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Appendix 1: Worked Examples 

1. The value of 𝒎𝟏 𝟎 = 𝟎. 𝟎𝟓–for both sexes combined–is given and a previous study concluded that 

𝒌 = 𝟎. 𝟓 is best representing the age patterns of under-five mortality in this population 

Step 1: predict a mortality schedule 𝑞(𝑥; 𝑞5 0, 𝑘) for a feasible combination of parameters, using the 

Equation 2 defined in the paper. As an initial guess, we have assumed an arbitrary level of under-five 

mortality 𝑞5 0 = 0.1; and the value of 𝑘 = 0.5, which is given by the example. Since 𝑘 is fixed, the 

researcher can match the log-quadratic model to the observed input 𝑚1 0 = 0.05, finding the optimal value 

of 𝑞5 0 alone. 

Step 2: recover the estimated value of 𝑚1 0( 𝑞5 0, 𝑘), that is implicit in that mortality schedule, dividing the 

estimated number of infant deaths 𝑞(1 𝑦𝑒𝑎𝑟; 𝑞5 0, 𝑘) by the estimated number of person-years lived from 0 

to 1 (i.e., using Equation 5). This step requires the value of 𝐿1 0( 𝑞5 0, 𝑘), which is the result of adding all 

𝐿𝑛 𝑥 of the first year of life. Researcher can calculate the estimated values of 𝐿𝑛 𝑥( 𝑞5 0, 𝑘) using Equation 4, 

under the assumption of constant force of mortality within the age interval. 

Step 3: calculate the relative error of this approximation R1( 𝑞5 0, 𝑘), using the observed and the estimated 

values of 𝑚1 0, as described by Equation 7.1. 

Step 4: calculate the partial derivative of the error of approximation, to the form: 
𝜕R1(∙)

𝜕 ln[ 𝑞5 0]
=

R1( 𝑞5 0∙𝑒∆,𝑘)−R1( 𝑞5 0,𝑘)

∆
. Partial derivatives can be calculated numerically, multiplying the value of the 

parameter 𝑞5 0 by the factor ∙ 𝑒∆, with a small value of ∆= 10−5; and repeating steps 1, 2, and 3 to estimate 

the resulting error of approximation R1( 𝑞5 0 ∙ 𝑒∆, 𝑘). 

Step 5: update the value of 𝑞5 0, using the Newton’s method–in logs to prevent negative values–as defined 

by Equation 8. Since the researcher is only matching one input, Equation 8 in the paper can be simplified to 

be: 

    Ln[ 𝑞5 0
⋆ ] = ln[ 𝑞5 0] − [

𝜕R1(∙)

𝜕 ln[ 𝑞5 0]
]

−1

∙ R1( 𝑞5 0, 𝑘).      (A1) 

As indicated by Equation A1, the log of the updated value of 𝑞5 0
∗ is equal to the log of its current value, 

minus the current error of approximation multiplied by the inverse of its partial derivative. 

Step 6: iterate Equation A1, repeating steps 1, 2, 3, 4, and 5 until convergence is reached (e.g., when the 

absolute value of  R1( 𝑞5 0, 𝑘) is a very small quantity). As shown in Table A1, after three iterations the 
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absolute value of R1( 𝑞5 0, 𝑘) is less than 10−5; and the log-quadratic model is matching the inputs of this 

example. 

 

 
Table A1: Worked example 1 

 

Step 7: estimate the values of 𝑎1 0 and 𝑎4 1, using Equation 3. Given the optimal values of 𝑞5 0 and 𝑘–

reported in Table A1, the average age of infant deaths is estimated to be 0.2243 years; and the average 

number of years lived–in the age interval–by those dying from 1 to 5 is estimated to be 1.4339 years. The R-

package associated with the log-quadratic model (https://github.com/verhulsta/logquad5q0) was updated to 

provide the values of 𝑎1 0and 𝑎4 1, given the inputs provided by the users. 

2. The value of 𝒎𝟏 𝟎 = 𝟎. 𝟎𝟐𝟓 is given and 75 per cent of infant deaths have less than three months of 

life (i.e., 𝒛(𝟑𝒎) = 𝟎. 𝟕𝟓) 

Step 1: predict a mortality schedule for a feasible combination of parameters 𝑞(𝑥; 𝑞5 0, 𝑘), using the 

Equation 2. As an initial guess, we have assumed an arbitrary level of under-five mortality 𝑞5 0 = 0.05; and 

the value of 𝑘 = 0, which is representing a neutral age pattern of under-five mortality. No matter how 

realistic this initial guess could be, these two parameters are adjusted by successive approximations. 

Step 2: recover the estimated value of 𝑚1 0( 𝑞5 0, 𝑘), that is implicit in that mortality schedule, dividing the 

estimated number of infant deaths 𝑞(12𝑚; 𝑞5 0, 𝑘) by the estimated number of person-years lived from 0 to 

1 𝐿1 0( 𝑞5 0, 𝑘). The former is the sum of all 𝐿𝑛 𝑥 values corresponding to the first year of life. 𝐿𝑛 𝑥( 𝑞5 0, 𝑘) 

can be calculated using Equation 4, under the assumption of constant force of mortality within the age 

interval. 

Step 3: calculate the relative error of the first approximation R1( 𝑞5 0, 𝑘), using the observed and the 

estimated values of 𝑚1 0, as described by Equation 7.1. 

Step 4: recover the estimated value of 𝑧(3𝑚; 𝑞5 0, 𝑘), using the values of 𝑞(3𝑚; 𝑞5 0, 𝑘) and 

𝑞(1 𝑦𝑒𝑎𝑟; 𝑞5 0, 𝑘) in Equation 6. 

Step 5: calculate the relative error of the second approximation R2( 𝑞5 0, 𝑘), using the observed and the 

estimated values of 𝑧(3𝑚), as described by Equation 7.2.   

Step 6: calculate the partial derivatives for each error of approximation for each input 𝑗, to the form: 

𝜕R𝑗(∙)

𝜕 ln[ 𝑞5 0]
=

R𝑗( 𝑞5 0∙𝑒∆,𝑘)−R𝑗( 𝑞5 0,𝑘)

∆
; and 

𝜕R𝑗(∙)

𝜕k
=

R𝑗( 𝑞5 0,𝑘+∆)−R𝑗( 𝑞5 0,𝑘)

∆
. This is multiplying the value of the 

parameters 𝑞5 0 by a factor 𝑒∆, or increasing 𝑘 by a small quantity ∆= 10−5; and repeating the 

corresponding steps to estimate the resulting errors of approximation: R𝑗( 𝑞5 0 ∙ 𝑒∆, 𝑘) or R𝑗( 𝑞5 0, 𝑘 + ∆). 

Step 7: update the values of 𝑞5 0 and 𝑘, using the Newton’s method. Hence, the log of the updated values of 

𝑞5 0
∗  and 𝑘 are equal their current value, minus the inverse of the Jacobian matrix–of first-order partial 

derivatives–multiplied by a column vector of current errors of approximation. 
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Step 8: iterate Equation 8 in the paper, repeating steps 1, 2, 3, 4, 5, 6, and 7 until convergence is reached 

(e.g., when the absolute value of R1( 𝑞5 0, 𝑘) and R2( 𝑞5 0, 𝑘) are very small quantities). If the Jacobian 

matrix is near to be a singular matrix (i.e., the determinant is close to zero), its inverse can be calculated as a 

Moore-Penrose pseudoinverse. As reported in Table A2, after three iterations the absolute value of the 

approximation errors R1( 𝑞5 0, 𝑘) and R2( 𝑞5 0, 𝑘) are less than 10−5. 

Step 9: estimate the values of 𝑎1 0 and 𝑎4 1, using the optimal values of 𝑞5 0 and 𝑘 in Equation 3. Given the 

two inputs of this worked example, the average age of infant deaths is estimated to be 0.1645 years; and the 

average number of years lived–in the age interval–by those dying from 1 to 5 is estimated to be 1.5433 

years. 

 

 
Table A2: Worked example 2 

 

Appendix 2: Bayesian evaluation of the method 
Considering the average age of infant deaths is a small positive value–that has changed over time–and some 

small errors of prediction might imply large proportions of the observed value, we evaluate the accuracy and 

precision of our indirect approach by means of the relative error of predicting 𝑎1 0, as indicated by Equation 

A2. The function 𝑎1 0( 𝑞5 0,𝑖 , 𝑘𝑖), denotes an estimated value of the average age of infant deaths–at a given 

values of 𝑞5 0,𝑖 and  𝑘𝑖, corresponding to the level and the age pattern of under-five mortality of a particular 

of a country-year 𝑖. This function was explicitly defined by Equation 3 of the paper. Note that the prediction 

of 𝑎4 1 can be evaluated by a similar expression. 

 ln[ 𝑎1 0,𝑖
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑  ] − ln[ 𝑎1 0( 𝑞5 0,𝑖 , 𝑘𝑖)] = 𝜇 + 𝜖𝑖.      (A2) 

We assume that the relative error of prediction–or model residual–has a normal distribution (N) with mean 𝜇 

and variance 1 𝜑⁄ . The constant 𝜇 is informing the bias–or lack of accuracy–and the estimated value of 𝜑 is 

measuring the precision of the method, when the log-quadratic model is fitted to the 𝑀 = 1,219 life tables 

used for evaluation. This normal distribution corresponds to the likelihood of the method, when the values of 

𝑞5 0 and  𝑘 are the result of matching the log-quadratic model to one or two observed inputs (e.g., observed 

central death rates, the proportion of infant deaths below certain age, etc.).  

We then estimate 𝜇 and 𝜑 by means of conjugate prior distributions. From this perspective, the bias 

coefficient 𝜇, is also assumed to have a normal prior with mean zero and variance hyperparameter 1 𝜓⁄  (i.e., 

the same parametric distribution of the likelihood); and the precision coefficient 𝜑, is assumed to have a 

gamma distribution (Γ), with shape hyperparameter 𝛼, and inverse scale hyperparameter 𝛽. The advantage 

of the conjugacy is to get the same parametric function for the posterior distribution of each coefficient 

(Gelman et al. 2014). Hence, given the parametric assumptions, the bias coefficient 𝜇 has a normal posterior 

distribution described by Equation A3; and the precision coefficient 𝜑, has a gamma distribution denoted by 

Equation A4. Note these two distributions are conditional to each other.  

𝜇| 𝑎1 0, 𝜑~N (
𝜑∙∑ ln[ 𝑎1 0,𝑖

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ]−ln[ 𝑎1 0( 𝑞5 0,𝑖,𝑘𝑖)]𝑀
𝑖=1

𝜓+𝑀∙𝜑
,

1

𝜓+𝑀∙𝜑
),     (A3) 
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𝜑| 𝑎1 0, 𝜇~Γ (𝛼 +
𝑀

2
, 𝛽 +

∑ 𝜖𝑖
2𝑀

𝑖=1

2
).        (A4) 

We draw samples from the conditional posterior distributions of 𝜇 and 𝜑 by means of a Markov chain 

simulation, using the Gibbs sampler algorithm–alternating and updating both Equation A3 and Equation A4 

after each iteration. The Markov chain was iterated 10,000 times with an initial burn-in period of 2,500 

additional iterations. The Gibbs sampler is an adequate choice, considering the reduced number of 

parameters to be estimated and the use of conjugate priors. More sophisticated Markov Chain Monte Carlo 

methods–drawing the prior and then approximating the posterior distributions–can be implemented (e.g., 

Metropolis-Hasting or Hamiltonian Monte Carlo) at a higher computational cost. For simplicity, priors are 

assumed to be: 𝜓 = 10−4, 𝛼 = 10−2, and 𝛽 = 10−2; resulting in flat distributions with large variance. 

 RMSE = √𝜇2 + 1 𝜑⁄ .          (A5) 

Values of 𝜇 and 𝜑 can be used to calculate the Root Mean Square Error (RMSE)– by means of Equation A5. 

For each drawn pair of 𝜇 and 𝜑, we estimate the RMSE to approximate its posterior distribution and 

uncertainty bounds. Using the same evaluation set of 1,219 life tables and the same prior distributions, we 

estimate the accuracy and precision for each sex, for both sexes combined, and for all previous formulae to 

approximate the values of 𝑎1 0 and 𝑎4 1. 

Appendix 3: Direct estimation of 𝒂𝟏 𝟎, as a competing approach 

As a robustness test, we want to compare our indirect method of estimating 𝑎1 0 and 𝑎4 1 with a direct–and 

computationally less expensive–alternative that is using the best predictors of the age patterns of under-five 

mortality and taking advantage of the granularity of the U5MD. Following the traditional approaches, we fit 

two equations regressing the value of 𝑎1 0 on the proportion of infant deaths below certain age 𝑥–𝑧(𝑥), 

either 28 days or 3 months. The average age of infant deaths is a metric of the age distribution of deaths 

from 0 to 1, hence the strong correlation of 𝑎1 0 and the proportion of infant deaths during the first trimester 

or the first month of life–described in Figure A1. 

 

 
Figure A1: The average age of infant deaths 𝑎1 0, and the proportion of infant deaths during the first months of life 

(both sexes combined) 

 

Both 𝑎1 0 and 𝑧(𝑥) are related to the age pattern of mortality in early ages, but the proportion of infant 

deaths below certain age 𝑥 𝑧(𝑥), has the advantage of being directly observed and only requires few 
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operations. 𝑧(𝑥) bears relevant information for the estimation of 𝑎1 0, either by means of the log-quadratic 

model–as an indirect method–or a linear regression as Figure A1 is suggesting. 

 𝑎1 0,𝑖
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 𝛿0 + 𝛿1 ∙ 𝑧𝑖(𝑥) + 𝑒𝑖.        (A6) 

To predict the average age of infant deaths, researchers have the option to use a simple equation–regressing 

the average age of infant deaths on 𝑧(3𝑚) or 𝑧(28𝑑)–as indicated by Equation A6 for any country-year 𝑖. 
Compared to similar direct approaches, this is the first attempt to define a simple equation depending on one 

input that is actually related to the age distribution of deaths during the first year of life. Resulting 

coefficients for each sex and for both sexes combined are reported in Table A3. 

 

 
Table A3: Regression coefficients for the direct estimation of the average age of infant deaths 

 

The mortality during the first month of life has been more relevant and available, but there are 

methodological reasons to prefer 𝑧(3𝑚) over 𝑧(28𝑑). If 𝑧(3𝑚) is used as a predictor of the average age of 

infant deaths, then the most traditional inputs– 𝑞1 0 and 𝑚1 0–are not statistically significant (i.e., Equation 

A5 does not require additional inputs). In addition to the strong correlation, 𝑧(3𝑚) has two relevant 

advantages in demographic estimation. This proportion is not affected by the historical change in the 

definition of the neonatal mortality from one calendar month of about 30 days to an analytical month of 28 

days (Gourbin and Masuy-Stroobant 1995). 𝑧(3𝑚) is less sensitive to the imprecision in the reported ages at 

death–when life tables are calculated from retrospective data. Particularly, approximation errors around the 

first month of life when the level of mortality is higher. 

Appendix 4: Sensitivity of other life table indicators to the values of 𝒂𝟏 𝟎 and 𝒂𝟒 𝟏 

Correcting the values of 𝑎1 0 and 𝑎4 1 implies some other adjustments. The sensitivity of this correction can 

be quantified as the 𝑎𝑛 𝑥-elasticity of a given life table function. Some of these functions may depend 

directly on the value of 𝑎1 0 or 𝑎4 1–such us the infant or the under-five mortality rate, or indirectly–though 

the adjusted value of these probabilities of dying. For example, elasticities can be calculated by taking the 

partial derivative–and rearranging terms–of key equations for life table construction, such as the Keyfitz’s 

formula to calculate 𝑞𝑛 𝑥 as a function of 𝑚𝑛 𝑥 and 𝑎𝑛 𝑥. The resulting 𝑎𝑛 𝑥-elasticity of 𝑞𝑛 𝑥 measures the 

percentual response in 𝑞𝑛 𝑥 to a percentual increase in 𝑎𝑛 𝑥, whose solution is indicated by Equation A7.  

𝜕 𝑞𝑛 𝑥 𝑞𝑛 𝑥⁄  

𝜕 𝑎𝑛 𝑥 𝑎𝑛 𝑥⁄  
= 𝑞𝑛 𝑥 ∙

𝑎𝑛 𝑥

𝑛
.         (A7) 

Since this elasticity is the product of two positive numbers that are less than one, 𝑞𝑛 𝑥 is expected to increase 

less than proportionally to the increase in 𝑎𝑛 𝑥. Larger adjustments are expected in populations with higher 

levels of 𝑞𝑛 𝑥; where deaths are less concentrated at the beginning of the age interval (i.e., larger 𝑎𝑛 𝑥); or 

after a substantial correction on 𝑎𝑛 𝑥. In the practice, this correction would depend on how far 𝑎𝑛 𝑥 is from 

its actual value. To make a ceteris paribus assessment, we quantify the change in the predicted value of 

𝑎𝑛 𝑥, when the parameter 𝑘 = 0 (i.e., the central tendency of the log-quadratic model) is replaced by its 
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optimal value, fitting the log-quadratic model to a specific age pattern of under-five mortality and keeping 

constant the level of 𝑚𝑛 𝑥. 

Panel A and Panel B of Figure A2 show the percentage correction in 𝑎1 0 and 𝑎4 1, when the parameter 𝑘 

changes from zero to some arbitrary but feasible values. As described by Panel A, in the extreme case of 

𝑘 = 1.0, 𝑎1 0 would be corrected up to 52.63 per cent and the correction of a moderated scenario of 𝑘 = 0.5 

would be up to 27.44 per cent, keeping constant the value of 𝑚1 0. Indeed, the magnitude of the correction 

depends on the level of mortality. As described by Panel B, 𝑎4 1 is less sensitive to the same change in the 

value of 𝑘 and its resulting value can be corrected upwards or downwards, depending on the level of 𝑚4 1. 

Corrections range from -3.54 to 4.37 percent. Similar corrections can be calculated–in the opposite 

direction–if the parameter 𝑘 is assumed to change from zero to some negative values.  

 

 
Figure A2: Percentage correction in 𝑎1 0 and 𝑎4 1; and expected adjustment in 𝑞1 0 and 𝑞4 1 (both sexes combined) 
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Panel C and Panel D of Figure A2 show the expected adjustment in 𝑞1 0 and 𝑞4 1, given the same changes in 

the parameter 𝑘. These adjustments are the product of each 𝑎𝑛 𝑥-elasticity of 𝑞𝑛 𝑥 and the corrected 

percentage in 𝑎𝑛 𝑥. As described by Panel C, the expected adjustments in the infant mortality rate 𝑞1 0, are 

small and more relevant for populations with higher levels of mortality. In the extreme case of 𝑘 = 1.0, the 

adjustment is not expected to be more than 1.08 per cent. The Panel D shows that the expected adjustments 

in the probability of dying during the childhood 𝑞4 1, are negligible. Even in the range of higher levels of 

𝑚4 1, the adjustments are not expected to be greater than 0.17 percent. 

Adjustments in 𝑞1 0 and 𝑞4 1 can be very small, given a reasonable correction in the value of 𝑎1 0 and 𝑎4 1. 

However, there are two reasons to consider these changes as important considerations for life table 

construction. On the one hand, these adjustments propagate to other life table functions. On the other hand, 

when the life table is used for projecting a population via survivorship ratios, even a small adjustment in the 

value of 𝑞1 0 can produce undercounts/overcounts of some thousands, which is not the ideal case when 

projecting large populations or for extended periods of time. As denoted by Equation A8, other life table 

functions that are linearly depending on 𝑞1 0 have the same elasticity. Those are the number of infant deaths 

in a life table, the estimated number of person-years from 0 to 1, and the projected number of people with 

less than one year. 

𝜕 𝑞1 0 𝑞1 0⁄  

𝜕 𝑎1 0 𝑎1 0⁄  
=

𝜕 𝑑1 0 𝑑1 0⁄  

𝜕 𝑎1 0 𝑎1 0⁄  
=

𝜕 𝐿1 0 𝐿1 0⁄  

𝜕 𝑎1 0 𝑎1 0⁄  
=

𝜕 𝑁1 0 𝑁1 0⁄  

𝜕 𝑎1 0 𝑎1 0⁄  
= 𝑞1 0 ∙ 𝑎1 0.    (A8) 

Using Equation A7, similar elasticities can be calculated for the probability of dying during childhood, the 

number of deaths from 1 to 5 in a life table, and the estimated number of person-years lived within the same 

age interval. 

Correcting the value of 𝑎1 0 will also implies a small variation in the number of years lived above the age 0 

and the resulting life expectancy at birth, indicated by 𝑇0 and 𝑒0, respectively. However, as suggested by 

Equation A9, the sign of this elasticity is not to be assumed strictly positive or negative, inasmuch as it 

depends on the level and age pattern of mortality (i.e., if 𝑞1 0 is greater/less than 𝐿1 0 𝑇0⁄ ). 

𝜕𝑇0 𝑇0⁄

𝜕 𝑎1 0 𝑎1 0⁄  
=

𝜕𝑒0 𝑒0⁄

𝜕 𝑎1 0 𝑎1 0⁄  
= − [ 𝑞1 0 −

𝐿1 0

𝑇0
] ∙

𝑞1 0

1− 𝑞1 0
∙ 𝑎1 0.     (A9) 

Some other life table functions above the age 1 would be adjusted, after correcting the average age of infant 

deaths. As indicated by Equation A10, when the value 𝑎1 0 is corrected upwards, there is a small adjustment 

downwards in the survivorship function, the number of deaths, the number of person-years lived within the 

age interval, and the number of years lived above the age 𝑥 + 1, for any 𝑥 greater than zero. Note, however, 

that the adjustment is smaller than the one expected in 𝑞1 0, inasmuch as this elasticity is the product of three 

numbers that are less than one in absolute value. 

𝜕𝑙(𝑥+1) 𝑙(𝑥+1)⁄

𝜕 𝑎1 0 𝑎1 0⁄  
=

𝜕 𝑑𝑛 𝑥+1 𝑑𝑛 𝑥+1⁄  

𝜕 𝑎1 0 𝑎1 0⁄  
=

𝜕 𝐿𝑛 𝑥+1 𝐿𝑛 𝑥+1⁄  

𝜕 𝑎1 0 𝑎1 0⁄  
=

𝜕𝑇𝑥+1 𝑇𝑥+1⁄

𝜕 𝑎1 0 𝑎1 0⁄  
= −

𝑞1 0

1− 𝑞1 0
∙ 𝑞1 0 ∙ 𝑎1 0. (A10) 

The projected number of people at the age 1 𝑁1 1, is usually calculated from the current population at age 0 

𝑁1 0, and the survivorship ratio 𝐿1 1 𝐿1 0⁄  . When the average age of infant deaths is corrected upwards, we 

would expect the denominator of this ratio to increase and the numerator to increase, as indicated by 

Equation A8 and Equation A10, respectively. Hence, the 𝑎1 0-elasticity of 𝑁1 1 for the first year of 

projections is negative, as denoted by Equation A11. This elasticity is–in absolute value–greater than the one 

corresponding to the infant mortality rate. 

𝜕 𝑁1 1 𝑁1 1⁄  

𝜕 𝑎1 0 𝑎1 0⁄  
= −

𝑞1 0

1− 𝑞1 0
∙ 𝑎1 0.         (A11) 

Note, however, that if 𝑁1 1 is calculated from the projected population at age 0 𝑁1 0, the latter is already 

adjusted by the corrected value of 𝑎1 0, the effect through 𝐿1 0 cancels out, and the 𝑎1 0-elasticity of 𝑁1 1 is 

the same elasticity of 𝐿1 1 for a subsequent year of projections.  
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Finally, there are some life table indicators that are inelastic–and are expected to remain the same. 

Probabilities of dying and life expectancies above the age 1 and the projected number of people with two or 

more years of life–for the first year of projections–would not be adjusted as a result of a correction on the 

average age of infant deaths, as defined by Equation A12. 

𝜕 𝑞𝑛 𝑥+1 𝑞𝑛 𝑥+1⁄  

𝜕 𝑎1 0 𝑎1 0⁄  
=

𝜕𝑒𝑥+1 𝑒𝑥+1⁄

𝜕 𝑎1 0 𝑎1 0⁄  
=

𝜕 𝑁𝑛 𝑥+2 𝑁𝑛 𝑥+2⁄  

𝜕 𝑎1 0 𝑎1 0⁄  
= 0.      (A12) 
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Appendix 5: Additional figures 
The main results of evaluating the performance of our method are described by Figure A3 (female 

population), Figure A4 (male population), and Figure A5 (both sexes combined). Gaussian kernels were 

used to smooth the posterior distributions of the estimated bias, the precision, and the resulting Root Mean 

Square Error (RMSE). Panel A and panel B show the RMSE of our proposed indirect estimation compared 

to a direct counterpart, using the same leading predictor. Panel C shows the RMSE of the new approaches 

compared to our indirect estimation, using similar inputs, and not taking advantage of the age distributions 

of deaths during the first year of life. Finally, panel D shows the systematic bias of the classic approaches in 

estimating 𝑎1 0, given the observed values of the Under-5 Mortality Database. 

 

 
Figure A3: The main results of predicting the average age of infant deaths 𝑎1 0, using the Under-5 Mortality 

Database (female) 
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Figure A4: The main results of predicting the average age of infant deaths 𝑎1 0, using the Under-5 Mortality 

Database (male) 
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Figure A5: The main results of predicting the average age of infant deaths 𝑎1 0, using the Under-5 Mortality 

Database (both sexes combined) 
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Figure A6 (female population), Figure A7 (male population), and Figure A8 (both sexes combined) describe 

the performance of log-quadratic in estimating the average number of years lived–in the age interval–by 

those dying from 1 to 5 𝑎4 1. These figures compare the predictive power of using different inputs, 

contrasting the fitting of the log-quadratic model and the classic methods. The panel A shows the RMSE of 

fitting the log-quadratic model and the moderated improvement of using the inputs that best inform the age 

patterns of under-five mortality. The panel B contrasts the predictive power of using only one input with the 

best combination of two inputs. The panel C shows that a log-quadratic model–matching two inputs and 

informing the correct pattern of under-five mortality–is significantly more precise than the equation adapted 

by Preston, Heuveline, and Guillot (2001) and the general rule assumed by Keyfitz and Flieger (1971). 

Finally, the panel D reassures the same result, contrasting the precision of the log-quadratic model with the 

other three regional families that are part of the Coale and Demeny’s (1966) methodology. 

 

 
Figure A6: The main results of predicting the average number of years lived–in the age interval–by those dying 

from 1 to 5 𝑎4 1, using the Under-5 Mortality Database (female) 
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Figure A7: The main results of predicting the average number of years lived–in the age interval–by those dying 

from 1 to 5 𝑎4 1, using the Under-5 Mortality Database (male) 
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Figure A8: The main results of predicting the average number of years lived–in the age interval–by those dying 

from 1 to 5 𝑎4 1, using the Under-5 Mortality Database (both sexes combined) 
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