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Abstract: Improvements in irrigated areas’ classification accuracy are critical to enhance agricultural
water management and inform policy and decision-making on irrigation expansion and land use
planning. This is particularly relevant in water-scarce regions where there are plans to increase
the land under irrigation to enhance food security, yet the actual spatial extent of current irrigation
areas is unknown. This study applied a non-parametric machine learning algorithm, the random
forest, to process and classify irrigated areas using images acquired by the Landsat and Sentinel
satellites, for Mpumalanga Province in Africa. The classification process was automated on a big-
data management platform, the Google Earth Engine (GEE), and the R-programming was used
for post-processing. The normalised difference vegetation index (NDVI) was subsequently used to
distinguish between irrigated and rainfed areas during 2018/19 and 2019/20 winter growing seasons.
High NDVI values on cultivated land during the dry season are an indication of irrigation. The
classification of cultivated areas was for 2020, but 2019 irrigated areas were also classified to assess
the impact of the Covid-19 pandemic on agriculture. The comparison in irrigated areas between
2019 and 2020 facilitated an assessment of changes in irrigated areas in smallholder farming areas.
The approach enhanced the classification accuracy of irrigated areas using ground-based training
samples and very high-resolution images (VHRI) and fusion with existing datasets and the use of
expert and local knowledge of the study area. The overall classification accuracy was 88%.

Keywords: spatial analysis; water management; change detection; vegetation indices; image classification

1. Introduction

Existing global food and water insecurity challenges are being compounded by in-
creasing temperatures and drought recurrences and increasing demand for water and
food due to population growth [1,2]. The need to meet the growing food requirements is
intensifying pressure on freshwater resources, which is a cause for concern under climate
change [3–6]. The warming climate is exacerbating the challenge of water scarcity, resulting
in increased aridity and shifts in agro-ecological zones, affecting crop yields [7]. Irrigation
already uses more than 70% of available freshwater resources, on only 18% of cultivated
areas globally [8]. Thus, climate change and the increasing demand for food drive the
huge increases in irrigated agriculture, changes that require innovative approaches that
improve the productive use of water [3,7]. However, strategies on irrigation expansion
require accurate information on the spatial extent of irrigated agriculture, which is currently
scant [6,9].
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Accurate irrigated area maps are critical for informing policy and supporting decision-
makers to formulate coherent and transformative strategies with irrigation as an indispens-
able climate change adaptation strategy [6]. Besides, accurate information on the extent
of irrigated areas goes beyond water resources management; its importance cascades into
water and food security and assessing the impact of climate change on the agriculture
sector [6,10]. However, knowledge on the actual extent and spatial distribution of irrigated
areas remains scant, despite the many attempts that have been made to map irrigated areas
worldwide [11–13]. Existing irrigated area datasets developed at varying spatial scales
and resolutions, including the FAO (Food and Agriculture Organization of the United
Nations) database [14], the Global Map of Irrigated Areas version 5 (GMIA 5.0) [15], the
MIRCA2000 product [16], and IWMI’s (International Water Management Institute) irrigated
area map [17]. In 2016, IWMI further developed an improved irrigated area map for Asia
and Africa using canonical correlation analysis and time-lagged regression at 250 m spatial
resolution for 2000 and 2010 [13]. Although these datasets are important for indicating
irrigated areas, they generally over-estimate the areas due to the low spatial resolution
data used [18]. A recent study in South Africa has shown how low spatial resolution data
can result in over-estimates of irrigated areas, particularly in smallholder fields that are
about 2 ha in size, very small to be detected by low spatial resolution satellites [18].

Advances in remote sensing technologies in conjunction with the emergence of big
data and cloud-based processing platforms such as Google Earth Engine (GEE) are facili-
tating the classification of irrigated areas within improved accuracies in a time and cost-
effective manner, enhancing the monitoring of these at both local and global scales [19,20].
This is aided by freely available high-resolution remotely sensed products and novel
non-parametric machine learning algorithms for land use classification [18,21,22]. Super-
vised image classification machine learning algorithms include Support Vector Machine
(SVM), Random Forest (RF), decision tree algorithms, and Extreme Gradient Boosting (XG-
boost) [23]. Managing the increasingly large volumes of remotely sensed data and products
is challenging by traditional processing techniques [9]. These cumbersome and slow pre-
processing, processing, and post-processing traditional approaches are being replaced by
novel machine learning algorithms embedded in cloud computing big data platforms such
as GEE [9,20]. The GEE provides access to many petabytes of remotely sensed spatial
datasets, enabling their timely geo-processing using machine learning algorithms and
batch processing [9].

Methods that improve the accuracy of irrigated areas are critical for supporting
decision-making on irrigation expansion. Advances in machine learning and big data
management and processing platforms are improving the accuracy and speed of generating
cultivated areas. This study used a non-parametric machine learning algorithm, the
random forest, to classify near accurate irrigated areas using high-resolution satellite
images of Mpumalanga Province, South Africa. The objective was to develop a spatial
model that assists policy and decision-makers to make informed assessments on crop
water requirements, water allocation, agricultural land planning, crop evapotranspiration
patterns, basin hydrology, and the impact of different types of irrigation at any spatial scale
on an annual basis.

2. Methods
2.1. Description of the Study Area

Mpumalanga Province (Figure 1) lies in the east of South Africa, sharing international
borders with Eswatini and Mozambique. In South Africa, it shares its borders with the
following provinces: Limpopo to the north, Gauteng to the west, the Free State to the
southwest, and KwaZulu-Natal to the south. Mpumalanga Province has a total land area
of about 76,495 km2, representing 6.3% of the total land area of South Africa, making it
the second-smallest province after Gauteng. It is divided into three district municipali-
ties, namely Ehlanzeni, Nkangala, and Gert Sibande. The topography of the province is
characterised by a Great Escarpment, dividing its land area into two major sections: (a)
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the Plateau area with an elevation of more than 2000 m to the west, and (b) the Lowveld
area in the east [24]. The two topographic zones determine the province’s climate where a
temperate climate dominates the Highveld, whilst a sub-tropical climate dominates the
Lowveld areas [25].

Figure 1. Map of Mpumalanga Province and is location in in South Africa and Africa.

Vegetation is predominantly grassland. Agriculture is mostly irrigated in both com-
mercial and smallholder farming areas. Smallholder irrigation is predominant in former-
homelands, also called Bantustans, areas allocated to indigenous black people during the
apartheid era and are generally poorly resourced. A small section in the east lies within
the Kruger National Park. The rivers within the province hold some of the most valued
ecologically rich systems in the whole of South Africa [26], apart from its rich mineral base
that includes huge coal reserves, whose mining is, however, threatening the ecological
infrastructure [24].

Rainfall is seasonal, occurring during the summer season (October to February), as
indicated in Figure 2. Like the rest of South Africa, the Mpumalanga Province is water-
scarce with almost all its available freshwater resources now allocated, leaving little room
for further development [25]. The winter season (April to August) is generally dry and
cold (Figure 2), with occasional light snow in the southwestern divide. The average
annual temperature is about 20 ◦C, and the mean annual rainfall ranges from 400 mm to
1500 mm [24].
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Figure 2. Mean monthly average rainfall of Mpumalanga Province (1972–2018).

2.2. Methodological Framework

The methodological framework (Figure 3) describes the processes followed in clas-
sifying irrigated and rainfed areas in Mpumalanga Province. The study was informed
by the increasing warming climate and the intensity of drought, which are compounding
water and food insecurity, increased aridity, declining yields, and land degradation [3].
The challenges require informed land use planning and irrigated area development by
accurately mapping land use. The Normalised Difference Vegetation Index (NDVI) was
used to distinguish irrigated from rainfed areas and compare changes in irrigated areas
during 2018/19 and 2019/20 winter growing seasons. The procedure to classify irrigated
areas followed four main stages that include (i) data collection, image correction, and pre-
processing, (ii) feature extraction, (iii) data integration, and (iv) use of vegetation indices
to separate irrigated areas from the rest of cultivated areas (Figure 3). The step-by-step
procedure included the mosaicking and compositing of images, signature development
and evaluation of samples, use of the random classifier to map cultivated areas, accuracy
assessment, and lastly, the use of vegetation indices to separate irrigated areas from other
cultivated areas, respectively. The premise was to classify both irrigated and rainfed areas
separately, improve the mapping accuracy as an initial step to enhance irrigation and
agricultural land use planning, improve agricultural water management and ensure water
and food security (Figure 3).

The classification of cultivated areas and the seasonal comparisons in NDVI variations
was done using the GEE (see Supplementary Information 1), a big data and cloud comput-
ing platform, on cloud-free Sentinel-2 and Landsat-8 images [27]. Satellite images from the
Sentinel from July to August for 2020 were mosaicked using GEE. Training sites that were
digitised included water, natural vegetation, cultivated land, and built-up areas. The classi-
fication was realised through a non-parametric machine learning algorithm, the random
forest classifier. The random forest was preferred due to its flexibility and capability to
produce, even without hyper-parameter tuning, near accurate land use classifications and
is applicable for both classification and regression tasks [28,29]. The classification accuracy
was enhanced by integrating existing land use datasets. Average monthly NDVI values
were calculated from June to October, a dry season in the study area for 2019 and 2020.
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Figure 3. Methodological framework to classify irrigated areas using a non-parametric machine learning algorithm, random
forest.

2.3. Data Sources

Various time-series and static input data were used for the random forest (RF) classifi-
cation model on the GEE computing platform. The static input variables refer to existing
datasets, terrain, geographic location, and dynamic inputs represent data derived from
remote sensing such as NDVI and satellite images and climate data. The premise was to
classify cultivated lands at a provincial scale and separate irrigated areas during the dry
season that extends from June to October. Data were either obtained from or uploaded to
the GEE cloud computing platform for the classification procedure [27].

High-resolution satellite images from the Sentinel 2 sensor (20 m spatial resolu-
tion) and the 30 m resolution Landsat images for 2019 and 2020 were accessed from the
GEE cloud computing platform (https://developers.google.com/earth-engine/datasets/
catalog/). Monthly NDVI data were accessed from Landsat images, also in GEE. Existing
agricultural fields and land use datasets were obtained from the Department of Agriculture,
Land Reform, and Rural Development’s (DALRRD) Crop Estimates Consortium (CEC) [30]
and GeoTerraImage dataset [31], respectively.

2.4. The Random Forest Algorithm

The random forest classifier is an ensemble of classification methods consisting of
several decision tree models and is expressed as [32]:

{DT(x, θk)}
T

k = 1
(1)

where x is the input vector, and θk denotes a random vector, which is sampled indepen-
dently but with the same distribution as the previous θk, . . . , θk−1. T bootstrap samples
are initially derived from the training data. A no-pruned classification and regression tree
(CART) is drawn from each bootstrap sample β where only one of M randomly selected
features is chosen for the split at each node of CART [32].

The random forest is more robust after minor changes in the input data, and it enhances
land use classification accuracy a achieving classifier stability. A k number of samples
extracted from the training sample set using bootstrap sampling, and the sample size of
each sample, are the same as that of the original training set. A k number of trees were
created for k samples, and a k number of classification results were obtained. According to
the classification results, each record was classified to determine its final land use category.
The random forest classifier improves the classification accuracy through its object-based
processing algorithms, and its use in remote sensing provides the following advantages:

https://developers.google.com/earth-engine/datasets/catalog/
https://developers.google.com/earth-engine/datasets/catalog/
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• It enhances the accuracy of land use/cover mapping as compared to other popular
similar algorithms [33]. It maintains the classification error balance when the class
size distribution is unbalanced [34].

• The random forest classifier requires little or no manual intervention as it determines
data characteristics by itself, simplifying its design process [35].

• Although the random forest algorithm provides various data characterisations, it
generally has a quick processing speed [36].

2.4.1. Landcover Classes and Reference Data

Landcover categories were grouped into four types to separate cultivated areas from
the rest of the land uses. These included cultivated land, forest, grassland, water, built-up
area, and bare land (Table 1). A random sampling method was used to balance the number
of training points. Therefore, the number of training points for each landcover class was
proportional to the total pixels using the random forest classifier. Existing datasets were
used to train and validate the landcover classifications. The reference training and testing
datasets were gathered from a time series of both Sentinel and Landsat images and visual
interpretation using Google Earth images. The training samples were validated using the
Department of Agriculture, Land Reform, and Rural Development’s (DALRRD) cropped
area dataset [30] and the GeoTerraImage dataset [31]. The classification resulted in the
derivation of the cultivated area dataset of the study area.

Table 1. Land-cover classification types that were used as training samples.

Land Classification Description

Cultivated land Land planted with crops, newly opened cropped areas, fallow land
Natural vegetation Shrublands, forested lands, grasslands, natural or planted forests

Water All water bodies, including rivers, wetlands, reservoirs, etc
Built-up area All settlements, including industrial areas

2.4.2. Crop Phenology Derivation from NDVI

Time series data from NDVI was essential for obtaining croplands’ phenological
data and for distinguishing irrigated from rainfed areas. Unlike other vegetation types
such as grassland and forests, croplands have unique characteristics in the stages of
emergence, vegetative growth, senescence, and harvest [37]. These features enable the
separation of croplands from other vegetation types using a time series of satellite images
(see Supplementary Information 1). NDVI time-series data derived from Landsat images,
compiled using Google Earth Engine, were then used to classify and distinguish irrigated
from rainfed areas. This was achieved by applying NDVI thresholds ranging between
0.19 and 0.25 for June, July, August, September, and October. The NDVI thresholds were
derived using the histogram equalisation and the sigmoid contrast stretch method to
distinguish low and high NDVI vigour (Figure 4). Between June and October, it does not
rain in the study area, and rainfed agriculture is entirely absent. Therefore, the presence
of healthy and green crops signifies the presence of irrigation [38]. Thus, vegetation
indices’ seasonal pattern provided the foundation for separating irrigated from rainfed
areas through time-series NDVI data.

Histogram equalisation (Figure 4a) and sigmoid contrast stretch (Figure 4b) were
used to establish the NDVI thresholds [9,11] used to distinguish vegetated (cropped) and
non-vegetated (non-cropped) areas (Figure 4c) from where cultivated lands were derived
(Figure 4d). NDVI thresholds ranged between 0.19 and 0.25, and they also confirmed the
results of previous studies [38,39]. Cell statistics was applied to combine the reclassified
NDVI values (vegetated and non-vegetated) from where the cultivated areas were derived
and, ultimately, the separation of irrigated from rainfed areas.
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Figure 4. (a) Histogram equalisation of the NDVI average of July 2019; (b) sigmoid stretch of the NDVI average of July 2019;
(c) The reclassified NDVI of July 2019 using a threshold; and (d) the classified cultivated land.

2.5. NDVI Trend Analysis over Cultivated Land

Of note is that outliers and seasonality typically characterise a time series of NDVI
data in regions characterised by dry and wet season [40]. The single modal annual rainfall
pattern of the study area shows that rainfall (or agricultural season) starts in October and
ends in April, indicating a time lag between rainfall and crop phenophases [41] (Figure 5).

Figure 5. An example of single growing season and related phenological measures analysed through
NDVI.
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As rainfall is a crucial factor in the seasonal crop cycle, there is a positive correlation
between rainfall and the seasonal crop growth pattern [42]. Thus, vegetation growth
and greening begin in October/November, and browning begins in May/June (Figure 5).
This process also applies to rainfed crops in areas with a single modal crop growth cycle.
In irrigated areas, greening starts at any time of the dry period from June to October.
Croplands could be at a greening stage, yet others are at the boosting stage, while some are
at the browning stage (Figure 5).

In most cases, and due to farming relying on rainfall during the wet season, the rainfed
crop will start greening in November and browning in May. The greening of irrigated
crops begins around June, and the browning in October (Figure 5). Thus, the classification
of irrigated areas was assessed from June to October, which coincides with the dry season.

2.6. Distinguishing Irrigated from Rainfed Areas

Healthy vegetation reflects more infrared and absorbs more red and blue portions
of the electromagnetic spectrum. The red and near-infrared bands are important for
calculating NDVI and other vegetation indices as the blue portion is affected by atmospheric
scattering [43]. In areas with a single modal annual rainfall pattern, there is less absorption
of the visible light and low reflection of the infrared light during the dry season (Figure 5),
resulting in low NDVI values. High NDVI values on croplands during the dry season
signify irrigation as there is generally no rainfall. NDVI values drop around May to June
but picks-up between July and September (Figure 5). Thus, the NDVI threshold ranging
between 0.19 and 0.25 was used to isolate irrigated from non-irrigated areas between July
and August during the dry season.

3. Results and Discussion
3.1. Cultivated Areas of Mpumalanga Province

The initial product developed from the remote sensing procedure was a dataset of
cultivated areas (Figure 6) incorporating both irrigated and rainfed areas for 2020. Twenty-
seven percent of the total land areas of Mpumalanga Province is used for agriculture
(Figure 6), highlighting the importance of agriculture in the province.

The distribution of cultivated land is uneven as determined by topography, distribu-
tion of the river network and soil types, and the location of former homelands. The highest
concentration of cultivated land is mainly in the Lowveld area in former homelands, mainly
in Nkangala and Gert Sibande districts municipalities. The third district, Ehlanzeni, has
limited agriculture activity as most of its area lies within the Kruger National Park and
other conservancies.

3.2. Accuracy Assessment

Accuracy assessment of the mapped cultivated areas was verified by comparing the
developed dataset with 130 ground truth points derived from high-resolution Google Earth
images (Figure 7). This was enhanced by combining the ground-truth points generated
from Google Earth with those from existing datasets using the accuracy assessment tool in
ArcMap. This visual interpretation, coupled with the expert and prior knowledge of the
study area’s features, contributed to the accuracy assessment using the kappa assessment
coefficient algorithm. The ground-truth points were randomly chosen. The accuracy
assessment was essential for determining the quality of the classified cultivated area
derived through the random forest classifier in remote sensing. The classified cultivated
areas’ accuracy was 88%, with a kappa coefficient of 80%, which indicates a very good
mapping accuracy. Although relatively high, accuracy can still be improved through
post-classification enhancement methods using drones [22].
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Figure 6. Cultivated lands of Mpumalanga Province derived using the random forest classifier.
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Figure 7. Distribution of accuracy assessment validation points.

3.3. Separating Irrigated from Rainfed Areas

The map presented in Figure 8 shows the irrigated and rainfed areas in Mpumalanga,
giving the proportion of the two cultivated systems per district municipality. At 75% of the
total cultivated area, irrigated land is predominant in the province, where the rainfed area
accounts for less than 25% of the total cultivated area. The pie-charts (Figure 8) confirm
that the land under irrigation is predominant in the water management area (with an
overall proportion of over 75% of the cultivated area), a scenario also given in Table 2.
The irrigated area’s predominance also confirms the allocation of most of the available
freshwater resources towards irrigation. The situation also confirms the observations from
other studies, which also found out that the province’s available freshwater resources are
almost fully allocated [25,26].
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Figure 8. Distribution of cultivated lands in Mpumalanga Province and the proportion between irrigated and rainfed areas
per district as well as the changes that took place between 2019 (map a) and 2020 (map b).

Table 2. Disaggregated proportions of cultivated areas per cultivation type between 2019 and 2020.

District Area (ha) Rainfed
Area (ha)

Irrigated
Area (ha)

Cultivated
Area (ha)

Rainfed
Area (%)

Irrigated
Areas (%)

Cultivated
Area (%)

2020

Gert Sibande 3,189,239.14 284,963.35 756,614.12 1,041,577.47 27.36 72.64 32.66
Nkangala 1,679,938.90 201,492.75 445,151.50 646,644.25 31.16 68.84 38.49
Ehlanzeni 2,789,686.33 22,592.30 326,176.48 348,768.78 6.48 93.52 12.50

Mpumalanga 7,658,864.36 509,048.40 1,527,942.10 2,036,990.50 24.99 75.01 26.60

2019

Gert Sibande 3,189,239.14 352,240.02 689,337.45 1,041,577.47 33.82 66.18 32.66
Nkangala 1,679,938.90 288,002.67 358,641.59 646,644.25 44.54 55.46 38.49
Ehlanzeni 2,789,686.33 54,785.44 293,983.34 348,768.78 15.71 84.29 12.50

Mpumalanga 7,658,864.36 695,028.12 1,341,962.38 2,036,990.50 34.12 65.88 26.60

Over time, irrigation trends in Mpumalanga Province indicate that the irrigated area is
bigger than rainfed areas, an indicator of high water use in the agriculture sector (Figure 9).
Therefore, most of the cultivated land in the province is irrigated as most agricultural land
is commercial [44]. The rainfed area has been continuously declining since 2016, except
in 2018 when it increased as there was limited irrigation due to drought [3]. However, it
significantly declined in 2019 at a time when irrigated further increased (Figure 9). These
differences between agricultural types between 2019 and 2020 are noticeable in the maps
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shown in Figure 8, where it is noticeable that in 2020 most of the cultivated land was
irrigated, as indicated by the predominantly green colour.

Figure 9. Trends in the irrigated area versus rainfed area in in Mpumalanga Province from 2016 to 2020.

Irrigation expansion in the province is likely due to ongoing government efforts to
equip such areas with irrigation potential and target smallholder farming areas to enhance
food security and achieve sustainability by 2030 [45]. However, of concern is that irrigation
in smallholder farming areas is usually exempt from water use licences as the water
withdrawals are assumed to be negligible [46]. However, this study’s results highlight the
need to monitor irrigation expansion at all scales regardless of users, and plan in a more
sustainable manner.

3.4. Changes in the Irrigated Area between 2019 and 2020

Significant increases are notable in irrigated areas in Mpumalanga Province between
the 2019 and 2020 winter growing seasons, a characteristic evident in all districts of the
province (Figure 8). The increase only shows that some cultivated areas that were not
irrigated in 2019 were irrigated in 2020, not necessarily a change in land area under
irrigation. As the rainfed area is less than irrigated in the province, still, between 2019 and
2020, the area that continued as rainfed further decreased by 36.53%. During the same
period, the land under irrigation increased by over 12.17% (Table 3), putting a further
strain on already scarce water resources [25]. The increase in irrigated area conforms with
the National Development Plan (NDP), which promotes the doubling of irrigated areas
by 2030 [45], but without considering the availability of other important sectors linked
to irrigation like water and energy availability. The land area under irrigation increased
during the 2020 Covid-19 pandemic lockdowns when it was expected to decrease. The main
contributing factor to the gains in the irrigated area in 2020 is mainly due to agriculture
being considered as an essential sector that was allowed to continue operating during
the height of the Covid-19 pandemic lockdowns. With many people having lost their
other income sources during the lockdown, agriculture became an alternative source of
income. In South Africa, there is already irrigation infrastructure that is not being fully
utilised [46,47].
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Table 3. Percentage change in the cultivated areas between 2019 and 2020. Negative changes
represent a decrease and positive increases.

2019 2020 % Change

Rainfed areas (ha) 695,028.12 509,048.40 −36.53
Irrigated areas (ha) 1,341,962.38 1,527,942.10 12.176

Total cultivated areas (ha) 2,036,990.50 2,036,990.50

Whilst increasing the land under irrigation is necessary to ensure food and water
security, there is a need for holistic approaches to ensure that the scarce water resources
are equitably distributed with other sectors. Like the rest of South Africa, Mpumalanga
Province is water-scarce, and its available freshwater resources are almost fully allocated,
leaving little room for future development [25]. Therefore, there is a need for transformative
approaches to address resource management in an integrated manner.

The continued decrease in rainfed agricultural area is problematic for policy and
decision-makers as increasing the land under irrigation is not always the best-fit solution.
Given the worsening water scarcity in South Africa, the reality is that there is a limit
to expand the land under irrigation [3,12,48]. A significant part of the solution must be
addressed by improving crop water productivity and optimising rainfed systems [49].
Thus, the challenge requires integrated and cross-sectoral approaches in irrigation ex-
pansion strategies, translating irrigation into climate change adaptation and mitigation.
Previous studies have highlighted the importance of addressing multi-sector and inter-
twined challenges holistically and avoid the challenges of transferring problems to other
sectors [10,50–52]. This calls for transformative approaches such as nexus planning, cir-
cular economy, sustainable agricultural systems, and scenario planning in agricultural
development [53,54]. For example, this noble initiative to increase irrigation area should
also consider water and energy availability. Uninformed irrigation development will only
compound the existing water, energy, and energy insecurity [55]. To inform policy and
decision-making, there is always a need to have accurate knowledge of the irrigated area’s
spatial extent from where water productivity and crop water requirements can be modelled
with improved accuracy.

3.5. Pros and Cons of Using the Random Forest in Land Use Classification

There are more advantages than disadvantages to using the random forests algorithm
in land use classification, although there is still room for further improvements. This
non-parametric land use classification method offers a more superior method for working
with missing data. It substitutes missing values with a variable appearing the most in a
particular node [56]. However, in our case, the most important advantage of using the
random forest classifier has been the improvement in the mapping accuracy. Furthermore,
integrating the random forest technique with big data management platforms facilitated
the processing of large data sets with numerous variables within a short space of time.
Thus, the technique automatically balances data sets when a class is more infrequent than
other classes in the data. It can handle variables fast, making it suitable for complicated
tasks [36]. In addition to these advantages, some of the benefits for using the random forest
algorithm include (i) the ease with which to interpret the rules using a tree algorithm, (ii) as
a non-parametric model, it is easy to add a range of numeric or categorized data layers, (iii)
the unimodal training data distribution type is not a prerequisite, and (iv) the classification
process is time and cost-effective as long as the programming rules are well-set [29,57].

Although the algorithm has been shown to improve the mapping accuracy and to
handle large datasets by integrating with big data management platforms like the GEE, its
major disadvantage is that it tends to over-fit the training data, which was the main reason
for not providing even better accuracy. This is generally evident when the decision-tree
grows too large, with the terminal nodes representing very small subsets of the training
data [57]. However, this drawback is overcome by a technique called “pruning”, which
simplifies the tree by removing terminal nodes that could be linked to noise in the data [57].
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4. Conclusions

Advances in remote sensing technologies, alongside the development of machine
learning classification algorithms, have facilitated cost and time effective delineation of
more accurate irrigated areas. The choice of the most appropriate image classification
algorithm is determined by the objectives that need to be achieved; however, the random
forest machine learning algorithm used in this study is applicable at any scale and is time
and cost-efficiency. This was enhanced using the big-data management platform of the
Google Earth Engine (GEE). The high spatial resolution (20 m resolution) cultivated land
dataset was developed using a two-year analysis (2019 and 2020), 10-day Sentinel, and 16-
day Landsat data. The random forest algorithm handled large volumes of remotely sensed
products and reference training and validation datasets from various sources courtesy of
the big-data management and processing capabilities of the GEE cloud-computing platform.
The combination of methods and approaches in GEE facilitated the rapid classification of
more accurate irrigated areas with petabyte volume big-data. The developed, cultivated
areas dataset has an overall accuracy of over 88%. The enhanced outputs of the irrigated
area mapping are essential for policy and decision-makers to assess vast and complex
irrigation systems’ performance in detail. They are critical for accurate monitoring of
irrigation activities from the field to transboundary or national scales.
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