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Abstract

Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite that displays consid-

erable genetic diversity. Infections result in a range of pathological outcomes, and different

strains can exhibit a wide spectrum of anti-parasitic drug tolerance. The genetic determi-

nants of infectivity, virulence and therapeutic susceptibility remain largely unknown. As

experimental tools to address these issues, we have generated a panel of bioluminescent:

fluorescent parasite strains that cover the diversity of the T. cruzi species. These reporters

allow spatio-temporal infection dynamics in murine models to be monitored in a non-invasive

manner by in vivo imaging, provide a capability to detect rare infection foci at single-cell res-

olution, and represent a valuable resource for investigating virulence and host:parasite inter-

actions at a mechanistic level. Importantly, these parasite reporter strains can also

contribute to the Chagas disease drug screening cascade by ensuring that candidate com-

pounds have pan-species in vivo activity prior to being advanced into clinical testing. The

parasite strains described in this paper are available on request.

Author summary

Chagas disease results from infection with the protozoan parasite Trypanosoma cruzi and

is a major public health problem throughout Latin America. T. cruzi is a genetically

diverse species and infection can result in a wide range of pathological outcomes, mainly

associated with the heart and/or digestive tract. Research on Chagas disease, ranging from

fundamental biology to drug development, has been greatly aided by the availability of

genetically modified parasite reporter strains that express bioluminescent:fluorescent
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fusion proteins. In combination with mouse models and imaging technology, these strains

allow infections to be monitored in real-time, with high sensitivity, and infection foci to

be visualised at single-cell resolution. Here, we describe an extensive panel of biolumines-

cent and fluorescent strains that cover the diversity of the T. cruzi species. These reporter

strains, that are available on request, should have wide utility in many areas of Chagas dis-

ease research. In particular, as part of the drug development screening programme, they

can be used to ensure that candidate compounds have in vivo activity across the species

prior to being advanced into clinical testing.

Introduction

Chagas disease is the most serious parasitic infection in the Americas, with 6–7 million people

infected with the causative agent, the insect-transmitted protozoan Trypanosoma cruzi [1].

Infections with this obligate intracellular parasite are typically life-long, and in 30–40% of

cases, result in chronic cardiac and/or digestive tract pathology, although this can take decades

to become symptomatic [2,3]. Globally, Chagas disease is the leading cause of infectious car-

diomyopathy. The front-line drugs used to treat infections are the nitroheterocyclic agents

benznidazole and nifurtimox [4,5]. However, therapeutic failure is common, with toxicity and

long administration periods (>60 days) often leading to treatment cessation [6,7]. In addition,

the wide diversity of the T. cruzi species is associated with considerable variations in the level

of therapeutic susceptibility, even amongst strains that are closely related at an evolutionary

level [8].

Anti-Chagasic drug research is challenging. Progress has been restricted by several factors,

including the long time periods over which symptoms develop, the wide spectrum of disease

pathology, and the limited accuracy of the diagnostic tools used to determine curative out-

comes. For example, during the chronic stage of disease, highly sensitive PCR-based method-

ologies can be confounded by the low and fluctuating parasite load in blood, and the highly

focal nature of infections within deep tissue sites [9]. In addition, robust biomarkers for cure

are lacking. As a result, predictive animal models have assumed an important role in the drug

development pipeline, and have been central to research on disease pathogenesis and immune

mechanisms. In vivo bioluminescence imaging of murine infections has been established as an

experimental tool applicable to Chagas disease research [10–12]. However, the sensitivity

required to monitor infection dynamics throughout the course of the disease was not achieved

until parasites were engineered to express a codon-optimised, red-shifted luciferase [13–16].

The enhanced qualities of this reporter stem from the improved tissue penetration of longer

wavelength light towards the red-end of the spectrum. This is due to reduced light scattering

and decreased absorbance (haemoglobin is the major chromophore in tissue). Imaging appli-

cations have been further extended by linking a fluorescent protein encoding sequence

(mNeonGreen) in-frame with the luciferase gene, to generate parasites that express a biolumi-

nescent:fluorescent fusion protein [17]. This has enabled in vivo foci of T. cruzi infections to

be visualised at single cell resolution, even during the chronic stage of the disease when the

parasite burden is extremely low [18–21].

The genetically diverse T. cruzi species has been sub-divided into six major lineages (Dis-

crete Typing Units–DTUs; TcI–TcVI) [22]. However, factors such as virulence, tissue tropism,

and drug-sensitivity display both inter- and intra-lineage variation [8,14,23,24], and the

genetic basis of these phenotypic traits is poorly understood. Recently, progress in Chagas dis-

ease drug development has been accelerated by the formation of multidisciplinary research
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consortia that have combined expertise from the academic, not-for-profit and commercial sec-

tors [25–29]. These projects have highlighted a need to better capture the extent of parasite

diversity within the screening cascade. Here, we describe a wide range of parasite reporter

strains that cover all six DTUs, and which display a spectrum of infection profiles. The avail-

ability of these strains will provide a means of ensuring that candidate compounds have cross-

species in vivo efficacy before advancement into clinical trials. In addition, they represent a

valuable research resource for identifying the genetic determinants of infectivity and virulence.

Results and discussion

The bioluminescent T. cruzi CL Brener (TcVI) strain has been widely used for in vivo imaging

in murine models of Chagas disease, particularly in the context of drug testing [eg. 9,16,25,27–

29]. This parasite line (T. cruzi CLBR-Luc) was generated by transfection with vector

pTRIX2-RE9h (S1 Fig) [13,30], which targeted the PpyRE9h red-shifted luciferase gene [31] to

a high expressing ribosomal DNA (rDNA) locus. To generate reporter strains that are both

bioluminescent and fluorescent, the red-shifted luciferase gene can be replaced with a

PpyRe9h-mNeonGreen fusion sequence (S1 Fig) [17]. These strains can be further modified by

replacement of themNeonGreen sequence withmScarlet [17] (S2 Fig; Materials and Methods),

to generate red fluorescent variants. Parasite lines that express dual reporters have infection

profiles indistinguishable from the parental bioluminescent clones (S3 Fig), and a limit of

detection of<20 parasites when infected mice are assessed by ex vivo imaging [19].

To produce a panel of reporter strains that encompasses the broad diversity of the T. cruzi
species, we selected a range of isolates covering each of the major human infectious lineages

(DTU I—VI) (Table 1). These 19 strains are from wide geographical origins within South

America, and are derived from both insect and mammalian hosts (predominantly human).

They encompass an 8-fold variation in benznidazole sensitivity (4–32 μM), and a>5-fold vari-

ation in doubling time when cultured as epimastigotes (18–>100 hours). There is no correla-

tion between replication rate and benznidazole sensitivity (Table 1). Each of these strains was

transfected with the construct pTRIX2-RE9h (S1 Fig), selected with G418 and cloned transfor-

mants then assessed to confirm bioluminescence (Materials and Methods). pTRIX2-RE9h can

therefore be used to generate bioluminescent strains across the DTU spectrum. It is available

on request. Where required for experimental purposes, the parasite lines were also modified

further to express bioluminescent:fluorescent fusion proteins following integration of genes

encoding mNeonGreen or mScarlet (Table 2; Materials and Methods). Selected parasite clones

were then used to generate infectious in vitro trypomastigotes and to infect CB17 SCID mice,

an immunodeficient line that lacks functional lymphocytes [32]. The majority of these reporter

parasite strains underwent exponential growth in SCIDs, such that humane endpoints were

reached within 28 days (Figs 1 and S4, Table 2). However, some parasite strains displayed a

less virulent phenotype in these immunodeficient mice, particularly Pot7a (DTU II), Rita

(DTU II), X10610 (DTU IV) and BUG2148 (DTU V). Strains such as these will provide a use-

ful platform for investigating the determinants of virulence.

We next investigated infection dynamics in BALB/c and C3H/HeN mice, immunocompe-

tent strains that are widely used in T. cruzi research, including drug efficacy studies. In total,

23 mouse:parasite strain combinations were assessed. These encompassed each of the major T.

cruzi lineages, and parasite strains expressing either the red-shifted luciferase reporter, or bio-

luminescent:fluorescent fusion proteins (mNeonGreen or mScarlet) (Table 2).

With BALB/c mice, the infection profiles of 8 T. cruzi strains covering 4 DTUs (I, III, V and

VI) were monitored in detail. The in vivo bioluminescence of 6 of these strains followed a simi-

lar trend, with the parasite burden peaking 14–21 days post-infection, followed by a steady
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reduction as the infection transitioned from the acute to the chronic stage (Fig 2A). After day

50, in most cases, bioluminescence-inferred parasite burdens reached a dynamic steady-state

characterised by transient infection foci which appeared and disappeared over time. This type

of profile has been observed previously in BALB/c infections with the bioluminescent CLBR

(DTU VI) and JR (DTU I) strains [13,14]. The SN3 strain (DTU I) exhibited a lower acute

stage peak than observed with other infections, but in the chronic stage, the bioluminescent

profile was similar to infection with other strains, including the highly dynamic nature of

infection foci. In contrast, infections with the CM17 strain (DTU III), which resulted in the

highest parasite burden during the acute phase (Fig 2A), became barely detectable as the

chronic stage proceeded (>100 days). In one case, with the BUG2148 strain, bioluminescence

was not detected beyond day 4 post-infection. Although strains which exhibit an atypical infec-

tion profile may be less suited for incorporation into the drug screening pipeline, the immune

response they elicit and the resulting pathological outcomes will be of considerable interest.

In the acute stage, where examined, parasites were widely disseminated, with all organs and

tissues highly infected (Fig 2B and 2C). When BALB/c infections progressed to the chronic

stage, parasites became mainly restricted to distinct foci in the musculature of the GI tract

(predominantly in the colon and/or stomach) and skin, with infections of other organs and tis-

sues being more intermittent (Fig 2C). This type of infection profile has been reported previ-

ously with the CLBR and JR strains [13,14,19]. On the basis of the chronic tissue-specific

infection profiles for the strains analysed, it appears that the GI tract serves as an immunologi-

cally permissive reservoir for T. cruzi in most BALB/c mouse infections.

Nine T. cruzi strains across five DTUs (I, II, III, IV, VI) have been tested in C3H/HeN mice.

The extent of infection tended to be more variable (Fig 3A). The highest parasite burdens

resulted from infections with the Peru (DTU VI), CLBR and JR strains, with the peak of the

Table 1. Description of Trypanosoma cruzi strains utilised.

STRAIN DTU Biological origin Country of origin EC50 (μM) benz.1 Rep. time (h) epimastigote2 Ref.

Sylvio X10/6 TcI Homo sapiens Brazil 9.6 18.1 [39]

SN3 TcI Rhodnius prolixus Colombia 32 21.4 [8]

ArePe I TcI Homo sapiens Peru 9.0 23.4 -

JR TcI Homo sapiens Venezuela 14 23.6 [40]

C8 TcI Triatoma infestans Bolivia - - [41]

Rita TcII Homo sapiens Brazil 11 48.0 [42]

Pot7a TcII Triatoma infestans Paraguay 4.1 32.0 [40]

CM17 TcIII Dasypus sp. Colombia 6.2 39.8 [43]

M6241 TcIII Homo sapiens Brazil - 32.1 [44]

Arma18 TcIII Dasypus novemcinctus Paraguay - - [45]

X10610 TcIV Homo sapiens Venezuela 3.3 34.4 [45]

ERA TcIV Homo sapiens Venezuela - 20.3 [45]

BUG2148 TcV Triatoma infestans Brazil - 133 [46]

CL Brener TcVI Triatoma infestans Brazil 5.2 23.7 [47]

Chaco17 TcVI Triatoma infestans Paraguay - - [40]

LHVA TcVI Triatoma infestans Argentina - 77.0 [40]

VFRA1 TcVI Triatoma infestans Chile - 107 [48]

Tula TcVI Homo sapiens Chile 6.1 31.7 [44]

Peru TcVI Homo sapiens Peru 4.4 28.8 [49]

1Benznidazole concentration that inhibits epimastigote growth by 50% (Materials and Methods)
2Reproductive (Rep.) time determined during exponential growth

https://doi.org/10.1371/journal.pntd.0012106.t001
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acute stage occurring later than in BALB/c mice, and stretching over a longer period (days 14–

35 post-infection). Other strains were less infectious. With Pot7a, the bioluminescence signal

fell below the threshold of detection from day 35 onwards. X10610 infections were also faint

and intermittent, but were detectable until at least 110 days post-infection. It should be noted

that the light brown fur of C3H/HeN mice reduces the sensitivity of in vivo imaging compared

to the white-furred BALB/c mice, due to differential absorbance of the bioluminescence signal.

Table 2. List of bioluminescent/fluorescent Trypanosoma cruzi strains generated.

STRAIN DTU REPORTER Drug Marker SCID endpoint1 BALB/c infection C3H/HeN

infection

Sylvio X10/6 TcI PpyRE9h G4182 day 30 (5 x 103)3 ✔
SN3 TcI PpyRE9h:mNeonGreen Hyg4 day 21 (1 x 103) ✔
SN35 TcI PpyRE9h:mScarlet Bla6 day 28 (1 x 103) ✔ ✔
ArePe I TcI PpyRE9h:mNeonGreen Hyg day 21 (1 x 103) ✔
ArePe I TcI PpyRE9h:mScarlet Bla day 26 (1 x 104) ✔ ✔
JR7 TcI PpyRE9h G418 day 21 (4 x 104) ✔ ✔
JR TcI PpyRE9h:mNeonGreen Hyg day 21 (5 x 104) ✔
C8 TcI PpyRE9h G418 day 28 (1 x 104) ✔
Rita TcII PpyRE9h G418 day 28 (1 x 103)8

Pot7a TcII PpyRE9h:mNeonGreen Hyg day 93 (2 x 105) ✔
Pot7a TcII PpyRE9h:mScarlet Bla -

CM17 TcIII PpyRE9h G418 day 25 (1 x 104) ✔
CM17 TcIII PpyRE9h:mNeonGreen Hyg day 26 (1 x 104)

M6241 TcIII PpyRE9h G418 day 50 (1 x 104)

Arma18 TcIII PpyRE9h G418 day 21 (1 x 103) ✔
X10610 TcIV PpyRE9h:mNeonGreen Hyg day 110 (1 x 104) ✔
ERA TcIV PpyRE9h G418 day 25 (1 x 104)

BUG2148 TcV PpyRE9h G418 day 111 (1 x 104) ✔
CL Brener9 TcVI PpyRE9h G418 day 19 (1 x 103) ✔ ✔
CL Brener TcVI PpyRE9h:mNeonGreen Hyg day 18 (1 x 104) ✔ ✔
CL Brener TcVI PpyRE9h:mScarlet Bla day 18 (1 x 104) ✔
Chaco17 TcVI PpyRE9h G418 day 28 (1 x 104) ✔
LHVA TcVI PpyRE9h G418 day 50 (1 x 104)

VFRA1 TcVI PpyRE9h G418 day 50 (1 x 104)

Tula TcVI PpyRE9h G418 -

Peru10,11 TcVI PpyRE9h G418 day 15 (1 x 104) ✔
Peru11 TcVI PpyRE9h:mNeonGreen Hyg day 15 (1 x 103)

1 Humane endpoint based on cachexia or other signs of moribund condition
2 G418–100 μg/ml
3 In brackets, parasite inoculum (number of trypomastigotes)
4 Hygromycin (150 μg/ml)
5 Causes gastrointestinal transit time delay in C3H/HeN mice [20]
6 Blasticidin (10 μg/ml)
7Causes cardiac fibrosis in BALB/c and C3H/HeN mice [14,16] and gastrointestinal transit time delay and enteric nervous system pathology in C3H/HeN mice [20]
8Mouse sacrificed before displaying adverse symptoms (S4 Fig)
9Causes cardiac fibrosis in BALB/c and C3H/HeN mice [14,16] and gastrointestinal transit time delay in C3H/HeN mice [20]. Causes skeletal muscle fibrosis and spastic

diplegia in hamsters [50]. Widely used as a model for drug testing in combination with BALB/c mice [25,27–29,51].
10 Causes gastrointestinal transit time delay in C3H/HeN mice [20].
11Infections of C57BL/6 mice resulted in highly virulent infections, and animals required euthanization within 18 days. Infections of C3H/HeN mice were non-lethal.

https://doi.org/10.1371/journal.pntd.0012106.t002
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When assessed by ex vivo imaging, in the chronic stage, parasite strains were generally more

widely disseminated in tissues and organs than observed with BALB/c mice, and it is less clear

whether there are major differences between sites in their permissiveness to long-term infec-

tion (Fig 3B and 3C) [14,20]. The variations in infectivity and virulence of different parasite

strains, both within and between different murine hosts, may well reflect biological diversity

across the T. cruzi species. As such, this panel of strains is well suited to investigating the inter-

relationship between parasite genetics and disease pathogenesis. In cases where infectivity was

limited, such as with T. cruzi Pot7a, although these strains are less useful for testing drug effi-

cacy, they do provide a valuable resource for investigating the role of the immune response

and the determinants of pathology.

Parasites expressing bioluminescent:fluorescent proteins (Table 2) also provide an opportu-

nity to examine chronic infections at single-cell resolution and to assess their immunological

and tissue microenvironments (Materials and Methods) [19,33]. Previously, this revealed that

some infected host cells avoid detection by the immune system, whereas others induce exten-

sive immune cell infiltration into the locality [21]. Using T. cruzi CLBR PpyRE9h:mNeon-

Green strain infections of C3H/HeN mice (Table 2), we can show that the tissue-level

microenvironment is not a determinant of this differential response. In colonic smooth mus-

cle, infection foci targeted by T cell infiltration can co-exist with other closely localised (100–

200 μM) parasite “nests”, that have equal or greater infection loads, but do not trigger a simul-

taneous immune response (Fig 4A). Bioluminescence-guided targeting followed by fluores-

cence microscopy of individual infected cells can also been used to visualise skin localised

parasites in the dermal layer [19] and to study enteric nervous system pathology in the context

of local T. cruzi infection foci [20] (Fig 4B–4D). These types of study, together with the

expanded panel of transgenic parasites therefore provide a platform to study immune evasion

and tissue distribution in the context of parasite genetic diversity. This should contribute to a

Fig 1. Growth profile of selected T. cruzi reporter strains in severe combined immunodeficient (SCID) mice. CB17 SCID

mice were infected with a range of T. cruzi strains that expressed red-shifted luciferase (L), or as indicated, fusion proteins also

containing mNeonGreen (LNG) or mScarlet (LS) fluorescent components (Table 2) (Materials and Methods). Inoculations were

by the i.p. route, with the number of tissue culture trypomastigotes, as indicated. The mice were monitored regularly by

bioluminescence imaging and the total flux (p/s) from ventral view images recorded (Materials and Methods). The number of

days post-infection is indicated. Mice were euthanized at humane end-points by exsanguination under terminal anaesthesia.

https://doi.org/10.1371/journal.pntd.0012106.g001
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better understanding of why T. cruzi infections are associated with such highly variable clinical

outcomes.

Concluding remarks

The extent of T. cruzi genetic diversity has been a major barrier to progress in Chagas disease

research, and the impact of parasite genetics on infection dynamics, pathogenesis and drug

susceptibility remain unresolved questions. There are advantages to focusing and co-ordinat-

ing research around one or a few favoured laboratory strains, but this must be balanced against

the need to generate data that can usefully reflect the true diversity of T. cruzi infections. The

panel of reporter strains described here therefore represents a valuable resource that will be

widely applicable and should improve the translational value of data generated using in vitro
and in vivo experimental infection models. For example, it will allow mixed infections, which

are common in humans [34], to be studied in detail, both in vitro (S5 Fig) and in vivo, enabling

their infection dynamics and tissue distribution to be monitored, and their impact on disease

pathology to be assessed. In addition, the panel provides a framework within the Chagas dis-

ease drug development pipeline for testing the pan-species in vivo efficacy of candidate com-

pounds. In combination with other advances, such as the generation of mice humanised for

Fig 2. Bioluminescence imaging of BALB/c mice infected with a range of T. cruzi strains. (A) Dynamics of infection. BALB/c mice were

infected with T. cruzi reporter strains by the i.p. route and monitored regularly by in vivo imaging until they had transitioned to the chronic

stage (Materials and Methods). Ventral images are shown and the number of days post-infection indicated. -Luc; strains expressing the red-

shifted luciferase PpyRE9h. -LS, -LNG; strains expressing luciferase:mScarlet and luciferase:mNeonGreen fusion proteins, respectively.

Further details on parasite strains are provided in Tables 1 and 2. (B) Assessment of the parasite burden in tissues and organs of T. cruzi
CLBR-Luc infected mice during the acute (17 days post-infection; dpi) and chronic (168 dpi) stages. Mice were injected with D-luciferin

prior to necropsy, during which the organs and tissues were harvested, arranged as shown (inset), and examined by ex vivo imaging

(Materials and Methods). (C) Assessment of parasite burden in tissues and organs of BALB/c mice during chronic stage infections with a

range of strains as indicated. Organs from a T. cruzi CLBR-Luc infected mouse during the acute stage (19 dpi) are shown for comparison.

The heat-maps are on a log10 scale and indicate intensity of bioluminescence from low (blue) to high (red); the minimum and maximum

radiances for the pseudocolour scale are indicated. This scale was used for both in vivo and ex vivo images.

https://doi.org/10.1371/journal.pntd.0012106.g002
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drug-metabolising enzymes expressed by the cytochrome P450 superfamily [35], this should

increase the predictive power of in vivo pre-clinical testing.

Materials and methods

Ethics statement

Animal studies were performed under UK Home Office project licences (PPL 70/8207 and

PPL P9AEE04E4), and ratified by the London School of Hygiene and Tropical Medicine Ani-

mal Welfare and Ethical Review Board (AWERB). Procedures were carried out in accordance

with the UK Animals (Scientific Procedures) Act 1986.

Parasite culturing and generation of genetically engineered strains

All T. cruzi strains used in this study are described in Table 1. They were genotyped to the

DTU level using a previously published triple locus AFLP/RFLP assay [36]. Epimastigotes

were cultured at 28˚C in supplemented RPMI-1640 medium as described previously [14].

Metacyclic trypomastigotes were generated following transfer of epimastigotes to Graces trans-

formation medium, in some cases supplemented with filter-sterilised triatomine intestinal

homogenate [14,37]. Tissue culture trypomastigotes were obtained from infected MA104 cells

grown at 37˚C using minimal Eagle medium supplemented with 5% heat-inactivated foetal

bovine serum (FBS), or from infected L6 rat skeletal myoblasts grown in RPMI-1640 medium,

supplemented with 10% heat-inactivated FBS [14].

Fig 3. Bioluminescence imaging of C3H/HeN mice infected with a variety of T. cruzi reporter strains. (A) Dynamics of infection. C3H/

HeN mice were infected as described (Materials and Methods), and monitored by in vivo imaging (ventral view shown) at the days post-

infection, as indicated. The bioluminescence scale and abbreviated strain names are as in Fig 1 (see Table 2 for further details). (B) Ex vivo
imaging of organs and tissues harvested from T. cruzi JR-Luc infected mice over the course of infection (Materials and Methods). (C) Ex
vivo images of organs and tissues from mice chronically infected with a range of reporter strains. Days post-infection (dpi) are indicated.

The same heat-map scale indicating intensity of bioluminescence was used for both in vivo and ex vivo images. Organ layout is shown (left)

(some images do not contain the full set of organs) using the following abbreviations: lymph nodes–LYM, Lungs—LN, gut mesenteric tissue

—MS, heart—HT, spleen—SPL, skeletal muscle—SKM, stomach—STM, small intestine—SI, large intestine–LI, genito-urinary system–

GUS, liver–LIV, peritoneum–PT, and adipose tissue–AD.

https://doi.org/10.1371/journal.pntd.0012106.g003
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The generation of bioluminescent T. cruzi CL Brener parasites expressing the red-shifted

luciferase gene PpyRE9h [31] has been described previously [13]. Bioluminescence was con-

ferred on other strains by integrating PpyRE9h into the rDNA locus following transfection

with a 6.0 kb DNA fragment derived by Aat II/Asc I digestion of vector pTRIX2-RE9h (Gen-

Bank accession #PP332292) (S1 Fig), and selection of transformants with G418 [13,30]. To

generate CL Brener parasites expressing bioluminescent:fluorescent fusion proteins, the red-

shifted luciferase gene was replaced with a LucRe9h-mNeonGreen fusion sequence to produce

the parasite line T. cruzi CLBR-Luc::NeonGreen [17]. Transfection with a 7.0 kb Sac I/AscI

fragment derived from construct pTRIX-LucRe9h-mNeonGreen (GenBank accession

#OR258373) (S1 Fig), and selection with hygromycin allowed the generation of green fluores-

cent variants from across the DTU spectrum (Table 2). For parasite lines already containing a

red-shifted luciferase gene in a high expressing rDNA locus, a 5.3 kb SbfI/AscI fragment can

be used to target the fluorescent component into this transcriptionally active site.

Red fluorescent variants of the fusion protein were first generated in the CL Brener strain

by replacement of the LucRE9h gene with the dual reporter LucRE9h-mScarlet sequence using

the T7 RNA polymerase/cas9 system, and selection with blasticidin [17]. Transfection of other

strains with a 5.35 kb PCR product derived from this cell line (GenBank accession #PP332293)

Fig 4. The use of bioluminescent:fluorescent T. cruzi reporter strains to monitor tissue microenvironment in the

colon during infection. (A) Differential recruitment of T cells to closely localised T. cruzi CLBR-Luc:NeonGreen

chronic stage (121 dpi) infection foci in a C3H/HeN mouse colon. Smooth muscle wall sections were prepared from

colonic whole mounts, following bioluminescence-guided excision, and screened using a Zeiss LSM880 confocal

microscope to localise fluorescent infection foci [19–21] (Materials and Methods). The image expansions show three

closely localised infection foci, only one of which has triggered recruitment of T cells. Parasites, green (fluorescence);

DNA, cyan (Hoechst 33342); CD4+ T cells, magenta. (B) Chronic stage (230 dpi) T. cruzi CLBR-Luc:NeonGreen

infections of colonic smooth muscle in the context of local enteric neurons. C3H/HeN tissue sections were prepared as

above. Neurons, magenta (TuJ1+). (C) A whole mount colon tissue section from a C3H/HeN mouse infected with T.

cruzi JR-Luc:NeonGreen imaged by fluorescence microscopy, showing parasites (green) in the myenteric nerve plexus

(magenta) (139 dpi). The inset (left) shows the proximal colon bioluminescence image that was used to guide tissue

excision and fluorescent imaging of infection foci at single cell resolution (Materials and Methods). (D) Whole mount

colonic tissue obtained from an immunocompromised SCID mouse during a fulminant infection with T. cruzi
CLBR-Luc:NeonGreen (21 dpi) at the level of the myenteric nerve plexus (unlabelled).

https://doi.org/10.1371/journal.pntd.0012106.g004
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(S2 Fig) allowed the generation of a series of red fluorescent variants (Table 2). Subsequently,

we have produced construct pTREX2-LucRe9h-mScarlet (GenBank accession #PP333636)

(S2 Fig), which contains a 7.0 kb SacI/AscI fragment that can be used to generate red fluores-

cent variants following transfection and selection with hygromycin.

Bioluminescence was confirmed by in vivo imaging of infected mice, as indicated (Table 2)

(see reference 20, for further examples of ex vivo imaging). Parasite fluorescence was con-

firmed by microscopy.

Drug sensitivity assays

For activity assays, logarithmically growing T. cruzi epimastigotes were sub-cultured at 2.5 x

105/ml into 96-well plates at a range of benznidazole concentrations, and incubated for 4 days.

Resazurin was added and the plates incubated for a further 2 days, then read using a BMG

FLUOstar Omega plate reader. These times were modified, as required, to account for slow

growing strains. Results were analyzed using GraphPad Prism to determine the drug concen-

trations that inhibited growth by 50% (EC50). Experiments were performed in triplicate.

Mice and infections

BALB/c, C3H/HeN and CB17 SCID mice were purchased from Charles River (UK). They

were housed under specific pathogen-free conditions in individually ventilated cages. They

experienced a 12-hour light/dark cycle and had access to food and water ad libitum. Female

mice, ranging in age from 6–12 weeks were used for infections. SCID mice were typically

infected with 1 × 104 in vitro derived tissue culture trypomastigotes in 0.2 ml PBS via i.p. injec-

tion. BALB/c and C3H/HeN mice were also infected by i.p injection, in most cases with 103 or

104 bloodstream form trypomastigotes derived from parasitaemic SCID mouse blood. Most

SCID mice developed fulminant infections (Figs 1 and S4) and were euthanized at, or before,

humane end-points by ex-sanguination under terminal anaesthesia (euthatal or dolethal;

15 μl/g body weight) [38].

Bioluminescence imaging

For in vivo imaging, mice were injected i.p with 150 mg/kg d-luciferin in DPBS (Dulbecco’s

Phosphate Buffered Saline), and anaesthetized by 2.5% (v/v) gaseous isoflurane in oxygen

[13,38]. To assess bioluminescence, they were placed in an IVIS Lumina II or Spectrum system

(Revvity, Hopkinton, MA, USA) and images acquired using Living Image 4.7.2 software.

Exposure times varied from 30 seconds to 5 minutes, depending on signal intensity. Mice were

then revived and returned to their cages. For ex vivo imaging, mice were injected with 150 mg/

kg d-luciferin i.p. as above, and then sacrificed by lethal i.p. injection with dolethal 5 minutes

later. They were perfused with 10 ml of 0.3 mg/ml luciferin in DPBS via the heart, the organs

and tissues were removed, transferred to a round or square Petri dish in a standardized

arrangement, soaked in 0.3 mg/ml luciferin, and imaged using the IVIS [14].

Fluorescence imaging

Histological sections were generated after bioluminescence-guided excision of infection foci

from murine tissues [17,38]. Biopsy specimens were incubated in 95% EtOH at 4˚C overnight

and then washed in 100% EtOH (4 x 10 minutes), followed by xylene (2 x 10 minutes). Samples

were embedded by placing in melted paraffin wax, which was allowed to set. The embedded

pieces were cut into histological sections (5–20 μm) using a microtome, the sections were then
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processed as previously described [38], mounted in Vectashield, and imaged using a Zeiss

LSM880 confocal microscope.

For whole mounts, colonic muscularis samples were prepared as previously described

[19–21]. Briefly, colon pieces were opened, stretched and pinned on Sylgard 184 plates, then

fixed in 4% paraformaldehyde, after which the mucosal layer was removed using fine forceps.

Tissues were washed with PBS, permeabilised (1% Triton X-100 in PBS), and blocked (10%

sheep serum, 1% Triton X-100 in PBS). Anti-CD4 rat antibodies (Abcam) at 1:500 were used

to assess C4+ T cell recruitment, and neurons were labelled with rabbit anti-tubulin beta 3

(TuJ-1) IgG at 1:500 (Biolegend), in PBS, with 0.5% Triton X-100 for 48 hours at 4˚C. Tissues

were washed, incubated with secondary goat anti-rat IgG (Invitrogen) or goat anti-rabbit-

AF633 IgG (ThermoFisher), respectively, in PBS containing 0.5% Triton X-100 for 2 hours

and counterstained with Hoechst 33342 (1 μg/ml) at room temperature. Whole mounts were

examined and imaged by confocal microscopy as above.

Supporting information

S1 Fig. Constructs used to generate T. cruzi bioluminescent:green fluorescent reporter

strains. (A) The red-shifted luciferase gene PpyRE9h [31] can be targeted to T. cruzi rDNA

loci after transfection with a 6 kb fragment produced by AatII/AscI digestion of construct

pTRIX2-RE9h and selection with G418 [13,30]. (B) The PpyRE9h:mNeonGreen fusion

sequence [17] can be similarly targeted following transfection with a 7.0 kb SacI/AscI fragment

fragment from construct pTRIX2-LucRe9h-mNeonGreen, and selection with hygromycin.

Construct sequences are available on GenBank (Materials and Methods). The images were

generated using SnapGene software (www.snapgene.com)

(PPTX)

S2 Fig. Constructs used to generate T. cruzi bioluminescent:red fluorescent reporter

strains. (A) Map of the 5.35 kb PCR fragment used to convert the fluorescent component of

the dual reporter protein from mNeonGreen to mScarlet with the blasticidin S deaminase

gene (BSD) as the selectable marker [17]. (B) Construct pTRIX2-LucRe9h-mScarlet which

contains a 7.0 kb SacI/AscI fragment that can be used to transfect T. cruzi and generate red

fluorescent variants following selection with hygromycin. Sequences of fragment and con-

struct are available on GenBank (Materials and Methods). The images were generated using

SnapGene software (www.snapgene.com).

(PPTX)

S3 Fig. Monitoring infection dynamics of T. cruzi strain JR expressing different reporter

proteins. C3H/HeN mice were injected i.p. with 5 x 104 trypomastigotes expressing either

the red-shifted luciferase (JR-Luc) or the luciferase:mNeonGreen fusion protein (JR-LNG)

(Materials and Methods). They were monitored by in vivo imaging, at the days indicated post-

infection (dpi). The heat-map indicates the intensity of bioluminescence.

(PPTX)

S4 Fig. Differential infection dynamics of T. cruzi strains in immunodeficient SCID mice.

Mice were infected i.p. with bioluminescent tissue culture trypomastigotes (numbers shown in

brackets) and monitored by in vivo imaging (Materials and Methods) at the days indicated

post-infection (dpi). The heat-map indicates the intensity of bioluminescence. (B) Total biolu-

minescence flux derived by ventral imaging at the days indicated.

(PPTX)
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S5 Fig. The use of distinct dual reporter strains to assess the impact of co-infection.

Human foreskin fibroblast (HFF) cells were infected with T. cruzi Pot7a-Luc:NeonGreen (Tc
Pot7a –green) and 5 days later with T. cruzi CLBR-Luc:mScarlet (Tc CLBR–red). (A) Image

taken with a Nikon Ti-2 E inverted microscope using red and green filters, 5 days after the sec-

ond infection. (B) Same image captured with red or green filters. Epifluorescence real-time

microscopy can also be used to track co-infections.

(PPTX)
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