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Introduction: Population health data integration remains a critical challenge in
low- and middle-income countries (LMIC), hindering the generation of
actionable insights to inform policy and decision-making. This paper proposes
a pan-African, Findable, Accessible, Interoperable, and Reusable (FAIR)
research architecture and infrastructure named the INSPIRE datahub. This
cloud-based Platform-as-a-Service (PaaS) and on-premises setup aims to
enhance the discovery, integration, and analysis of clinical, population-based
surveys, and other health data sources.
Methods: The INSPIRE datahub, part of the Implementation Network for Sharing
Population Information from Research Entities (INSPIRE), employs the
Observational Health Data Sciences and Informatics (OHDSI) open-source
stack of tools and the Observational Medical Outcomes Partnership (OMOP)
Common Data Model (CDM) to harmonise data from African longitudinal
population studies. Operating on Microsoft Azure and Amazon Web Services
cloud platforms, and on on-premises servers, the architecture offers
adaptability and scalability for other cloud providers and technology
infrastructure. The OHDSI-based tools enable a comprehensive suite of
services for data pipeline development, profiling, mapping, extraction,
transformation, loading, documentation, anonymization, and analysis.
Results: The INSPIRE datahub’s “On-ramp” services facilitate the integration of
data and metadata from diverse sources into the OMOP CDM. The datahub
supports the implementation of OMOP CDM across data producers,
harmonizing source data semantically with standard vocabularies and
structurally conforming to OMOP table structures. Leveraging OHDSI tools,
the datahub performs quality assessment and analysis of the transformed data.
It ensures FAIR data by establishing metadata flows, capturing provenance
throughout the ETL processes, and providing accessible metadata for potential
users. The ETL provenance is documented in a machine- and human-readable
Implementation Guide (IG), enhancing transparency and usability.
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Conclusion: The pan-African INSPIRE datahub presents a scalable and systematic
solution for integrating health data in LMICs. By adhering to FAIR principles and
leveraging established standards like OMOP CDM, this architecture addresses
the current gap in generating evidence to support policy and decision-making
for improving the well-being of LMIC populations. The federated research
network provisions allow data producers to maintain control over their data,
fostering collaboration while respecting data privacy and security concerns. A
use-case demonstrated the pipeline using OHDSI and other open-source tools.

KEYWORDS

data hub, data harmonisation, Common Data Model (CDM), OMOP CDM, longitudinal

population health data
1 Introduction

Numerous population health research data harmonisation

projects have been documented in the literature (1–7). However,

many of those initiatives face limitations in achieving true

Findability, Accessibility, Interoperability, and Reusability (FAIR)

nature of data (8). For instance, while the CLOSER project (1)

stands out as one of the most comprehensively documented

projects in terms of making data FAIR, it relies on commercial

tools for metadata development, rendering it impractical for

deployment in resource-constrained settings. Additionally, its

data integration mechanism lacks scalability.

Conversely, the Maelstrom project (3) and the Harmonisation

project (9) have developed software solutions for data

harmonization and the dissemination of multi-study data (10).

These projects offer a systematic approach to data integration and

adhere to data documentation standards, fostering FAIR-friendly

data. Despite these advancements, challenges in scalability persist,

posing potential hindrances to broader implementation and impact.

Data scalability refers to the capacity of a system, application,

or infrastructure to smoothly manage growing volumes of data

while maintaining optimal performance, responsiveness, and

stability. Successful attainment of data scalability requires

meticulous system design, thoughtful architectural decisions, and

adept software implementation. Contemporary technologies,

including cloud computing, containerization, microservices, and

distributed & federated databases, offer instrumental tools and

frameworks. These innovations empower the distribution of

workloads and the efficient management of resources, thereby

facilitating seamless data scalability.

The Network for Analysing Longitudinal Population-based

HIV/AIDS Data on Africa (ALPHA) (4), the International

Network for Demographic Evaluation of Populations and Their

Health (INDEPTH) (11), and the South African Population

Research Infrastructure Network (SAPRIN) (12) have successfully

harmonised health and demographic surveillance data from

longitudinal population studies (LPS) in Africa. These

collaborative networks have effectively demonstrated the

feasibility of harmonizing and analysing data from African LPS,

yielding crucial demographic and epidemiological insights across

the region. However, it is important to note that, while these

harmonised datasets represent a significant step forward, their
02
producers acknowledge that challenges related to scalability and

the production of Findable, Accessible, Interoperable, and

Reusable (FAIR) data are still at an early stage of development (13).

Advances in the systematic integration of Electronic Health

Record (EHR) databases for research purposes have been

propelled by common data models (CDM), exemplified by the

Observational Medical Outcome Partnership (OMOP—https://

ohdsi.org/data-standardization/) (14–16). These CDMs play a

pivotal role in standardizing vocabularies and data structures,

thereby facilitating large-scale analyses. The inherent scalability

of CDMs is instrumental in consolidating disparate data sources.

However, when viewed through a Findable, Accessible,

Interoperable, and Reusable (FAIR) lens, CDMs exhibit a

limitation—they lack sufficient contextual metadata to render the

data easily discoverable and reusable (17).

This paper introduces the Implementation Network for Sharing

Population Information and Research Entities (INSPIRE) datahub as

a comprehensive solution for data integration and harmonisation.

Functioning as a pan-African, federated research ecosystem, the

datahub is designed to adhere to the principles of Findability,

Accessibility, Interoperability, and Reusability (FAIR). It tackles

critical issues related to reproducibility, standardization, and scalability

of data harmonisation and sharing systems, primarily in low-resource

settings, leveraging existing technologies customized for optimal use.

In our approach, we extend the utility of the Observational

Medical Outcome Partnership Common Data Model (OMOP

CDM) to accommodate African Longitudinal Population Studies

(LPS) data. We incorporate structured metadata throughout the

data pipeline, employing an Implementation Guide (IG) to ensure

consistency. The paper outlines the process of ingesting and

profiling data, mapping source data semantics to standard

vocabularies for transformations into the OMOP CDM database. It

also demonstrates the utilization of OMOP-based tools for

analytics and the creation of well-structured provenance metadata

accompanying the transformed data for sharing purposes.

By amalgamating the insights gathered from the experiences of

ALPHA, INDEPTH, and SAPRIN in the African region, the

scalability and standardization offered by the OMOP CDM, and

adherence to FAIR data standards; the INSPIRE datahub emerges as

a promising and sustainable mechanism for harmonizing data and

facilitating analytics in resource-constrained settings. The INSPIRE

network has strategically built upon the data harmonization efforts
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of the ALPHA network within the African region. This collaborative

approach allowed INSPIRE to gain valuable insights into the

challenges associated with data accessibility, confidentiality,

administration, and various other aspects within the field.
2 Implementation

2.1 Virtualisation

The INSPIRE datahub is founded on the principles of

virtualisation, a transformative technology that facilitates the

development of virtual rather than physical versions of diverse

computing resources. These resources encompass operating

systems, servers, storage devices, and networks. Through

virtualisation, multiple instances of these resources can operate

independently on the same physical hardware, providing a

flexible and efficient utilisation of computing infrastructure.

The adoption of virtualisation technology was driven by the goal

of optimizing resource utilization, allowing multiple virtual

instances to efficiently operate on a single physical server.

Recognizing the critical need for resource efficiency in Africa’s

resource-constrained setups, this initiative was undertaken.

Additionally, the pursuit of enhanced flexibility and scalability,

crucial for accommodating dynamic workloads and evolving

computing requirements at Longitudinal Population Studies (LPS)

sites in Africa, guided the implementation. The consideration of

disaster recovery capabilities, allowing swift replication and

restoration of virtualised environments, further underscored the

significance of this technological shift. Furthermore, virtualisation

strengthens security by effectively isolating virtual instances. In

summary, the multifaceted advantages of virtualisation render it

essential for small-scale computing environments, providing not

only efficiency and cost-effectiveness but also the adaptability and

resilient disaster recovery capabilities essential for resource-

constrained LPS sites in Africa.

Platform-as-a-Service (PaaS) (18) is a cloud computing service

model that provides a comprehensive platform allowing users to

develop, deploy, and manage applications without the complexities

of infrastructure management. In the PaaS paradigm, users have

access to a set of tools, services, and frameworks hosted on the

cloud, enabling streamlined application development and

deployment processes. PaaS eliminates the need for organizations

to invest in and manage the underlying hardware and software

infrastructure, allowing them to focus more on coding, testing,

and deploying applications. This model enhances collaboration

among development teams, accelerates time-to-market, and

promotes scalability, making it a pivotal enabler for innovation

and efficiency in the ever-evolving landscape of cloud computing.

This approach was considered well-suited for resource-constrained

Longitudinal Population Studies (LPS) sites in Africa, and the

gradual adoption of such infrastructure, whether on public or

private clouds, is gaining popularity in the region.

The INSPIRE data hub is a “platform-as-a-service” (PaaS) (18)

hosted on the cloud, addressing issues of scalability, and

streamlining basic administrative functions, including data
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backups. The initial prototype employed a commercial cloud

service provider, and an evaluation was undertaken to determine

the most suitable provider for an African data resource. The

process of establishing the cloud infrastructure has been

meticulously documented and is publicly accessible on the

CODATA website under the page titled “INSPIRE Data Hub:

Technical Results of Phase 1.” Within this page, comprehensive

details of the setup components, the procedural steps involved,

and the outcomes are recorded under the heading “INSPIRE EA

IT Infrastructure on the Cloud” (19).
2.2 INSPIRE datahub architecture

Figure 1 presents a detailed interpretation of the overall design

of the INSPIRE datahub, showcasing the various components. This

design, with its visual representation, serves as a key reference for

understanding the structural and functional aspects of the datahub.

For a deeper exploration of this design, Greenfield has contributed

an extensive explanation in a document titled “INSPIRE Data Hub:

High-Level Architecture and Data and Metadata Flows” (20). This

document provides a thorough breakdown of the high-level

architecture, elucidating how data and metadata flow within the

system. Greenfield’s insights offer valuable context and insights into

the intricate workings of the INSPIRE datahub.

Additionally, these details are part of the broader CODATA

Decadal programme (21), ensuring that this information is not only

accessible but also aligned with the long-term goals and strategies of

CODATA. By referring to these resources, stakeholders, researchers,

and interested parties can gain a comprehensive understanding of

the datahub’s design, its architectural intricacies, and the flows of

data and metadata that emphasise its functionality.
2.3 OMOP CDM

The Observational Medical Outcomes Partnership Common

Data Model (OMOP CDM), described in the Book of OHDSI

(22), stands as a framework in healthcare research, offering a

standardised structure for organising and analysing health data

from different sources. Developed to foster interoperability and

consistency, OMOP CDM enables the integration of diverse

healthcare data sources, such as electronic health records (EHR)

and administrative claims, into a harmonised format. The model

employs a set of standardised terminologies, ensuring semantic

consistency and its relational database structure facilitates

streamlined data analysis. OMOP CDM is useful for its ability to

support large-scale observational studies, comparative effectiveness

research, and other investigations requiring a comprehensive and

standardised representation of healthcare data. Its adoption has

significantly contributed to advancing evidence-based medicine

and promoting collaborative research initiatives across diverse

healthcare settings. A centralized repository for the standardised

vocabularies and concepts is meticulously maintained in the

Observational Health Data Sciences and Informatics (OHDSI) registry

known as ATHENA, accessible at https://ATHENA.ohdsi.org/.
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FIGURE 1

INSPIRE datahub overall architecture.
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The ATHENA registry plays a crucial role in ensuring consistency

and coherence across diverse datasets by providing a standardised

and centrally managed reference for vocabularies and concepts

within the OHDSI framework. Figure 2 demonstrates a metadata

form for the provenance documentation.

Initially considered for the integration of electronic health

records (EHR), INSPIRE has adeptly extended the application of

the Observational Medical Outcomes Partnership Common Data

Model (OMOP CDM) to encompass African longitudinal
FIGURE 2

Demonstration metadata form for provenance documentation.
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population studies (LPS), leveraging data from Health and

Demographic Surveillance Systems (HDSS) including

demographic data and questionnaires (34). This versatile

framework facilitates standard analyses through the utilisation of

established OMOP-based tools. In addition, INSPIRE is

augmenting the foundational CDM by introducing enhanced

capabilities for provenance documentation, adhering to rigorous

metadata standards. This proactive approach ensures a

comprehensive and well-documented data stack, contributing to
frontiersin.org
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the robustness and transparency of analytical processes within the

INSPIRE initiative.
2.4 Data mapping and migration

Interoperability, as defined by the Institute of Electrical and

Electronics Engineers (IEEE), refers to the exchange of functional

information between two or more systems for a specific purpose.

Data mapping is a specific technique used to ensure

interoperability by aligning data elements between two or more

systems. It involves the identification and matching of data

points in different systems, especially when the source and target

systems use different terminologies or data structures. In health

data, data mapping is an important process that involves

establishing connections and equivalencies between data elements

in different health information systems. It ensures that

information from diverse sources, such as electronic health

records, questionnaires (34), medical devices, health databases, or

health surveillances can be integrated and exchanged. Data

mapping is crucial for data harmonisation, by aligning data

structures and transforming formats to achieve interoperability.

This process allows researchers to effectively share, analyse, and

utilise health information across various platforms.

Data mapping and migration encompass the following

processes: (1) identification of the source and target data models,

(2) identification of specific data elements (fields, attributes,

columns) in both the source and target data models that require

mapping, (3) determination of relationships between

corresponding data elements in the source and target data

models, (4) transformation of data to align with the target data

model, including adjustments to codes, data types, formats, etc.,

(5) validation to ensure accurate representation of relationships

in the transformed data with minimal or no data loss, and (6)

documentation of the process for consistency and repeatability.
2.5 On-ramps

The process of bringing data into standardised databases

involves many intricate procedures, ensuring a smooth

integration of diverse data sources. This approach includes

profiling, vocabulary mapping, variable and structure mapping,

and the implementation of extraction, transformation, and

loading (ETL) programs, combined with metadata ingestion

services. Data and metadata management services play an

important role in importing data into the platform, where it

undergoes profiling using tools such as WHITERABBIT, which is

an Observational Medical Outcomes Partnership (OMOP)-

based tool (23).

After profiling, data mapping to OMOP tables is facilitated

through dedicated tools such as RABBIT-IN-A-HAT (23),

designed for OMOP-based data mapping. The task of

terminology mapping is achieved using the OMOP tool USAGI

(23), which is an offline tool for mapping. Also, mappings can

be done online using the ATHENA vocabulary repository. This
Frontiers in Digital Health 05
mapping can follow directly from the source data to OMOP or

via community-defined data exchange protocols. Once mapping

is complete, ETL processes come into play. An initial set of ETLs

may be executed by data contributors, facilitating the migration

of data from local systems into a standardised format through

exchange protocols. Subsequently, a second set of ETLs may be

applied, transitioning data from the exchange protocols to the

OMOP format.

The platform accommodates various agreed-upon exchange

protocols, supporting multiple data formats. In the realm of

metadata, the INSPIRE team mandates minimal requirements,

ensuring that a standardised set of metadata accompanies the

submitted data, contributing to consistency and facilitating

effective data management within the platform.
2.6 Off-ramps

The off-ramp services provide a gateway to hub data and

metadata for use in a suite of tools from the Observational

Health Data Sciences and Informatics (OHDSI) stack for data

exploration, population characterisation, and advanced analytics.

A standout tool within this repertoire is ACHILLES, offering

robust capabilities for data exploration, quality assessments, and

the generation of insightful summary statistics. Additionally,

ATLAS can be included in this pipeline for low and no code

data analysis.

The OHDSI stack features numerous other tools that harness

the advantages of data structure and vocabulary standardisation,

enabling scalable analytics. Furthermore, the platform allows for

the development of personalized workbenches, empowering users

to engage in tailor-made analytics to suit specific research needs.

INSPIRE acknowledges the importance of some types of

research that operate based on static analysis datasets. These

static datasets are important for purposes of disclosure risk

control, citation, and reproducibility of findings. INSPIRE has

developed a mechanism for meeting this need—the Immutable

Cohort Data Store. The Immutable Cohort Data Store supports

this requirement by providing an ability to recreate any given

dataset drawn from the hub by persisting information about the

state of the hub data when the cohort was applied. Such

“immutable cohorts” can thus support the many functions that

rely on the existence of static, unchanging versions of data sets.

While not needed for all off-ramps (OHDSI applications provide

their solutions to these problems) the ability to support different

users’ needs requires this functionality.
2.7 Federated research network

Federated networks introduce a versatile paradigm wherein

replicas of the Observational Medical Outcomes Partnership

Common Data Model (OMOP CDM) platform can be

instantiated at partner or collaborator sites. These federated

databases mirror the structure of the parent OMOP CDM,

offering access to standardised vocabularies and extraction,
frontiersin.org
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TABLE 1 Description of variables in the INDEPTH core microdata.

Variable Format Description
RecNr Numeric A sequential number uniquely identifies each record

in the data file

CountryId Numeric ISO 3166-1 numeric code of the country in which
the surveillance site is situated

CentreId Character An identifier issued by INDEPTH to each member
centre of the format CCCSS, where CCC is a
sequential centre identifier and SS is a sequential
identifier of the site within the centre in the case of
multiple site centers

IndividualId Numeric A number uniquely identifying all the records
belonging to a specific individual in the data file

Sex Numeric Sex of Individual

DoB Character The date of birth of the individual. Format: YYYY/
MM/DD

EventCount Numeric The total number of events associated with this
individual in this data set

EventNr Numeric A number increasing from 1 to EventCount for each
event record in order of event occurrence

EventCode Character A code identifying the type of event that has
occurred

EventDate Character The date on which the event occurred. Format:

Bhattacharjee et al. 10.3389/fdgth.2024.1329630
transformation, and loading (ETL) programs developed by the

platform or the datahub. The deployment of common resources

facilitates the on-ramping of individual-level data from sensitive

sources into the federated database while maintaining stringent

security measures to safeguard against external user access.

Alternatively, partner or collaborative sites can perform their

analyses and provide the results. In this regard, each OMOP

CDM has a “results schema” that can be shared with the

parent OMOP CDM to produce a combined set of results that

spans the network.

The on-ramps serve as the gateway for describing metadata and

exposing the cohorts available for analysis, with data owners having

control over access permissions. Requests for analysis cohorts and/

or their results can be made to the respective data owners. Once the

analysis is conducted, the output data can be aggregated and

seamlessly integrated into the broader analytical framework,

aligning with similar data from diverse sources. This federated

approach not only ensures the privacy and security of sensitive

data but also enables collaborative and robust analyses by

amalgamating insights from varied and distributed sources (24).

YYYY/MM/DD

ObservationDate Character The date on which the event was observed
(recorded), is also known as the surveillance visit
date. Format: YYYY/MM/DD

LocationId Numeric Unique identifier associated with a residential unit
within the site and is the location where the
individual was or became resident when the event
occurred

MotherId Numeric The IndividualId of the mother. Only provided for
BTH events

DeliveryId Numeric The RecNr of the delivery event associated with this
birth
3 Use case: longitudinal, population-
based residency data from the iSHARE
collaboration in Africa

This study conducted a use case from the Health and

Demographic Surveillance System (HDSS) to the Observational

Medical Outcomes Partnership Common Data Model (OMOP

CDM). The data was sourced from the INDEPTH Network Data

Repository, accessible at https://indepth-ishare.org/index.php/

catalog/central. The dataset curated by the members of the

INDEPTH Network serves as a valuable repository of population

and health data specifically tailored for Low- and Middle-Income

Countries (LMICs). The observational data encompass

demographic surveillance information, as detailed in Table 1.

The specific datasets utilized in this analysis include the

following: (1) Kenya—Nairobi HDSS INDEPTH Core Dataset

2003–2015 (Release 2018) (25), (2) Tanzania—Magu HDSS

INDEPTH Core Dataset 1994–2012 Release 2015 (26), and (3)

South Africa—Africa Health Research Institute INDEPTH Core

Dataset 2000–2017 (Residents only)—Release 2019 (27).

The INDEPTH Network conducted a comprehensive list of

advanced analyses to delineate the characteristics of populations

across its member sites. The dataset facilitated standard analyses,

predominantly centered around event history. Key indicators,

such as fertility rates, encompassed metrics like crude birth rate

(CBR), general fertility rate, age-specific/marital fertility rates,

total/marital fertility rates, gross reproduction rate, mean

childbearing age, and sex ratio at birth. Mortality rates, a critical

facet of the analyses, incorporated metrics like crude death rate

(CDR), maternal mortality rate, infant mortality rate, child

mortality rate (commonly referred to as “under-five mortality

rate”), standard mortality rate (SMR) stratified by age and

gender, age-specific mortality rate (ASMR), and life expectancy.

Furthermore, the dataset also allows for the computation
Frontiers in Digital Health 06
of migration rates, adding another layer of insightful

demographic analysis.
4 Method

This section explores a detailed description of the

methodologies employed for the migration of the source

INDEPTH Core Micro Dataset to the Observational Medical

Outcomes Partnership Common Data Model (OMOP CDM).

The migration process involves a systematic and comprehensive

approach aimed at ensuring the integration and representation of

the INDEPTH Core Micro Dataset within the standardised

framework of the OMOP CDM.

The intricacies of themigrationmethodology encompass a series

of well-defined steps, including but not limited to data profiling,

vocabulary mapping, extraction, transformation, and loading

(ETL) programs. Each step is carefully coordinated to maintain

the reliability of the data while aligning it with the standardised

structure and semantics prescribed by the OMOP CDM. The

documentation of these methods provides a transparent and

replicable framework, essential for understanding the

transformation journey of the data and ensuring the reliability and

consistency of subsequent analyses within the OMOP CDM.
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4.1 INDEPTH core microdata

The key structure of the INDEPTH Core Microdata (11) is

described below in Table 1 and Table 2.

The table below describes the categories of events documented

in the INDEPTH Core Microdata.
4.2 Source data profile

The three source data sets taken from the INDEPTH Data

Repository are from Nairobi Urban HDSS from Kenya, Kisesa/

Magu HDSS in Tanzania, and Africa Health Research Institute

HDSS in South Africa. A brief profile in terms of the population

distribution of the datasets that have been extracted from the

INDEPTH Data Repository is given in Table 3 and other

summaries in Table 4.
TABLE 3 Population distribution in the three datasets.

HDSS site Male Female Other Total
Kenya—Nairobi 118,487 97,907 0 216,394

Tanzania—Magu(Kisesa) 49,302 56,295 35 105,632

South Africa—AHRI 89,244 106,002 0 195,246

Total 257,033 260,204 35 517,272

TABLE 4 Other summaries from the three datasets.

HDSS site Events Live
population

First
event

Last
event

Kenya—Nairobi 741,810 61,486 2003-01-01 2015-12-31

Tanzania—Magu
(Kisesa)

203,994 34,832 1994-08-01 2010-12-31

South Africa—AHRI 494,380 109,329 2000-01-01 2017-12-31

Total 1,440,184 205,647

TABLE 2 Description of events in the INDEPTH core microdata.

Event Code Definition
Birth BTH The birth of an individual to a resident female

Enumeration ENU Starting event individuals present at the baseline census
of the surveillance area.

In-migration IMG Migrating into the surveillance area

Out-migration OMG Migrating out of the surveillance area

Location exit EXT Leaving a residential location to move within the
surveillance area

Location entry ENT Moving into a residential location after the location exit
within the surveillance area

Death DTH Death of an individual within the surveillance area

Delivery DLV Pregnancy ends after 28 weeks of gestation which may or
may not result in birth

Observation
end

OBE An event is inserted when a data set is right censored at
an arbitrary date and the individual remains within the
surveillance area beyond this date.

Last
Observation

OBL An event indicating the last point in time when the
individual was observed within the surveillance area.

Observation OBS Recorded characteristics of the individual like
educational attainment, employment status, etc. under
the surveillance area
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It is important to highlight that all the INDEPTH Micro

Datasets adhere to the same structure and vocabulary list. In this

particular use case, we have focused on three specific sites to

illustrate the pipeline originating from the INDEPTH Micro

Dataset, which is regarded as the designated exchange protocol

for standard Health and Demographic Surveillance System

(HDSS) variables to the Observational Medical Outcomes

Partnership Common Data Model (OMOP CDM). Consequently,

any dataset adhering to this established exchange protocol can

seamlessly participate in the standardised pipeline for the

efficient migration of data into the OMOP CDM.

Figures 3A,B analyses the data extracted from the INDEPTH

Data Repository across three sites: Nairobi, Magu, and AHRI

HDSS. Figure 3A shows the Crude Birth Rates and Figure 3B

shows the Crude Death Rates.
4.3 INSPIRE datahub implementation

The INSPIRE datahub implemented the OMOP CDM using

the INDEPTH datasets as a case study. This included data

profiling, vocabulary mapping, ETL development, OMOP-based

data validation, analysis, and visualization.

Figure 4, depicted below, illustrates the data flow from the

INDEPTH Data Repository (28) to the INSPIRE data platform

(datahub). Here, the INSPIRE datahub extracts data from the

INDEPTH Data Repository, navigating it through various

processes to populate an Observational Medical Outcomes

Partnership Common Data Model (OMOP CDM) instance. The

resultant data is then visualized on the ATLAS dashboard.
4.4 Mapping INDEPTH core microdata to
OMOP CDM

In this section, we explore the intricate process of mapping

source data codes to the standardised vocabularies available on

the OHDSI ATHENA repository. We also used the USAGI tool

from the OHDSI software stack. USAGI plays a role in

streamlining the manual task of code mapping by creating an

index of codes obtained from the ATHENA repository. This

index serves as a foundation for the creation of code mappings,

ensuring alignment with the OHDSI standards.

Following the code mapping process, we transition to

elucidating the design details of data mapping. This involves

leveraging the dynamic capabilities of WHITERABBIT and

RABBIT-IN-A-HAT tools, both integral components of the

OHDSI software stack. WHITERABBIT facilitates the exploration

and profiling of data, whereas RABBIT-IN-A-HAT enables the

systematic creation of data mappings, ensuring a harmonious

alignment with the standardised structure of the Observational

Medical Outcomes Partnership (OMOP) Common Data Model

(CDM). This holistic approach ensures the precision and

reliability of the mapping process, laying the groundwork for

effective integration and analysis within the OHDSI ecosystem.
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FIGURE 3

(A) Crude birth rates as extracted from the three input datasets. (B) Crude Death Rates as extracted from the three input datasets.
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Table 5 provides a detail of the source to OMOP standard

vocabulary mapping, an output generated through the utilization

of the USAGI tool. USAGI, an integral component of the

OHDSI software stack, played a role in this process. It

systematically helped to create the mappings by employing an

indexed foundation of codes derived from the OHDSI ATHENA

repository. The result is a clear and structured representation

that enhances the understanding and accessibility of data within

the OHDSI ecosystem, laying the groundwork for consistent and

interoperable analyses.

In the source dataset, none of the concepts were defined within

the scope of OHDSI’s standard concepts. Consequently, the

source_concept_id is consistently recorded as 0 for all variable

mappings. This adherence to assigning 0 as the

source_concept_id is a common practice in OMOP CDM
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mappings, especially when the concepts originating from the

OMOP vocabulary are not explicitly defined within the source

dataset(s). This standardised approach ensures clarity and

consistency in instances where specific concepts may not be

directly mapped from the source, maintaining transparency in

the mapping process within the Observational Medical Outcomes

Partnership Common Data Model (OMOP CDM).
4.5 Extract, transform, and load INDEPTH
core microdata to OMOP CDM

The OMOP CDM is a structured and normalized database

model designed to facilitate the analysis of real-world healthcare

data for observational research, including safety and outcomes
frontiersin.org
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FIGURE 4

Demonstration of the data flow from INDEPTH data repository to INSPIRE and to OMOP CDM.
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studies. In this case study, we demonstrate the mapping and

migration of population demographic data into OMOP CDM to

highlight the adaptations done to complement this type of data.

The breakdown of each step in the ETL process includes:

Extract: In this phase, data from the three HDSS sites were

downloaded from the INDEPTH Data Repository. The

downloaded data was in comma-separated file (.csv) format.

After comparing the MD5 hash, for content verification, with the

original and the download files, data was pushed into

PostgreSQL (29) database schema for staging purposes. The

comparison of the MD5 values confirmed the content and no

data loss or corruption during and post download. A brief data

profiling with the statistics displayed on the INDEPTH Data

Repository and that of the data in the PostgreSQL schema

further helped to document the data validation process and results.

Transform: In this phase, the following tasks were performed:
(1) Mapping: Mapping was performed using the OHDSI Rabbit-

in-a-Hat tool. Rabbit-in-a-Hat produced an ETL design. In

this design the data elements from the source were mapped

to the corresponding concepts in the OMOP CDM. This

involved standardised codes and terminologies, such as

SNOMED and LOINC to ensure consistent representation

across the HDSS site data. The remaining phases in this step

were implemented using the Pentaho Data Integration (PDI)

Community Edition (CE) tool (30).

(2) Standardisation: Standardization included date formats,

uniform code representations, units of measurement, and

other data elements that were converted to a consistent

format. This was a crucial step for accurate analysis across

HDSS data sources.
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(3) Anonymization: Study participant privacy is important and

thus the data must be de-identified to remove any

personally identifiable information. The person identifier in

the OMOP CDM was a sequential number, unique to

everyone in all the datasets but a mapping with the original

identifier key was retained for provenance and

(4) Structural transformation: the data structure was reshaped

from the source single table (single.csv file for each site)

structure to a normalized relational database structure of the

target OMOP CDM.

Load: In this final phase, the transformed data was loaded into the

OMOP CDM on the PostgreSQL database. The target database

consisted of the OMOP CDM version 5.4 (31) clinical and health

system tables. The vocabulary tables were loaded separately after

downloading the concepts from the ATHENA repository.

Figure 5 shows the high-level mapping from INDEPTH Core

Microdata to OMOP CDM.
4.6 Data migration from INDEPTH to OMOP
CDM—the extract, transform, and load
implementation

The ETL process was executed utilizing the Pentaho Data

Integration Community Edition tool, with data storage housed

within a secure PostgreSQL database environment. The

implementation of this process adhered to the following

sequential steps:

1. We designed a master Pentaho job to optimize the workflow,

enabling seamless coordination of various processes in a

sequential chain of jobs and transformations. This approach
frontiersin.org
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FIGURE 5

Source data mapping approach to OMOP CDM V5.4.
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ensured efficient data migration. Figure 6 shows a screenshot of

the master job.

a. The first job entry does the task of configuring the execution

environment for the ETL process. This involves setting

variables for database names, schemas, file paths, and other

essential parameters.

b. The Extract process is then responsible for retrieving data from

source CSV files, which were previously downloaded from the

INDEPTH Data Repository. Subsequently, this data is loaded

into corresponding database tables.

c. In the loading step, data is extracted from the database tables

and then merged and loaded into a unified table known as

the staging data source. The staging tables are created

dynamically before loading the data. This consolidated data

serves as the foundation for subsequent processing.

d. The next entry is focused on creating the OMOP CDM

version 5.4 tables within the specified schema for the target

database.

e. The final entry is tasked with transforming the input data from

the staging data store into the OMOP CDM format and storing

it within the designated target database schema.

2. The final transformation that eventually converts the source

data into OMOP CDM performs the following steps, as

illustrated in Figure 7:

a. Here, additional staging tables are created to temporarily store

in-process data essential for subsequent steps.
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b. Initial data loading involved demographic details into the

OMOP CDM tables, containing individual information and

associated data such as location and care site.

c. In the second step, the process focused on loading visit details,

which contained each household encounter. The key conceptual

shift from the source data is that source observations are

recorded as visits in OMOP CDM. Here, the

VISIT_OCCURRENCE andVISIT_DETAIL tables are populated.

d. During the third step, theOBSERVATION table is populated. This

step involvedmapping the actual events from the INDEPTHCore

Microdata to observations in OMOP CDM, populating both the

OBSERVATION and OBSERVATION_PERIOD tables.

e. In the fourth step, the long-format data from the INDEPTH

Core Micro Dataset is transformed into residencies i.e., wide

format, signifying the start and end of each residency in a

single record. These residencies are then mapped to Episodes

in OMOP CDM, resulting in the population of the EPISODE

and EPISODE_EVENT tables.

f. Lastly, the process involved extracting death events from the

INDEPTH Core Micro Dataset and populating the DEATH

table in OMOP CDM.

4.7 Metadata

Metadata serves as an important layer of information that

explains the characteristics, context, and origins of data,
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FIGURE 6

Screenshot of the master job for ETL implementation using pentaho data integration tool.

FIGURE 7

The steps to transform INDEPTH core micro dataset to OMOP CDM.
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resources, and information sources. Its main function is to

empower users by facilitating a comprehensive understanding of

the data, enabling successful utilisation. Positioned as a vital

component in data management, discovery, and interpretation,

metadata assumes a key role in adhering to the FAIR (Findable,

Accessible, Interoperable, Reusable) principles, essential for

fostering data sharing and open science.

The benefits of metadata include but are not limited to: (1)

expediting data discovery, (2) enhancing data interoperability, (3)

facilitating data quality assessment, and (4) enabling proper data

citation. In principle, metadata acts as a key enabler, ensuring

that data is not only accessible but also comprehensible and

usable in diverse contexts.
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For a detailed insight into the INSPIRE Data Hub’s metadata

flows, readers may refer to the comprehensive documentation

provided in the “INSPIRE Data Hub: Technical Results of Phase

1” (20). This document explains the workings of the metadata

flows within the INSPIRE Data Hub, shedding light on the

technical aspects and outcomes of the initial phase.
5 Result

The OHDSI Data Quality Dashboard (DQD) serves as a

specialized tool for the assessment and continuous monitoring of

data quality within the Observational Medical Outcomes
frontiersin.org
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Partnership Common Data Model (OMOP CDM). This

comprehensive dashboard functions as a strategic overview,

empowering analysts to pinpoint and address potential issues

residing in the CDM datasets. Leveraging an array of

sophisticated data quality checks, the dashboard offers valuable

insights into crucial dimensions, including completeness,

accuracy, and consistency of the data.

The data quality checks within the OHDSI framework are

systematically categorized into three main types: table checks,

field checks, and concept-level checks, each addressing distinct

aspects of data integrity. Table-level checks operate at a high

level, evaluating entire tables without investigating into individual

fields. Such checks ensure the presence of required tables or

verify that individuals in the PERSON table have corresponding

records in event tables. Field-level checks, most check types,

focus on specific fields within a table. These encompass

assessments of primary key relationships and scrutiny of whether

concepts in a field adhere to specified domains. Concept-level

checks zoom in on individual concepts, scrutinizing aspects such

as the presence of gender-specific concepts in individuals of the

wrong gender and the validity of values for measurement-unit

pairs (22).

Upon completion of the check process, the R package generates a

JSONobject which can be viewed using aweb browser (22). Thismulti-

tiered approach ensures a comprehensive evaluation of data quality.

One of the key strengths of the dashboard lies in its ability to

facilitate improvement efforts by providing a transparent

mechanism for tracking and addressing identified issues. This, in

turn, ensures that the information housed within the OHDSI

data stack maintains a high standard of reliability, making it

well-suited for a diverse array of analytical endeavours. Thus, the

OHDSI Data Quality Dashboard emerges as a pivotal asset in
FIGURE 8

Data quality dashboard for OMOP CDM migration from INDEPTH core mic
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fortifying the integrity of data within the OMOP CDM, fostering

confidence in the data’s suitability for robust analytics.

Figure 8 shows the post-migration data quality after

transitioning to the OMOP CDM format from the three datasets

sourced from the INDEPTH Data Repository.

OHDSI ATLAS is a tool that provides a no code/low code

platform for the exploration, analysis, and visualisation of OMOP

CDM data. It facilitates the creation of cohort definitions, the

exploration of the CDM, and the generation of various statistics

and visualisations. It also populates the OMOP CDM results

schema. The CDM data post migration from the INDEPTH Core

Micro Dataset has been processed using ATLAS and the

ACHILLES R scripts it invokes. Together they populated result

tables of ATLAS to visually display the results.

Figures 9, 10 show the ATLAS data dashboard and individual-

level PERSON data, respectively.

After completing the data migration, an analysis was conducted

to compute the crude birth and death rates based on the OMOP

CDM dataset. The results of this analysis demonstrated that the

rates remained consistent both before and after the data

migration. Figures 11A,B visually represent the Crude Birth Rate

(CBR) and Crude Death Rate (CDR) following the migration of

data into OMOP CDM from the INDEPTH Core Micro Dataset.

These figures provide clear evidence that the ETL process was

successful, ensuring that no or minimal data loss occurred

during the migration.
6 Conclusion

In conclusion, this research has explored the processes of data

mapping and migration, focusing on the transformation from the
ro dataset.
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FIGURE 9

ATLAS dashboard.
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INDEPTH Core Micro Dataset to the Observational Medical

Outcomes Partnership Common Data Model (OMOP CDM).

The systematic approach undertaken in this study highlights the

importance of standardising heterogeneous data sources, enabling

interoperability, and fostering harmonization within the realm of

population health research.

This paper highlights the methodology for setting up an

ecosystem, for data harmonising into the OMOP CDM from

INDEPTH Core Micro Dataset and does not explore the

complex analysis of the datasets we are undertaking

post-migration.

Through data profiling, vocabulary mapping, and the execution

of extraction, transformation, and loading (ETL) programs, we

have successfully navigated the challenges associated with

integrating data from an exchange format into the OMOP CDM.

The use of tools such as USAGI, WHITERABBIT, and RABBIT-

IN-A-HAT from the OHDSI open-source software stack has

played a pivotal role in achieving accurate and meaningful

mappings, ensuring the fidelity of data representation. It also

demonstrated the use of the Pentaho Data Integration tool for

implementing the ETL pipeline.

The integration of the OHDSI Data Quality Dashboard into

our methodology further fortifies the reliability of the

transformed data. By facilitating continuous monitoring and

assessment, this tool empowers researchers to uphold the quality,

completeness, and accuracy of the migrated data, laying a robust

foundation for subsequent analytics and research endeavours.
Frontiers in Digital Health 14
This research not only contributes to the advancement of data

harmonisation practices but also aligns with the broader global

initiatives advocating for the adoption of standardised data

models. The insights gained from this study have implications

not only for the INSPIRE Network but also for the wider

research community engaged in longitudinal population studies.

The ability to seamlessly migrate data from a diverse range of

sources into the OMOP CDM opens avenues for collaborative

research, comparative analyses, and evidence generation on a

broader scale.

A notable insight from this endeavour is the successful

exploration of integrating longitudinal population data into

the Observational Medical Outcomes Partnership Common

Data Model (OMOP CDM), despite its primary design for

clinical data.

The OMOP CDM v5.4 encompasses 15 tables within the

Clinical Data Tables. In our study, we populated 6 tables due

to the limited availability of data in the source. From the

Health System Data Tables, we successfully populated 2 out of

the 3 tables, and from the Standardised Derived Elements, we

populated 2 out of 5 tables. The omission of certain tables

does not compromise the effectiveness of the migration

process or the analytical capabilities, as the inclusion of these

tables is contingent upon the availability of specific data types.

Overall, the migration has proven successful, and standard

analyses using the OHDSI tools are both underway and have

been already been achieved. The result of the migration is
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FIGURE 10

ATLAS person report.

Bhattacharjee et al. 10.3389/fdgth.2024.1329630
shown in the output screenshots of the Data Quality Dashboard

and the ATLAS.
7 Discussion

The concept of harmonised data across a network of data

providers started with patient data in High-Income Countries

(HIC) (32). The INSPIRE datahub is extending that concept to

new sources of data, including population health data, building

on approaches by INDEPTH (11) and the ALPHA network (4).

The established approach is through standardised vocabularies

that describe the provenance and metadata. This allows ETL

programs to on-ramp the data into a common data model for

use with other similar data. In using the larger, more diverse

data source low- and middle-income countries (LMIC), there is

greater confidence in the results and the applicability to a wider

population. The use case shows how demographic data from the

iSHARE repository can be made available, so we can use data

from 25 HDSS across Africa, providing an opportunity for

comparative analysis across African countries. The key to

achieving this is firstly the maintenance of the HDSS data
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collection, and secondly the training of HDSS data managers to

undertake the ETL into HDSS instances of the OMOP CDM.

The approach by INSPIRE has been to populate a common

data model that is generic, scalable, and displays the rich

provenance of metadata from study data. We have used the

OMOP common data model as the standard and have adapted it

to use with population data. There are still areas where further

adaptation is needed. We have shown the whole data pipeline,

including visualization and profiling of data, can be achieved,

using the case study data from three HDSS. In developing this

model, we have developed training modules (https://inspiredata.

network/courses) for data managers, to enable them to

understand the new concepts in the OMOP CDM. We have

started with a basic use case data set, but the principles can be

used on other data, and an ETL is needed with each new dataset.

The ALPHA data specification (https://alpha.lshtm.ac.uk/data-

2/) and the INDEPTH Core Microdata (https://academic.oup.com/

view-large/81282722) are focused on specific structures that are

more suitable for analysis of HIV and population studies

respectively. They do not cater to a generic structure for all types

of studies and do not offer any pre-built tools to prepare and

analyse data. In comparison, OMOP CDM and the connected
frontiersin.org
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FIGURE 11

(A) Crude birth rates as extracted from the OMOP CDM. (B) Crude Death Rates as extracted from the OMOP CDM.
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OHDSI community provide open-source tools to prepare and

analyse data using a rich set of vocabularies for standardizing

population health encounters and their observations from

diverse sources.

For capacity building within its collaborating sites and other

interested groups, the INSPIRE network has developed training

modules (https://www.inspiredata.network/courses) focused on

data harmonization. These modules cater to all the aspects of data

harmonization including ethics, discovery, anonymization,

specifications, exchange protocols, OMOP CDM, migration (ETL),

validation, governance, sharing, analysis, and many more. These

modules are expected to raise awareness for data harmonization

and build the necessary skills within the African sites.

The initial work focused on transforming the ALPHA data

specification to OMOP CDM (33). This covered the transformation

of data related to HIV status in a population. This effort was taken

up as a proof of concept that OMOP CDM can be used for

population-based studies although OMOP CDM was primarily
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created for clinical datasets. The use case taken up in this paper

demonstrated the adaptation of OMOP CDM for demographic and

health surveillance system data, which augmented the understanding

of modifying the initial purpose of OMOP CDM into a new area of

study. Putting HDSS data into OMOP increased the scope of

demographic data to be aligned and researched alongside diseases

and clinical data to give better insight into public health questions.

The OHDSI open-source software stack (https://ohdsi.org/

software-tools/) gives its users a variety of tools to prepare, analyse

and visualise data. It provides skeletal SQL and R codes to

implement the data migration (ETL) design. However, the skeletal

codes are not sufficient to implement the data migration and more

so in complex situations, the codes need to be modified, which

requires specialized skills. In INSPIRE, for this case study, we have

used the Pentaho Data Integration (PDI) Community Edition (CE)

tool to implement the data migration process taking inputs from

the designs done using the OHDSI WhiteRabbit tools. Pentaho

Data Integration (PDI) Community Edition (CE) (30) is an open-
frontiersin.org
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source version from Hitachi Vantara, which is a graphical tool

designed specifically for data migration (ETL) that can handle

complex transformation logics and large datasets through its

inbuilt features and multi-threaded architecture.

Since OMOP CDM was initially designed and developed to

harmonise clinical data, the data standards, including table

structures, variables, and codes were more specific to the clinical

environment. When doing the data mappings for ALPHA data

specifications, INDEPTH Core Microdata, and other INSPIRE

studies, it was realised at times that the vocabulary do not suffice

to population study data completely. Some mappings were done

on a very generic basis as specific vocabularies were not

found in the ATHENA vocabulary repository. Therefore, it is

recommended to add additional vocabularies to serve a diverse

type of datasets including population studies and indigenous

terminologies specific to the African context. Additional

vocabularies are part of the purview of the OHDSI Africa

Chapter Working Group.

The INSPIRE datahub will help to understand and make

progress in setting up data hubs within Africa with low resource

settings to achieve data harmonization for access to global

research opportunities and data sharing. A scalable architecture,

as has been proposed and demonstrated by INSPIRE PaaS will

enable sites to replicate or use a centralized host to process and

analyse data. The iSHARE (28) and ALPHA have demonstrated

the use of Centre-in-a-Box (CiB) (5), an all-encompassing box

for research data management. The CiB ensured site autonomy

concerning data by enabling all data preparation work to be

done within the site premises and then sharing the anonymized

datasets in a common standard on the INDEPTH Data

Repository (https://indepth-ishare.org/). This was the beginning

of a federated workflow within African HDSS sites. INSPIRE

datahub is working towards achieving a federated data network

on a public/private cloud and an on-premises combination of

servers. The other benefit that is accounted for in this data hub

is the process of data FAIRfication. The work to FAIRify OMOP

CDM is underway.

The case study presented herein underscores the compelling

effectiveness of the OHDSI framework in seamlessly harmonizing

heterogeneous data sources. Through meticulous analysis, it

becomes evident that the OHDSI framework adeptly bridges

disparities inherent in diverse data origins, culminating in a

unified and standardised repository. This unification greatly

enhances the feasibility of data comparison and aggregation,

fostering an environment conducive to robust healthcare

analytics and research.

Moreover, the study illustrates the remarkable interoperability

achieved by the OHDSI framework in facilitating the integration

of transformed data with other tools and databases adhering to

the OHDSI compatibility standards. The findings underscore the

pivotal role of this interoperability in creating a synergistic

ecosystem, allowing for the seamless exchange of insights and

analyses across various platforms. This not only expedites

research processes but also augments the reliability and
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reproducibility of results, a critical facet of any data-

driven endeavor.

This pan-African data hub will benefit researchers to work on

multi-site data and produce results affecting the entire region

rather than just surveillance area-specific locations. This will

ensure decisions related to public health cover larger areas and

regions improving lives therein.

As part of the platform’s ongoing development, we are

currently working on the use of OHDSI Docker images at HDSS

sites. This effort aims to introduce read-only templates that

provide step-by-step instructions for creating containers. By

doing so, we are streamlining the packaging of tools with all the

essential components required to replicate and run seamlessly in

other setups.

The limitations of this data hub, as it stands currently, lie in the

scope of expansion into other sites. The agreements for using real

data from sensitive domains like COVID-19 and HIV remain a

challenge due to the concerns that the data owners carry. Unless

this datahub, an integrated suite of services, is expanded into

new sites and domains, the real test remains elusive.

The future work planned for this integrated suite of services

are in deploying OHDSI instances at the collaborating sites

using Docker and/or other technologies, adding population

study-related and indigenous terminologies into the OMOP

standard vocabularies, FAIRification of OMOP CDM, and in

the process improving on the metadata generation and

documentation, conducting additional analyses at each site using

the OHDSI data analysis toolset and hosting multi-domain data

results on the hub.
8 Future

As we move forward, the lessons learned from this research can

guide future endeavours in enhancing data interoperability,

supporting reproducibility, and promoting the overarching

principles of the FAIR (Findable, Accessible, Interoperable,

Reusable) data framework. Ultimately, this study contributes to

the evolving landscape of population health research, where

standardised data models play a pivotal role in unlocking the

potential of diverse datasets for the betterment of global

public health.

The INSPIRE data hub currently houses data sourced from the

ALPHA data specification, INDEPTH Core Micro Dataset, and

synthetic WHO IDSR data about COVID-19 in the African

region. Ongoing efforts are directed towards incorporating

climate and mental health data into the platform. These

additional datasets will undergo processing and integration into

the OMOP CDM for analysis and visualization.

Moreover, engagement for enhancing the federated platform’s

capabilities to accommodate HDSS datasets within the INSPIRE

network is in progress. This expansion will enable use cases like

sharing of data for conducting analyses and exploring the impact

of climate change on community health.
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