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A B S T R A C T   

Childhood vaccinations are among the most cost-effective health interventions. Yet, in India, 
where immunisation services are widely available free of charge, a substantial proportion of 
children remain unvaccinated. We revisit households 30 months after a randomised experiment of 
a health information intervention designed to educate mothers on the benefits of child vaccina-
tion in Uttar Pradesh, India. We find that the large short-term effects on the uptake of diph-
theria–pertussis–tetanus and measles vaccination were sustained at 30 months, suggesting the 
intervention did not simply bring forward vaccinations. We apply causal forests and find that the 
intervention increased vaccination uptake, but that there was substantial variation in the 
magnitude of the estimated effects. We conclude that characterising those who benefited most 
and conversely those who benefited least provides policy-makers with insights on how the 
intervention worked, and how the targeting of households could be improved.   

1. Introduction 

Enormous progress has been made in reducing child mortality and disability over the last two decades in low- and middle-income 
countries (LMIC), and childhood vaccinations have played an important part in this success story (Bhutta et al., 2013). They represent 
one of the most cost-effective health technologies, in that they prevent mortality and disability at relatively low cost (Bärnighausen 
et al., 2014). Yet, despite the well-documented evidence and consistent investment in national immunisation programmes, the WHO 
estimates that globally 25 million infants were not fully vaccinated in 2021 (World Health Organisation, 2022). More than 60 % of 
these children live in 10 countries: Angola, Brazil, the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Myanmar, 
Nigeria, Pakistan and the Philippines. Not since 2009 has the number of children who are unvaccinated been so high (World Health 
Organisation, 2022). Understanding how to increase the uptake of vaccines is especially pressing following COVID-19, which not only 
interrupted routine vaccination services, but also highlighted the need to better understand the determinants of vaccine uptake. 

* Corresponding author at: Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, 15-17 Tavistock 
Place, WC1H 9SH London, United Kingdom. 

E-mail address: Stephen.ONeill@lshtm.ac.uk (S. O’Neill).  

Contents lists available at ScienceDirect 

Journal of Health Economics 

journal homepage: www.elsevier.com/locate/jhealeco 

https://doi.org/10.1016/j.jhealeco.2024.102899 
Received 12 June 2023; Received in revised form 13 May 2024; Accepted 17 May 2024   

mailto:Stephen.ONeill@lshtm.ac.uk
www.sciencedirect.com/science/journal/01676296
https://www.elsevier.com/locate/jhealeco
https://doi.org/10.1016/j.jhealeco.2024.102899
https://doi.org/10.1016/j.jhealeco.2024.102899
https://doi.org/10.1016/j.jhealeco.2024.102899
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Health Economics 96 (2024) 102899

2

Indeed, strategies that are successful in improving vaccine coverage for one disease may prove effective in raising acceptance of 
vaccines to protect against future outbreaks of COVID-19 or other emerging diseases. 

The setting for our study is Uttar Pradesh, one of the most populous and poorest states in India, and in which 70 % of children aged 
12 to 23 months are fully vaccinated against common childhood disease (International Institute for Population Sciences (IIPS) and 
ICF., 2021). While this represents a marked improvement over the past five years, it is clear that the widespread availability of free 
immunisation services in public facilities has been insufficient to guarantee high coverage and the benefits of herd immunity in the 
population. Consistent with this picture is a growing body of evidence that suggests demand-side factors, including poor parental 
knowledge, distrust, time costs and procrastination, are important barriers to vaccination uptake (Larson et al., 2014; Mills et al., 
2005). This, in turn, has prompted investigation of light-touch behavioural interventions that target parents with health information 
messages, cash or in-kind incentives. 

Various systematic reviews and meta-analyses (Shea et al. 2009; Johri et al., 2015; Oyo-Ita et al., 2016), as well as more recent 
studies (Banerjee et al., 2021; Gibson et al., 2017), have evaluated strategies for increasing coverage of childhood vaccinations. The 
most recent review included 14 studies evaluating a range of interventions such as health education, monetary incentives, home visits 
and supportive supervision (Oyo-Ita et al., 2016). Some of these interventions were found to be effective in the short term – health 
education interventions, for example, improved immunisation coverage by 68 % – although the quality of evidence varied. Despite this 
body of literature, the evidence is limited on two important questions. 

First, are the effects of demand-side interventions sustained over time? It may be the case that the initial effects of an intervention 
are attenuated over time, if the intervention merely brings forward vaccinations that would have happened anyway. Under such a 
scenario, any health benefits of vaccination would be temporary, and so if estimates of the relative cost-effectiveness of the inter-
vention are based on immediate impacts of uptake, then this would overstate the cost-effectiveness of the intervention. An additional 
perspective on the question of sustainability concerns the persistence of behaviour change in response to temporary or one-off in-
terventions (Celhay et al., 2019). Behaviour change of this nature can be thought of as habit formation, which has obvious relevance 
for smoking cessation and exercise interventions (Charness and Gneezy, 2009; Volpp et al., 2009). In the context of childhood 
immunisation, an intervention that led to a sustained change in parental behaviour could deliver benefits – in terms of vaccine uptake – 
to children who were not born at the time of intervention. Such evidence from follow-up of additional children would serve to increase 
the cost-effectiveness of an intervention. 

Second, who benefits from the intervention? Evidence on heterogenous treatment effects has a number of uses. It can add to existing 
knowledge and a priori reasoning to help inform policymakers as to who should be targeted by the intervention to maximise uptake, 
and in the context of immunisation, reach the herd immunity threshold. It can be informative as to which groups the effects of the 
intervention are most persistent for. It can provide insights into potential inequities, for example by indicating how widely the benefits 
of an intervention are felt. It can potentially shed light on the mechanisms through which the intervention worked and may be 
informative as to which groups the intervention has or does not have persistent effects for. Finally, it can offer policymakers insights on 
how to adapt the intervention or what other forms of intervention may be needed in tandem with demand-side strategies to increase 
effectiveness in certain subgroups. For example, if the intervention is shown not to work for remote households far from public health 
facilities, additional strategies such as community outreach or immunisation camps may be needed. While distinct, the two questions 
are of keen interest to policymakers seeking to implement interventions at scale. Interventions whose effects are short-lived or 
undermined by the passage of time are of limited value to public health officials. Evidence on what drives variation in intervention 
effects can provide valuable information on how a public health programme should be designed and delivered outside the confines of a 
research project. 

This paper addresses these questions in the context of a brief health education intervention that was undertaken in rural Uttar 
Pradesh, India from 2015 to 2016 (Powell-Jackson et al., 2018). The setting has general appeal; it is relevant to low-income countries 
in which immunisation services are free at the point of use, yet immunisation uptake is low. The intervention provided the mothers of 
unvaccinated or incompletely vaccinated children aged 0 to 36 months with health information on the benefits of vaccination through 
home visits. It was implemented as an individually randomised controlled trial and outcomes were measured seven months after the 
information was given. The intervention led to a large immediate increase in vaccination uptake. Coverage of three doses of diph-
theria–pertussis–tetanus vaccine (DPT3) was 28 % in the control group and 43 % in the intervention group (risk difference of 15 
percentage points, p < 0.001), and coverage of measles vaccination was 42 % in the control group and 64 % in the intervention group 
(risk difference of 22 percentage points, p < 0.001). The cost per disability-adjusted life year averted of providing information was US 
$186, implying that the intervention was highly cost-effective. 

We use new data and analytical methods to assess the sustainability and the heterogeneity of effects of the educational intervention. 
Fieldworkers returned to the study participants approximately 30 months after the intervention, and measured outcomes amongst the 
original sample of children (hereon referred to as the index children) and younger siblings that were not yet born at the time of 
intervention. Levels of attrition over the follow-up period were low: 93 % of the 722 study participants who were randomised 
completed follow-up at 30 months, and for this subsample baseline characteristics remained well balanced between the randomised 
groups. 

To study heterogeneity, we estimate individual treatment effects using causal forests (Wager and Athey, 2018), an ensemble 
machine learning approach that is becoming increasingly popular. The Causal Forest approach is a non-parametric method that builds 
on causal trees (Athey and Imbens, 2016), which recursively splits individuals into groups with a rule tailored towards the estimation 
of heterogeneous treatment effects. The method allows for high dimensional interactions between covariates while avoiding over-
fitting by repeatedly estimating causal trees from random subsets of the data, using the remainder of the data to predict effects, and 
then averaging the predictions to obtain an overall predicted outcome for each individual under each treatment state (Wager and 
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Athey, 2018). The difference between the two predictions is then the individual level-effect estimate. By considering variation in these 
estimated individual-level effects with respect to covariates, we can characterise the groups that benefit most/least from the inter-
vention. Alternatively, the individual-level effect estimates for pre-specified subgroups can be aggregated to obtain subgroup effect 
estimates. Subgroup analyses have traditionally been seen as controversial. For good reason, there is much scepticism of ex post 
analysis of subgroups because of the risk that results are selectively reported owing to their statistical significance. Studies typically 
have substantially less statistical power to estimate subgroup effects than overall effects, and must fully acknowledge any lack of 
precision in reporting and interpreting subgroup-level effects (Burke et al., 2015). To guard against data mining, there are established 
norms around trial registration and pre-specification of subgroup analyses. But relying solely on information about those subgroups 
that are prespecified risks discarding potentially valuable information, which may be useful to help target interventions, but also to 
inform priorities for future research. Moreover, there may be genuine uncertainty regarding what factors may influence effectiveness. 
When interest is around hypothesis generating, existing approaches may be excessively conservative, and fail to raise new hypotheses. 
Machine learning allows the researcher to stay neutral as to the source of heterogeneity (i.e. the effect modifiers) and discover patterns 
in the data by searching over high-dimensional functions of covariates. Such a machine learning method can complement the approach 
of a priori specification of a limited set of outcome models or subgroups of interest, and the extent to which particular subgroups have 
been specified a priori, and the use of a theory or intuition to inform the likely direction of effects for particular subgroups is important 
in interpreting the strength of recommendations for policy-making and further research.1 Effects can still be aggregated for a limited 
number of pre-specified subgroups to test pre-specified hypotheses (e.g. by mothers perception of vaccine efficacy), and also to build 
on ‘theory’ or ‘intuition’ for further subgroups that were not pre-specified (e.g. age and vaccination history), in a way that is useful for 
helping target interventions and future research priorities. The use of ‘honest’ estimation, where the same data are never used for 
estimation and sample splitting helps to protect against false discovery and yields confidence intervals with correct coverage (Athey 
and Imbens, 2016). Nonetheless, studies should be careful in the strength of the policy recommendations and further research rec-
ommendations that are made from the results of subgroup analyses according to whether the subgroups are pre-specified, and the 
extent to which they are predicted by theory or prior reasoning. 

We report three key findings. First, the large initial effect of the intervention on vaccination outcomes was maintained at 30 months 
follow-up. The magnitudes of the effect in absolute terms were similar to those previously reported at seven months follow-up, sug-
gesting that the intervention did not simply bring forward vaccinations that would have happened anyway. In this sense, the effects of 
the brief intervention were sustained. We are unable to make firm conclusions as to the persistence of parental behaviour change 
because the confidence intervals on the effects of the intervention on vaccination uptake of younger siblings are wide. The effect on 
uptake of DPT3, for example, was 9 percentage points amongst younger siblings (compared with 32.5 % in the control group) but 
confidence intervals ranged from − 2.2 to 20.3 percentage points. 

Second, estimates of individual level treatment effects show that the majority of participants benefited from the intervention. For 
DPT3 vaccination at 30 months follow-up, individual treatment effects ranged from 1.4 to 28.6 percentage points, with a statistically 
significant effect observed for 56.4 % of the participants. For measles vaccination at 30 months follow-up, individual treatment effects 
ranged from 16.3 to 44.5 percentage points, with a statistically significant effect observed for all the participants, after excluding those 
children that had already received the measles vaccine at baseline. These findings therefore suggest that the intervention did not cause 
harm by reducing the chances of children being vaccinated, as would be expected with an intervention of this nature. 

Third, we examined whether the heterogeneity was associated with baseline characteristics. When looking at DPT3 uptake, in-
dividuals that benefitted most (top 25 % of effects) from the intervention tended to be older, had received previous vaccinations in the 
schedule (e.g. the first and second doses of DPT), were more likely to be located closer to a public rather than private health facility, 
and had mothers that demonstrated less knowledge about the causes, symptoms and prevention methods for tetanus compared to those 
that benefitted least (bottom 25 % of effects). Age and the receipt of the first and second doses of DPT were also strongly associated 
with larger effects on measles vaccine uptake, while mothers’ knowledge regarding tetanus or proximity to a public health facility did 
not explain variation in treatment effects. 

In a broad sense, our study contributes to the literature on demand-side interventions for immunisation uptake in low- and middle- 
income countries, providing novel insights on the persistence and heterogeneity of effects (Banerjee et al., 2020, 2021; Gibson et al., 
2017; Johri et al., 2015). There is a small literature on whether temporary incentives can lead to healthy habit formation, such as 
smoking cessation and exercise (Charness and Gneezy, 2009; Volpp et al., 2009), and a rich body of theoretical work on how to 
maintain behaviour change (Kwasnicka et al., 2016). There is, however, a need for more evidence on whether one-off health education 
interventions can lead to sustained changes in behaviour in the uptake of health care technologies. We find little evidence that the 
intervention caused harm by reducing the chances of children being vaccinated in contrast to another study in India, where a com-
bination of small incentives, reminders and persuasion was found to reduce immunisation rates in some villages, possibly because the 
interventions crowded out existing intrinsic motivation of parents to vaccinate their children (Chernozhukov et al., 2018). 

The paper is structured as follows: Section 2 provides background information on the study setting, and the information inter-
vention. Section 3 discusses the original experimental design and the data. Section 4 describes the econometric methods used. Section 5 
presents the results and Section 6 discusses the findings with respect to the limitations of the study and the broader literature. 

1 Machine learning does not, of course, provide the means to make a causal interpretation of the heterogeneity results since covariates could be 
proxying for other characteristics. 
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2. Background 

2.1. Context 

The study took place in the following six districts of the state of Uttar Pradesh: Kannauj, Kanpur Nagar, Kanpur Dehat, Auraiya, 
Etawah, and Fatehpur. Uttar Pradesh has more than 230 million people with GDP per capita and levels of literacy typical of a low- or 
lower-middle income country. At the time of the study, 67 % of children aged 12–23 months had received the DPT3 vaccine, 71 % had 
received the measles vaccine, and 51 % were fully vaccinated. There was considerable dropout between the first and third doses of DPT 
vaccine. The study districts had a population of 13.7 million people.2 DPT3 coverage amongst children 12–23 months ranged from 58 
% to 78 %, and full vaccination coverage ranged from 34 % to 62 % in the study districts (International Institute for Population 
Sciences (IIPS) and ICF, 2017). The reasons for the insufficient coverage of childhood vaccinations are multi-faceted. However, there is 
a general consensus that it is not because of a lack of availability in the supply of vaccines. The national programme provides childhood 
vaccinations at no cost to the parents and there is established infrastructure and health personnel of different cadres to deliver vaccines 
to rural areas. The delivery system is aided by an extensive network of accredited social health activists in the community who are 
expected to keep an up-to-date list of households eligible for immunisation, and encourage parents to get their children vaccinated. 

2.2. Brief health education intervention 

The original study tested a health education intervention, designed and implemented in partnership with Sambodhi Research and 
Communications, a research organisation in Uttar Pradesh. The intervention focused on tetanus, a serious disease and one of the 
leading causes of death amongst newborns in India. There is a highly effective vaccine against tetanus given as a combined shot. The 
Indian Academy of Paediatrics recommends that three doses of DPT should be given, at 6 weeks, 10 weeks, and 14 weeks, with a 
minimum age of 6 weeks. If any of these doses are missed, there is a catch-up range of up to seven years of age (Kasi et al., 2021). 

Field staff provided mothers with information on childhood tetanus and the benefits of the tetanus vaccine through door-to-door 
visits. Information was conveyed using a structured script, alongside visual aids. The script described the causes and symptoms of 
tetanus, possible health consequences, the individual health benefit of the combination DPT, and the wider community benefits 
associated with herd immunity. We tested two versions of the script that varied how the information was framed. The first script 
framed information on tetanus vaccination as gains, emphasising that the child would be less likely to get tetanus and more likely to be 
healthy once vaccinated. The second script framed the information as a loss, highlighting that an unvaccinated child would be more 
likely to get tetanus and suffer the health consequences of the disease. There was a question and answer session and a Hindi leaflet was 
left with the mother at the end. (See Appendix A for further details and the leaflets). The intervention was brief; it took about 10 min to 
deliver to each household (Powell-Jackson et al., 2018). 

Mothers were eligible for inclusion in the study if their child was alive, was aged 0–36 months, had not received three doses of DPT 
vaccine, and if the mother intended to remain in the study area for at least six months. Eligibility was determined using two sources of 
data: 1) a household survey conducted in the same villages prior to the original study; and 2) a list of mothers who had recently given 
birth provided by accredited social health activists working in each of the study villages. The intervention was delivered to eligible 
households in 180 clusters (villages) in the six study districts in September 2015. The baseline survey was conducted at the same time 
as the door-to-door home visit, prior to treatment group assignment and the provision of the information. 

3. Experimental design and data 

3.1. Experimental design 

The trial randomised 722 mothers of children aged 0 to 36 months, in a ratio of 1:1:1 to one of three study arms: mothers in the first 
treatment group received information framed as a gain, mothers in the second treatment group received information framed as a loss, 
and the third arm acted as a control group, with no information given to the mother. The comparison groups were well balanced at 
baseline (Powell-Jackson et al. 2018). In this paper, we combine the first two arms into a single ‘treatment’ group since this was 
pre-specified as the primary analysis in the study protocol and the original evaluation did not find evidence that the framing mattered. 
The interventions were delivered during the first home visit, once the mother had given their consent to participate and had been 
interviewed for the baseline survey. 

3.2. Data 

Three rounds of data collection were undertaken, at baseline (September 2015) and in two follow-up surveys, seven months (April 
2016) and 30 months (March 2018) after the information intervention. In the first follow-up, the study team completed interviews with 
706 mothers whose child was still alive, resulting in a loss to follow-up of 16 mothers and a rate of attrition of 2.2 %. In the second 
follow-up, the study team completed interviews with 674 mothers, resulting in an additional loss to follow-up of 32 mothers, and an 

2 The sampling procedures to select the districts and study clusters are described in detail elsewhere (Tougher et al., 2018). 
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overall attrition rate of 6.6 % against the original sample. The study team also obtained data on outcomes for 299 younger siblings of 
the index child. It should be noted that the original study did not seek to have adequate power to assess effects for siblings. In this 
paper, we draw primarily on the new data from the second follow-up survey. Each round of data collection captured the child’s 
immunisation status, and the mother’s knowledge of the causes of, symptoms of, and prevention methods against tetanus. 

We focus on two vaccination outcomes. The first outcome is the proportion of children who had received three doses of DPT 
vaccine. This was the pre-specified primary outcome of the original trial. The second is the proportion of children who had received the 
measles vaccine. The previously published results of the trial reported that the intervention had a large positive effect on this outcome, 
even though the information intervention itself was focused entirely on tetanus (Powell-Jackson et al., 2018). Measles is also the last 
vaccine in the standard immunisation schedule, and hence a good guide as to whether the child has received the recommended 
vaccines. We measured the vaccination status of the child following international best practice of relying on the vaccination card or, 
where unavailable, self-reported information from the mother (International Institute for Population Sciences (IIPS) and ICF., 2021).3 

It is important to note that, of the 706 children included in the first follow-up survey, 116 had received the measles vaccine at baseline. 
The effect of the intervention on measles vaccine uptake amongst these children must be zero, since they were already vaccinated. In 
other words, the relationship is mechanical. There is therefore nothing to be learnt about the targeting of the intervention for this 
subgroup of children. Hence, we exclude children that had received the measles vaccine at baseline in the analysis of heterogeneous 
treatment effects for measles vaccine uptake. We do, however, carry out a validation/falsification test where we include these in-
dividuals in the estimation and assess whether we correctly estimate that the intervention had no effect on this group. 

The original study protocol mentioned the possibility of conducting subgroup analyses with respect to five variables. Three of the 
five variables (sex of child, household wealth, education of mother) were not measured in the baseline survey to reduce the time 
burden on the participants and hence cannot be considered here. Two of the five variables are considered below the mother’s 
perception of efficacy, and the closest health facility). The intervention sought to increase demand for vaccination by addressing 
misperceptions of the efficacy of the tetanus vaccine such that mothers with perceptions of efficacy (as measured by an index of 0 to 10 
based on responses to interactive games on hypothetical questions relating to different immunisation coverage scenarios) lower than 
the true efficacy may be more responsive to the intervention. The type of health facility (government or private) that was closest to 
them was considered since this may reflect access to the publicly-provided immunisation services. 

We also used all available information from the baseline household survey to consider a number of further subgroups that a priori 
reasoning suggests may modify the relative effectiveness of the intervention (See Table 1). Children further along in their vaccination 
schedule – as measured by prior vaccinations and proxied by age – may be more affected by the intervention since they are closer to 
being ready for DPT3 and measles vaccination. The intervention also sought to increase mothers’ knowledge of the causes, symptoms, 
and prevention methods of tetanus such that those with poor knowledge at baseline may be more affected by the intervention. 

4. Econometric methods 

4.1. Estimands of interest 

Defining Yi(1) and Yi(0) as individual i’s potential outcomes with and without treatment respectively (Rubin, 1974), the in-
dividual’s treatment effect can be defined as τi = Yi(1) − Yi(0). However, since it is not possible to observe both potential outcomes 
simultaneously (Holland, 1986), this effect is generally unidentifiable. In a trial, we rely on randomisation to allow us to identify the 
ATE: 

ATE = E(τi) = E(Yi(1) − Yi(0)) (1) 

Here, we are interested in conditional effects, that is the contrast between the two treatment arms, conditional on observed baseline 
covariates. Formally, the estimand of interest is the conditional average treatment effect (CATE): 

τ(x) = E(Yi(1) − Yi(0)|X= x) (2)  

where X can consist of a combination of the observed covariates (i.e. X can be a vector). By considering an individual’s covariates we 
can use τ(x) to estimate an individualised treatment effect, which can be aggregated to estimate the CATE for subgroups of interest. The 
sample average of these individualised effects can be taken over the full sample to obtain an estimate of the average treatment effect 
(ATE). While in principle τ(x) can be estimated using standard regression approaches, it is challenging to correctly specify the rela-
tionship between confounders and outcomes, and the form of effect modification. We therefore adopt a causal machine learning 
method, Causal Forest, to estimate these individualised effects. 

4.2. Estimation of persistence of effects 

We examine two aspects of persistence. First, to assess whether the effects of the intervention on the index children are sustained 
over time, we estimate the ATE at 30 months follow-up and compare it to the estimated effect at seven months follow-up. We present 
estimates from an OLS regression without and then with adjustment for baseline covariates. If the initial effects of the intervention are 

3 43% of mothers had a vaccination card. There was no difference between treatment and control. 
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attenuated over time, this may indicate that the intervention merely brings forward vaccinations that would have happened anyway. 
To test this, we pool the data from the two follow-up surveys, restricting to those present at both timepoints and estimate the difference 
in effects between follow-up periods (τ30 months − τseven months), and test the null hypothesis that this difference is non-negative (i.e. the 
effect has not attenuated) using a one-tailed paired t-test. 

Second, to assess whether the intervention led to a sustained change in parental behaviour, we take advantage of additional data 
collected in the 30 month follow-up survey on the vaccination status of the index child’s sibling that was born after the intervention (N 
= 293). We assess whether sibling’s vaccination status differed according to whether or not the mother was assigned to the inter-
vention (Ntreated = 176; Ncontrol = 117). We hypothesise that if the intervention had persistent effects on parents’ behaviour, the 
intervention would positively influence vaccine uptake for siblings. We note that the siblings themselves were not randomised to the 
intervention groups, raising the possibility of imbalance in baseline characteristics between the comparison groups of siblings. 
However, it seems unlikely, that the information intervention, or vaccination of the index child, could influence whether and when a 
subsequent child was born. 

4.3. Heterogeneous treatment effects 

4.3.1. Causal forest method 
To estimate individual-level effects of the intervention, we apply the Causal Forest algorithm. Causal Forests are an ensemble of 

non-parametric causal trees (Athey and Imbens, 2016), which are built recursively by splitting observations into groups based on 
whether a particular covariate exceeds a threshold. Each time a split is made, the covariate and threshold used are chosen to maximise 
the variance of the estimated treatment effect, τ̂(xi) for the sample used to define the split. Thus, sample splits are formed so that the 
estimated treatment effect is as homogenous as possible within a leaf (created by splitting at the thresholds), and as different as 
possible between leaves. Under an unconfoundedness assumption, the mean of the observed outcomes for the individuals in the treated 
and control groups within a leaf represent the estimates of the mean potential outcomes for that leaf defined by the covariates that 
determined that split (X= x) allowing the individualised effect τ(x) within the leaf L to be calculated as: 

τ̂(x) =
(

1
|{i : Di = 1,Xi ∈ L}|

∑

{i:Di=1, Xi ∈L}

Yi

)

−

(
1

|{i : Di = 0,Xi ∈ L}|
∑

|i:Di=0, Xi ∈L

Yi

)

(3) 

Thus, the estimated effect for the subgroup is the difference in average outcomes for treated versus control units within the leaf of 
the tree, L, in which the unit lies. 

Causal trees, like decision trees, are prone to overfitting. This can be mitigated by using a Causal Forest, defined as an ensemble of B 
causal trees, analogous to the use of random forests to mitigate overfitting by decision trees. This implies averaging predictions 
τ̂b(x) over a large number of different possible covariate splits to estimate a CATE for each individual in the sample (Wager and Athey, 
2018), reducing variance and smoothing sharp decision boundaries (Bühlmann, 2002; Wager and Athey, 2018): 

τ̂(x) =
∑B

b=1 τ̂b(x)
B

(4) 

If the same data are used to both decide splits and to estimate effects, inference will be biased because the splits are specifically 
chosen to give more different effects across groups. Valid asymptotic confidence intervals for the true underlying treatment effect 
(Wager and Athey, 2018) are thus obtained using a sample splitting or ‘honest’ estimation approach (Athey and Wager, 2019), where 
an observation is never used to both determine splits and estimate effects at the same time. This approach yields valid confidence 

Table 1 
Descriptive statistics for baseline covariates across the comparator groups for those included in the seven and 30 months follow-up.   

At seven months follow-up At 30 months follow-up  

All Treated Control All Treated Control  
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Age of index child at baseline (months) 10.34 (7.69) 10.38 (7.82) 10.26 (7.44) 10.24 (7.69) 10.32 (7.85) 10.08 (7.37) 
Perception of tetanus vaccination efficacy (index) 7.26 (1.98) 7.20 (2.02) 7.39 (1.90) 7.27 (2.00) 7.20 (2.03) 7.40 (1.92)  

% % % % % % 
Received DPT 1st dose 65.4 63.3 69.8 65.6 63.8 69.2 
Received DPT 2nd dose 41.8 39.3 46.8 41.7 39.3 46.4 
Received BCG vaccine 84.3 82.4 88.1 84.1 82.2 87.9 
Received Measles vaccine 16.4 16.1 17.0 16.5 15.8 17.9 
Mother knows a cause of tetanus 43.1 41.2 46.8 43.0 41.3 46.4 
Mother knows a symptom of tetanus 8.4 8.3 8.5 8.3 8.0 8.9 
Mother knows a prevention method of tetanus 40.4 39.7 41.7 40.7 40.2 41.5 
Closest health facility: Government 86.8 86.8 86.0 86.3 86.8 85.3 
Closest health facility: Private/Other 13.2 13.2 14.0 13.7 13.2 14.7 
Number of observations 706 471 235 674 450 224 

Notes: Table reports the mean and standard deviations of baseline covariates for the full sample, and for the treated and control groups, at seven 
months and 30 months follow-up. The measles subsample excludes individuals that had received the measles vaccine at baseline. 
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intervals with coverage rates that do not deteriorate as the data generating process becomes more complex, or more covariates are 
added to the forests. 

We can also view Causal Forests as a locally weighted estimator that uses forest based weights – i.e. gives more weight to ob-
servations that are similar to the unit of interest when estimating effects (Athey and Wager, 2019), where units are deemed to be 
similar if they tend to lie in the same leaf of the trees in the Causal Forest. More specifically, we fit two separate regression forests to 
estimate response functions for propensity for treatment [ê(x)] and outcome [m̂(x)]. As the intervention is randomised, the ̂e(x) is less 
important here than in observational studies that rely on ‘selection on observables’. Next we make ‘out-of-bag’ predictions (i.e. 
predictions based on trees that did not include the ith observation) using these treatment propensity and outcome forests. The CATE is 
then estimated using: 

τ̂(x) =
∑n

I=1αi(x)
(
Yi − m̂(− i)

(Xi)
)(

Wi − ê(− i)
(Xi)

)

∑n
i=1αi(x)(Wi − ê(− i)

(Xi))
2 (5)  

where αi(x) is the learned adaptive weight for individual i capturing how often individual i falls into the same leaf as x (Athey et al., 
2019). By considering each individual’s covariates x, we can estimate an effect for each individual using this approach. 

We can then aggregate the individual-level effects to obtain subgroup effects, with a variant of doubly robust estimators already 
implemented in the generalized random forest R package grf (Tibshirani et al., 2020). Here we use augmented inverse propensity 
weighting (AIPW) (Athey and Wager, 2019; Robins et al., 1994) to account for imbalance in covariates that were not used to split on 
when forming a particular tree, providing efficient estimates. AIPW can lead to unstable estimates where propensity scores are close to 
0 or 1, however this is not the case here, with propensity scores tending to be close to the rate of assignment to treatment (P(Treated) =
2/3). Tuning parameters (e.g., minimum node size for individual trees) are chosen by cross-validation.4 Following Athey & Wager 
(2019) and Basu et al. (2018), we estimate a second Causal Forest, using only the variables that saw a reasonable number of splits in the 
original Causal Forest, to improve precision. That is, those variables that had low variable importance scores in the original Causal 
Forest are excluded,5 allowing the forest to make more splits on the most important features in low-signal situations (Athey and Wager, 
2019). This is likely to be important here given the relatively small sample sizes. 

4.3.2. Implementation of estimation approach 
We estimate CATEs for each individual based on their covariate values, using the Causal Forest method for each outcome according 

to the following steps:  

1. We estimate regression forests to predict the outcome and treatment with 50,000 trees.  
2. These predictions are used to form debiasing weights which are used in an initial Causal Forest consisting of 50,000 causal trees, 

estimated using the causal_forest function in version 2.1.0 of the grf package for R (Tibshirani et al., 2020), after tuning all 
hyperparameters.  

3. We retain those variables whose importance in determining splits within the initial Causal Forests’ trees was above 20 % of the 
mean importance (as recommended by the package authors) and re-estimate the forest as described in step 2 to obtain the final 
Causal Forest.  

4. We use this Causal Forest to estimate the CATE for each individual, along with their standard errors as described above.  
5. We aggregate estimates for groups of individuals using AIPW. 

4.3.3. Falsification test 
For those children who had received the measles vaccine prior to study entry, uptake of this vaccine could not have been influenced 

by the intervention. This provides a falsification test for the machine learning estimation approach since detecting a substantive effect 
on measles vaccine uptake for this group would indicate confounding due to model misspecification. By contrast, if the estimates for 
the model were close to zero, this would provide support for the estimation approach. 

4.4. Exploring heterogeneity of treatment effects 

To understand the heterogeneity of treatment effects, we group individuals by quartile of their estimated treatment effects, and 
then explore the characteristics of those that benefit most (with largest 25 % of individual CATEs) and least (with smallest 25 % of 
individual CATEs), first for DPT3 and then separately for measles. We also report conditional average treatment effects for all the 
subgroups, together with appropriate measures of precision, albeit caution should be exercised given the reduced statistical power 
associated with smaller subgroups. 

4.5. Sensitivity of estimates to sparsity 

Given concerns regarding the small sample sizes, we re-estimate effects using Shrinkage Bayesian Causal Forest (Caron et al. 2022) 

4 Results are robust to tuning various subsets of the hyperparameters.  
5 Variables whose importance scores were below 0.2 times the mean variable importance score were excluded. 
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as a sensitivity analysis. This approach uses a Dirichlet prior over the splitting probabilities, in addition to the priors used in the 
Bayesian Additive Regression Trees for the original Bayesian Causal Forest (Hahn et al. 2020) that induce sparsity in the estimation of 
prognostic and moderating effects. The Shrinkage Bayesian Causal Forest was implemented using the SparseBCF package in R using 
default settings and 5000 Markov Chain Monte Carlo iterations (with 10,000 burn-in iterations). 

5. Results 

Table 1 shows baseline balance between the comparison groups of study participants followed-up at months seven and 30 month, 
respectively. The baseline characteristics are similar between treatment arms at both time points. In particular, differences between 
treatment groups remain small at 30 months when there was more, albeit still limited, loss to follow-up.6 In the follow-up survey at 30 
months, the study team also collected data on sibling children born after the intervention. As Table A1 shows, amongst this subsample 
of study households, balance between the treatment groups was reasonably good, consistent with the notion that the intervention is 
unlikely to have influenced subsequent fertility decisions. On average siblings were approximately 26 months younger than the index 
child. We additionally note that the characteristics of the subsample with a younger sibling differ somewhat from the full sample, 
reflecting the fact that the decision to have another child is likely influenced by household factors. 

5.1. Persistence of effects 

Table 2 presents the effects of the intervention for our outcomes of interest for the index child by follow-up period. We report both 
unadjusted and adjusted estimates. We also report Causal Forest and Shrinkage Bayesian Causal Forest estimates of the ATE, for the 
purposes of comparison and to benchmark the individual treatment effects presented later. For measles vaccine uptake, we report 
effect estimates from two samples: the full sample and the subsample of children who were not already vaccinated at baseline. The 
unadjusted results are that the intervention increased uptake of DPT3 vaccination by 14.6 (95 % CI: 7.3, 21.9) percentage points at 
seven months follow-up and 15.2 (95 % CI: 7.4, 23.0) percentage points at 30 months follow-up, with little evidence of a reduction in 
the effect on DPT3 vaccination over time (p = 0.567). Although there was an increase in coverage of DPT3 over time in the control 
group, the results suggest that this increase did not reflect the control group “catching-up”, as a similar increase over time occurred in 
the intervention group. The corresponding results for measles were of an increase in vaccination uptake of 22.0 (95 % CI: 14.3, 29.7) 
percentage points at seven months follow-up and 22.2 (95 % CI: 14.6, 29.8) percentage points at 30 months follow-up. There was again 
little evidence of a reduction in the effect by follow-up period (p = 0.703).7 

Results were qualitatively similar for both versions of the intervention, albeit effects were somewhat larger when the information 
was negatively framed (Supplement Table A4). Effects tended to be larger among those for whom vaccination status was self-reported, 
albeit this group differed in a number of ways (e.g. age of child, vaccination history) from those for whom a vaccination card was 
available making differences in effects challenging to interpret. 

We formally assessed the potential impact of attrition using Lee bounds (Lee, 2009) implemented using the user-written command 
leebounds for the Stata software package as described in Tauchmann (2014). The group (treated/control) that suffers less from attrition 
is trimmed from above or below to create similar attrition in both groups and then the differential between the groups’ outcomes yields 
the lower and upper bound. We then estimate from the data which treatment group is subject to the higher probability of selection. The 
estimated treatment-effect bounds at 30 months are narrow for both DPT3 (15.0 (95 % CI: 7.0 to 22.0) to 15.6 (95 % CI: 7.3 to 23.8) 
percentage points), and for measles (21.9 (95 % CI: 13.9 to 29.8) to 22.5 (95 % CI:14.6 to 30.3) percentage points). 

For both vaccinations, the results were similar after adjustment for any residual baseline differences between groups for both the 
estimates from the OLS regression and the two Causal Forest approaches (Table 2). When we focus on the subsample of children who 
had not received the measles vaccine at baseline, we see the estimates of effect are larger (27.5 percentage points at seven months 
follow-up and 28.2 percentage points at 30 months).8 Such estimates give a sense of the effect had the intervention targeted children 
who were not already vaccinated against measles. 

Table 3 presents the results for the sibling sample for which outcomes were measured at 30 months follow-up. There was some 
evidence that the intervention had an effect on uptake of either the DPT3 or measles vaccine, although the estimated effects while 
clincially meaningful did not meet criteria of statistical significance at 5 % or 10 % levels. Due to the small sample size, confidence 
intervals are wide such that we cannot rule out large effects that would be regarded as meaningful from a public health perspective. 
Note that to detect a 9 percentage point difference between the groups would have required a sample size of 942, based on the observed 
incidence in the control group of 32.48 % and in the treated group of 41.48 %, and the observed ratio of units in the treated and control 
arms in the sibling sample (= 176 / 117) (Rosner, 2011, page 381). 

6 While the differences between groups are modest, it is helpful to note that in the Causal Forest estimation, units are reweighted by their 
propensity for treatment, to improve balance within each estimated ‘leaf’ of the trees in the forest.  

7 While the evidence suggest an absence of ‘catching-up,’ it is important to note that we cannot conclusively rule this out due to our sample size. 
As shown in the note accompanying Table 2, catching up by 4.9 (DPT3) and 6 (measles) percentage points would be consistent with the data.  

8 Table A2 shows that children in both treated and control arms that had been vaccinated for measles before the baseline (compared to those not 
vaccinated for measles) tended to be older, were much more likely to have received other vaccinations (BCG and 1st & 2nd doses of DPT) and have 
mothers that were slightly more likely to know causes of tetanus but less likely to know symptoms or prevention methods of tetanus. Some dif-
ference in terms of their closest health facility are also observed. 
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5.2. Heterogeneity of intervention effects 

Figs. 1 and 2 show the individual level effect estimates for DPT3 and measles vaccination, respectively, with individuals ranked in 
order of estimated treatment effects, with effects reported as absolute difference in the probability of vaccination uptake under 
treatment versus under control.9 The measles vaccination sample excludes those vaccinated prior to study entry. The confidence 
intervals suggest that the intervention had a statistically significant effect on DPT3 vaccine uptake for 56 % of children, and on measles 
vaccine uptake for 100 % of children. None of the point estimates are below zero, suggesting that the intervention did not reduce the 
probability of being vaccinated for any of the individuals sampled. 

In Table 4, we split the sample into quartiles according to the estimated CATE for each outcome. We report the CATE for the least 
affected and the most affected subgroups. The magnitude for the estimated mean differences in the CATEs for the most versus least 
affected quartiles are large, 15.7 percentage points (DPT3), and 19.9 percentage points (measles). 

Table 2 
Absolute difference in probability of DPT3 and measles vaccination uptake with versus without the intervention at seven and 30 months follow-up.   

DPT3  Measles (full sample)  Measles (subsample)   
At seven months 
follow-up 

At 30 months 
follow-up 

At seven months 
follow-up 

At 30 months 
follow-up 

At seven months 
follow-up 

At 30 months 
follow-up  

ATE ATE ATE ATE ATE ATE  
(95 % CI) (95 % CI) (95 % CI) (95 % CI) (95 % CI) (95 % CI) 

Unadjusted difference 0.146 0.152 0.22 0.222 0.275 0.282  
(0.073, 0.219) (0.074, 0.230) (0.143, 0.297) (0.146, 0.298) (0.193, 0.356) (0.198, 0.367) 

Adjusted difference 0.168 0.174 0.247 0.244 0.295 0.292  
(0.099, 0.236) (0.101, 0.247) (0.182, 0.313) (0.179, 0.309) (0.219, 0.371) (0.217, 0.367) 

Causal Forest 0.145 0.152 0.233 0.234 0.298 0.287  
(0.090, 0.200) (0.091, 0.213) (0.178, 0.287) (0.180, 0.288) (0.225, 0.351) (0.225, 0.348) 

Shrinkage Bayesian 
Causal Forest 

0.138 0.123 0.235 0.224 0.276 0.277  

(0.061, 0.213) (0.029, 0.208) (0.0164,0.306) (0.158, 0.287) (0.191, 0.360) (0.200, 0.352)        

Mean of control group 0.281 0.353 0.417 0.545 0.308 0.451 
Number of observations 706 674 706 674 590† 563†

Notes: Table reports the average treatment effect of the intervention at seven months and 30 months follow-up. Confidence intervals in parentheses. 
Unadjusted differences were estimated using OLS. Adjusted differences were estimated using OLS and include the same baseline covariates as used in 
the Causal Forest approach. Causal Forest estimates were obtained by aggregating individual level CATE estimates using AIPW as described in the 
text. The measles subsample excludes individuals that had received the measles vaccine at baseline. 
For the adjusted regression analysis, we estimate differences in the ATEs at 30 months versus at seven months using pooled regression with interaction 
terms for each period with the treatment indicator, after restricting the sample to those present in both waves. For DPT3 the difference in ATEs was 
0.002 (− 0.049, 0.052), for measles in the full sample it was 0.006 (− 0.049, 0.061) and after excluding those that had already received the measles 
vaccine the difference was 0.004 (− 0.060. 0.069). We could not reject the null that the ATE at 30 months was at least as large as at 7 months (i.e. there 
was no catching up) with p-values of 0.523, 0.580 and 0.555 respectively. The corresponding p-values for the unadjusted analysis were 0.567, 0.703, 
and 0.672. Assessing paired differences is more challenging in the context of (Bayesian) Causal Forests where analyses are conducted separately by 
follow-up period making it difficult to account for correlation within individuals. 

Table 3 
Absolute difference in probability of vaccination uptake with versus without the intervention amongst younger siblings at 30 months follow-up.   

Younger sibling sample (30 months follow-up)   
DPT3 Measles  
ATE (95 % CI) ATE (95 % CI) 

Unadjusted difference 0.090 (− 0.022, 0.203) 0.064 (− 0.054, 0.182) 
Adjusted difference 0.081 (− 0.030, 0.192) 0.034 (− 0.074, 0.143) 
Causal Forest 0.060 (− 0.034, 0.154) 0.021 (− 0.058, 0.100) 
Shrinkage Bayesian Causal Forest 0.032 (− 0.041, 0.145) 0.016 (− 0.046, 0.097) 
Mean for control group 0.325 0.470 
N 293 293 

Notes: Table reports the average treatment effect of the intervention on vaccination uptake amongst siblings at 30 months follow-up. Confidence 
intervals in parentheses. Unadjusted differences were estimated using OLS. Adjusted differences were estimated using OLS and include baseline 
covariates. Causal Forest estimates were obtained by aggregating individual level CATE estimates using AIPW as described in the text. The measles 
subsample excludes individuals that had received the measles vaccine at baseline. 

9 Figs. A1 and A2 display the corresponding figures at seven months. For DPT3 uptake, there is a large group of approximately 200 children for 
whom the effects tend to be smaller and imprecisely estimates at seven months, although this is less evident at 30 months. Inspection of the data 
reveals that all of these children were aged between 0 and 6 months at the baseline. 
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To characterise this heterogeneity, Table 5 reports summary statistics for the characteristics of individuals in the groups that are 
estimated to benefit least (quartile 1) and most (quartile 4) from the intervention. We first examine the DPT3 vaccination results. 
Children in the quartile who benefited most from the intervention were older and more likely to have received other vaccinations, 
including the first and second doses of DPT, the BCG vaccine, and the measles vaccine, compared to those who benefited least. Those 
affected most had mothers with lower levels of baseline knowledge about the causes, symptoms, and methods of prevention of tetanus, 
and their closest health facility was more likely to be a government primary care facility. There was little evidence that the mother’s 
perception of the effectiveness of the tetanus vaccination influences the effectiveness of the intervention. Turning to the measles 
vaccination results, the estimates of heterogeneity in the interventions effectiveness was associated with fewer baseline characteristics. 
Again, children who benefited most were older and more likely to have received the first and second doses of DPT. For the other 
baseline variables considered, differences in the means of the most and least affected groups were moderate or small in magnitude, 
with high levels of uncertainty, and the differences in means for these characteristics between the ‘most’ and ‘least’ affected groups 
were not statistically significant. The estimated subgroup effects, generated by aggregating the individual effect estimates for each of 
the subgroups using AIPW, reveals a similar pattern of results to those reported in Table 5, i.e. the magnitude of effect for age group, 

Fig. 1. Individual level CATE estimates based on Causal Forests for DPT3 vaccination at 30 months follow-up ranked by magnitude of CATE. 
Note: Individuals ranked from minimum to maximum HTE; Black line = point estimate, Grey line = 95 % Confidence interval, Blue line = zero effect 
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which was a pre-specified variable were fairly large and precisely estimated, whereas for other baseline variables the differential 
effects of the intervention versus comparator were of small or moderate magnitude and were imprecisely estimated (see Fig. A4 and 
Fig. A5). Table A3 reports results that are similar based on the Shrinkage Bayesian Causal Forest estimates. 

5.3. Falsification test 

For the falsification test, we report the individual treatment effects of the intervention on the uptake of measles vaccination for the 
subgroup of individuals that had already received the measles vaccine prior to study entry. Fig. A3 shows that none of these individual 
level effect estimates significantly differ from zero, and the overall ATEs for this subgroup is of small magnitude, − 5.0 percentage 
points (95 % CI: − 12.2, 2.3; N = 111). The analysis thus passes our falsification test, increasing the plausibility of estimates obtained 
using the Causal Forest approach. 

Fig. 2. Individual level CATE estimates based on Causal Forests for measles vaccination at 30 months follow-up ranked by magnitude of CATE. 
Note: Individuals ranked from minimum to maximum HTE; Black line = point estimate, Grey line = 95 % Confidence interval, Blue line =
zero effect. 
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Table 4 
Absolute difference in probability of vaccination uptake with versus without the intervention for the least and most affected groups of participants at 
30 months follow-up.   

DPT3 vaccination   Measles vaccination    
25 % Least affected 
CATE (95 % CI) [p- 
value] 

25 % Most affected 
CATE (95 % CI) [p- 
value] 

Difference (95 % 
CI) [p-value] 

25 % Least affected 
CATE (95 % CI) [p- 
value] 

25 % Most affected 
CATE (95 % CI) [p- 
value] 

Difference (95 % 
CI) [p-value] 

Causal Forest 0.084 0.242 0.157 0.211 0.410 0.199  
(0.035, 0.134) (0.195, 0.288) (0.089, 0.225) (0.173, 0.249) (0.363, 0.458) (0.138, 0.260)  
[0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] 

Shrinkage 
Bayesian 
Causal Forest 

0.055 0.174 0.119 0.172 0.357 0.185  

(0.052, 0.058) (0.171, 0.177) (0.115, 0.123) (0.169, 0.175) (0.354, 0.360) (0.181 0.190)  
[0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] 

Control mean 0.655 0.170  0.820† 0.179  
N observations 169 176  141 140   

† While it is counterintuitive that sum of the control mean and the effect for those least affected exceeds 1, we attribute this to our use of AIPW. 
Notes: Table reports the average treatment effect of the intervention at 30 months follow-up for the 25 % of individuals least and most affected by 

the intervention (based on estimated individual level CATEs). Confidence intervals in parentheses. The measles subsample excludes individuals that 
had received the measles vaccine at baseline. 

Table 5 
Baseline characteristics of those quartiles of children for whom the intervention had least versus most effect on the uptake of DPT3 and measles 
vaccination at 30 months based on Causal Forest estimates after Augmented Inverse Probability Weighting.   

DPT3 vaccination   Measles 
vaccination    

25 % Least affected 
CATE (95 % CI) 

25 % Most 
Affected CATE 
(95 % CI) 

Difference (95 % CI) 
[p-value] 

25 % Least 
affected CATE (95 
% CI) 

25 % Most 
Affected CATE 
(95 % CI) 

Difference (95 % 
CI) [p-value] 

Age of child (months) 1.935 12.070 10.135 1.894 14.760 12.866  
(1.053, 2.817) (11.186, 12.954) (8.886,11.384) (1.192, 2.596) (14.056, 15.464) (11.872, 13.860)    

[<0.001]   [<0.001] 
Received DPT 1st 0.462 0.899 0.437 0.539 0.871 0.332 
dose (0.395, 0.529) (0.832, 0.966) (0.343,0.531) (0.463, 0.615) (0.795, 0.947) (0.224, 0.440)    

[<0.001]   [<0.001] 
Received DPT 2nd 0.160 0.673 0.513 0.284 0.636 0.352 
dose (0.091, 0.229) (0.604, 0.742) (0.416,0.610) (0.211, 0.357) (0.563, 0.709) (0.249,0.455)    

[<0.001]   [<0.001] 
Received BCG 0.823 0.923 0.100 0.865 0.886 0.021 
vaccine (0.768, 0.878) (0.868, 0.978) (0.022,0.178) (0.802, 0.928) (0.823, 0.949) (− 0.068, 0.110)    

[0.012]   [0.643] 
Received measles 0.041 0.238 0.197 – – – 
vaccine (− 0.014, 0.096) (0.183, 0.293) (0.119,0.275) – – –    

[<0.001]   – 
Perception of tetanus 6.923 7.185 0.262 7.638 7.521 − 0.117 
vaccination efficacy (6.623, 7.223) (6.885, 7.485) (− 0.162,0.686) (7.313, 7.963) (7.196, 7.846) (− 0.577, 0.343)    

[0.226]   [0.618] 
Mother knows a cause 0.521 0.208 − 0.313 0.418 0.350 − 0.068 
of tetanus (0.448,0.594) (0.135, 0.281) (− 0.416,− 0.210) (0.336, 0.500) (0.268, 0.432) (− 0.184, 0.048)    

[<0.001]   [0.252] 
Mother knows a 0.101 0.012 − 0.089 0.071 0.064 − 0.007 
symptom of tetanus (0.060, 0.142) (− 0.029, 0.053) (− 0.147,− 0.031) (0.024, 0.118) (0.017, 0.111) (− 0.074, 0.060)    

[<0.002]   [0.837] 
Mother knows a 

prevention 
method of tetanus 

0.574 (0.501, 0.647) 0.226 (0.153, 
0.299) 

− 0.348 
(− 0.451,− 0.245) 

0.390 (0.310, 
0.470) 

0.336 (0.254, 
0.418) 

− 0.054 (− 0.169, 
0.061)    

[<0.001]  [0.358]  
Closest facility is 0.840 0.964 0.124 0.851 0.879 0.028 
government PHC 

facility 
(0.789, 0.891) (0.913, 1.015) (0.052,0.196) (0.794, 0.908) (0.822, 0.936) (− 0.052, 0.108)    

[<0.001]   [0.495] 

Notes: Table reports the mean and standard deviations of baseline covariates for the 25 % of individuals least and most affected by the intervention 
(based on estimated individual level CATEs obtained using Causal Forest with Augmented Inverse Probability Weighting. See Table A3 for corre-
sponding results using Shrinkage Bayesian Causal Forests).. Confidence intervals in parentheses. The measles subsample excludes individuals that had 
received the measles vaccine at baseline. Differences between the groups were assessed using independent samples t-tests. 
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6. Discussion 

Immunisation is one of the most effective health technologies to prevent mortality and disability, yet millions of children are not 
fully vaccinated despite the fact that immunisation services are available for free in many countries. In this study, we asked new 
questions of a previously published randomised controlled trial, specifically we asked whether the effects of a brief information 
intervention, implemented through door-to-door visits across 180 villages in Uttar Pradesh, India, persisted, and whether there was 
heterogeneity according to characteristics of the child, the mother’s perceptions, and the health care context. Our findings, based on 
new data collected 30 months after the intervention was delivered, complement those reported in a previous analysis of earlier trial 
data (Powell-Jackson et al., 2018). In a broad sense, our study contributes to the literature on demand-side interventions for immu-
nisation uptake in low- and middle-income countries, providing novel insights on the persistence and heterogeneity of effects 
(Banerjee et al., 2020, 2021; Gibson et al., 2017; Johri et al., 2015). 

Our findings show that the intervention was highly effective in raising uptake of both DPT3 and measles immunisation over a 
sustained period. There was no evidence that the early effects of the intervention were short-lived, in the sense that it brought forward 
vaccinations that would have happened anyway. The findings indicate that those who did respond to the intervention, did so promptly, 
given that the difference in the point estimates of the treatment effects in the seven to 30 month window were negligible. The 
magnitude of the difference in outcomes between the intervention and control strategy did not meaningfully narrow over time, which 
also implies that there was probably no effective immunisation catch-up programme in place. Our 30 month follow-up period was 
sufficiently long to be confident that the control group is not likely to ever “catch up” with the intervention group such that the long- 
lasting health benefits of vaccination should be realised. Unlike interventions targeting reversible behaviours such as smoking 
cessation, (lack of) persistence in effects on vaccine uptake is likely to be driven by changes in the control group’s behaviour, making it 
challenging to identify testable mechanisms underlying persistence. To examine the question of whether the intervention had a 
sustained impact on parental behaviour, we used data collected on the vaccination outcomes of siblings who were born after the time 
of the intervention. There was no strong evidence that the intervention may have had an effect on DPT3 uptake for siblings, with the 
sample size too small to make firm conclusions. There is a small literature on whether temporary incentives can lead to healthy habit 
formation, such as smoking cessation and exercise (Charness and Gneezy, 2009; Volpp et al., 2009), and a rich body of theoretical work 
on how to maintain behaviour change (Kwasnicka et al., 2016). There is, however, a need for more evidence on whether one-off health 
education intervention can lead to sustained changes in behaviour in the uptake of health care technologies. 

Our exploration of heterogeneity, drawing on modern machine learning methods, found that there was substantial variation in the 
effect of the intervention. For those who benefited most, the intervention effects were large. For those who benefited least, the point 
estimates were modest and, importantly, there was no evidence the intervention caused harm by reducing the chances of children 
being vaccinated. While this finding is to be expected, given the light touch nature of the intervention, it stands in contrast to another 
study in India, where a combination of small incentives, reminders and persuasion was found to reduce immunisation rates in some 
villages, possibly because the interventions crowded out existing intrinsic motivation of parents to vaccinate their children (Cher-
nozhukov et al., 2018). For DPT3, we found that a range of characteristics were associated with treatment effect heterogeneity. For 
measles vaccine uptake, fewer characteristics were associated with variation in the treatment effect. 

For both vaccinations a general finding was that for older children, and those who had received two DPT doses, which were both 
specified a priori and supported by prior reasoning, the intervention led to relatively large increases in uptake. The prior reasoning was 
that for those children who, at baseline, were further along in their immunisation schedule (proxied by age) and hence closest to 
crossing the threshold to achieving DPT3 status, ‘a soft nudge’ from the intervention was sufficient to encourage those with enough 
previous doses to complete the DPT schedule. By contrast, this nudge from the intervention was insufficient to encourage those with 
less vaccine history, including younger children, to reach DPT3 status. Furthermore, the parents of children with fewer previous 
immunisations likely had less trust in the health system and were therefore less receptive to the intervention. 

These results pertaining to knowledge are largely consistent with the assumed mechanism for the intervention. The individuals 
with worse understanding of tetanus prior to the intervention had the greatest capacity to acquire new knowledge about the benefits of 
vaccination. However, it does not appear that the effect of the intervention was mediated by changing perceptions of vaccine effec-
tiveness, since those most affected by the intervention did not have more inaccurate perceptions at baseline. If anything those most 
affected by the intervention had relatively high perceptions of vaccine effectiveness at baseline. The finding that the most affected 
individuals were more likely to have a government primary care facility as their nearest type of facility points towards the importance 
of context. It suggests that stimulating demand was more effective for those with better access to the publicly-provided immunisation 
services. This mirrors other studies that have shown demand-side interventions are more effective when the supply-side is in place 
(Powell-Jackson et al., 2015). For measles immunisation uptake, those most affected were older and more likely to have had previous 
doses of DPT. These results are consistent with recommended age for measles immunisation of nine months or later. 

The study had a number of limitations. First, the analysis of heterogeneity would have benefited from a richer set of baseline 
covariates such as income, wealth and education levels. Data on various dimensions of socioeconomic status would have helped 
provide evidence of the impact of the intervention on inequalities in immunisation uptake. Whether gender is associated with the 
effectiveness of the intervention is an especially important question in this particular setting, in light of the gender inequalities and 
strong gender discrimination in North India (Dhar et al., 2022). Second, as the intervention was randomised at the individual-level 
there is a risk of contamination in the effect of the intervention, in particular as women in the intervention group may have 
relayed information to counterparts in the control group. We do not have direct evidence to counter this concern, but the information 
was delivered in private and the fact we see large effects on knowledge indicates that contamination was not so severe as to balance out 
knowledge between treatment and control (Powell-Jackson et al., 2018). We note that the (large) estimates of effect on immunisation 
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uptake would be biased downwards in the presence of contamination. Third, while the study used a principled approach to explore 
heterogeneity that combines pre-specification and prior reasoning of potentially important subgroups, with machine learning ap-
proaches that avoids using the same subsample to define subgroups as to estimate effects, general concerns about the need for careful 
interpretation of subgroup results must be acknowledged (Brankovic et al., 2019; Brookes et al., 2001; Kent et al., 2010; Wang et al., 
2007; Wang et al., 2021). It must be recognised that in most RCTs, the sample sizes are such that subgroup-level estimates will be 
imprecise, and that while those subgroup results that are ‘post hoc’ and not aligned with prior reasoning, may generate useful hy-
potheses for further research, they are unlikely to lead to direct policy recommendations. While findings here such as those regarding 
differences in effect by age and vaccination history are in line with prior reasoning, the analysis is underpowered to provide definitive 
policy recommendations. Value of information analysis can be informative as to whether further research is beneficial to inform policy 
in such contexts. Fourth, as previously mentioned, the number of siblings interviewed was small, which meant the analysis of the 
sibling sample was underpowered. 

Machine learning methods are attractive given their ability to model data flexibly while reducing the risk of overfitting. None-
theless they have some limitations. They may be viewed as more complex and less transparent than more familiar parametric methods. 
They can be sensitive to the choice of hyperparameters (such as the number of trees in causal forest) and inference can be more 
challenging. This is true also when comparing effects over time. While it is straightforward to compare estimates within the regression 
framework using paired t-tests to recognise we have repeated measures for the same individual, it is not straightforward to account for 
correlation between waves when comparing the Causal Forest estimates. With the increasing adoption of these approaches, meth-
odological advances and the availability of guidance for their use (Padula et al., 2022) machine learning methods are likely to be 
recognised as a useful complement to existing approaches. 

While here the number of variables is fairly modest, causal forest allows us to account for possible high dimensional interactions 
between the covariates while avoiding overfitting. For instance even with a modest number of covariates it is challenging to correctly 
specify the non-linear relationship between child age, vaccination history and mothers knowledge/beliefs regarding vaccination, and 
vaccination uptake or the effects of the intervention. Causal Forest allows us to account for such non-linearity while avoiding over-
fitting. However, we view machine learning methods as a complement to, rather than substitute for, existing parametric approaches - 
to the extent that effects are similar across methods this offers some reassurance regarding model misspecification. 

From a policy perspective, there are three key messages. First, it will be reassuring for policymakers that the intervention increased 
immunisation uptake for the majority of households, there was no evidence that the intervention discouraged any women from having 
their children immunised, and the effects were maintained over time. There was considerable heterogeneity in the responses to the 
intervention and policymakers will need to consider carefully what this means for targeting and for the deployment of other com-
plementary interventions. Recent evidence from a study in India suggests that various interventions implemented in combination are 
more effective in raising immunisation rates than when implemented in isolation (Banerjee et al., 2021). Second, the results suggest 
that the intervention could be better targeted at children in a certain age range. Not only was age, a pre-specified subgroup, found to 
modify the relative effectiveness of the intervention, it can easily be observed, and it is feasible to target according to age. One strategy 
may be to narrow the focus on families with children in the range of 6 to 18 months and carry out repeated visits to villages as new 
children enter this age cohort. But whether this proves more cost-effective is uncertain because the cost per household visit would 
likely increase. Third, if awareness and knowledge of vaccination amongst mothers are a key binding constraint, as the results in this 
study suggest, there may be alternative strategies that can deliver the information with the same fidelity, but at a lower cost than our 
intervention. Such strategies could involve greater use of community health workers who are already present in villages. It may be 
tempting to think that mobile phone technology could offer an alternative delivery platform. Indeed, improving the digital health 
infrastructure is a strategic priority of the Indian government. To-date, mobile phones have largely been used to deliver targeted text 
message reminders, for which the evidence on effectiveness is mixed (Banerjee et al., 2021; Mekonnen et al., 2019). With increasing 
ownership of smart phones and access to social media platforms, there is scope for richer (trustworthy) content to be delivered that 
may be more effective. 
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Appendix A 

Further details on intervention 

The intervention was brief and took about 10 min to deliver. Mothers were provided with information on the benefits of the tetanus 
vaccine by field staff through door-to-door visits. Field staff were trained to follow a standardised script to ensure fidelity in terms of 
the information given to mothers. The script described the causes and symptoms of tetanus, possible health consequences, the indi-
vidual health benefit of the combination DPT, and the wider community benefits associated with herd immunity. Visual aids were 
shown to ensure the information was accessible to illiterate women, and a Hindi leaflet containing the information was left with the 
mother. There was a short question and answer session to ensure mothers had understood the information. These activities were brief, 
taking about 10 min to deliver. 

We tested two versions of the script that varied how the information was framed. The first script framed information on tetanus 
vaccination as gains, emphasising that the child would be less likely to get tetanus and more likely to be healthy once vaccinated. The 
second script framed the information as a loss, highlighting that an unvaccinated child would be more likely to get tetanus and suffer 
the health consequences of the disease. The framing of information was a key aspect of the original study. However, because there were 
no significant or substantive differences in the overall effect with respect to framing, we pool the two information intervention groups 
in this paper. 

In each round of data collection, we captured the immunisation status of the child and the mother’s knowledge of the causes of, 
symptoms of, and prevention methods against tetanus. We followed standard methods to assess immunisation status [DHS and NRHS], 
using the vaccination card as the primary source of information and, if not available, self-reports from the mother. The interview also 
included ‘games’ with chickpeas designed to elicit women’s perceptions of the efficacy of tetanus and measles vaccination, alongside 
verification questions to gauge understanding of these games. We used tablets and computer-assisted personal interviewing to collect 
the data, and field staff were blinded to randomised assignment in the two follow-up surveys.   

Table A1 
Descriptive statistics on baseline covariates for younger sibling sample (30 months).   

Full sample (30 months) Younger sibling sample (30 months)  

All All Treated Control  
Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.) 

Age of index child at 2nd follow up (months) 41.24 (7.69) 41.18 (7.61) 41.62 (7.94) 40.51 (7.08) 
Age of sibling child (months) N/A 15.27 (9.78) 15.86 (10.05) 14.38 (9.32) 
Perception of tetanus vaccination efficacy (index) 7.27 (2.00) 7.40 (1.82) 7.41 (1.80) 7.38 (1.85)  

% % % % 
Mother knows a cause of tetanus 43.0 41.6 42.6 40.2 
Mother knows a symptom of tetanus 8.3 7.2 7.4 6.8 
Mother knows a prevention method of tetanus 40.7 39.6 40.9 37.6 
Closest health facility: Government 86.3 82.5 83.5 81.2 
Closest health facility: Private/Other 13.7 17.5 16.5 18.8 
Number of observations 674 293 176 117 

Notes: Table reports the mean and standard deviations of baseline covariates for the full sample, and for younger sibling subsample, and by treated 
and control groups, at 30 months follow-up.  

Table A2 
Comparison of characteristics of individuals present at seven months that were and were not vaccinated for measles at baseline.   

Individuals present at seven months (N = 706)  

Not already vaccinated for measles Already vaccinated for measles (excluded from 
analysis)  

Treated Mean (Std. 
Dev.) 

Control Mean (Std. 
Dev.) 

Treated Mean (Std. 
Dev.) 

Control Mean (Std. 
Dev.) 

Age of index child at baseline (months) 9.4 (7.3) 9.7 (7.3) 15.6 (8.5) 12.8 (7.5) 
Perception of tetanus vaccination efficacy 

(index) 
7.2 (2.0) 7.4 (1.9) 7.4 (2.0) 7.2 (2.1)  

% % % % 
Received DPT 1st dose 57.0 65.1 96.1 92.5 
Received DPT 2nd dose 31.9 39.0 77.6 85.0 
Received BCG vaccine 79.7 85.6 96.1 100 
Mother knows a cause of tetanus 40.8 46.2 43.3 50.0 
Mother knows a symptom of tetanus 9.4 9.2 2.6 5.0 

(continued on next page) 
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Table A2 (continued )  

Individuals present at seven months (N = 706)  

Not already vaccinated for measles Already vaccinated for measles (excluded from 
analysis)  

Treated Mean (Std. 
Dev.) 

Control Mean (Std. 
Dev.) 

Treated Mean (Std. 
Dev.) 

Control Mean (Std. 
Dev.) 

Mother knows a prevention method of tetanus 42.0 45.1 27.6 25.0 
Closest health facility: Government 85.8 86.6 92.1 82.5 
Closest health facility: Private/Other 14.2 13.4 7.9 17.5 
Number of observations 395 195 76 40 

Notes: Table reports the mean and standard deviations of baseline covariates for individuals there were and were not already vaccinated for measles at 
baseline by treated and control group at seven months follow-up.  

Table A3 
Baseline characteristics of those quartiles of children for whom the intervention had least versus most effect on the uptake of DPT3 and measles 
vaccination at 30 months based on Shrinkage Bayesian Causal Forest estimates.   

DPT3 vaccination Measles vaccination  

25 % Least affected 
CATE (95 % CI) 

25 % Most Affected 
CATE (95 % CI) 

Difference (95 % 
CI) [p-value] 

25 % Least affected 
CATE (95 % CI) 

25 % Most Affected 
CATE (95 % CI) 

Difference (95 % 
CI) [p-value] 

Age of child 
(months) 

4.982 14.315 9.333 1.525 17.971 16.447  

(4.042, 5.922) (13.373, 15.258) (8.002, 10.664) (0.857, 2.193) (17.301, 18.642) (15.500, 17.393)    
[<0.001]   [<0.001] 

Received DPT 1st 0.337 0.946 0.609 0.376 0.557 0.181 
dose (0.281, 0.394) (0.89, 1.003) (0.529, 0.689) (0.294, 0.458) (0.475, 0.639) (0.066, 0.297)    

[<0.001]   [0.002] 
Received DPT 

2nd 
0.142 0.744 0.602 0.156 0.300 0.144 

dose (0.082, 0.202) (0.684, 0.804) (0.517, 0.687) (0.087, 0.225) (0.231, 0.369) (0.047, 0.241)    
[<0.001]   [0.004] 

Received BCG 0.710 0.946 0.236 0.830 0.700 − 0.130 
vaccine (0.656, 0.764) (0.892, 1.001) (0.159, 0.313) (0.76, 0.899) (0.63, 0.77) (− 0.229, − 0.031)    

[<0.001]   [0.010] 
Received measles 0.018 0.339 0.322 – – – 
vaccine (− 0.035, 0.07) (0.286, 0.392) (0.247, 0.396) – – –    

[<0.001]   – 
Perception of 

tetanus 
0.740 0.143 − 0.597 0.496 0.329 − 0.168 

vaccination 
efficacy 

(0.679, 0.8) (0.082, 0.203) (− 0.682, − 0.511) (0.416, 0.577) (0.248, 0.41) (− 0.282, − 0.054)    

[<0.001]   [0.004] 
Mother knows a 

cause 
0.178 0.006 − 0.172 0.085 0.086 0.001 

of tetanus (0.136, 0.219) (− 0.036, 0.048) (− 0.231, − 0.112) (0.039, 0.132) (0.039, 0.132) (− 0.065, 0.066)    
[<0.001]   [0.986] 

Mother knows a 0.692 0.113 − 0.579 0.433 0.500 0.067 
symptom of 

tetanus 
(0.632, 0.752) (0.053, 0.173) (− 0.664, − 0.494) (0.35, 0.515) (0.417, 0.583) (− 0.050, 0.185)    

[<0.001]   [0.259] 
Mother knows a 7.041 7.488 0.447 7.241 7.550 0.309 
prevention 

method of 
(6.739, 7.343) (7.185, 7.791) (0.019, 0.874) (6.919, 7.563) (7.227, 7.873) (− 0.147, 0.765) 

tetanus   [<0.001]   [0.183] 
Closest facility is 0.722 0.976 0.254 0.915 0.771 − 0.143 
government PHC 

facility 
(0.671, 0.773) (0.925, 1.027) (0.182, 0.326) (0.856, 0.974) (0.712, 0.831) (− 0.227, − 0.059)    

[<0.001]   [0.001] 

Notes: Table reports the mean and standard deviations of baseline covariates for the 25 % of individuals least and most affected by the intervention 
(based on estimated individual level CATEs). Confidence intervals in parentheses. The measles subsample excludes individuals that had received the 
measles vaccine at baseline. Differences between the groups were assessed using independent samples t-tests.  

S. O’Neill et al.                                                                                                                                                                                                         



Journal of Health Economics 96 (2024) 102899

17

Table A4 
Absolute difference in probability of vaccination uptake with versus without the intervention amongst younger siblings at 30 months follow-up by 
positive versus negative framing of information.  

DPT3 vaccination Positively framed Effect (95 % CI) Negatively framed Effect (95 % CI) 

Unadjusted 13.4 % (4.2 %, 22.5 %) 16.9 % (7.9 %, 25.9 %) 
Adjusted 16.8 % (8.2 %, 25.3 %) 19.1 % (10.8 %, 27.4 %) 
Measles vaccination   
Unadjusted 19.8 % (11.1 %, 28.6 %) 24.4 % (16.0 %, 32.8 %) 
Adjusted 22.8 % (15.2 %, 30.3 %) 26.7 % (19.5 %, 33.9 %) 

Notes: Table reports the average treatment effect of the intervention on vaccination uptake amongst siblings at 30 months follow-up by framing of 
information. Confidence intervals in parentheses. Unadjusted differences were estimated using OLS. Adjusted differences were estimated using OLS 
and include baseline covariates. The measles subsample excludes individuals that had received the measles vaccine at baseline.  

Fig. A1. Individual level CATE estimates for DPT3 at seven months, ordered by magnitude.   
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Fig. A2. Individual level CATE estimates for Measles at seven months after excluding measles vaccinated at baseline, ordered by magnitude.   
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Fig. A3. Falsification test: Individual level CATE estimates for Measles at 30 months for those vaccinated for measles at baseline.   
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Fig. A4. Forest plot of CATE effects by subgroup: DPT3 (30 months).   

Fig. A5. Forest plot of CATE effects by subgroup: Measles (30 months) (after excluding those vaccinated for measles at baseline).   
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Script 

The mothers were addressed using the following script. 
“Hello, my name is ______________, I’d like to talk to you for a few minutes about an important health issue that you may have heard about. 

Please listen carefully to the information I am about to give you.” Then the information below was said to mothers depending on whether 
information was framed as a loss or as a gain. 

Information leaflet 1: Information framed as a loss.  
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Information leaflet 2: Information framed as a gain. 

Appendix B   
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