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ABSTRACT

PURPOSE Increased automation has been identified as one approach to improving global
cancer care. TheRadiation PlanningAssistant (RPA) is aweb-based tool offering
automated radiotherapy (RT) contouring and planning to low-resource clinics.
In this study, the RPA workflow and clinical acceptability were assessed by
physicians around the world.

METHODS The RPA output for 75 cases was reviewed by at least three physicians; 31 ra-
diation oncologists at 16 institutions in six countries onfive continents reviewed
RPA contours and plans for clinical acceptability using a 5-point Likert scale.

RESULTS For cervical cancer, RPA plans using bony landmarkswere scored as usable as-is in
81%(withminor edits 93%); using soft tissue contours, planswere scored asusable
as-is in 79%(withminor edits 96%). Forpostmastectomybreast cancer, RPAplans
were scored as usable as-is in 44% (with minor edits 91%). For whole-brain
treatment, RPA plans were scored as usable as-is in 67% (with minor edits
99%). For head/neck cancer, the normal tissue autocontours were acceptable as-is
in 89% (withminor edits 97%). The clinical target volumes (CTVs)were acceptable
as-is in 40% (with minor edits 93%). The volumetric-modulated arc therapy
(VMAT) plans were acceptable as-is in 87% (with minor edits 96%). For cervical
cancer, the normal tissue autocontours were acceptable as-is in 92% (with minor
edits 99%). The CTVs for cervical cancer were scored as acceptable as-is in 83%
(with minor edits 92%). The VMAT plans for cervical cancer were acceptable as-is
in 99% (with minor edits 100%).

CONCLUSION The RPA, a web-based tool designed to improve access to high-quality RT in
low-resource settings, has high rates of clinical acceptability by practicing
clinicians around the world. It has significant potential for successful imple-
mentation in low-resource clinics.

INTRODUCTION

Cancer cases worldwide are expected to soar to over
24 million by 2030, with the largest growth in low- and
middle-income countries (LMICs).1 Radiotherapy (RT) is a
cost-effective cancer treatment; over 50% of patients in
high-income countries receive RT during their treatment
course.2 However, over 90% of the population in low-
income countries lack access to RT.3 The ability to address
global cancer care cannot avoid discussions of RT access and
quality.

Extensive analyses of the RT needs of LMICs have often
focused on the necessary investment in hardware. The In-
ternational Atomic Energy Agency (IAEA) calculated that

only 52% of nations in Africa had access to external-beam
RT, 39% to brachytherapy, and no country had the capacity
to meet its population need.4 The Lancet Oncology Com-
mission estimated that it would require $184 billion US
dollars (USD) to scale up RT to meet needs in LMICs from
2015 to 2035, with a projected net benefit of $278.1 billion
USD over the same period.5 Hence, the capital investment in
RT, while substantial, is anticipated to be cost-effective.
Furthermore, investment in cancer treatment, imaging,
and quality of care is estimated to avert 7% of cancer deaths
worldwide.6

In addition to hardware availability, the lack of human re-
sources, namely trained radiation therapists, medical phys-
icists, and radiation oncologists, portends continued issues
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with RT availability, even in those centers with equipment. In
2014, it was estimated that there would be a global dearth of
over 29,000 radiation therapists, 9,000 medical physicists,
and 12,000 radiation oncologists.7 Further studies have shown
the considerable needs for education,8-10 implementation,11

and resource-specific treatment guidelines.12

One initiative to improve global RT access is automation, by
potentially reducing the number of highly skilled staff that
must be trained and making those on hand more efficient.
These methods promise potential time-savings for target
delineation and treatment planning.13,14 Automation, namely
deep learning and artificial intelligence (AI) approaches, have
been increasingly common inmedicine over the past decade,15

although these have focused on workflows, staffing, and
funding in high-income regions.

The Radiation Planning Assistant (RPA) is a fully automated
RT contouring and planning system that can provide high-
quality RT solutions for low-resource centers around the
world.16,17 The RPA is designed to be agnostic to equipment
and software at each site; as a remotely accessed website, it
can be used for contouring and planning regardless of the
local vendor. As of May 2023, the RPA has been US Food and
Drug Administration (FDA) 510(k) cleared, not yet being
marketed. It has been developed in partnership with LMIC
users, with the goal of creating a tool thatwill help scale their
efforts to treat more patients with high-quality RT.

The original development of theRPA focused on cancers of the
cervix, breast, andhead/neck;whole-brainRTwas also added.
Although analysis of the targets, normal tissues, and fields/
plans can bedone geometrically usingpredeterminedmetrics,
each physician fundamentally needs to determine if they will
choose to use these contours and plans for their patient.
Previouswork has shown variability of these approaches from
different physicians,18-20 even with guidelines.21 Metrics may
not predict whether the resultant AI-generated contours and

plans/fields are clinically acceptable; physicians need to judge
what should be delivered to their patients.

In this study, we have assessed the clinical acceptability of
RPA-generated contours, fields, and RT plans through a
comprehensive review by physicians around the world. These
analyses focused on cases of head/neck cancer, cervix cancer,
and breast cancer, as well as whole-brain RT, as these en-
compass multiple RT techniques and levels of complexity.

METHODS

Automated Workflows

The RPA system uses one-step and two-step workflows,
depending on the level of complexity of the cases (Fig 1). The
one-step workflow is an end-to-end automated process, in
which the contours and the plan are generated in a single step.
The treating physicianmakes specific selections at the start of
the process (eg, targets and dose) and at the end (eg, edits and
final plan review). The two-step workflow represents a more
typical workflow, where contours are generated and ap-
proved, and then the RT plan is generated and approved. This
level of automation is appropriate for highly conformal
planning, where automatically generated targets may require
editing before planning.

Users access these services from theRPAwebsite,22 requiring
upload of computed tomography images and download of
the RPA outputs (contours and plans). This low-cost ap-
proach was selected to make the tool widely available
without the need for local installation or upgrades. To ensure
that the plans are correct for the local treatment device, the
user must recalculate the RPA plans in their own treatment
planning system; this also ensures that the plans enter the
local clinical workflow, with clinical review and approval.
Extensive risk assessment has demonstrated the vital role of
the final reviews in this process.23,24

CONTEXT

Key Objective
To determine if radiotherapy (RT) autocontours and autoplans created by the Radiation Planning Assistant, a fully au-
tomated suite of RT contouring and planning tools, are clinically acceptable by physicians around the world.

Knowledge Generated
Contours and plans were created for cancers of the head/neck, cervix, breast, and whole brain. Extensive physician review,
mimicking a real-life workflow, demonstrates that these tools are clinically acceptable for patient care, with no or minor
edits.

Relevance
The growing burden of cancer is disproportionately affecting patients in low- and middle-income countries where access to
RT is limited by hardware and staffing issues. This study demonstrates that automation can produce clinically acceptable
RT contours and plans for a diverse group of clinics, patients, and practice settings throughout the world.
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Algorithms and Models

The RPA uses AI algorithms to generate contours and treat-
ment plans, with dose calculations and other functions pro-
vided by a commercial treatment planning system (Eclipse,
Varian Medical Systems); however, the individual LMIC clinic
does not need to have this software program. Specific tasks
necessary for creation of contours and plans are as follows.

Isocenter Placement

The marked isocenter is automatically localized from the
positions of 3-point external fiducial markers, and the body
is automatically contoured.

Cervical Cancer: Four-Field Box Plans on the Basis of Bony
Pelvic Anatomy (one-step workflow)

These are relatively simple plans recommended by ASCO and
the IAEA for the treatment of cervical cancer in low-resource
settings.12,25 The RPA creates these plans in a single step.
First, the pelvic bones are contoured using deep learning
models. This anatomy is then projected into each beam’s eye
view, and the shape of the treatment field apertures are
designed on the basis of visible bony landmarks. Dose is then
calculated, and beam weights optimized to give a homo-
geneous dose distribution.

Cervical Cancer: Four-Field Box Plans on the Basis of Soft
Tissue (one-step workflow)

These are also simple plans that are straightforward to re-
view and treat. The advantage of this approach is that it does
not rely on assumptions about the geometric relationships
between the targets and bony landmarks; the disadvantage is
that they require more physician time. The RPA automati-
cally generates the target contours, generates treatment
field shapes, and optimizes the beamweights in a single step.

Cervical Cancer: Volumetric-Modulated Arc Therapy
Plans (two-step workflow)

Volumetric-modulated arc therapy (VMAT) planning changes
the treatment field shapes while rotating the gantry. The
advantage of this technique is that it allows conformal dose

distribution to the targets and reduced dose to normal
tissues. However, this approach requires advanced treatment
devices and significant human and equipment resources for
plan preparation and quality assurance. The RPA automati-
cally generates the target contours. The treating physician
must review, edit, and approve the contours before the au-
tomatic generation of a treatment plan.

Breast Cancer—Postmastectomy: Multiple-Field Three-
Dimensional Conformal Plans (one-step workflow)

RT planning for postmastectomy breast cancers requires a
complex combination of matched radiation fields and tech-
niques to improvedosehomogeneity. TheRPAcreatesaplan in
a single step. First, targets and normal tissues are automati-
cally contoured. Then, support vector machine classification
determines the entry angles for the treatment fields; this
allows treatment of the chest wall and supraclavicular lymph
nodes while minimizing dose to the lung, heart, trachea, and
spinal cord. Next, treatment field shapes are calculated from
beam’s-eye-view projections of the healthy tissues. Finally,
small subfields are added to the plan to improve dose ho-
mogeneity (known as field-in-field).

Head/Neck Cancer: VMAT Plans (two-step workflow)

VMATfor the treatment of head/neck cancer requiresmultiple
target dose levels and challenges because of the number of
adjacent critical normal tissues. The RPA generates these
plans in a two-step process. The treating physician indicates
the desired elective nodal coverage (elective clinical target
volumes [CTVs]), and autocontours for the elective CTVs and
normal tissues are then generated. The treating physician
then delineates the gross tumor volume (GTV) and highest
dose CTV (CTV1), and reviews and edits (as needed) the
autocontoured CTVs and the autocontoured normal tissues.
Once the contours are approved, VMAT plans are automati-
cally generated and available for review and approval.

Whole Brain: Opposed Lateral Plans on the Basis of Bony
Anatomy (one-step workflow)

Whole-brain treatments typically involve opposed lateral
beams, with fields designed to reduce dose to some normal
structures, such as the lenses of the eye. TheRPA creates plan

Service request Autocontouring Autoplanning
Physician

review

Service request Autocontouring Physician
review/editing

Autoplanning Physician
review

One-Step

Two-Step

FIG 1. Schematic of one-step and two-step workflows of Radiation Planning Assistant. The physician involvement is
shown in the dark fields.
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in a one-step workflow, similar to cervical cancer. There are
two approaches that are commonly used to avoid the normal
structures: (1) using the multileaf collimators or (2) rotating
the collimator (main field/jaws). We developed automatic
solutions for both approaches.

Verification Algorithms

Quality assurance review of contours and treatment plans is
extremely important to ensure that errors do not result in
incorrect patient treatments. Automation of these quality
assurance tasks can support the human plan review process
and reduce risk. Specifically, the RPA includes primary
models used to generate the actual treatment plan, and
verification models that are used to check the treatment
plan, on the basis of the concept that two independent
approaches are unlikely to fail in the same way. These
include determination of isocenter, contours, and field
apertures. They are either trained with different AI archi-
tectures or use completely different automated algorithms.
Approach 1 and approach 2 (Tables 1 and 2) represent the two
different algorithms designed to be quality checks on each
other. Of note, there is only a single approach used for target

structures (Table 1) since variation in these likely reflects
treatment philosophy differences rather than a true error.

Acceptability Testing and Statistical Plan

Previous studies have shown that there can be significant
variation in what is considered clinically acceptable between
radiation oncologists18-20; this can be the result of differences
in style, training, local clinical approach, clinical trial para-
digms, and other factors. Thus, to demonstrate reasonable
clinical utility of the RPA, it is necessary to collect reviews
from clinical professionals from multiple institutions.

Results from earlier studies indicated that we could expect
close to 90%of automatically generated plans to be clinically
acceptable.26,27 When accounting for the potential added
variability of physicians from multiple centers, our working
hypothesis was that at least 80% of automatically generated
treatment plans would be considered clinically acceptable.

The clinical acceptability of each automated task was
assessed for 75 separate patient test cases (for each subsite)
by a minimum of three reviewers, each from a different

TABLE 1. Acceptability of Radiation Planning Assistant Autocontouring of Normal Tissues and Targets

Organ

Normal Tissues Targets

Approach 1a Approach 2a

Target Region
% Use
as-is

% Use as-is or After
Minor Edits

% Use
as-is

% Use as-is or After
Minor Edits

% Use
as-is

% Use as-is or After
Minor Edits

Brain 99 100 100 100 Retropharyngeal lymph
nodes

83 96

Brainstem 97 100 80 96 Lymph nodes II-IV 56 90

Cochlea 98 100 99 100 Lymph nodes IA-V 47 92

Esophagus 93 97 93 99 Lymph nodes IB-V 49 93

Eye 100 100 99 100 Lymph nodes II-V 59 92

Larynx 71 96 91 97

Lens 88 89 89 89

Mandible 100 100 100 100

Optic chiasm 49 87 95 100

Optic nerve 88 97 98 100

Parotid gland 74 88 100 100

Spinal cord 100 100 99 100

Submandibular
gland

76 80 87 92

Bladder 85 93 75 89 Primary CTV 33 75

Femoral head 99 100 100 100 Nodal CTV 83 92

Kidney 95 98 97 99 PAN 88 93

Liver 77 88 — —

Rectum 85 97 40 91

Spinal cord 100 100 96 100

Lung 91 99 — —

Heart 56 91 — —

Abbreviations: CTV, clinical target volume; PAN, para-aortic lymph nodes.
aApproaches 1 and 2 represent different algorithms that serve as cross-checks on each other.
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institution (which would mean 25 reviews per reviewer).
Each reviewer was asked to score using a 5-point Likert
scale: (1) unusable, (2) major edits, (3) minor edits that are
required, (4) minor edits that are not required (ie, stylistic
differences), and (5) use as-is. For simple plans that are easily
edited, a score of at least three was defined as clinically ac-
ceptable. For VMAT plans, which are more difficult to edit, a
score of at least four was defined as clinically acceptable. Of
note, results were considered acceptable only if they were
considered safe (even if minor edits were not made). This
analysis was done with institutional review board approval.

With 75 patient cases, each scored by one reviewer, if 67
(89.3%) cases receive an acceptable rating, then the corre-
sponding exact 95%CI for the rate of acceptable planswill be
(80.1% to 95.3%).

RESULTS

Reviewers

A group of 31 radiation oncologists from 16 different insti-
tutions, six countries, and five continents participated. Each
case was reviewed by at least three radiation oncologists,
each from a different institution. The radiation oncologists
only reviewed cases for disease sites they routinely treated.
For usability and other RPA development, an additional 29
residents, physicists, dosimetrists, and radiation therapists
reviewed cases. However, their scores are not included in the
final analysis.

Review Process

Most reviews were performed in two to three 1-hour online
sessions, hosted by a member of the RPA team, where the
reviewer was given access to the anonymized patient data

(examples shown in Fig 2). For simple cases (such as review
of body contours or whole-brain apertures), reviewers also
had the option to review plans on a pdf document.

Review Results

Acceptability results were generally high for normal tissues
and targets (Table 1; Fig 3) as well as plans (Table 2; Fig 4).
Someminor editingwas recommended, especially for elective
lymph node CTVs for head/neck planning. This is required by
the RPA, as there is not yet sufficient ability for the RPA to
contour GTV. Some editing of CTVs is, therefore, expected,
especially in the vicinity of the GTV. This was also seen, but to
a lesser degree, for the head/neck VMAT plans, where one
reviewer scored 40% of plans as use as-is (96% use after
minor edits), but the other reviewers scored 76%-96% of
plans as acceptable as-is. This indicates a difference in the
time-savings that are achievable, and how this will, to some
extent, depend on how well aligned the planning philosophy
of the radiation oncologist is with that of the RPA.

A similar observation was seen for the dose distribution for
one of the whole-brain approaches, where one reviewer
scored only 56% of plans as acceptable as-is or after minor
edits, compared with 88% and 92% for the other two re-
viewers (79% overall). This indicates that the RPA-generated
whole-brain approach is consistent with the clinical practice
of two of the reviewers, and less so for the third (which could
affect their use of this module of the RPA).

Acceptability did vary by technique. Acceptability results
were generally high for VMAT plans. The results for con-
formal plans were presented in terms of the field shapes,
which define the treatment volume, and the dose distribu-
tion. Overall results were good, but the dose distribution
acceptability resultswere slightly lower; this is likely because

TABLE 2. Acceptability of Radiation Planning Assistant Automated Treatment Plans

Plan Type

Approach 1a Approach 2a

% Use as-is % Use as-is or After Minor Edits % Use as-is % Use as-is or After Minor Edits

Head and neck VMAT 87 96 — —

Cervix four-field box (bones)—field shape 93 97 91 100

Cervix four-field box (bones)—dose distribution 81 93 — —

Cervix four-field box (soft tissue)—field shape 86 98 — —

Cervix four-field box (soft tissue)—dose distribution 79 96 — —

Cervix VMAT 99 100 — —

Postmastectomy breast 44 91 — —

Whole brain (MLC shielding)—field shape 76 100 87 100

Whole brain (MLC shielding)—dose distribution 67 99 73 96

Whole brain (rotated collimator)—field shape 73 93 — —

Whole brain (rotated collimator)—dose distribution 51 79 — —

Abbreviations: MLC, multileaf collimator; VMAT, volumetric-modulated arc therapy.
aApproaches 1 and 2 represent different algorithms that serve as cross-checks on each other.
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A

B

C

FIG 2. Example RPA-generated contours and plans: (A) head/neck, (B) cervix, and (C) whole brain.
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the version of the RPA tested did not include the use of
subfields to improve dose homogeneity. In other work, we
have shown that automatically adding subfields results in
higher levels of acceptability.26,28,29 Chest wall acceptability
results were also lower for use as-is, although high after
minor edits. This is consistent with our earlier work, where
we showed that these plans are easily corrected to give
clinically acceptable plans.

Outliers

The reviewers were not asked to follow specific guidelines
but to follow their own clinical practice. Autocontouring of
the lymph node CTVs for head/neck treatments demon-
strated noticeable interuser disagreement in the assess-
ment of the clinical acceptability of the output of the RPA.
For the lymph node CTV autocontouring, three of four
radiation oncologists scored the autocontours as use as-is
or after minor edits for 72%-100% of cases (depending on
the specific lymph node level and the oncologist). However,
one radiation oncologist scored lymph node CTVs as use as-
is or after minor edits for only 12% of cases. These results
indicate that there can be significant variations in what
individual users will consider to be clinically acceptable.
Most users accept the RPA contouring style (determined by

the original training data) and approve the autocontours,
but there will be some users who do not accept this clinical
approach.

DISCUSSION

The multiple contouring and treatment planning tasks in
radiation oncology are uniquely suited for automation; the
RPA was created to use AI approaches to improve efficiency
and availability of high-quality RT in low-resource settings.
However, metrics on contouring improvement and plan
quality do not capture real-world scenarios; in the end, will
physicians accept automated plans created by the RPA?

In this study, extensive physician reviews of RPA auto-
contours and plans demonstrate that these are largely
acceptable as-is or with minor edits (considered style
differences without impact on safety or disease control).
This is extremely important, showing that the output of the
RPA is not only safe but clinically relevant to practitioners
for patient care.

Automated approaches to RT tasks are increasingly being
developed. The success of these is typically demonstrated by
similarity metrics, such as Dice similarity coefficient (DSC)
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(light bars) are shown for each normal tissue contoured with the primary approach.
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and Hausdorff distance, and dose-volume histogram met-
rics. These metrics do not necessarily mirror physician ac-
ceptability.30 Understanding the best practices for creation of
a data set and evaluation has been the subject of extensive
testing in recent years.

One key component to automated approaches is training
cases on high-quality data and extensive testing of the AI-
generated results. Tryggestad et al31 demonstrated that data
curation is important; a team devoted over 6,000 person-
hours to carefully curate a series of 490 patient cases. Amjad
et al created a curated set of 42 organs at risk for head/neck,
abdomen, andmale pelvis contours forfive autosegmentation
models. These had a high rate of DSC and physician accept-
ability,32 and automation reduced contouring time by 88% for
the male pelvis, 80% for head/neck, and 65% for abdominal
models. Byun et al33 used 11 experts from two institutions to
serve as the basis for nine organs at risk in 10 cases of breast
cancer (intact); the resultant 110 manual contours were
compared with autocontours and physician-edited auto-
contours, demonstrating a high DSC, acceptability, and re-
duced time to final contours through the use of automation.
Duan et al34 evaluated prostate cancer autocontours and
autoplans, showing 95.7% of autocontours were scored as
perfect (34.8%) or acceptable (60.9%). Interestingly, 39.6%
of the autocontours were considered equal or better than the
reference contours.

Our work is consistent with these previous experiences,
demonstrating the ability of well-trained AI approaches to
create normal tissue autocontours and robust RT plans.
However, these previous analyses do not provide end-to-
end planning services (such as the one-step creation of
cervical cancer plans using four-field box and soft tissue
contouring or whole brain) and elective target coverage
contouring and planning (such as the two-step creation of
cervical cancer VMAT and head/neck VMAT plans). In this
analysis, the RPA is shown to provide high-quality end-to-
end autoplanning and contouring results that are clinically
acceptable to physicians.

These data do show some potential concerns regarding AI-
based contouring and planning. The scoring demonstrated
that interobserver variability and physician style affects
opinions on clinical contouring and planning. For instance,
one physician did not find the head/neck contours and plans
to be acceptable. The acceptability by the remainder of the
physicians does suggest that this individualmay be an outlier,
but it still highlights the knownphysician variability.18-20 Once
the RPA is deployed clinically, we will gain experience on how
much physician variability affects clinical use and develop
strategies to mitigate this. Another potential issue to be ex-
plored will be practicality and user-friendliness of the RPA. In
terms of overall interest, previous work from our group
demonstrated overwhelming enthusiasm in the RPA (86.7%)
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and anticipation of usability within 2 years (80%)35; this
survey also showed 83.4% believed it would improve their
clinical workflow.We look forward to clinical implementation
in 2023-2024 to understand more practical aspects to ensure
usability and uptake.

Despite the high degree of clinical acceptability in this
work, there are still potential limitations to clinical de-
ployment for actual patients. In the study byMcIntosh et al,
researchers extensively tested automated planning for
prostate cancer with clinical acceptability of the machine
learning plans in 92% of cases in the testing phase; however,
on clinical deployment, the selection of the machine learning
plans dropped from83% to61%.36 This highlights that further

testing is needed, and ultimately, physicians will choose what
they feel is the best plan for their patient, regardless of its
source.

In summary, this work demonstrates that the RPA can gen-
erate automated contours for CTVs and organs at risk,
treatment fields, and plans for a wide variety of cancer types
that are clinically acceptable as-is or with minor edits in the
majority of cases. With recent FDA 510(k) clearance, future
work will be to transition this to clinical practice in centers
around the world to establish true clinical implementation
and practicality. These datawill be crucial to adapt the system,
with regard to contouring/planning and workflow/usability,
to improve RT to low-resource settings around the globe.
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