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Abstract

Objectives:

To present the Grading of Recommendations Assessment, Development, and Evaluation

(GRADE) conceptual approach to the assessment of certainty of evidence from modelling

studies (i.e. model outputs).

Study Design and Setting:

We performed expert consultations, held an international multi-disciplinary workshop, and

further elaborated a conceptual approach for assessing the certainty of evidence from models

within the context of systematic reviews, health technology assessments, and health care

decisions. We assessed the content validity of the approach obtaining feedback from experts in

a broad range of modelling and health care disciplines.

Results:

Workshop participants agreed, that the domains determining the certainty of evidence

previously identified in the GRADE approach (risk of bias, indirectness, inconsistency,

imprecision, reporting bias, magnitude of an effect, dose-response relation, and the direction of

residual confounding) also apply in the context of assessing the certainty of evidence from

models. The assessment itself will depend on the nature of model inputs and the model itself.

We distinguished the assessment of the certainty of model outputs from a single model and

across multiple models. We proposed a framework for selecting the best available evidence

from models: 1) to develop de novo a model specific to the situation of interest, 2) to identify

an existing model the outputs of which provide the highest certainty evidence for the situation

of interest, that could be used either “off the shelf” or after adaptation, and 3) to use outputs

from multiple models. We also present a summary of preferred terminology to facilitate

communication among various modelling and health care disciplines.

Conclusions:

This conceptual GRADE approach provides a framework for using evidence from models in

health decision making and the assessment of certainty of evidence from a model or models.

The GRADE Working Group and the modelling community continue developing detailed

methods and related guidance for the assessment of specific domains determining the certainty

of evidence from models.
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What is new
1. General concepts determining the certainty of evidence in the GRADE approach (risk of bias,

indirectness, inconsistency, imprecision, reporting bias, magnitude of an effect, dose-response

relation, and the direction of residual confounding) also apply in the context of assessing the

certainty of evidence from models (model outputs).

2. Detailed assessment of the certainty of evidence from models differs for the assessment of outputs

from a single model compared to the assessment of outputs across multiple models.

3. We propose a framework for selecting the best available evidence from models to inform health

care decisions: to develop a model de novo, to identify an existing model the outputs of which

provide the highest certainty evidence, or to use outputs from multiple models.

4. We suggest that the modelling and health care decision making communities collaborate further to

clarify terminology used in the context of modelling and make it consistent across the disciplines to

facilitate communication.
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Introduction

When direct evidence to inform health decisions is not available or not feasible tomeasure

(e.g. long-term effects of interventions or when studies in certain populations are perceived as

unethical), modelling studies may be used to predict that “evidence” and inform decision-

making.[1, 2] Health decision makers arguably also face many more questions than can be

reasonably answered with studies that directly measure the outcomes. Formal modelling (as

opposed to the back-of-the-envelope approaches), therefore, is increasingly being used to

predict the disease dynamics and burden, the likelihood that an exposure represents a health

hazard, the impact of interventions on health benefits and harms, or the economic efficiency of

health interventions, among others [1]. Irrespective of the modelling discipline, decision

makers need to know the best estimates of the modelled outcomes and how much confidence

they may have in each estimate.[3] Knowing to what extent one can trust the outputs of a

model is necessary when using them, frequently together with other information, to support

health decisions [4].

Although a number of guidance documents on how to assess the trustworthiness of estimates

obtained from different models in several health fields have been previously published [5-16],

they are limited by combining aspects of methodological rigor together with completeness of

reporting, and by making no clear distinction among various components affecting the

trustworthiness of model outputs. Uncertainty about the outcomes estimated through

modelling may result from the uncertainty aboutmodel inputs and from the uncertainty about

amodel itself. Thus, modellers and those using results from models should assess the

credibility of both.[4] Authors have attempted to develop tools to assess model credibility, but

many addressed only selected aspects, such as statistical reproducibility of data, the quality of

reporting[17], or a combination of reporting with aspects of good modelling practices[7, 18-21].

Many tools also do not provide sufficiently detailed guidance on how to operationalize

individual domains or criteria. There is therefore a need for further development of such tools

in specific disciplines and their validation. Sufficiently detailed guidance for making and

reporting these assessments is also necessary.

Models predict outcomes based on model inputs – previous observations, knowledge and

assumptions about the situation being modelled. Thus, when developing new models or

assessing whether or not an existing model has been optimally developed, one should specify a

priori what are the most appropriate and relevant data sources to inform different parameters

required for the model. These may be either single studies that provide the most direct

information for the situation being modelled or a systematic review of multiple studies that

identifies all relevant sources of data. The certainty of each of model inputs is determined by
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the risk of bias, directness and consistency of input data, precision of these estimates, and

other domains specified in the Grading of Recommendations Assessment, Development, and

Evaluation (GRADE) approach.[22-28]

Various disciplines in health care and related areas that use modelling face similar challenges

when assessing the evidence generated using models and may benefit from shared solutions.

We present examples of selected models used in health-related disciplines in Table 1. Building

on the existing GRADE approach, we aim to refine and expand guidance how to assess the

certainty of model outputs. We formed a GRADE project group, comprised of individuals with

expertise in developing models and using model results in health-related disciplines, to create a

unified framework for assessing the certainty of model outputs to be used in the context of

systematic reviews [29], health technology assessments, health care guidelines, and other

health decision-making. In this article, we outline the proposed conceptual approach and clarify

key terminology (Table 2). The main target audience for this article includes researchers who

develop models and those who use models to inform health care-related decisions.

What we mean by a model

Authors have used the termmodel to describe a variety of different concepts [2] and suggested

several broader or narrower definitions [6, 30], so even modellers in the relatively narrow

context of health sciences can differ in their views about what constitutes a model. Models vary

in their structure and degree of complexity. A very simple model might be an equation

estimating a variable not directly measured, such as the absolute effect of an intervention

estimated as the product of the intervention’s relative effect and the assumed baseline risk in a

defined population (risk difference equals relative risk reduction multiplied by an assumed

baseline risk). On the other end of the spectrum there are elaborate mathematical models,

such as system dynamics models (e.g. infectious disease transmission), which may contain

dozens of sophisticated equations that require considerable computing power to solve.

By their nature, such models only resemble the phenomena being modelled – i.e. specific parts

of the world that are interesting in the context of a particular decision – with necessary

approximations and simplifications, and to the extent that one actually knows and understands

the underlying mechanisms.[1] Given the complexity of the world, decision-makers often rely

on some sort of a model to answer health-related questions.

In this article, we focus on quantitative mathematical models defined as “mathematical

framework representing variables and their interrelationships to describe observed phenomena

or predict future events”[30] used in health-related disciplines for decision-making (Table 1).
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These may be models of systems representing causal mechanisms (aka mechanistic models),

models predicting outcomes from input data (aka empirical models), and models combining

mechanistic with empirical approaches (aka hybrid models). We do not consider here statistical

models used to estimate the associations between measured variables (e.g. proportional

hazards models or models used for meta-analysis).

The GRADE approach

The GRADE working group was established in the year 2000 and continues as a community of

people with the aim to create a systematic, and transparent framework for assessing and

communicating the certainty of the available evidence used in making decisions in healthcare

and health-related disciplines.[31] The GRADE Working Group now includes over 600 active

members from 40 countries and serves as a think tank for advancing evidence-based decision-

making in multiple health-related disciplines (www.gradeworkinggroup.org). GRADE is widely

used internationally by over 100 organizations to address topics related to clinical medicine,

public health, coverage decisions, health policy, and environmental health.

The GRADE framework uses concepts that are familiar to health scientists, grouping specific

items for evaluating the certainty of evidence in conceptually coherent domains. Specific

approaches to evaluate the concepts may differ depending on the nature of the body of

evidence (Table 2). GRADE domains include concepts such as risk of bias[28], directness of

information [24], precision of an estimate[23], consistency of estimates across studies[25], risk

of bias related to selective reporting[26], strength of the association, presence of a dose-

response gradient, and the presence of plausible residual confounding that can increase

confidence in estimated effects[27]. The general GRADE approach is applicable irrespective of

health discipline. It has been applied to rating the certainty of evidence for management

interventions, health care related tests and strategies [32, 33], prognostic information[34],

evidence from animal studies[35], use of resources and cost-effectiveness evaluations[36], and

values and preferences[37, 38]. While the GRADE Working Group has begun to address

certainty of modelled evidence in the context of test-treatment strategies[39], health care

resource use and costs[36], and environmental health[40], more detailed guidance is needed

for complex models such as those used in infectious diseases, health economics, public health,

and decision analysis.

Methods

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448



Brozek, J et a. GRADE approach to modelled data • MANUSCRIPT

Page 9 of 30

On May 15 and 16, 2017, health scientists participated in a GRADE modelling project group

workshop in Hamilton, Ontario, Canada, to initiate a collaboration in developing common

principles for the application of the GRADE assessment of certainty of evidence to modelled

outputs. The National Toxicology Program of the Department of Health and Human Services in

the USA and the MacGRADE Center in the Department of Health Research Methods, Evidence,

and Impact at McMaster University sponsored the workshop which was co-organized by

MacGRADE Center and ICF International.

Workshop participants were selected to ensure a broad representation of all modelling related

fields (Appendix). Participants had expertise in modelling in the context of clinical practice

guidelines, public health, environmental health, dose-response modelling, physiologically based

pharmacokinetic (PBPK) modelling, environmental chemistry, physical/chemical property

prediction, evidence integration, infectious disease, computational toxicology, exposure

modelling, prognostic modelling, diagnostic modelling, cost effectiveness modelling,

biostatistics, and health ethics.

Leading up to the workshop, we held three webinars to introduce participants to the GRADE

approach. Several workshop participants (VM, KT, JB, AR, JW, JLB, HJS) collected and

summarized findings from literature and the survey of experts as background material that

provided a starting point for discussion. The materials included collected terminology

representing common concepts across multiple disciplines that relate to evaluating modelled

evidence, and a draft framework for evaluating modelled evidence. Participants addressed

specific tasks in small groups and large group discussion sessions and agreed on key principles

both during the workshop and through written documents.

Results

Terminology

Workshop participants agreed on the importance of clarifying terminology to facilitate

communication among modellers, researchers, and users of model outputs from different

disciplines. Modelling approaches evolved somewhat independently, resulting in different

terms being used to describe the same or very similar concepts or the same term being used to

describe different concepts. For instance, the concept of the extent to which one can

extrapolate from the available data to the context of interest has been referred to as

directness, applicability, generalizability, relevance, or external validity. The lack of
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standardized terminology leads to confusion and hinders effective communication and

collaboration among modellers and users of models.

Overcoming these obstacles would require clarifying the definitions of concepts and agreeing

on terminology across disciplines. Realizing that this involves changing established customary

use of terms in several disciplines, workshop participants suggested accepting the use of

alternative terminology while always being clear about the preferred terms to be used and the

underlying concept that it refers to (Table 2). Experts attending a World Health Organization's

consultation have very recently suggested a more extensive set of terms [41]. To facilitate

future communication, participants of this workshop intend to further collaborate to build a

comprehensive glossary of terminology related to modelling.

Outline of an approach to using model outputs for decision making

Workshop participants suggested an approach to incorporate model outputs in health-related

decision making (Figure 1). In this article we only describe the general outline of the suggested

approach – in subsequent articles we aim to discuss the details of the approach and provide

more specific guidance how to apply it in different disciplines and contexts.

Researchers should start by designing a conceptual ideal target model that would best

represent the actual phenomenon they are considering [13]. This target model would either

guide the development of a new model or serve as a reference against which existing models

could be compared. The ideal target model should reflect: 1) the relevant population (e.g.,

patients receiving some diagnostic procedure or exposed to some hazardous substance), 2) the

exposures or health interventions being considered, 3) the outcomes of interest in that context,

and 4) their relationships. [42]. Designing a priori a conceptual ideal target model will also

reduce the risk of intentional or unintentional development of data-driven model, in which

inputs and structure would be determined by what is feasible to develop given the available

data and knowledge.

Participants identified 3 options in which users may incorporate model outputs in health

decision-making (Figure 1):

1. Develop a model de novo designed specifically to answer the very question at hand.

Workshop participants agreed that in an ideal situation such an approach would almost

always be the most appropriate for addressing the current problem of interest. Following

this approach, however, requires suitable skills, ample resources, and time being available.

It also requires enough knowledge about the phenomenon being modelled to be able to tell
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whether or not the new model would have any advantage over already existing models

previously developed for the same or similar purpose.

2. Search for an existing model describing the same or a very similar problem and use it “off-

the-shelf” or adapt it appropriately in order to answer the current question. In practice

many researchers initially use this approach because of the above limitations of developing

a new model. However, it is often not possible to find an existing model that would be

directly relevant to the problem at hand and/or it is not feasible to adapt an existing model

when found. Any adaptation of a model requires availability of input data relevant for

current problem, appropriate expertise and resources, and access to the original model. The

latter is often not available (e.g. proprietary model or no longer maintained) or the

structure of the original model is not being transparent enough to allow adaptation (“black-

box”).

3. Use the results from multiple existing models found in the literature [43]. This approach

may be useful when a limited knowledge about the phenomenon being modelled makes it

impossible to decide which of the available models is more relevant, or when many

alternative models are relevant but use different input parameters. In such situations, one

may be compelled to rely on the results of several models, because an arbitrary selection of

the single, seemingly “best” model may provide incorrect estimates of outputs and lead to incorrect

decisions owing to “model selection bias”.

Identifying existing models that are similar to the ideal target model often requires performing

a scoping of the literature or a complete systematic review of potentially relevant models – a

structured process following a standardized set of methods with a goal to identify and assess all

available models that are accessible, transparently reported, and fulfil the pre-specified

eligibility criteria based on the conceptual ideal target model. Some prefer the term systematic

survey that differs from a systematic review in the initial intention to use the results: in

systematic reviews the initial intention is to combine the results across studies either

statistically through a meta-analysis or narratively summarizing their results when appropriate,

whereas in a systematic survey the initial intention is to examine the various ways that an

intervention or exposure has been modelled, to review the input evidence that has been used,

and ultimately to identity a single model that fits the conceptual ideal target model the best or

requires the least adaptation; only when such one model cannot be found, one may need to

use the results of multiple existing models.

If a systematic search revealed one or more models meeting the eligibility criteria, then

researchers would assess the certainty of outputs from each model. Depending on this

assessment, researchers may be able to use the results of a single most direct and lowest risk of

bias model “off-the-shelf” or proceed to adapt that model. If researchers failed to find an
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existing model that would be sufficiently direct and low risk of bias, then they would ideally

develop their own model de novo.

Assessing the certainty of outputs from a single model

When researchers develop their own model or when they identify a single model that is

considered sufficiently direct to the problem at hand, then they should assess the certainty of

its outputs (i.e. evidence generated from that model). Note, that if a model estimates multiple

outputs, researchers needs to assess the certainty of each output separately [23-28]. Workshop

participants agreed that all GRADE domains are applicable to assess the certainty of model

outputs, but further work is needed to identify examples and develop specific criteria to be

assessed, which may differ depending on the model being used and/or situation being

modelled.

Risk of bias in a single model

The risk of bias of model outputs (i.e. model outputs being systematically overestimated or

underestimated) is determined by the credibility of a model itself and the certainty of evidence

for each of model inputs.

The credibility of a model, also referred to as the quality of a model (Table 2) is influenced by

its conceptualization, structure, calibration, validation, and other factors. Determinants of

model credibility are likely to be specific to a modelling discipline (e.g., health economic models

have different determinants of their credibility, compared with PBPK models). There are some

discipline-specific guidelines or checklists developed for the assessment of credibility of a

model and other factors affecting the certainty of model outputs such as the framework to

assess adherence to good practice guidelines in decision-analytic modelling [18], the

questionnaire to assess relevance and credibility of modelling studies [18, 44, 45], good

research practices for modelling in health technology assessment [5, 6, 8, 9, 12-14], the

approaches to assessing uncertainty in read-across [46], and the quantitative structure-activity

relationships [47] in predictive toxicology. Workshop participants agreed that there is a need

for comprehensive tools developed specifically to assess credibility of various types of models

in different modelling disciplines.

The certainty of evidence in each of model inputs is another critical determinant of the risk of

bias in a model. A model has several types of input data – bodies of evidence used to populate

a model (Table 2). When researchers develop their model de novo, in order to minimize the risk

of bias they need to specify those input parameters to which the model outputs are the most
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sensitive. For instance, in economic models these key parameters may include health effects,

resource use, utility values, and baseline risks of outcomes. Model inputs should reflect the

entire body of relevant evidence satisfying clear pre-specified criteria rather than an arbitrarily

selected evidence that is based on convenience (“any available evidence”) or picked in any

other non-systematic way (e.g., “first evidence found” – single studies that researchers happen

to know about or are the first hits in a database search). The appropriate approach will depend

on the type of data and may require performing a systematic review of evidence on each

sensitive input variable [48-50]. Some inputs may have a very narrow inclusion criteria and

therefore evidence from single epidemiological survey or population surveillance may provide

all relevant data for the population of interest (e.g. baseline population incidence or

prevalence).

The certainty of evidence for each input needs to be assessed following the established GRADE

approach specific to that type of evidence (e.g. estimates of intervention effects or baseline risk

of outcomes)[22, 32, 34, 37]. Following the logic of the GRADE approach, that the overall

certainty of evidence cannot be higher than the lowest certainty for any body of evidence that

is critical for a decision [51], we put forward that the overall rating of certainty of evidence

across all model inputs should be limited by the lowest certainty rating for any body of

evidence (input data) to which the model output(s) have been found sensitive.

Application of this approach requires a priori consideration of likely critical and/or important

inputs when specifying the conceptual ideal target model and the examination of the results of

back-end sensitivity analyses. In some cases, the above principle can extend to encompass

decision uncertainty – the overall rating of certainty across model inputs for a single model

should be tied to the certainty rating of the lowest rated body of evidence (input data) to which

the decision is sensitive. For example, the latter extension is applicable when the outputs of a

model-based economic evaluation include probabilities of an intervention (versus its

comparator(s)) being cost-effective at a specified willingness-to-pay threshold.

Indirectness in a single model

By directness or relevance, we mean the extent to which model outputs directly represent the
phenomenon being modelled. To evaluate the relevance of a model, one needs to compare it
against the conceptual ideal target model. When there are concerns about the directness of the
model or there is limited understanding of the system being modelled making it difficult to
assess directness, then one may have lower confidence in model outputs.
Determining the directness of model outputs includes the assessment to what extent the
modelled population, the assumed interventions and comparators, the time horizon, the
analytic perspective, as well as the outcomes being modelled reflect those that are current
interest. For instance, if the question is about the risk of birth defects in children of mothers
chronically exposed to a certain substance, there may be concerns about the directness of the

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728



Brozek, J et a. GRADE approach to modelled data • MANUSCRIPT

Page 14 of 30

evidence if the model assumed short-term exposure, the route of exposure was different, or
the effects of exposure to a similar but not the same substance were measured.

Assessing indirectness in a single model requires evaluating 2 separate sources of indirectness:
1. indirectness of model inputs with respect to the model
2. indirectness of model outputs with respect to the decision problem at hand.

This conceptual distinction is important, because each type of indirectness needs to be
assessed separately, even though co certain extent the latter may be determined by the
former. Some authors also distinguish the “indirectness of the model structure with respect to
decision problem at hand”, but we considered this part of risk of bias described above.

Using an existing model has an inherent limitation, that its inputs might have been direct for

the decision problem addressed by its developers but are not direct with respect to the

problem currently at hand. In this context, sensitivity analysis can help to assess to what extent

model outputs are robust to the changes in input data or assumptions used in model

development.

Inconsistency in a single model

Inconsistency refers to the difference in the results among two or more models. In the case of

using a single model, this type of inconsistency becomes irrelevant. However, a single model

may yield inconsistent outputs owing to an unexplained variability in the results of individual

studies informing the best, pooled estimates of input variables. For instance, when developing

a health economic model, a systematic review may yield several credible, but discrepant, utility

estimates in the population of interest. If there is no plausible explanation for that difference in

utility estimates, outputs of a model based on those inputs may also be inconsistent. Again,

sensitivity analysis may help to make a judgment to what extent such inconsistency of model

inputs would translate into a meaningful inconsistency in model outputs with respect to the

decision problem at hand.

Imprecision in a single model

The overall certainty of model outputs may also be lower when the outputs are estimated

imprecisely. For quantitative outputs one should examine not only the point estimate (e.g.,

average predicted event) but also the variability of that estimate (e.g., results of the

probabilistic sensitivity analysis based in the distribution of the input parameters). It is essential

that a report from a modelling study always includes information about output variability.

Further guidance on how to assess imprecision in model outputs will need to take into account

if the conclusions change according to that specific parameter. In some disciplines, for instance
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in environmental health, model inputs are frequently qualitative. Users of such models may

assess “adequacy” of the data, i.e. the degree of “richness” and quantity of data supporting

particular outputs of a model.

Risk of publication bias in the context of a single model

The risk of publication bias, also known as “reporting bias”, “non-reporting bias”, or “bias owing

to missing results”, as it is currently called in the Cochrane Handbook [52], is the likelihood that

relevant models have been constructed but were not published or otherwise made publicly

available. Risk of publication bias may not be relevant when assessing the certainty of outputs

of a single model constructed de novo. However, when one intends to reuse an existing model

but is aware or strongly suspects that similar models had been developed but are not available,

then one may be inclined to think that their outputs might have systematically differed from

the model that is available. In such a case, one may have lower confidence in the outputs of the

identified model if there is no reasonable explanation for the inability to obtain those other

models.

Domains that increase the certainty of outputs from a single model

The GRADE approach to rating the certainty of evidence recognized three situations when the

certainty of evidence can increase: large magnitude of an estimated effect, presence of a dose-

response gradient in an estimated effect, and an opposite direction of plausible residual

confounding.[27] Workshop participants agreed that presence of a dose-response gradient in

model outputs may applicable in some modelling disciplines (e.g., environmental health).

Similarly, whether or not a large magnitude of an effect in model outputs increases the

certainty of the evidence may depend on the modelling discipline. The effect of an opposite

direction of a plausible residual confounding seems theoretically also applicable in assessing

the certainty of model outputs but an actual example of this phenomenon in modelling studies

has yet to be found.

Assessing the certainty of outputs across multiple models

Not infrequently, particularly in disciplines relying on mechanistic models, the current

knowledge about the real system being modelled is very limited precluding the ability to

determine which of the available existing models generates higher certainty outputs. Therefore,

it may be necessary to rely on the results across multiple models. Other examples include using

multiple models when no model was developed for the population directly of interest (e.g. the

European Breast Cancer Guideline for Screening and Diagnosis relied on a systematic review of
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modelling studies that compared different mammography screening intervals [53]) or when

multiple models of the same situation exist but vary in structure, complexity, and parameter

choices (e.g. HIV Modelling Consortium compared several different mathematical models

simulating the same antiretroviral therapy program and found that all models predicted that

the program has the potential to reduce new HIV infections in the population [54]).

When researchers choose or are compelled to include outputs from several existing models,

they should assess the certainty of outputs across all included models. This assessment may be

more complex than for single models and single bodies of evidence. The feasibility of GRADE’s

guidance to judge the certainty of evidence lies in the availability of accepted methods for

assessing most bodies of evidence from experimental to observational studies. However, the

methods for systematic reviews of modelling studies are less well-established, some stages of

the process are more complex, the number of highly skilled individuals with experience in such

systematic reviews is far lower, and there is larger variability in the results [55]. Additionally,

researchers must be careful to avoid “double counting” the same model as if it were multiple

models. For instance, the same model (i.e. same structure and assumptions) may have been

used in several modelling studies, in which investigators relied on different inputs. When facing

this scenario, researchers may need to decide which of the inputs are the most direct to their

particular question and include in only this model in the review.

Risk of bias across multiple models

The assessment of risk of bias across models involves an assessment of the risk of bias in each

individual model (see above discussion of risk of bias in single model) and subsequently making

a judgement about the overall risk of bias across all included models. Specific methods for

operationalizing this integration remain to be developed.

Indirectness across multiple models

As for the risk of bias, researchers need to assess indirectness of outputs initially for each of

included models and then integrate the judgements across models. Likewise, specific methods

for operationalizing this integration still remain to be developed. During this assessment

researchers may find some models too indirect to be informative for their current question and

decide to exclude them from further consideration. However, the criteria to determine which

models are too indirect should be developed a priori, before the search for the models is

performed and their results are known.
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Imprecision across multiple models

The overall certainty of model outputs may also be lower when model outputs are not

estimated precisely. If researchers attempt a quantitative synthesis of outputs across models,

they will report the range of estimates and variability of that estimates. When researchers

choose to perform only a qualitative summary of the results across models, it is desirable that

they report some estimate of variability in the outputs of individual models and an assessment

of how severe the variability is (e.g. range of estimated effects).

Inconsistency of outputs across multiple models

The assessment of inconsistency should focus on unexplained differences across model

outputs. If multiple existing models addressing the same issue produce considerably different

outputs or reach contrasting conclusions, then careful comparison of the models may lead to a

deeper understanding of the factors that drive outputs and conclusions. Ideally, the different

modelling groups that developed relevant models would come together to explore the

importance of differences in the type and structure of their models, and of the data used as

model inputs.

Invariably there will be some differences among the estimates from different models.

Researchers will need to assess whether or not these differences are important, i.e. whether

they would lead to different conclusions. If the differences are important but can be explained

by model structure, model inputs, the certainty of the evidence of the input parameters or

other relevant reasons, one may present the evidence separately for the relevant subgroups. If

differences are important, but cannot be clearly explained, the certainty of model outputs may

be lower.

Risk of publication bias across multiple models

The assessment is similar to that of the risk of publication bias in the context of a single model.

Domains that increase the certainty of outputs across multiple models

All considerations are the same to those in the context of a single model.

Discussion
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The goal of the GRADE project group on modelling is to provide concepts and operationalization

of how to rate the certainty of evidence in model outputs. This article provides an overview of

the conclusions of the project group. This work is important because there is a growing need

and availability of modelled information resulting from a steadily increasing knowledge of the

complexity of the structure and interactions in our environment, and computational power to

construct and run models. Users of evidence obtained from modelling studies need to know

how much trust they may have in model outputs. There is a need to improve the methods of

constructing models and to develop methods for assessing the certainty in model outputs. In

this article we have attempted to clarify the most important concepts related to developing and

using model outputs to inform health-related decision-making. Our preliminary work identified

confusion about terminology, lack of clarity of what is a model, and need for methods to assess

certainty in model outputs as priorities to be addressed in order to improve the use of evidence

from modelling studies.

In some situations, decision-makers might be better off developing a new model specifically

designed to answer their current question. However, we suggest that it is not always feasible to

develop a new model or that developing a new model might not be any better than using

already existing models, when the knowledge of the real life system to be modelled is limited

precluding the ability to choose one model that would be better than any other. Thus,

sometimes it may be necessary or more appropriate to use one or multiple existing models

depending on their availability, credibility, and relevance to the decision-making context. The

assessment of the certainty of model outputs will be conceptually similar when a new model is

constructed, or one existing model is used. The main difference between the latter two

approaches is the availability of information to perform a detailed assessment. That is,

information for one’s own model may be easily accessible, but information required to assess

someone else’s model will often be more difficult to obtain. Assessment of the certainty

evidence across models can build on existing GRADE domains but requires different

operationalization.

Adoption of the GRADE approach by modelling disciplines and further development of methods

to assess the certainty of model outputs may be beneficial for health decision making, since it

builds on an existing, widely used framework that includes a systematic and transparent

evaluation process. Systematic approaches improve rigor of research, reducing the risk of error

and its potential consequences; transparency of the approach increases its trustworthiness.

There may be additional benefits related to other aspects of the broader GRADE approach, for

instance a potential to reduce unnecessary complexity and workload in modelling by careful

consideration of the most direct evidence as model inputs. This may allow, for instance,

optimization of the use of different streams of evidence as model inputs. Frequently, authors
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introduce unnecessary complexity by considering multiple measures of the same outcome

when focus could be on the most direct outcome measure.

The GRADE working group will continue developing methods and guidance for using model

outputs in health-related decision-making. In subsequent articles we will provide more detailed

guidance about choosing the “best” model when multiple models are found, using multiple

models, integrating the certainty of evidence from various bodies of evidence with credibility of

the model and arriving at the overall certainty in model outputs, how to assess the credibility of

various types of models themselves, and further clarification of terminology. In the future we

aim to develop and publish the detailed guidance for assessing certainty of evidence from

models, the specific guidance for the use of modelling across health care-related disciplines

(e.g. toxicology, environmental health or health economics), validation of the approach, and

accompanying training materials and examples.
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Table 1. Examples of modelling methods in health-related disciplines (not comprehensive).

Structured model representing health care pathways examining effects of an

intervention on outcomes of interest.

Types

 Decision tree models
 State transition models

o Markov cohort simulation
o Individual based microsimulation (first-order Monte Carlo)

 Discrete event simulation
 Dynamic transmission models
 Agent based models

Decision analysis

models

Examples

 Estimation of long-term benefits and harms outcomes from complex
intervention, e.g. minimum unit pricing of alcohol

 Cost effectiveness analysis of 18 FDG PET/CT for the diagnosis of lung cancer

Computational models developed to organize, analyse, simulate, visualize or

predict toxicological and ecotoxicological effects of chemicals. In some cases, these

models are used to estimate the toxicity of a substance even before it has been

synthesized.

Types

 Structural alerts and rule-based models
 Read-Across
 Dose response and Time response
 Toxicokinetic (TK) and toxicodynamic(TD)
 Uncertainty factors
 Quantitative structure activity relationship (QSAR)
 Biomarker-based toxicity models

Pharmacology and

toxicology models

Examples

 Structural alerts for mutagenicity and skin sensitisation

 Read-across for complex endpoints such as chronic toxicity

 Pharmacokinetic (PK) models to calculate concentrations of substances in
organs, following a variety of exposures QSAR models for carcinogenicity

 TGx-DDI biomarker to detect DNA damage-inducing agents

The EPA defined these models as: ‘A simplification of reality that is constructed to

gain insights into select attributes of a physical, biological, economic, or social

system.’ It involves the application of multidisciplinary knowledge to explain,

explore and predict the Earth´s response to environmental change, and the

interactions between human activities and natural processes.

Environmental

models

Classification (based on the CREM guidance document):

 Human activity models
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 Natural systems process

 Emission models

 Fate and transport models

 Exposure models

 Human health effects models

 Ecological effects models

 Economic impact models

 Noneconomic impact models

Examples

 Land use regression models

 IH SkinPerm [56]

 ConsExpo [57]

 other exposure models [58]

Other  HopScore: An Electronic Outcomes-Based Emergency Triage System [59]

 Computational general equilibrium (CGE) models [60]

Table 2. Selected commonly used and potentially confusing terms used in the context of

modelling and the GRADE approach

Term General definition
Sources of evidence
(may come from in vitro or in vivo experiment or a mathematical model)
Streams of
evidence

Parallel information about the same outcome that may have been
obtained using different methods of estimating that outcome. For
instance, evidence of the increased risk for developing lung cancer in
humans after an exposure to certain chemical compound may come from
several streams of evidence: 1) mechanistic evidence – models of
physiological mechanisms, 2) studies in animals – observations and
experiments in animals from different phyla, classes, orders, families,
genera, and species (e.g., bacteria, nematodes, insects, fish, mice, rats),
and 3) studies in humans.

Bodies of evidence Information about multiple different aspects around a decision about the
best course of action. For instance, in order to decide whether or not a
given diagnostic test should be used in some people, one needs to
integrate the bodies of evidence about: the accuracy of the test, the
prevalence of the conditions being suspected, the natural history of these
conditions, the effects of potential treatments, values and preferences of
affected individuals, cost, feasibility, etc.

Quality
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(may refer to many concepts, thus alternative terms are preferred to reduce confusion)
Certainty of model
outputs

Alternative terms:
▪ certainty of
modelled evidence

▪ quality of evidence
▪ quality of model
output

▪ strength of
evidence

▪ confidence in
model outputs

In the context of health decision-making, the certainty of evidence (term
preferred over “quality” in order to avoid confusion with the risk of bias in
an individual study) reflects the extent to which one’s confidence in an
estimate of an effect is adequate to make a decision or a
recommendation. Decisions are influenced not only by the best estimates
of the expected desirable and undesirable consequences but also by one’s
confidence in these estimates. In the context of evidence syntheses of
separate bodies of evidence (e.g., systematic reviews), the certainty of
evidence reflects the extent of confidence that an estimate of effect is
correct. For instance, the attributable national risk of cardiovascular
mortality resulting from exposure to air pollution measured in selected
cities.
The GRADE Working Group published several articles explaining the
concept in detail.[22-28, 61] Note that the phrase “confidence in an
estimate of an effect” does not refer to statistical confidence intervals.
Certainty of evidence is always assessed for the whole body of evidence
rather than on a single study level (single studies are assessed for risk of
bias and indirectness).

Certainty of model
inputs

Alternative term:
▪ quality of model
inputs

Characteristics of data that are used to develop, train, or run the model,
e.g., source of input values, their manipulation prior to input into a model,
quality control, risk of bias in data, etc.

Credibility of a
model

Alternative terms:
▪ quality of a model
▪ risk of bias in a
model

▪ validity of a model

To avoid confusion and keep with terminology used by modelling
community[7] we suggest using the term credibility rather than quality of a
model. The concept refers to the characteristics of a model itself – its
design or execution – that affect
the risk that the results may overestimate or underestimate the true
effect. Various factors influence the overall credibility of a model, such as
its structure, the analysis and the validation of the assumptions made
during modelling.

Quality of reporting Refers to how comprehensively and clearly model inputs, a model itself,
and model outputs have been documented and described such that they
can be critically evaluated and used for decision-making. Quality of
reporting and quality of a model are separate concepts: a model with a
low quality of reporting is not necessarily a low-quality model and vice
versa.

Directness
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Directness of a
model

Alternative terms:
▪ relevance
▪ external validity
▪ applicability
▪ generalizability
▪ transferability
▪ translatability

By directness of a model we mean the extent to which the model
represents the real-life situation being modelled which is dependent on
how well the input data and the model structure reflect the scenario of
interest.
Directness is the term used in the GRADE approach, because each of the
alternatives has been used usually in a narrower meaning.

* There may be either subtle or fundamental differences among some disciplines in how these

terms are being used; for the purposes of this article, these terms are generalized rather than

discipline specific.
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Figure 1. The general approach to using modelled evidence and assessing its certainty in health-

related disciplines.
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