
TYPE Original Research
PUBLISHED 18 January 2023| DOI 10.3389/fepid.2022.1057047
EDITED BY

Andre Siqueira,

Instituto Nacional de Infectologia Evandro

Chagas (INI), Brazil

REVIEWED BY

Rui-Si Hu,

University of Electronic Science and

Technology of China, China

Muhammad Ehsan,

Islamia University of Bahawalpur, Pakistan

*CORRESPONDENCE

Hannah Klim

hannah.klim@ndm.ox.ac.uk

Kimberly M. Fornace

kimberly.fornace@glasgow.ac.uk

SPECIALTY SECTION

This article was submitted to Infectious Disease

Epidemiology, a section of the journal Frontiers

in Epidemiology

RECEIVED 29 September 2022

ACCEPTED 28 December 2022

PUBLISHED 18 January 2023

CITATION

Klim H, William T, Chua TH, Rajahram GS,

Drakeley CJ, Carroll MW and Fornace KM (2023)

Quantifying human-animal contact rates in

Malaysian Borneo: Influence of agricultural

landscapes on contact with potential zoonotic

disease reservoirs.

Front. Epidemiol. 2:1057047.

doi: 10.3389/fepid.2022.1057047

COPYRIGHT

© 2023 Klim, William, Chua, Rajahram,
Drakeley, Carroll and Fornace. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.
Frontiers in Epidemiology
Quantifying human-animal
contact rates in Malaysian
Borneo: Influence of agricultural
landscapes on contact with
potential zoonotic
disease reservoirs
Hannah Klim1,2*, Timothy William3,4,5, Tock H. Chua6,
Giri S. Rajahram5, Chris J. Drakeley7, Miles W. Carroll1

and Kimberly M. Fornace7,8,9*
1Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of
Medicine, University of Oxford, Oxford, United Kingdom, 2Future of Humanity Institute, Faculty of
Philosophy, University of Oxford, Oxford, United Kingdom, 3Infectious Diseases Society
Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia,
4Gleneagles Hospital, Kota Kinabalu, Malaysia, 5Clinical Research Centre, Queen Elizabeth II Hospital,
Kota Kinabalu, Malaysia, 6Faculty of Medicine and Health Sciences, University of Malaysia Sabah, Kota
Kinabalu, Malaysia, 7Faculty of Infectious and Tropical Diseases, London School of Hygiene and
Tropical Medicine, London, United Kingdom, 8School of Biodiversity, One Health and Veterinary
Medicine, University of Glasgow, Glasgow, United Kingdom, 9Saw Swee Hock School of Public
Health, National University of Singapore, Singapore, Singapore

Changing landscapes across the globe, but particularly in Southeast Asia, are
pushing humans and animals closer together and may increase the likelihood of
zoonotic spillover events. Malaysian Borneo is hypothesized to be at high risk of
spillover events due to proximity between reservoir species and humans caused
by recent deforestation in the region. However, the relationship between
landscape and human-animal contact rates has yet to be quantified. An
environmentally stratified cross-sectional survey was conducted in Sabah,
Malaysia in 2015, collecting geolocated questionnaire data on potential risk
factors for contact with animals for 10,100 individuals. 51% of individuals reported
contact with poultry, 46% with NHPs, 30% with bats, and 2% with swine.
Generalised linear mixed models identified occupational and demographic
factors associated with increased contact with these species, which varied when
comparing wildlife to domesticated animals. Reported contact rates with each
animal group were integrated with remote sensing-derived environmental data
within a Bayesian framework to identify regions with high probabilities of contact
with animal reservoirs. We have identified high spatial heterogeneity of contact
with animals and clear associations between agricultural practices and high
animal rates. This approach will help inform public health campaigns in at-risk
populations and can improve pathogen surveillance efforts on Malaysian Borneo.
This method can additionally serve as a framework for researchers looking to
identify targets for future pathogen detection in a chosen region of study.
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Introduction

Global land changes caused by agricultural expansion and

increased urbanization are widely thought to increase the risk

of zoonotic spillover events (1–5). In particular, the reduction

of primary forests has changed the density, species

composition and distribution of disease reservoir hosts and

will therefore influence the likelihood of interspecies

transmission (2, 6, 7). This threat is critical in Southeast Asia,

where deforestation rates are amongst the highest in the world

(8, 9).

The island of Borneo has seen a particularly devastating

amount of land change over the last 50 years, during which

time an estimated 50% of the original forest area was lost (10,

11). These once forested regions are often being replaced with

oil palm plantations (10, 11). This destruction of natural

habitats will significantly impact the island’s biodiversity over

time, which is currently home to at least 10,000 different

species of plants and 1,000 animals (12, 13). Not only is it

ecologically essential to preserve these species and their

habitats but, as forests are destroyed, it is hypothesized that

some species will be forced closer to human populations,

while others may go extinct. There are an estimated 245

species of forest vertebrates on Borneo, which have the

potential to carry zoonotic pathogens with them if they move

from once remote regions towards human settlements (10).

These risks have been exemplified by emergence of the

zoonotic simian malaria parasite Plasmodium knowlesi in this

region, with human risks strongly associated with

deforestation (14).

Malaysian Borneo is hypothesized to be at high risk of

zoonotic spillover events precisely due to this proximity

between reservoir species and humans caused by deforestation

and the intensification of agriculture in the region (3, 15). A

zoonotic spillover event occurs when a pathogen spreads from

an animal into humans (16). These events can result in fatal

outcomes partly due to the absence of prior immunity to a

zoonotic pathogen. Over the last two decades alone, epidemics

and pandemics caused by viral zoonotic pathogens have

placed a burden on international healthcare systems and cost

many lives (17–20).

These outbreaks but particularly the ongoing 2019

coronavirus disease (COVID-19) pandemic caused by SARS-

CoV-2, have led many to call for the improvement of existing

surveillance methods for viral zoonotic pathogens (21–26).

While human-animal contact will not always lead to spillover

events, it is a prerequisite for a spillover event to occur. It is

therefore prudent for emerging infectious disease preparedness

to study human-animal encounters. While assumptions can

often be made about who is most likely to be in contact with

reservoir species (farmers, hunters, etc.), these contact rates

and risk factors for wildlife exposure have yet to be evaluated
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quantitatively. Several studies have highlighted the links

between environmental changes, agricultural intensification,

and spillover risk (1–5, 27), but there is still a need to

spatially define this risk based on habitat preferences and

human behaviours. Identifying populations and areas with

high reported reservoir contact could help prioritise future

surveillance efforts at the community level.

Here, we present a quantitative method for examining the

risk of exposure to zoonotic pathogens in Malaysian Borneo,

considering contact with known pathogen reservoir species,

including swine, poultry, non-human primates, and bats.

Swine and poultry have long been associated with a risk of

influenza A virus zoonoses (28). Lethal, highly pathogenic H5

avian influenza virus was isolated from poultry in Sabah,

Malaysian Borneo earlier this year (29), but no human

infections have been reported thus far. Swine have also

previously been associated with the transmission of Nipah

virus in Peninsular Malaysia, a virus that causes a disease with

a case fatality of between 40% and 75% (30). Fruit bats are

another suspected reservoir for Nipah virus and may have

contributed to previous spillover events, hence their inclusion

in this study (31). Finally, non-human primates (NHPs) were

also chosen for closer examination in this study due to the

spread of Reston Ebolavirus in the nearby Philippines (32), as

well as the transmission of simian zoonotic malaria in Sabah

(33), which has previously been linked to high reported

contact with macaques (14, 34). As these species are each

well-known pathogen reservoirs, understanding human

exposure to them is vital (28, 30, 35, 36).

In this study, we describe rates of human-animal contact

within the region, define individual and demographic risk

factors for contact, and develop predictive risk maps of

potential zoonotic hotspots using environmental and land

cover data. The high-risk individuals and regions identified

through this analysis will be excellent candidates for future

surveillance and serological studies.
Methods

Study population

An environmentally stratified, population-based cross-

sectional survey was conducted in 2015 in Northern Sabah in

Malaysian Borneo. The original purpose of this survey was to

identify risk factors for malaria as described by Fornace et al.

(3, 37). Briefly, a two-stage randomised sampling approach

was used to survey 919 villages (clusters) from 4 districts in

Northern Sabah, Malaysian Borneo, with an average

population of 90 individuals and 36 households. Villages were

classified into three groups (strata) based on the proportion of

forest cover in 2014 within a 2 km radius of the centre of the
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village (14). To obtain 95% confidence and 80% power for

estimating the seroprevalence of zoonotic malaria, it was

calculated that a sample size of 883 households per strata

would be required (2,650 in total) (3, 15). To meet this

requirement, 20 households per selected village were

randomly chosen. If the village had less than 20 households,

then all households were included. This was supplemented

with a random selection of other villages from the same strata

until the target sample size was met (3).

In total, 10,100 individuals from 2,650 households were

asked to respond to a questionnaire including a variety of

questions on demographic characteristics, habits, occupation,

socioeconomic status, and animal contact (Figure 1). A

household socioeconomic status index was created from

survey data by Fornace et al. (3) based on education, assets,

land, and construction. This socioeconomic index was divided

into quartiles. Average travel times to nearby hospitals and

clinics were also divided into quartiles based on community

and patient interviews and modelled travel times (38). All

individuals residing in the randomly selected households for

the past month were asked to participate in the survey,

excluding those younger than 3 months and those who could

not be reached after three attempts. Survey responses from

consenting individuals were collected with Pendragon Forms

VI (Pendragon Software Corporation, Chicago, IL, USA).
Ethical approval

Approval for this study was obtained from the Medical

Research Sub-Committee of the Malaysian Ministry of Health

(NMRR-14-713-21117) and the Research Ethics Committee of

the London School of Hygiene and Tropical Medicine (8340).

Written informed consent was obtained from all study

participants.
FIGURE 1

Sampled villages in Sabah, Malaysia. Map was built using village
latitudes and longitudes with the ggmap package (39) in RStudio
version 1.3.1093 (40, 41) with data from OpenStreetMap (61) and
map tiles by Stamen Design (62). Inset map was built with Google
Maps (60), red box indicates sampling region.
Rates of animal contact

Based on self-reported questionnaire data, individuals were

classified as reporting contact with four potential reservoir

species. For swine and poultry, ownership of these animals

was considered a daily interaction. For non-human primates

(NHPs), individuals were specifically asked if they saw these

animals each day, week, month, or year. Whether individuals

owned NHPs as pets or saw them around the house was

included in the individual risk factor analysis. For bats,

individuals were asked if they had seen a bat with no time

frame associated.

For NHPs, the total number of individuals reporting daily

sightings out of the total number of individuals sampled per

village was calculated to map the proportion of each village’s

sample population interacting with NHPs. The same method
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was used for bats, but the individuals who responded yes were

not assumed to have seen bats daily. For swine and poultry,

daily sightings were replaced with ownership to calculate the

proportion of each village interacting with these animals.

Maps displaying the proportion of each village interacting

with a zoonotic reservoir species were built based on village

latitudes and longitudes and coloured according to the

proportions calculated from the survey responses using

the ggmap package (39) in RStudio version 1.3.1093 (40, 41).

The number of individuals sampled per village ranged from 5

to 107 across 170 villages (10,100 individuals in total).
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Individual risk factor analysis

Binomial generalized linear mixed models (GLMMs) were

fit to understand individual risk factors which were associated

with animal contact, as described in Fornace et al. (3) using

the lme4 package (42) in R (40, 41). To adjust for the

sampling design, household was included as a random effect,

as well as a variety of fixed effects adapted from questionnaire

responses. A univariate analysis was first used to select from

95 possible explanatory variables; those with p≤ 0.2 were

included in the development of a final model (Supplementary

Tables S1–S4). Log likelihood ratio tests were then used to

identify the final model, through a parsimonious forward

stepwise approach with a logit link fit. Final adjusted odds

ratios and 95% confidence intervals were calculated using the

broom.mixed package (7) in RStudio version 1.3.1093 (40, 41)

(Supplementary Tables S5–S8).
Environmental risk factor analysis

We then aimed to assess the spatial distribution of human-

animal contact to develop predictive risk maps. As demographic

data was not available for all locations within the study site, we

only considered environmental predictors. Binomial models were

used to model contact with four categories of zoonotic reservoir

species (NHPs, bats, swine, and poultry) with the outcome as the

proportion of individuals per household reporting contact.

All households included in the study were geolocated and

integrated with remote sensing-derived environmental data on

land cover and climatic factors (37). Variable selection was

conducted using generalized linear models (GLMs) with 21 of

these potential environmental covariates. Data on elevation,

aspect, and slope were obtained from the ASTER Digital

Global Elevation Model (43) by Fornace et al. (3). The

average annual normalised difference vegetation index

(NDVI), which quantifies greenness of vegetation was

calculated from Moderate Resolution Imaging

Spectroradiometer 16-day composites at 250 m resolution (44)

as in Fornace et al. (14). Precipitation seasonality, 1,970–2,000

(coefficient of variation), mean diurnal range, 1,970–2,000 (°

C), minimum temperature of the coldest month, 1,970–2,000

(°C), average temperature, 1,970–2,000 (°C), precipitation of

the wettest month. 1,970–2,000 (mm), maximum temperature

of the warmest month, 1,970–2,000 (°C), and population

density were extracted from the WorldClim dataset (45, 46).

Household distance from mangroves, agricultural land,

irrigated farmland, the sea, old forest, bush forest, roads, oil

palm plantations, and rubber plantations were calculated by

Fornace et al. (3).

The possiblepredictor variablesweremean-centred and scaled.

Univariate analysis was first used to identify variables with p≤ 0.2
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to consider in the development of final models (Supplementary

Table S9). As mentioned above, the final variable selection used a

parsimonious forward stepwise approach of log-likelihood ratio

tests, with selected variables assessed for inclusion into

geostatistical models (Supplementary Tables S10–S13).

For all multivariate models, spatial autocorrelation of the

residuals was assessed with Moran’s I with p < 0.05 considered

statistically significant (Supplementary Table S14). For models

demonstrating residual spatial autocorrelation, geostatistical

models of animal contact were developed using a Bayesian

framework with integrated nested Laplace approximations

(INLA) using the R-INLA package (47, 48). Spatial effects were

modelled as a Matérn covariance function, using the stochastic

partial differential equation (SPDE) method (49). Spatial effects

were included for all risk maps except those relating to swine,

which did not have statistically significant spatial

autocorrelation (Supplementary Figure S2). For the model

intercepts and fixed effects coefficients, weakly informative

priors of normal (0, 100) were used (50).

The final models were evaluated using the deviance

information criteria (DIC) and area under the receiver

operating curve (AUC). Posterior probabilities were estimated

using 1,000 posterior samples. These posterior probabilities

were then used to predict the probability of animal contact

across the entire Sabah region. Uncertainty for these

predictions was visualized through standard deviation

(Supplementary Figure S1). Models with an AUC of less than

0.5 are not able to accurately predict the outcome beyond

random chance, while values of 1 would indicate models that

can predict outcomes perfectly (51). DIC was used to compare

final models with their non-spatial counterparts.

Final maps were visualized with ggplot2 (52) in R using the

viridis (53) colour palette.
Results

Distributions of animal contact

Maps displaying the proportion of a village’s sampled

population interacting with swine, poultry, bats, and non-

human primates in Northern Sabah are displayed in Figure 2.

10,100 individuals from 2,650 households in 170 villages were

included in this study. The sample population ranges in age

from 3 months to 105 years, with a mean of 29 and a median

of 25. The population was 47% men (n = 4,776) and 53%

women (n = 5,324).

30% of individuals reported having seen a bat (n = 2,983).

50% of those who reported seeing a bat were male, and the

group had a mean age of 32 with a median age of 30.

Individuals in the study cohort were also asked about the

frequency of NHP sightings with 617 individuals (6% of the

population) reporting daily, 1,774 weekly (18%), 1,080
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FIGURE 2

Human-animal contact rates by village. Proportion of sampled villagers interacting with (A) non-human primates, (B) bats, (C) swine, (D) poultry.
Animal sightings and ownership were based on responses from a questionnaire. Maps were built using village latitudes and longitudes with the
ggmap package (39) in RStudio version 1.3.1093 (40, 41) with data from OpenStreetMap (61) and map tiles by Stamen Design (62).
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monthly (11%), and 1,180 annual (12%) NHP sightings. 5,449

individuals, or 54% of the population, reported no sightings

of NHPs. The differences in age and gender distributions for

these wild animal sightings were mostly minimal versus that

of the overall population. For daily NHP sightings, the mean

age was 32 and the median was 30, while the group was 48%

male. For weekly sightings the mean and medians were the

same, but the population was 53% male. Those who saw

NHPs once a month had an average age of 33 with a median
Frontiers in Epidemiology 05
of 32 and were 51% male. The average age of those who

never saw NHPs was 26, with a median of 19, and this group

was 45% male. For annual NHP sightings, the group who

responded yes had similar age distributions to the other

groupings (mean = 31, median = 28), but this group was only

24% male.

Relative to the level of poultry ownership, swine ownership

is much less prevalent in the villages sampled. Only 229

individuals in the study reported swine ownership, while
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5,137 individuals reported poultry ownership. These differences

can be attributed to religious practices that ban pork

consumption.

There are clear geographic distributions of the wild animal

reservoir species in this study. Particularly high clusters of bat

sightings in villages located near Mount Kinabalu and Taman

Negara Gunung Kinabalu, which is a large, forested nature

preserve (Figure 2B). Overall, daily NHP sightings are heavily

concentrated on Banggi Island, which is the island just north

of mainland Sabah (Figure 2A). Due to the small sample size,

there were few villages with a high proportion of swine

owners (Figure 2C). The distribution of poultry ownership

appears to be spread somewhat evenly throughout the region

(Figure 2D).
Individual risk factors with contact with
animals

Exposure to zoonotic reservoir species (bats, swine,

poultry, or NHPs) was modelled based on survey responses.

The mixed effects modelling results are presented in

Figure 3, which displays adjusted odds ratios and 95%
FIGURE 3

Adjusted odds ratios for fixed effects for household and individual level facto
which yielded the model with the highest log likelihood is shown with househ
(C) poultry (−2037.7), and (D) swine (−272.94). A univariate analysis was first u
were included in the development of a final model. This model was made with
in RStudio version 1.3.1093 (40, 41).
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confidence intervals for both individual and household level

fixed effects (numeric values are provided in the

Supplementary Information). For wildlife animals, bats and

NHPs, age and farm work were associated with increased

odds of animal sightings (Figures 3A,B). Increased sightings

of bats were additionally associated with certain evening

activities, forest visits, proximity to rivers, and household

elevation, amongst other factors (Figure 3B). The odds of

increased NHP sightings were positively associated with corn

farming, fruit farming, collecting wood from the forest,

living near the sea, and having windows that can close

(Figure 3A). Additionally, populations with the highest

contact with NHPs had the lowest probability of seeking

treatment when they had a fever. Being male was statistically

significant in the univariate analysis for both NHPs and bats,

but not in the final model (Supplementary Tables S1, S2).

For poultry and swine, only household-level effects showed

statistical significance, as all individuals in a household were in

contact with the same domesticated animals. With respect to

poultry, farmland near the house, swidden farming, and

rubber farming were all associated with increased odds of

poultry ownership (Figure 3C). In the initial univariate

analysis for poultry ownership, many of the significant factors
rs impact the odds of animal exposure. The combination of predictors
old as the random effect for (A) NHPs (−2157.854), (B) bats (−4094.4),
sed to select from 95 possible explanatory variables; those with p≤ 0.2
the lme4 package (42) and analysed with the broom.mixed package (7)
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were related to household farming practices and livestock

ownership (Supplementary Table S3).

Piped water inside the house was the only significant factor

in the swine multivariate analysis (Figure 3D). Having piped

water inside one’s house was associated with decreased odds

of swine ownership. The household collecting wood from the

forest, house height, ethnicity, treatment-seeking behaviour,

and insect screens in houses were all significant in the

univariate analysis, but not in the multivariate final model

(Supplementary Table S4).
FIGURE 4

Environmental and land use factors may model high-risk regions for probabil
of mean posterior estimated probability of animal exposure were modelled us
final models were evaluated using the DIC and AUC. (A) is the model for NHP
where the DIC = 29957.03 and AUC= 0.9595; (C) models the estimated proba
the model for swine exposure, with a DIC of 8288.93 and AUC of 0.7817. Spa
not have statistically significant spatial autocorrelation through Moran’s I. For
priors of Normal (0, 100) were used (50).
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Predictive risk mapping

Environmental and land cover data was incorporated with

survey responses to generate spatial models of the Northern

Sabah region. These maps display the mean posterior

estimated probability of animal exposure based on

geostatistical modelling (Figure 4). Models of contact with

NHPs have a moderate predictive power (AUC = 0.7591),

while models of bat contact have high predictive power

(AUC = 0.9595). The model of swine contacts also had
ity of exposure to potential zoonotic reservoir species. Spatial patterns
ing R-INLA (47, 48) and the SPDE method (49) as the spatial effect. The
s with a DIC of 33087.32 and AUC of 0.7591; (B) is the model for bats,
bility of poultry exposure and DIC = 60218.65 and AUC = 0.5009; (D) is
tial effects were included for all risk maps except (D) swine, which did
the model intercepts and fixed effects coefficients, weakly informative
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moderate predictive power, although the spatial effect was not

included (AUC = 0.7817). The poultry contact model showed

poor predictive power with an AUC = 0.5009. Except for the

swine model, all models with a spatial effect had a lower DIC

than their non-spatial counterparts.

Regions with a high predicted probability of NHP sightings

are seen throughout the map, but particularly near the coastline

and on Banggi Island (Figure 4A). Regions with a low predicted

probability of NHP sightings tended to be the internal regions

of the map, including the villages around Mount Kinabalu

and the surrounding forested nature preserve. The opposite

effect was observed for bats, which had higher predicted

probabilities of sightings in these internal regions away from

the coast and near Mount Kinabalu (Figure 4B). There were

fewer bat sightings hotspots than of NHP sightings, which is

expected based on the survey responses.

Pockets of higher predicted probability of poultry exposure

are centred around village clusters, rather than specific

geographic features (Figure 4C). In the map of exposure to

swine, the inclusion of the spatial effect did not improve

model fit. There are a few regions with a high estimated

probability of swine exposure (Figure 4D), but the

uncertainty around these predictions is high (Supplementary

Figure S1).
Discussion

This study has presented a novel approach to identifying

high-risk populations for zoonotic disease surveillance in

Sabah. Since animal contact is a prerequisite for a spillover

event (5), it is crucial to understand populations and risk

factors associated with contact with these species, especially

those which are not domesticated. The results have shown

that there is a high level of individual and spatial

heterogeneity underscoring animal contact on Malaysian

Borneo, which should be considered by surveillance

programmes when targeting screening. Indeed, the risk factors

and high-risk regions enumerated through this analysis can be

used to identify priorities for surveillance and vaccination

within this region. The populations identified through this

analysis challenge standard assumptions, in that animal

contact was not defined by predicted high-risk occupations,

such as hunting. Instead, animal contact was driven by

proximity to agriculture and natural habitats of wildlife species.

Identification of risk factors by species allows us to consider

the threat of specific infectious agents and the differences

between domesticated and wild animals. For example, on

Banggi Island and many of the coastal Sabah regions, we

noted that the predicted probability of NHP exposure is at its

highest (Figure 4A). These areas would therefore be priorities

for monitoring of a variety of infectious agents including

Simian retroviruses (54), herpesvirus B (55), or Reston
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ebolavirus (32). NHP exposure has previously been reported

as a risk factor for zoonotic malaria within this region (3, 33,

34, 38), so understanding where this contact occurs will be

critical to malaria prevention efforts.

Conversely, the predicted probability of bat exposure is

highest in Sabah’s non-coastal and higher elevation regions of

Sabah, including nearly the thickly forested Mount Kinabalu

(Figure 4B). Indeed, from the survey data, visiting forests was

positively associated with the odds of seeing a bat (Figure 3).

Bats are associated with the transmission a variety of viruses

to humans, including SARS-CoV-1 (35), Ebola viruses (56),

and Marburg virus (57). The opposing regions for bat versus

NHP sightings were also validated through the survey-based

risk factor analysis; the odds of a bat sighting were decreased

by sighting NHPs around the house and those who saw

NHPs less frequently had increased odds of seeing a bat

(Figure 3). The differences between contact with NHPs and

bats are likely driven by habitat preferences and species

distribution, which have been captured in part by the

questionnaire data. These results highlight the risk of

disturbing natural habitats and increasing agriculture at

human-animal interfaces.

Certain demographic and socioeconomic factors were

identified as important for increasing the odds of sighting a

wildlife species, but not for exposure to a domesticated

species. Those over 55 years of age had the highest odds of

interacting with a wildlife species, along with those living in

houses located near bodies of water (river/sea) and houses in

remote locations (Quartile 4 of distance to the nearest

hospital or clinic) (Figures 3A,B). Engaging in farming was a

key risk factor in animal exposure, for both domesticated and

wildlife species. These results are consistent with previous

studies highlighting risk factors for emerging zoonotic disease

in this region, which included age, male sex, activities in the

forest, farm work, and proximity to oil palms and farmland

(3, 15, 34, 58). These results imply that while occupational

and behavioural factors drive contact rates, environmental

covariates can serve as a proxy for modelling animal contact

when other information is not available.

The risk maps presented here additionally highlight that the

odds of sighting particular animals increase with proximity to

farmland. Proximity to oil palm plantations, rubber farms,

and irrigated farmland were reoccurring risk factors

(Supplementary Information). The high deforestation rates

and replacement of old forest with farmland on Malaysian

Borneo mean that the proximity between households and

farmland will only increase (10, 11). This could increase the

risk of exposure to wild animals, and therefore, exposure to

zoonotic disease. Although farm work and visiting a forest are

hardly practices which can be stopped, these results seek to

bring awareness to the quantifiable risk from these activities.

The results presented here, along with the aforementioned

studies, highlight the threat of oil palm plantations which
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destroy natural wildlife habitats. This practice of mass

deforestation and replacement with industrial farmland can

and should be slowed to mitigate the risk of emerging

infectious disease events on Borneo.

While the geostatistical maps predict exposure patterns for

wild animals (bats and NHPs), a limitation of this approach is

that environmental covariates do not appear to be well-suited

to predicting exposure to domesticated species. This pattern

can be seen through the AUC values: the poultry model AUC

indicated worse predictive ability than the AUC results for

NHPs and bats, which both had moderate predictive ability.

For swine, the model was not spatially correlated, which is

likely due to the small number of swine owners within the

survey population (roughly 2%). As swine is domesticated, it

is predicted that the risk maps would follow a similar pattern

to that of poultry—with exposure clusters around villages—if

there were more swine owners in the region. Additionally, the

risk factor analysis for swine revealed that piped water was

the only factor which was associated (negatively) with the

odds of swine ownership. However, piped water is more likely

to be available to Muslim households due to government

development action. As Islamic beliefs prohibit rearing,

contact, and consumption, Muslims do not keep swine. Thus,

it is more likely to be religion, than piped water, that has the

association with swine ownership (59).

Another limitation of this study is that the survey responses

about animal contact are self-reported and therefore, subject to

bias. However, this bias in the data is mitigated to an extent

through the large number of participants from a variety of

demographic backgrounds. Furthermore, the specific species

of bats and NHPs sighted by study participants are unknown.

Species specificity is vital for certain pathogens, such as

zoonotic malaria (33) and Nipah virus (31). More generally,

animal contact, as reported here, is a term that lacks detail

regarding the nature of these interactions. In future surveys, it

could improve the models shown here to understand the type

of contact, such as close contact versus mere proximity, eating

bushmeat, or guano collection. This study did not record

sources of indirect animal contact from vectors. Future studies

could extend this work by integrating the models presented

here with a deeper analysis of contact and through

comparisons to vector distribution.

Thus far, maps outlining the threat of zoonotic transfer have

tended to be on a global scale (2, 4). World maps generated by

Allen et al. and Carlson & Albery et al. estimate Borneo and the

surrounding area as a region which is likely to experience

zoonotic spillover events due to bat encounters (4) and

biodiversity (2), along with a variety of climatic and

demographic factors. By contrast, the work presented here

provides a similar output, but on a smaller and more detailed

scale, which can be implemented immediately within Sabah.

This study allows public health officials to pinpoint villages or

coordinates which are most at-risk and is specific to Sabah’s
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unique demographic and environmental topography. In

settings where resources need to be prioritized, the methods

presented here could be used as a novel tool for targeted

monitoring of spillover events from wild animals. To our

knowledge, an approach integrating such detailed population

and environmental data to build risk maps has not previously

been presented. A serological analysis of the at-risk

individuals identified through this study will be an important

next step in assessing the predictive power of our models.

This method could be applied to other regions where cross-

sectional surveys have been conducted if spatial information is

available. Future studies illustrating detailed risk maps for

other regions will provide valuable insights into the

widespread impacts of climate change on zoonotic risk.
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