enough to calculate the one that would be missing, as indicated by Eq. (6). 

This condition facilitates some applications, inasmuch as the age distribution of infant deaths 

is more available than the actual probabilities of dying, and researchers can use the 
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proportion of infant deaths below a certain age as one of the inputs to graduate the values of  

𝑞*	 & and 𝑘. 

Let us first describe a graphical solution to the problem of matching Eqs. (5) and (6). 

Using the coefficients of the log-quadratic model {𝑎+ , 𝑏+ , 𝑐+ , 𝑣+}, Figure 3 shows contour 

lines representing the different combinations of 𝑞*	 & and 𝑘 that will result in the same value of 

some mortality inputs. Therefore, the model is matching the observed values of two inputs at 

the exact point in which their corresponding lines intersect. The optimal solutions of the log-

quadratic model exist along these intersections. If the contour lines intersect only once, the 

precise combination of 𝑞*	 & and 𝑘 is also unique. Some combinations of mortality inputs lead 

to unique solutions of the model; Figure 3 is illustrating just a couple of them. 

--- Set Figure 3 about here --- 

On the one hand, panel a of Figure 3 shows the contour lines of the neonatal mortality 

rate (in dark blue) and the infant mortality rate (in light blue), generated using the outcomes 

of Eq. (2). On the other hand, panel b depicts the contour lines of the central death rate from 0 

to 1 (in dark gray) and the proportion of infant deaths during the first month of life (in pink), 

generated using Eqs. (5) and (6), respectively. These two combinations produce equivalent 

solutions, as shown in panel c, using Norway in 1975 as an example. 

At the exact point that the model is matching the neonatal mortality rate 𝑞(28𝑑) and 

the infant mortality rate 𝑞%	 &, the model is also matching the death rate from 0 to 1, 𝑚%	 &, and 

the proportion of infant deaths during the first month of life, 𝑧(28𝑑; 𝑞*	 &, 𝑘), as suggested by 

Eq. (6). In addition, given the assumptions of the log-quadratic model, the contours of 𝑚%	 & 

and 𝑞%	 & describe overlapping solutions. Although these two mortality inputs have different 

numeric values, they imply the same combination of parameters 𝑞*	 & and 𝑘. Thus, matching 

𝑚%	 & would be equivalent to matching 𝑞%	 &, when the first quantity is more available. Finally, 

panel d of Figure 3 demonstrates the same property when the log-quadratic model is 
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matching the probability of dying during the first three months of life 𝑞(3𝑚), or the 

equivalent solution when the proportion of infant deaths during the first trimester of life is 

more available. 

Now, let us formulate the analytical solution to the problem of matching. Finding the 

combinations of parameters 𝑞*	 & and 𝑘 requires solving a system of two nonlinear equations. 

Let us assume that the researcher is matching the log-quadratic model to the observed death 

rate from 0 to 1—indicated by 𝑚%	 &—and the observed proportion of infant deaths during the 

first trimester of life—denoted by 𝑧(3𝑚). As shown in this article, these two inputs can be 

estimated at a given level 𝑞*	 & and age pattern of under-five mortality 𝑘 using Eqs. (2), (4), 

(5), and (6). Then, the researcher can define the functions 𝑅% and 𝑅5 as the residual of the 

model when trying to predict the natural logarithm of each observed input, as proposed by 

Eqs. (7.1) and (7.2):  

   𝑅%( 𝑞*	 &, 𝑘) = ln[ 𝑚%	 &] − ln[ 𝑚%	 &( 𝑞*	 &, 𝑘)],    (7.1) 

   𝑅5( 𝑞*	 &, 𝑘) 	= ln[𝑧(3𝑚)] − ln[𝑧(3𝑚; 𝑞*	 &, 𝑘)].   (7.2)  

Then, the optimal values of 𝑞*	 & and 𝑘 are calculated by successive approximations, as 

the residual of the log-quadratic model approaches zero in both cases. Using Newton-

Raphson’s method and starting from an arbitrary—but feasible—choice (i.e., 𝑞*	 & is positive 

but less than one; and 𝑘 is equal to zero), these two parameters can be iterated from Eq. (8), 

until convergence is reached: 

   FLn[ 𝑞*
	
&
⋆	]

𝑘⋆
H = Fln[ 𝑞*

	
&]

𝑘
H − I

GH4(∙)
G >?@ 0%	 &E

GH4(∙)
G7

IH"(∙)
G >?@ 0%

	
&E

GH"(∙)
G7

J

-%

∙ 	 F
R%( 𝑞*	 &, 𝑘)
R5( 𝑞*	 &, 𝑘)

H. (8) 

When the log-quadratic model is matching only one input, some specific value of 𝑘 

must be assumed. We recommend using a distribution of values, but if no prior information is 

available, 𝑘 = 0 is characterizing the neutral or average age pattern of under-five mortality 

that is implicit in the log-quadratic model. Finally, the average age of infant deaths 𝑎%	 & and 
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the average number of years lived—in the age interval—by those dying during childhood 𝑎'	 % 

are calculated by Eq. (3), using the unique mortality schedule produced by the optimal values 

of 𝑞*	 &⋆ and 𝑘⋆. To facilitate its implementation, the method has been written as a computer 

application and two worked examples are described step-by-step in online appendix 1. 

 

Evaluation 

To evaluate the performance of our method, we fit the log-quadratic model to each country-

year of the U5MD and compute the error of predicting either 𝑎%	 & or 𝑎'	 %—matching one or 

two inputs. We then estimate the accuracy and precision, assuming that these residuals are the 

result of a systematic bias µ and a measurement error ϵJ, whose expected value is zero and 

variance is equal to 1 φ⁄ , as indicated by Eq. (9) for any country-year 𝑖:  

 lnQ 𝑎(	 +,J
KLMBDNBO 	R − lnQ 𝑎(	 +S 𝑞*	 &,J , 𝑘JTR = µ + ϵJ.   (9) 

While µ	is indicative of the lack of accuracy, the value of φ is informing the precision 

when the log-quadratic model is matching specific inputs. Then, we use these values to 

calculate the root mean square error (RMSE)—as defined by Eq. (10)—which is one 

conventional metric to evaluate the overall predictive power of mortality models: 

 RMSE = Xµ5 + 1 φ⁄ .       (10) 

Following a Bayesian framework, measures of accuracy, precision, and predictive 

power are estimated for each sex, for both sexes combined, and for different combinations of 

inputs. The advantage of the Bayesian analysis is to equip each model with the corresponding 

credible intervals that are useful for comparisons, as described in online appendix 2. We 

extend this analysis to all previous approaches that have been proposed to approximate the 

values of 𝑎%	 & and 𝑎'	 %. As the error of prediction is the main input of Eq. (9), the coefficients 

of these previous approaches were not reestimated in this article. We simply calculate the 

error of predicting 𝑎%	 & and 𝑎'	 % from the observed values of 𝑚%	 & or 𝑞%	 &—and 𝑞*	 & in the case 
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of AR’s formula, using the parameters reported by these previous studies. Credible intervals 

were also calculated for these approaches, using the same prior distributions to fit Eq. (9). 

To this list of competing approaches, we add two equations resulting from a linear 

regression of 𝑎%	 & on the best predictors of the age patterns of under-five mortality that we 

identify in this article: 𝑧(28𝑑) and 𝑧(3𝑚). The details of this regression approach are 

discussed in online appendix 3. 

 

Results 

The Average Age of Infant Deaths 𝒂𝟏	 𝟎 

Table 2 reports the accuracy, precision, and predictive power of the log-quadratic model, 

compared to the competing approaches to estimate the average age of infant deaths. Reported 

values correspond to the percentiles 50, 2.5, and 97.5, sampling the conditional posterior 

distributions of the bias µ and the precision φ and calculating the resulting RMSE for each 

sample. Those approaches using two inputs are grouped at the top of the table and those using 

only one input are at the bottom. The table shows that matching two inputs reduces the bias 

and increases the precision of the log-quadratic model. This is particularly the case of inputs 

informing the concentration of deaths during the first weeks or months of life, which is a 

proxy of the age patterns of under-five mortality. The same result is found for each sex and 

for both sexes combined. 

--- Set Table 2 about here --- 

Less conventional indicators can be good predictors of 𝑎%	 &. The proportion of infant 

deaths during the first trimester 𝑧(3𝑚)—or the first month of life 𝑧(28𝑑)—improves the 

predictive power of the log-quadratic model if used together with the infant mortality rate—

or the central death rate from 0 to 1. As described by rows A and B, when the log-quadratic 

model is matching the observed values of 𝑧(3𝑚) or 𝑧(28𝑑) the bias is not significant and the 
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precision reaches its maximum, compared with an alternative solution relying on 𝑚%	 & alone, 

as seen in row I (RMSE is 0.0367 when adding 𝑧(3𝑚) vs. 0.2064 for 𝑚%	 & alone). Indeed, the 

improvement of the log-quadratic model—by means of an indirect estimation—outperforms 

the competing approaches to estimate the average age of infant deaths. 

Because of the relevance of the neonatal deaths, 𝑧(28𝑑) can be more available than 

𝑧(3𝑚). However, as shown in Table 2, the latter is considerably more precise in predicting 

the average age of infant deaths (0.0682 vs. 0.0367 for the RMSE). This result holds for 

indirect estimations—contrasting the models of rows A and B—and for direct estimations—

comparing the linear regressions of rows F and G. 

Nonetheless, the indirect estimation of 𝑎%	 & is fully supported by the empirical data, 

and the log-quadratic model is more precise than the regression counterparts when using 

either 𝑧(3𝑚) or 𝑧(28𝑑). This comparation should take into consideration that linear 

regressions might be affected by overfitting, while the coefficients of the log-quadratic model 

were not estimated with the aim to predict the observed value of 𝑎%	 &. As shown in Table 2 for 

both sexes combined, indirect estimations described in rows A and B are significantly better 

than the linear regressions in rows F and G (i.e., credible intervals of precision do not 

overlap). However, when comparing the same rows for the male and the female populations 

individually, the superiority of the log-quadratic model is retained, but it is not statistically 

significant at 5% (i.e., credible intervals overlap). 

Although 𝑞%	 & and 𝑞*	 &—or 𝑚%	 & and 𝑚'	 %—do reduce the bias of the log-quadratic 

model as suggested by the comparison of rows C and H—or rows D and I, this is not an ideal 

combination of inputs for predicting 𝑎%	 & as the value of the precision decreases. Hence, to 

effectively increase the predictive power of the indirect estimation, better inputs should 

inform the age pattern of under-five mortality. If 𝑚%	 & is available, the list of complementary 

inputs should include the observed neonatal mortality rate 𝑞(28𝑑), the probability of dying 
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during the first trimester of life is 𝑞(3𝑚), or the proportions 𝑧(28𝑑) and 𝑧(3𝑚) that are 

leading to equivalent solutions of the log-quadratic model. Therefore, if these inputs are not 

available, the most conservative selection would be to match only one input, assuming a 

predefined value of 𝑘—as reported in rows H, I, and J. 

Indeed, matching just one input is not an ideal solution but it does not diminish the 

predictive power of the log-quadratic model—if compared to the competing approaches. 

When the model matches the infant mortality rate 𝑞%	 &, the central death rate from 0 to 1 𝑚%	 &, 

or that from 0 to 5 𝑚*	 &, the resulting RMSE is not statistically different from the one 

produced by the ratio equation proposed by Alexander and Root (2022) with two inputs—

described in row E—or the segmented equation estimated by Andreev and Kingkade (2015) 

for one input—given in row K of Table 2. Nevertheless, as an advantage inherited from the 

log-quadratic model, the accuracy might be improved by using external information 

regarding the likely value of 𝑘. For simplicity, the models reported in rows H, I, and J assume 

a neutral—or average—age pattern of under-five mortality represented by 𝑘 = 0, which is a 

neutral approximation when the age pattern of under-five mortality cannot be inferred from 

the data. However, in practical applications taking advantage of the flexibility of the log-

quadratic model, researchers can either draw a full distribution of the feasible values of 𝑘 or 

assume only positive values—or negative values—a priori if the population under 

investigation is more likely to have late—or early—age patterns of under-five mortality, as 

informed by another reliable source (e.g., a demographic survey). 

Table 2 shows that classic approaches—Preston et al. (2001), Keyfitz (1970), and 

Coale and Demeny (1966), reported in rows L, M, N, and O—are significantly biased and 

return low precision when predicting the average age of infant deaths informed by the 

U5MD. This result is driven by the lack of fitting at low levels of infant mortality (e.g., fewer 

than 20 deaths per thousand births), previously shown in Figure 1. Considering this 
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limitation, classic approaches are less recommended and, if used, these methods should be 

implemented with extra precaution and only for admissible levels of infant mortality. A 

graphical analysis of the main results is described in the online appendix.   

 

The Average Number of Years Lived—in the Age Interval—by Those Dying From 1 to 

5 𝒂𝟒	 𝟏  

Table 3 reports the predictive power of the log-quadratic model when estimating 𝑎'	 % 

indirectly. The table compares the bias and precision of matching one or two inputs—in rows 

A to G—with the classic approaches of Preston et al. (2001), Keyfitz and Flieger (1971), and 

Coale and Demeny (1966)—described in rows H to M. Contrary to the case for 𝑎%	 &, the 

different methods to estimate 𝑎'	 % do not vary too much in terms of accuracy and precision. 

--- Set Table 3 about here --- 

Matching two inputs does increase the predictive power of the log-quadratic model, 

yet the improvement is not always statistically significant, even if the inputs inform the age 

patterns of under-five mortality: for example, when the fitting of the model reported in row A 

or B is compared to the counterpart of the model reported in row F. However, when the log-

quadratic model is matching either 𝑧(3𝑚) or 𝑧(28𝑑)—and minimizing the prediction error 

of 𝑎%	 &—the resulting RMSE of predicting 𝑎'	 % is significantly lower than that produced by 

any classic approach. Hence, the log-quadratic model would provide the best possible 

solution for 𝑎'	 % as a by-product of estimating the average age of infant deaths. 

Table 3 shows that a constant value of 1.5 years—as proposed by Keyfitz and Flieger 

(1971) —has some empirical support, but it might be a crude assumption and, evidently, not 

the best choice when researchers are looking for some precision. The formula adapted by 

Preston et al. (2001) produces virtually the same results of the West model of mortality, 

initially proposed by Coale and Demeny (1966). Although the West model has an adequate 
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fitting to the U5MD, the predictive power of the other regional families is limited by the 

significant bias. This result is partially driven by the nature of the classic method to represent 

the diversity of patterns of mortality using four regional families. Hence, any practical 

application of the classic method requires an expert opinion on the age pattern to inform the 

appropriate family to estimate 𝑎'	 %. 

 

Discussion 

This article proposes a new method for estimating the average age of infant deaths 𝑎%	 & by 

using a model life table of under-five mortality by detailed age that brings greater flexibility 

and precision, compared with existing approaches that deal with generic equations and fixed 

inputs. Because the model depends on one or two parameters—related to the level and the 

age pattern of mortality at early ages—the aim of the method is to find the value of these 

parameters by fitting or matching the model life table to some observed data. Hence, the 

average age of infant deaths can be estimated indirectly for a given value of one or two 

available inputs that can be either death rates, probabilities of dying, or the proportion of 

deaths during the first months of life. 

Because this method relies on a model life table, other mortality indicators can also be 

calculated, simultaneously, at no extra effort: for example, the average number of years 

lived—in the age interval—by those dying during childhood 𝑎'	 %, which is a necessary value 

to estimate the under-five mortality rate 𝑞*	 &, when the death rates from 0 to 1 and from 1 to 5 

are used as inputs. Moreover, the same principle is extended to less conventional but 

necessary parameters, such as the average age of under-five deaths 𝑎*	 &, which mediates the 

calculation of the under-five mortality rate when the central death rate from 0 to 5 years 𝑚*	 & 

is the only information available. The flexibility and the completeness of our method contrast 

with the existing equations to estimate 𝑎%	 & or 𝑎'	 % separately, as well as with those 
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approaches that simply do not propose a solution for estimating 𝑎'	 %, such as Andreev and 

Kingkade (2015) or Alexander and Root (2022). 

This article shows that accounting for the age pattern of mortality does improve the 

estimation of the average age of infant deaths and the average number of years lived—in the 

age interval—by those dying during childhood. Although the foundational work of Coale and 

Demeny (1966) made a relevant distinction of the age patterns of mortality to estimate the 

values of 𝑎%	 & and 𝑎'	 %, both classic and new approaches have proposed generic equations that 

depend only on the level of mortality and lead to large errors of prediction. Our method 

departs from these approaches, considering that, at the same level of mortality, infant deaths 

can be relatively more (or less) concentrated during the first months of life, thus producing 

different values of 𝑎%	 &. 

Inferring the right pattern requires inputs that inform the compression of deaths during 

the first weeks and months of life, relative to the overall level of infant (or under-five) 

mortality. Not all inputs are equally effective for this purpose. In one of the most recent 

approaches to estimate the average age of infant deaths, Alexander and Root (2022) proposed 

the ratio of infant to under-five mortality rate as a secondary input. However, 𝑞%	 & and 𝑞*	 & are 

highly correlated at the population level and the ratio is not a strong predictor of the age 

distribution of deaths during the first year of life. We show that easily accessible indicators, 

such as the neonatal mortality or the proportion of infant deaths during the first months of 

life, add more precision and effectively minimize the prediction error of 𝑎%	 & and 𝑎'	 %, and so 

produce better results than any existing approach. 

Although these indicators are not yet available in key repositories such as the Human 

Mortality Database, the WHO Mortality Database, or the Human Life-Table Database, both 

the number of neonatal deaths and the age distribution of infant deaths have been reported by 

some statistical yearbooks for more than a hundred years and disseminated by the 
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Demographic Yearbook of the United Nations since 1948 and 1967, respectively (United 

Nations 1949, 1968). In some applications, however, the age distribution of infant deaths 

might not be available or reliable (e.g., in historical populations or those with incomplete 

vital registration systems). If that is the case, we recommend matching the log-quadratic 

model to only one input that will inform the overall level of under-five mortality at a 

predefined value of 𝑘. By assuming a neutral age pattern of mortality (i.e., 𝑘 = 0), the 

performance of the method would be similar to the most recent approaches using direct 

estimations, such as the one-parameter formula of Andreev and Kingkade (2015) or the two-

parameter formula proposed by Alexander and Root (2022). Nevertheless, the researcher 

applying our method will have the advantage of setting one or more values of 𝑘, as supported 

by an expert opinion or for the sake of sensitivity analysis. 

Our method builds on the estimated coefficients of a log-quadratic model applied to 

the U5MD–describing a broad range of age patterns of under-five mortality (Guillot et al. 

2022a). Applications have shown a satisfactory fitting of the log-quadratic model to a broad 

set of populations in low- and middle-income countries that were not included in the U5MD, 

except for sub-Saharan African and South Asian populations (Romero Prieto et al. 2021; 

Verhulst et al. 2022). In these two regions, the age patterns of under-five mortality are 

different from those observed in the U5MD (i.e., from the age patterns observed in the 

historical experience of high-income countries), but this limitation affects all the existing 

methods—all based on high-quality vital records data—that we have compared in this article. 

Nonetheless, the log-quadratic model and its higher flexibility for estimating 𝑎%	 & and 𝑎'	 % can 

be updated with data from other populations. Therefore, to apply our method to sub-Saharan 

African and South Asian populations, we recommend using a different set of coefficients that 

best represent the age patterns of under-five mortality in these populations. 
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There might exist a trade-off between evaluating a direct formula—following any of 

the existing approaches—and adjusting a model life table to calculate the average age of 

infant deaths, as we propose. While evaluating a single equation is computationally 

inexpensive, adjusting a model life table to fit one or two inputs requires few iterations. 

Given that the existing approaches—depending on 𝑚%	 & or 𝑞%	 & alone—yield coarse 

approximations for the actual value of 𝑎%	 &, our method reaches greater precision at a 

reasonable computational cost (e.g., implementing the software that is associated with this 

article). Indeed, if a simple equation were meant to be used to predict 𝑎%	 &, that formula 

should depend on the percentage of infant deaths during the first three months of life. 

However, despite the great linear fitting, this input does not reach the same precision and 

flexibility of the method that we propose. 

 

Conclusion 

The average age of infant deaths, 𝑎%	 &, is properly estimated by a model life table of under-

five mortality. Contrary to the previous approaches based on a single formula, fitting—or 

matching—a model to some observed data has three clear advantages: (1) the flexibility to 

describe a broad range of age patterns of under-five mortality; (2) the adaptability to 

incorporate a variety of inputs for indirect estimation (e.g., mortality rates, probabilities of 

dying, or the proportion of infant deaths during the first months of life); and (3) the 

extensibility to other essential parameters for life table construction, such as the average 

number of years lived—in the age interval—by those dying during childhood, 𝑎'	 %, and the 

average age of under-five deaths, 𝑎*	 &. Accounting for the age patterns of under-five mortality 

improves the estimation of the average age of infant deaths when a direct calculation is not 

possible, which is the case for aggregated data that are simply tabulated by years of age. 
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The accuracy of the method depends on inferring the actual age pattern of under-five 

mortality, but not all inputs are adequate for this indirect estimation. One suitable 

combination of inputs is the infant mortality rate and a probability of dying during the first 

months of life (e.g., the neonatal mortality rate or the probability of dying during the first 

trimester of life). An equivalent solution can be reached using alternative and easily 

accessible inputs, such as the central death rate from 0 to 1 and the proportion of infant deaths 

below a certain age. Hence, life table construction can benefit from the indirect estimation of 

the average age of infant deaths and the average number of years lived—in the age interval—

by those dying during childhood by using some information related to the age distribution of 

deaths during the first year of life. 
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Tables 
 

Source: Guillot et al. (2022b). Under-5 mortality database (U5MD) [Machine-readable database]. Philadelphia, PA: University of Pennsylvania. 
https://web.sas.upenn.edu/global-age-patterns-under-five-mortality/data/   
 
Table 1: Country-years used to test the indirect estimation of 𝑎!⬚#

⬚  and 𝑎#⬚$
⬚  

https://web.sas.upenn.edu/global-age-patterns-under-five-mortality/data/
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Table 2: Bias, precision, and the Root Mean Square Error (RMSE) of predicting the average age of infant deaths 𝑎!⬚#

⬚ , fitting different methods to the Under-5 Mortality Database 
Notes: Values are the median of the posterior probability distribution and the 2.5th and 97.5th percentiles. Andreev and Kingkade (2015); Preston et al. (2001); and Coale and Demeny (1966) do not report equations for both sexes combined. 
Average coefficients were calculated for comparability purposes, assuming a Sex Ratio at Birth (SRB) of 1.05 males per female. Keyfitz (1970) proposed only one general formula for both sexes combined. Resulting values of these 
approaches are reported in blue. 



30 

 

 
Table 3: Bias, precision, and the Root Mean Square Error (RMSE) of predicting the average number of years lived–in the age interval–by those dying from 1 to 5 𝑎#⬚$

⬚ , 
fitting different methods to the Under-5 Mortality Database 
Notes: Values are the median of the posterior probability distribution and the 2.5th and 97.5th percentiles. Preston et al. (2001); and Coale and Demeny (1966) do not report equations for both sexes combined. Average coefficients were 
calculated for comparability purposes, assuming an SRB of 1.05 males per female. Keyfitz and Flieger (1971) proposed only one general approximation for any human population. Resulting values of these approaches are reported in blue. 
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Fig. 1 The average age of infant deaths, 𝑎#	 !, as a function of the probability of dying within the first year of life, 
described by classic and new approaches (both sexes combined). Keyfitz (1970) proposed only one general formula 
for both sexes; Andreev and Kingkade (2015), Preston et al. (2001), and Coale and Demeny (1966) did not report 
equations for both sexes combined. Average coefficients were calculated for comparability purposes, assuming a 
sex ratio at birth of 1.05 males per female. The other methods estimate coefficients for males, females, and both 
sexes combined, which are more precise than applying an SRB. 
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Fig. 2 The average number of years lived—in the age interval—by those dying during childhood, 𝑎$	 #, as a function 
of the probability of dying within the first year of life, described by classic and new approaches (both sexes 
combined). Preston et al. (2001) and Coale and Demeny (1966) did not report equations for both sexes combined. 
Average coefficients were calculated for comparability purposes, assuming a sex ratio at birth of 1.05 males per 
female. 
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Fig. 3 Contour lines representing the different combinations of 𝑞&	 ! and 	𝑘 that result in the same value of a 
mortality function, given the coefficients of the log-quadratic model (both sexes combined). 

 


