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ABSTRACT
Background Consistent patterns of reduced cortical 
thickness have been identified in early Alzheimer’s 
disease (AD). However, the pathological factors that 
influence rates of cortical thinning within these AD 
signature regions remain unclear.
Methods Participants were from the Insight 
46 substudy of the MRC National Survey of 
Health and Development (NSHD; 1946 British 
birth cohort), a prospective longitudinal cohort 
study. Linear regression was used to examine 
associations of baseline cerebral β-amyloid (Aβ) 
deposition, measured using florbetapir positron 
emission tomography, and baseline white matter 
hyperintensity volume (WMHV) on MRI, a marker 
of cerebral small vessel disease, with subsequent 
longitudinal changes in AD signature cortical 
thickness quantified from baseline and repeat MRI 
(mean [SD] interval 2.4 [0.2] years).
Results In a population- based sample of 337 
cognitively normal older white adults (mean [SD] 
age at baseline 70.5 [0.6] years; 48.1% female), 
higher global WMHV at baseline related to faster 
subsequent rates of cortical thinning in both AD 
signature regions (~0.15%/year faster per 10 mL 
additional WMHV), whereas baseline Aβ status 
did not. Among Aβ positive participants (n=56), 
there was some evidence that greater global Aβ 
standardised uptake value ratio at baseline related 
to faster cortical thinning in the AD signature Mayo 
region, but this did not reach statistical significance 
(p=0.08).
Conclusions Cortical thinning within AD signature 
regions may develop via cerebrovascular pathways. 
Perhaps reflecting the age of the cohort and 
relatively low prevalence of Aβ-positivity, robust Aβ-
related differences were not detected. Longitudinal 
follow- up incorporating additional biomarkers will 
allow assessment of how these relationships evolve 
closer to expected dementia onset.

INTRODUCTION
Previous MRI studies have identified consistent 
patterns of decreased cortical thickness in early 
Alzheimer’s disease (AD)—termed AD signatures—
which predict cognitive decline and AD dementia 
in cognitively normal (CN) older adults.1–4 Similar 
findings have also been detected longitudinally in 
presymptomatic autosomal dominant AD.5

The relationship between β-amyloid (Aβ) depo-
sition, one of the neuropathological hallmarks of 
AD and cortical thickness is unclear. Findings from 
MRI studies have been mixed, with some studies 
reporting Aβ-related reductions in cortical thick-
ness,3 6 while a previous cross- sectional analysis 
from our group did not detect significant differ-
ences,7 and some researchers have observed Aβ-as-
sociated increases in cortical thickness.8 This has 
led to suggestions that the relationship may be non- 
linear or perhaps mediated via or interactive with 
tau pathology or other disease processes.9 Alterna-
tively, discrepancies between studies might relate to 
difficulties accounting for heterogeneity between 
individuals, either reflecting premorbid differ-
ences in brain structure—an issue in cross- sectional 
studies—or the effects of age and other pathologies 
which often coexist in later life.

To investigate this further, this study examines 
associations of baseline cerebral Aβ deposition, 
measured using florbetapir positron emission 
tomography (PET), and baseline white matter 
hyperintensity volume (WMHV) on MRI, a marker 
of cerebral small vessel disease (CSVD), with subse-
quent longitudinal changes in AD signature cortical 
thickness quantified from MRI in CN older adults 
of almost identical age.

METHODS
Participants were scanned on a single Biograph 
mMR 3T PET/MRI (Siemens Healthcare) at two 
time points as part of the Insight 46 substudy of the 
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MRC National Survey of Health and Development (NSHD; the 
1946 British birth cohort).10

Baseline Aβ PET data obtained postinjection of 370 MBq 
18F florbetapir were processed with pseudo- CT attenuation 
correction.11 Global standardised uptake value ratios (SUVRs) 
were generated using a cortical region of interest, based on a 
previously defined composite,12 and an eroded subcortical white 
matter reference region. A gaussian mixture model was applied 
to global SUVRs and the 99th percentile of the lower gaussian 
was taken as the cut- point for Aβ positivity (0.6104).

Baseline global WMHV was measured from distortion- 
corrected and bias- corrected T1 and fluid- attenuated inversion 
recovery MRI data using an unsupervised automated algorithm, 
Bayesian Model Selection, as described elsewhere.13

Cortical thickness was estimated at each time point using Free-
surfer V.7.1.0 (https://surfer.nmr.mgh.harvard.edu/). Distortion- 
corrected T1 MRI underwent cross- sectional processing within 
Freesurfer, before being processed through the longitudinal 
stream.14 To form the AD signatures (ADsig Harvard and Mayo; 
see figure 1 for region descriptions), Desikan- Killian atlas labels 
were merged and single annotation files were created.15 Surface 
area- weighted averages of extracted left and right hemisphere 
AD signature cortical thickness values were then calculated.

Statistical analyses were performed in STATA V.17. Overall, 
356 of 502 participants had high- quality longitudinal MRI data, 
of whom those with dementia (n=2), mild cognitive impairment 
(n=4), other confounding brain disorders (n=4) or missing Aβ 
or WMHV data (n=9) at baseline were excluded.16

Figure 1 Associations of baseline Aβ deposition and baseline WMHV with subsequent rates of change in cortical thickness in Alzheimer’s disease (AD) 
signature regions in cognitively normal participants. Coefficients and 95% CIs are presented from linear regression models, adjusted for sex and age at 
baseline scan. *p≤0.05; **p≤0.01. ADsig Harvard consisted of entorhinal, inferior temporal, parahippocampal, temporal pole, precuneus, supramarginal, 
superior and inferior parietal, superior frontal, pars opercularis, pars triangularis and pars orbitalis areas.3 ADsig Mayo was composed of middle temporal, 
inferior temporal, entorhinal and fusiform areas.4 Aβ, β-amyloid; SUVR, standardised uptake value ratio; WMHV, white matter hyperintensity volume.
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Differences in baseline characteristics by Aβ status were 
assessed using t- tests, Wilcoxon rank- sum tests or χ2 tests, as 
appropriate.

Associations of baseline Aβ (status or global SUVR) and base-
line global WMHV with subsequent changes in AD signature 
cortical thickness were tested using linear regression models, 
similar to those previously described.16 Effects of Aβ and 
WMHV were assessed in separate models and then as predic-
tors in a single model, with adjustment for sex and baseline age. 
WMHV was not corrected for total intracranial volume since 
this did not alter the results (online supplemental etable 1).

Model assumptions were checked by examination of residual 
plots. Non- linear relationships were assessed by inspection of 
residual versus predictor plots and were formally tested by 
adding quadratic terms to models.

RESULTS
A total of 337 CN participants (mean [SD] age 70.5 [0.6] years; 
48.1% female) had complete imaging data (mean [SD] scan 
interval 2.4 [0.2] years). There were significantly more APOE ε4 
carriers among Aβ positive than Aβ negative participants (60.7% 
vs 22.6%; p<0.001), but age, sex and other baseline characteris-
tics did not differ significantly by Aβ status (table 1).

There were no significant relationships between baseline Aβ 
(status or global SUVR) and subsequent rates of change in cortical 
thickness in either AD signature region, whereas higher global 
WMHV at baseline associated with significantly faster subse-
quent rates of cortical thinning in both AD signature regions: 
0.15%/year faster per 10 mL additional WMHV (figure 1, online 
supplemental etable 1). There was no material difference in the 
results when the effects of Aβ and WMHV were assessed as 
predictors in a single model; however, effects of WMHV were 
attenuated and non- significant after adjustment for rate of whole 
cortex thickness change (figure 1, online supplemental etable 1). 

There were no interactions between Aβ and WMHV or between 
sex and Aβ or WMHV, and no non- linear relationships (p>0.1, 
all tests).

In post hoc analyses, effects of regional (lobar) Aβ SUVR were 
virtually identical to each other (online supplemental etable 
2). There was some evidence that, among Aβ positive partici-
pants, higher global SUVR at baseline related to faster subse-
quent cortical thinning in the ADsig Mayo region, though it 
did not reach statistical significance (p=0.08), and a similar 
relationship was not detected with the ADsig Harvard region 
(online supplemental etable 3). In a vertex- wise analysis, rates of 
change in cortical thickness did not differ significantly by base-
line Aβ status in any brain region after cluster- wise correction 
for multiple comparisons (1000 permutations; cluster- forming 
threshold p<0.05).

DISCUSSION
In CN adults ~70 years old, higher baseline WMHV—a marker 
of CSVD—related to significantly faster subsequent rates of 
cortical thinning in AD signature regions, whereas baseline Aβ 
status did not.

The association with WMHV does not necessarily mean that 
CSVD has a direct role in AD pathogenesis—indeed, effects 
were reduced to almost zero and non- significant after adjust-
ment for rate of whole cortex thickness change, implying that 
they were not disproportionate to global changes—but it may 
reflect that CSVD contributes to cortical thinning in later life 
including within regions known to be vulnerable in AD. Thus, 
interventions aimed at reducing development of CSVD in later 
life may help to slow neurodegeneration in these areas, poten-
tially delaying or preventing progression to dementia. Moreover, 
studies using AD signature cortical thickness as a biomarker in 
AD should consider possible effects of CSVD.

Notably, rates of cortical thinning did not differ by Aβ status, 
either within AD signature regions or elsewhere in the brain. 
While there was some evidence, among Aβ positive participants, 
that higher global Aβ SUVR at baseline related to faster subse-
quent cortical thinning in the ADsig Mayo region, this was not 
statistically significant. Insight 46 is a relatively young cohort, 
and rates of Aβ-positivity (~17%) in the current sample, while 
broadly within those expected for age, are perhaps slightly 
lower than in some studies, likely reflecting that the cohort is 
population based.17 This might explain why some studies of CN 
adults—often with older age ranges or greater rates of Aβ-posi-
tivity—have detected significant Aβ-related cortical thinning,3 6 
whereas Insight 46 analyses—both here and in a previous cross- 
sectional study7—have not observed robust differences.

Another potential issue is that there may be apparent 
‘thickening’ of the cortex in early AD, perhaps related to a 
transient inflammatory response to Aβ. Evidence supporting 
this hypothesis is largely based on cross- sectional studies 
with small subject numbers and has not been widely repli-
cated.8 18 However, if this were the case, effects of Aβ in 
opposite directions may cancel each other out when assessed 
at a group level, making it difficult to detect a relationship 
in early AD.

A further consideration is whether the absence of a signif-
icant relationship may be technique related. In the same 
sample, we previously reported Aβ-related differences in 
rates of global and hippocampal volume loss measured using 
the boundary shift integral (BSI).16 While comparison with 
this study is difficult due to the different regions assessed, 
this might reflect that the BSI is more precise, providing a 

Table 1 Participant characteristics

Characteristic
All participants
(n=337)

Aβ positive 
(n=56)

Aβ negative 
(n=281)

Age at baseline visit, years, 
mean (SD)

70.5 (0.6) 70.5 (0.6) 70.5 (0.6)

Sex, % female 48.1 42.9 49.1

Childhood cognition, z- score, 
mean (SD)

0.41 (0.72) 0.34 (0.71) 0.43 (0.73)

Education 
level

% none 15.4 17.9 15.0

% O- level or 
equivalent or 
vocational

32.3 41.1 30.6

% A- level or 
equivalent or 
higher

52.2 41.1 54.5

Socioeconomic position at age 
53, % manual occupation

15.1 16.1 15.0

APOE ε4 status, % carrier* 29.0
(n=335)†

60.7 22.6
(n=279)†

Global WMHV at baseline, mL, 
median (IQR)

2.7 (1.5–6.1) 3.3 (1.8–6.2) 2.6 (1.5–6.1)

PACC at baseline, z- score, 
mean (SD)

0.05 (0.67) −0.04 (0.69) 0.07 (0.66)

*Significant difference detected between Aβ positive and negative groups 
(p≤0.001).
†Number of participants with available data if below maximum possible.
APOE, apolipoprotein E; Aβ, β-amyloid; PACC, preclinical Alzheimer’s cognitive 
composite; WMHV, white matter hyperintensity volume.
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direct rather than indirect measure of change, or that cortical 
thickness is computationally more difficult to quantify than 
volume. Indeed, whole brain volume change measured using 
the BSI was much less variable (SD/mean ratio ~1/3) than 
whole cortical thickness change measured using Freesurfer.

Strengths of this study include that participants were 
scanned on a single PET/MRI scanner at an almost identical 
age. A limitation is the absence of tau PET data. Previous 
studies have detected interactions between Aβ and tau, 
whereby Aβ-positivity associated with increased cortical 
thickness in tau negative individuals but reduced cortical 
thickness in tau positive individuals.9 18 Tau has also been 
suggested as a cause of WMH, perhaps via Wallerian degen-
eration.19 Other limitations include that there was insuffi-
cient power to assess the impact of other CSVD features (eg, 
lacunes or microbleeds) due to their low frequency in this 
sample20; and that Aβ PET may reflect both Aβ found in 
AD plaques and that in cerebral amyloid angiopathy,21 which 
may have confounded the results.

In conclusion, the findings in this study add to current 
understanding of the factors that might influence rates of 
change in AD signature cortical thickness in CN older 
adults, as well as highlighting important avenues for further 
research.
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Supplementary eTable 1. Associations of baseline β-amyloid deposition and baseline white 
matter hyperintensity volume with subsequent rates of change in cortical thickness in 
Alzheimer’s disease signature regions in cognitively normal participants. 
 

Predictor of interest 

 

Difference in rate of change in cortical thickness 

in %/year (95% CI) 

ADsig Harvard ADsig Mayo 

Aβ status (positive versus 
negative) 

0.06 (-0.09, 0.20) -0.04 (-0.20, 0.12) 

Aβ status (positive versus 
negative), adjusted for WMHV 

0.06 (-0.08, 0.21) -0.04 (-0.20, 0.13) 

Global Aβ SUVR (per 0.1 
increment) 

0.01 (-0.07, 0.09) -0.05 (-0.14, 0.04) 

Global Aβ SUVR (per 0.1 
increment), adjusted for WMHV 

0.02 (-0.05, 0.10) -0.04 (-0.12, 0.05) 

WMHV (per 10mL increment) -0.15 (-0.25, -0.04) ** -0.15 (-0.26, -0.03) * 

WMHV (per 10mL increment), 

adjusted for TIV  
-0.15 (-0.25, -0.04) ** -0.14 (-0.26, -0.03) * 

WMHV (per 10mL increment), 

adjusted for Aβ status  -0.15 (-0.25, -0.05) ** -0.15 (-0.26, -0.03) * 

WMHV (per 10mL increment), 

adjusted for Aβ SUVR 
-0.15 (-0.25, -0.05) ** -0.14 (-0.26, -0.03) * 

WMHV (per 10mL increment), 

adjusted for rate of change in 

whole cortex thickness 

-0.01 (-0.04, 0.02) -0.03 (-0.10, 0.05) 

 

Coefficients and 95% confidence intervals are from linear regression models adjusted for 
sex and age at baseline scan. Aβ = β-amyloid; SUVR = standardised uptake value ratio; 
WMHV = white matter hyperintensity volume; TIV = total intracranial volume. * p≤0.05; ** 
p≤0.01. ADsig Harvard consisted of entorhinal, inferior temporal, parahippocampal, temporal 
pole, precuneus, supramarginal, superior and inferior parietal, superior frontal, pars 
opercularis, pars triangularis and pars orbitalis areas.1 ADsig Mayo was comprised of middle 
temporal, inferior temporal, entorhinal and fusiform areas.2 
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Supplementary eTable 2. Associations of baseline regional (lobar) β-amyloid standardised 
uptake value ratios with subsequent rates of change in cortical thickness in Alzheimer’s 
disease signature regions in cognitively normal participants. 
 

 

 

SUVR region 

Difference in rate of change in cortical thickness in %/year per 

0.1 increment in baseline Aβ SUVR (95% CI) 

ADsig Harvard ADsig Mayo 

Frontal 0.00 (-0.08, 0.09) -0.07 (-0.16, 0.02) 

Parietal -0.00 (-0.09, 0.08) -0.07 (-0.17, 0.02) 

Temporal 0.00 (-0.09, 0.10) -0.06 (-0.16, 0.05) 

Occipital -0.01 (-0.10, 0.08) -0.06 (-0.16 0.03) 

 

Note that regional SUVR data was available for 316 out of 337 participants. Coefficients and 
95% confidence intervals are from linear regression models adjusted for sex and age at 
baseline scan. Aβ = β-amyloid; SUVR = standardised uptake value ratio. ADsig Harvard 
consisted of entorhinal, inferior temporal, parahippocampal, temporal pole, precuneus, 
supramarginal, superior and inferior parietal, superior frontal, pars opercularis, pars 
triangularis and pars orbitalis areas.1 ADsig Mayo was comprised of middle temporal, inferior 
temporal, entorhinal and fusiform areas.2 

 

 

Supplementary eTable 3. Associations of baseline global β-amyloid standardised uptake 
value ratios with subsequent rates of change in cortical thickness in Alzheimer’s disease 
signature regions in cognitively normal participants, allowing for differing slopes in β-amyloid 
positive and negative participants.   
 

 

Difference in rate of change in cortical thickness in %/year 

per 0.1 increment in baseline global Aβ SUVR (95% CI) 
ADsig Harvard ADsig Mayo 

Aβ positive (n=56) 0.03 (-0.14, 0.20) -0.17 (-0.36, 0.02) 

Aβ negative (n=281) -0.00 (-0.16, 0.15) 0.06 (-0.11, 0.22) 

 

Coefficients and 95% confidence intervals are from a piecemeal linear spline regression 
model (with a knot value set to the SUVR cut point for Aβ positivity, 0.6104) adjusted for sex 
and age at baseline scan. Aβ = β-amyloid; SUVR = standardised uptake value ratio. ADsig 
Harvard consisted of entorhinal, inferior temporal, parahippocampal, temporal pole, 
precuneus, supramarginal, superior and inferior parietal, superior frontal, pars opercularis, 
pars triangularis and pars orbitalis areas.1 ADsig Mayo was comprised of middle temporal, 
inferior temporal, entorhinal and fusiform areas.2 
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