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Abstract 
The provision of climate services for assessing and governing environmental problems such as poor air 

quality requires interactions between scientists and decision-makers. Air quality information services in 

China mainly focus on the coming days to weeks. However, users may benefit from air quality 

information on climate time-scales—from months to decades; hereafter air quality climate services. We 

focused on key decision-makers and stakeholders that are users of air quality climate services and 

conducted five workshops with these identified users to ascertain their priorities for air quality climate 

services, and the reasoning behind these priorities. We also conducted a choice-based conjoint 

experiment via an online survey distributed amongst regional and local Climate Centres and 

Environmental Monitoring Centres to assess quantitatively the decision-makers’ needs. The results 

from the workshops and the survey showed that the air quality climate services needs by users in 

China mainly relate to seasonal forecasting of winter haze events (PM2.5 levels and/or the 

meteorological conditions conducive to the dispersion of the air pollution); there is also some interest in 

long-term projections of haze under climate change and a growing interest in ozone pollution in 

summer. Spatial relevance is perceived to be important to regional and city-level stakeholders who 

prefer information on the city-level, whilst national-wide information is important for national government 

agencies. A high level of reliability of forecasts was needed for uptake. The findings on the needs for air 
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quality climate services by potential users can support researchers and policy-makers in developing the 

scientific capacity and providing tailored, effective air quality climate services in China. 

Keywords: air pollution governance; decision-maker needs; climate service; China; mixed-methods 

1. Introduction 
Air pollution has an adverse effect on health, wellbeing and the economy (World Bank & IHME, 2016; 

HEI, 2019). As such, air quality has received much socio-political and scientific attention, particularly in 

rapidly industrialising countries such as China (He et al., 2001; Chan & Yao, 2008). The Chinese 

Government has been taking stricter action in reducing and preventing air pollution since the 

publication of the Air Pollution Prevention and Control Action Plan by the State Council in 2013 (Huang 

et al., 2018, Zheng et al. 2018). In addition to emission controls, such as shutting down highly polluting 

factories, air pollution monitoring and forecasting have been improved to provide information for 

advising the public on preventive measures such as avoiding outdoor activities and wearing face masks 

to mitigate detrimental health impacts. 

The China National Environmental Monitoring Centre (CNEMC) has been providing hourly air pollution 

monitoring data to the public from 2013. The air pollutants monitored include sulphur dioxide, nitrogen 

dioxide, particulate matter less than 10 and 2.5 micrometres in aerodynamic diameter (PM10, PM2.5), 

carbon monoxide, and ozone. The CNEMC provides a future 3- to 5-day Air Quality Index (AQI) range, 

which predicts the pollution level of the dominate pollutant and possible health impacts. When the AQI 

is forecast to be severe, a heavy air pollution early warning will be triggered with actions such as 

restrictive operations of factories and transportation (Beijing Government, 2018).   

The CNEMC also releases qualitative trends of air quality conditions on 7-10-day timescales related to 

regional meteorological conditions (including wind speed, wind direction, vertical temperature profiles, 

and humidity), since air quality is determined not only by pollution emissions but also by meteorological 

conditions (Wang et al. 2014; Cai et al., 2017). In addition, the CNEMC works with Beijing Climate 

Centre to produce seasonal outlooks for meteorological conditions related to the dispersion of air 

pollution (haze hereafter) since winter 2017 (MEE, 2018).  

Previous studies have shown that close provider – user interactions play a critical role in environmental 

policy and decision making, since enhancing the provider’s understanding of user needs enables 

services tailored better to policy and decision-making needs (Totlandsdal et al., 2007; Lemos et al., 

2012; Bruno Soares & Dessai, 2016; Nkiaka et al., 2019). Climate services combining scientific 

information and user needs have been developed and implemented in several climate service projects 

in China (Hewitt et al., 2017). For example, seasonal forecasts of rainfall for the Yangtze River Basin, 

China (Bett et al., 2018) were initially developed (2015-2016) following scientific findings (Li et al., 

2016) and user engagement (Golding et al., 2017a, b). The scope of these forecasts was revised 

following further user feedback (Golding et al., 2019) and scientific developments (Liu et al., 2018), and 

a new seasonal rainfall forecast product that was more regionally-focussed was implemented in 2019. 

The provision of air quality forecasts has been largely focusing on short time-scales as introduced 

above. In recent years, air quality predictions and projections on seasonal and climate time-scales have 

been improving (Wang et al., 2018). We refer to research underpinning projections and predictions as 

air quality climate science. It represents the interaction between air pollution and climate, and the 

forecasting and projections of air quality as influenced by variations in climate on seasonal and longer 

time-scales (Wan et al., 2020). The term ‘air quality climate science’ does not consider the impact of 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aerodynamics
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emissions controls (Sun et al., 2016), however, refers to the impact of changes in the weather and 

climate on air quality (Xu et al., 2017). 

The provision of air quality forecasts on climate time-scales through close science-policy interactions (in 

short “air quality climate services”) may assist in controlling and reducing air pollution levels, for 

example, by informing early mitigation actions for emissions control including setting air pollution 

reduction targets (Wan et al., 2020). This may in turn provide public health and economic benefits, 

especially for regions with serious air pollution problems combined with large populations such as the 

Beijing-Tianjin-Hebei region and the Yangtze River Delta region (Wang et al. 2014; Xu et al., 2017). 

The term “service” is used to take a holistic view of both service providers and users and emphasise 

the importance of a two-way interaction between them.  

A lack of communication of policy needs back to the scientific community is a critical gap of the current 

environmental science-policy interface (Wang et al., 2021). Despite the apparent merits of improved air 

quality and climate forecasts, user needs related to providing air quality climate services have rarely 

been explored. Hence the co-production between providers and users of relevant services has not 

been considered. The objectives of this novel study are to investigate the main priorities for decision-

makers and stakeholders in China with respect to air quality climate services, to understand the 

reasoning behind these priorities, and to analyse uncertainties which need to be tackled in order to 

implement useful air quality climate services. The aim of the paper is understanding policy and 

decision-maker needs. Feeding these needs to the scientific community could stimulate policy-relevant 

research and, in turn, improve the development of policy informed by sound science aimed at reducing 

air pollution levels and consequent health impacts.  

In this study, the investigation of user needs regarding air quality climate services was conducted 

through a combination of qualitative and quantitative analysis which may allow result triangulation. This 

contrasts with past research on climate services and the value of air quality, where either qualitative 

methods such as focus groups (Bruno Soares & Dessai, 2015; Golding et al., 2017b), or quantitative 

methods such as choice experiments (Tang & Zhang, 2015) or hedonic pricing (Mei et al., 2019) have 

been used. The remainder of the paper is organised as follows. In Section 2, the methods of the study 

are introduced; in Section 3, we present the results; in Section 4, we discuss and summarise the 

results. 

2. Methods 
We consider potential users of air quality climate services as governmental decision-makers involved in 

the regulation of air pollution, and researchers who provide technical support to government 

departments. We focused on these user groups across China in the Beijing-Tianjin-Hebei region and 

the Yangtze River Delta Region.  

A series of workshops were held to explore user needs related to air quality climate services from 

monthly/seasonal (medium-term) to climate change-related (long-term) time-scales. The themes that 

emerged from the workshop results were used to inform a choice-based conjoint (CBC) experiment that 

was implemented via a survey. The CBC survey was conducted to validate the workshop results with a 

wider audience, and to generate quantitative results on the prioritisation of identified user needs.  

The China Meteorological Administration (CMA) and the UK Foreign and Commonwealth Office in 

China facilitated the identification and recruitment of participants from, primarily, the environment, 

climate and health sectors, who expressed the most interest in engagement and could benefit from air 

quality climate services.  
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2.1. Workshops  

Five workshops were held from 12th to 20th June 2018 with identified decision-makers and stakeholders 

(Table 1). Appendix I provides background on the institutional relationships of the stakeholders. The 

structure of the workshops was: a) opening introduction and expression of interests by the research 

team; b) opening statements and description of main tasks undertaken by the Chinese organisations 

represented; c) discussion around the questions that are presented in Box One below. In several 

cases, the agenda of the workshops had to be more flexible, as the Chinese partners wished to devote 

more time on communicating on their developments in particular areas or in exploring particular issues 

in greater depth. 

Box One: Questions guiding the workshops 

• Are you interested in air quality forecasts? 

• Are you interested in air quality forecasting beyond 5 days? (e.g. seasonal 

forecast, decadal projections, climate change projections) 

• Are you already doing such forecasts? If not, do you have the capability and 

what development would be needed? 

• What would you/policy makers use this information for? 

• What spatial scales are important?  

• Uncertainties 

o What information about uncertainty do you need to know?  

o How would you like the uncertainty to be communicated?  

o How do policy makers make decisions in the face of uncertainty? 

• Are there any challenges for the government in starting to use longer-term air 

quality forecasts? 
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Table 1. Stakeholders involved in the workshops.  

 

The workshops were audio recorded for analysis with given consent. Given the potential sensitivities 

involved, it was decided not to report any of the discussion verbatim, but to draw upon the audio 

recording and additional notes taken by researchers. Debriefing meetings were held after each 

workshop to go through the main points raised, to exchange impressions and to note any issues to 

carry forwards. After the workshops, one researcher combined notes from all team members into a full 

report and checked the accuracy by listening to the workshop audio records. A number of themes 

emerged from the workshop, further discussed through qualitative analyses in Sections 3.1 and 3.3.  

2.2. Choice-based conjoint experiment via a survey 

The core of the survey is a choice-based conjoint (CBC) experiment designed and analysed using 

Sawtooth Lighthouse software, which has previously been used for stated preference research in the 

health service sector (Cunningham et al., 2008; Molimard & Colthorpe, 2015; Moise et al., 2018), in 

environmental economics (Tabi & Wüstenhagen, 2017; Sheau-Ting et al., 2019) and for business 

applications (Adams et al, 2017).  

The survey was targeted to potential users of air quality climate services at regional and local scale, as 

opposed to national and regional scales for workshops. It was distributed to regional and local Climate 

Centres and Environmental Monitoring Centres by Beijing Climate Centre (BCC) during 24th September 

to 1st October 2018 through e-mail and WeChat (the dominant social media application in China) 

targeting 2-4 respondents from each local agency.  

As a stated preference method, choice-based conjoint analysis assumes that individuals derive utility 

from the underlying attributes of a service, and that individuals’ preferences are revealed through their 

stated choices (Lancaster, 1966; Amaya-Amaya, 2008). In this study, there were four alternative 

hypothetical air quality forecasts within a CBC choice task (i.e., a question in the survey) in addition to 

Region/City Stakeholder organisation Number of 
stakeholders 

Workshop date 

National/Beijing Appraisal Centre for Environment and 
Engineering (ACEE) 

3 12th June 2018 

Chinese Research Academy of 
Environmental Sciences (CRAES) 

1 

Beijing Climate Centre (BCC) 2 13th June 2018 

Beijing Beijing Municipal Ecology and 
Environment Bureau (BJEEB) 

5 13th June 2018 

Shanghai 
(Yangtze River 
Delta region) 

Shanghai Environmental Meteorology 
Centre, Shanghai Meteorological Service 
(SMC)  

2 15th June 2018 

Shanghai Centre for Disease Control and 
Prevention (SCDCP) 

1 

Shanghai Environnemental Monitoring 
Centre (SEC) 

1 

Shijiangzhuang, 
Hebei 

Hebei Environmental Emergency & Heavy 
Pollution Weather Forecasting Centre 
(HEEHPWFC) 

2 20th June 2018 

Hebei Climate Centre (HCC) 3 

Hebei Meteorological Service (HMS) 3 
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an opt-out alternative (“NONE”) (see Figure 1 for an example choice task). Each alternative is a 

combination of attributes that represents a hypothetical but credible air quality forecast. An 

experimental design is used to guide the combination of attribute levels across the forecasts shown to a 

respondent in a given choice task (Chrzan & Orme, 2000). Respondents are then asked to choose their 

preferred air quality forecast alternative. Their choices reveal relative preferences for attributes and 

their values.  

 

 

Figure 1. An example of a choice task of the Choice-Based Conjoint experiment 

The five attributes used in the survey were derived from the workshops—type of air pollution 

information, type of value (i.e., quantitative, qualitative), time-scale, spatial-scale, reliability of prediction 

and the corresponding attribute levels are shown in Table 2. A total of 20 CBC choice tasks were 

answered by each respondent. A study conducted by Johnson and Orme (1996) showed that there is 

no evidence of increasing random error with increasing number of choice tasks when the number is 

below 20.  
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Table 2. Attributes and attribute levels for the Choice-Based Conjoint experiment  

Attribute Level 1 Level 2 Level 3 Level 4 Level 5 

1. Type of 
air pollution 
or indicator 
 

PM2.5 Ozone Air Quality 
Index (AQI) 

Air quality 
index related to 
weather/climate 

 

2. 
Numerical 
or 
descriptive 
value 

Absolute 
numerical in 
concentration 
or value for 
AQI or other 
indices 

Anomaly in 
numerical 
value  

Qualitative 
anomaly 
statement 
(anomaly in 
description) 

Broader 
qualitative 
description  
 

 

3. Time-
scale 

Forecast for 
the next 
month 

Forecast for 
the next 
season  

Forecast for 
the next year 

Forecast for the 
next decade 

Air quality 
projection 
under a 
scenario of 
climate 
change 
(longer than 
10 years)  
 

4. Spatial-
scale 
 

Global East Asia China Regional City-level 

5. Reliability 
of 
prediction 

It is very 
likely that the 
outcome is 
reliable (e.g. 
above 80% 
probable)  

It is likely that 
the outcome 
is reliable 
(e.g. above 
70% 
probable) 

It is probable 
that the 
outcome is 
reliable (e.g. 
above 60% 
probable)  

It is more likely 
than not that 
the outcome is 
reliable (e.g. 
above 50% 
probable)  

 

 

A balanced-overlap randomised design approach was used, i.e., each respondent received a unique 

survey with randomised combinations of attribute levels and choice sets (Chrzan & Orme, 2000). This 

design imposed constraints on the balance of attribute levels and attribute level combinations, which 

allowed for some overlap of attribute levels to occur between alternatives but no alternatives could be 

identical.  

The analysis of choices is based on random utility theory (RUT) (McFadden, 1973). Participants in CBC 

experiments are assumed to be rational decision makers that seek to maximize innate, stable 

preferences to reach the maximum benefit (utility). The latent utility of an alternative of a choice task 

perceived by a respondent is composed of two parts: a systematic (explainable) component, and a 

random component (error term) representing unmeasured variation in preference (Eq. (B.1); the index 

B refers to Appendix B). The “NONE” option was ignored during the estimation of the utilities (i.e., any 

choice tasks where NONE has been chosen are skipped in the analysis). The frequency of choosing 

the NONE option is reported in Section 3.2. 

The observed utility of an air quality forecast within a CBC choice task is determined by a linear 

function of the utility of the five attributes (Eq. (B.2)). The generic regression coefficients of attributes 

across alternatives are estimated and interpreted as utilities. Based on the assumption of RUT, a 
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respondent will choose an alternative if and only if the utility of the alternative exceeds the utility of 

other alternatives in the choice task.  

Utilities are estimated by fitting a conditional logit model (CLM) (Eq. (B.3)) with the maximum likelihood 

method (Eq. (B.4)) (McFadden, 1973; Allison, 1999; Amaya-Amaya, 2008; Hauber et al., 2016). 

Appendix B provides details on the statistical approach underpinning the conditional logit analysis. A 

log-likelihood test (Eq. (B.5)) is used to test the significance of the model against a model that assumes 

all regression coefficients are zero (i.e., null model), thus implying that each alternative in a choice task 

has the same probability of being chosen (i.e., random choice). The significance level is set as 0.05.  

A statistic for the relative importance of an attribute is also calculated. The relative importance of an 

attribute is equal to the range of the utility (i.e., maximum utility minus minimum utility) of an attribute 

divided by the sum of the utility range of all attributes, then scaled to 100% (Sawtooth, 2017). 

Therefore, attributes with a wider utility range have a higher relative importance, indicating the 

importance of an attribute relative to other attributes. The survey results are presented in sections 3.2 

and 3.3. 

3. Results 
The workshop discussions (Box One) enabled us to obtain qualitative information on user needs in air 

quality climate services (Section 3.1) and the survey results provide further quantitative validation within 

a wider audience of regional and local level users (Section 3.2).  

3.1. Categories of needs for AQCS 

Analysis of the dialogue in the workshops (Section 2.1) allowed a simple categorisation between 

different levels of needs.  

• Preference for—the information is not strictly required to provide current services but, as 

understanding and technique develops in the future, it may improve the quality of the work; it 

may also provide useful contextual information today. 

• Need—the information would improve the provision of existing and emerging services. 

• Strong need—the information would greatly improve the provision of existing and emerging 

services. 

The workshops allowed us to distinguish between the types of information requested by agencies and, 

in some cases, on what time-scale and with what level of certainty in order to be of use, as shown in 

Figure 2. User needs were categorised into the three levels qualitatively by one investigator based on 

the workshop notes which were also cross-checked with workshop recordings. A consensus about the 

categorisation was reached among all four investigators, which showed the inter-investigator reliability 

of the result. The workshop identified a number of themes: spatial-scale, time-scale, type of air pollutant 

information and uncertainty communication that informed the survey (Section 3.2). We found that user 

needs vary at different locations, therefore we distinguish between user needs in Figure 2 by using 

different shades and outlines of the rectangle. The workshops identified that the strongest need is for 

short term forecasts for early warning of severe air pollution events in Beijing and Hebei, and for 

monthly to seasonal (winter) forecasts for PM2.5 concentrations and for haze events in Shanghai. The 

full workshop results (Figure 2) are discussed in detail alongside the survey results in Section 3.3, 

focussing on the key themes outlined above. 
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Figure 2. Illustrations of decision-maker needs on air quality climate services – workshop results. The degree of needs 
changes from high to low from inner to outer circles. The different shades and outlines of rectangles and font colours represent 
needs expressed by agencies in different locations (see Table 1 for the list of stakeholders). The overlay of shades represents 

needs expressed by more than one location.  

3.2. Relative importance of air quality forecast attributes 

112 respondents completed the survey. Respondents were from East China (44%), West China (29%), 

North China (14%) and South China (13%). 52% of respondents are female, 44% male and 4% 

preferred not to say. Therefore, survey respondents are fairly evenly distributed across region and 

gender. Based on a rule of thumb, the minimum sample size given 20 choice tasks and 4 alternatives in 

each task is n=31 (Orme, 2019a). This is considerably smaller than the survey sample size (n=112), but 

a regional level breakdown is not advised given the small sample size for some of the regions. 

The “NONE” option was chosen on average 1.4 times per person. There is no indication that the 

frequency of choosing the “NONE” option differs between the first 10 choice tasks and the last 10 

choices tasks. The log-likelihood test statistic for model fit is 488, which compared to a critical value of 

287 (17 df) at a 5% significance level suggesting that the model provides a significant fit to the data.  

Figure 3 shows the relative importance of the five attributes (Table 2). Among the five attributes, 

spatial-scale is the most important, followed by reliability of prediction and time-scale which are of 

similar importance. The type of air pollutant is less important, with the type of value (numerical or 

descriptive) having the least importance.  
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Figure 3. The relative importance for five attributes of air quality climate forecasts. 

The utility estimates for attribute levels with error bars (95% confidence interval) are shown in Figure 4, 

whereby the estimates of attribute levels are centred around zero for each attribute, which means the 

sum of their utilities are zero. Hence, the values represent relative rather than absolute preferences: 

negative values only mean that they have relatively less utility than the mean across all attribute levels. 

Two attribute levels are identified as significantly different when there is no overlap between the 

confidence intervals. For example, the utility of monthly time-scale is significantly higher than other 

time-scales (Figure 4), which suggests that decision-makers have higher needs for air quality forecasts 

at the monthly time-scale compared to other longer time-scales. The utilities are discussed in detail by 

themes (attributes) in Section 3.3. Please see Appendix C for the original value of the utilities and 

standard errors. 

 

 

Figure 4. Utilities of attribute levels. Error bars denote 95% confidence interval. 
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3.3. Decision-makers’ needs on air quality climate services 

In this section, needs on air quality climate information by potential users as elucidated from the 

workshops and the online survey together are discussed in detail focusing on the themes or attributes 

of spatial-scale, time-scale, type of air pollutant information and uncertainty.  

3.3.1. Spatial-scale 
The workshop participants from the ACEE and the CRAES who support the Ministry for Ecology and 

Environment (MEE), expressed their needs for both national-scale information, regional and local 

information to support policies at these different levels. 

The survey results from decision-makers and stakeholders at regional (refers to provincial and regional 

administration level, see Appendix I) and local (refers to prefectural and county-level) Climate Centres 

and Environmental Monitoring Centres show that spatial-scale has the largest relative importance 

(33%; Figure 3) among all attributes. Smaller spatial-scales have significantly larger utilities than larger 

scales hence the user is typically more interested in air quality climate services at the city/megacity- 

level as compared to national and global level (Figure 4). The ranking of the utility of different spatial-

scales (from high to low) is: city-level, regional, China, East Asia and global.  

It is important to note that the survey results reflect stakeholder needs at regional and local scales, 

since the survey was distributed to regional and local Climate Centres and Environmental Monitoring 

Centres (Section 2.2). This is in contrast to some workshop results gained from participants who are in 

national institutions hence reflect national level needs. Whilst both workshop and survey results 

highlight the need for city-level services, the national level is important for agencies that directly report 

to and inform the MEE. 

3.3.2. Time-scale 
The results of the workshop (Figure 2) show that user needs with respect to different time-scales vary 

by location. In Beijing and Hebei, there is a strong need for short-term air quality forecasts (i.e., daily to 

weekly), which could support decision-makers in providing an early warning for severe haze episodes 

and to take contingent emission reduction actions. This is followed by a need for monthly to seasonal 

air quality forecasts, with winter as the main season of interest. There are two main uses of monthly to 

seasonal air quality forecasts: a) decision-makers could set up air quality targets, especially for winter 

haze pollution, that take the influence of the meteorology into account. If the meteorology is favourable 

toward the dispersion of air pollution and hence good air quality, either a stricter air quality goal can be 

set up or emission controls can be relaxed to some extent, and vice versa; b) air quality forecasts one 

month or one season ahead enable local environmental bureaus to have sufficient time for compiling 

emission-related countermeasures to decrease the air pollution level and meet air quality targets, 

hence minimising the impacts on industrial activities and ordinary daily life of the public caused by 

short-term mandatory emission reduction actions, such as traffic restrictions. Therefore, monthly to 

seasonal air quality forecasts could potentially support the annual planning for the Autumn and Winter 

Air Pollution Comprehensive Control Action Plan in Beijing, Tianjin and Hebei and surrounding areas 

led by the MEE (2019). 

Agencies in Shanghai have a strong need for monthly to seasonal air quality forecasts (Figure 2). A 

possible reason why Shanghai agencies have more of a need for monthly to seasonal time-scales, 

compared to Beijing and Hebei, is that high air pollution events occurred less frequently in Shanghai 

than in Beijing and Hebei. Hence, decision-makers in Shanghai have less need for a short-term 

accurate air quality forecast to support severe air pollution early warning as compared to agencies in 

Beijing and Hebei. For example, seasonal PM2.5 concentration averaged for November, December, 
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January and February from 2016/2017 to 2018/2019 was 72 μgm-3 in Beijing, 120 μgm-3 in 

Shijiazhuang, the capital city of Hebei province, and 46 μgm-3 in Shanghai (data in December 2016 is 

missing) (MEE, n.d.). However, increased knowledge of the likelihood of high levels of air pollution 

episodes due to transport from upwind regions to Shanghai was noted. In addition, there is already an 

efficient system for 7-day air quality forecasting, but the system for monthly to seasonal air quality 

forecasting is less developed. 

There is also a preference for 3-5-year air quality forecasts in both Beijing, Hebei and Shanghai (Figure 

2). Air quality forecasts on this time-scale could support the strategic plans such as the 5-Year Plan on 

National Economic and Social Development Plan, and air pollution plans, such as the Air Pollution 

Control and Prevention Plan for 2013-2017 and the subsequent Blue Sky Protection Campaign for 

2017-2020. SCDCP expressed a preference for multi-decadal projections in support of the Healthy 

China by 2030 Blueprint, which ensures health, including environmental health, becoming an explicit 

national political priority in China (State Council, 2016; WHO, 2016).  

The survey results suggest time-scales and reliability of prediction are jointly the next most important 

attributes (24%; Figure 3) after spatial-scale. The order of different times-scales in terms of utility from 

the survey results is (from high to low): monthly, seasonal, climate change-related time-scales, annual, 

decadal (Figure 4). Because the research focuses on climate-related time-scales, the shortest time-

scale included in the survey is monthly. Monthly time-scale has significantly greater utility, and decadal 

time-scale has much lower utility than other time-scales. The overall trend is that shorter time-scales 

have larger utilities, however, climate change-related time-scales have higher utility than annual and 

decadal time-scales (but no significant difference was detected among seasonal, climate change-

related and annual time-scales (Figure 4). 

The survey and workshop results generally show agreement in terms of elucidating the most needed 

and important time-scales. Although winter was discussed as the most important season for air 

pollution and haze at the workshops, the survey suggested monthly forecasts in preference to 

seasonal. This may be because the survey did not ask about specific seasons. The workshop also 

revealed greater clarity of the relevant climate-related time-scales. 

3.3.3. The type of air pollution (indicator) and value type 
In both Beijing, Hebei and Shanghai, agencies at the workshops expressed their strong need for 

information about PM2.5 levels, and/or haze for the coming winter. There is also a need for information 

about ozone pollution in summer as it is perceived as an emerging problem in China (Figure 2). While 

emission control measures have led to reductions in PM2.5 concentrations, this has not been the case 

for ozone, partly as it is a secondary pollutant formed in the atmosphere and thus strongly sensitive to 

meteorological conditions. 

Workshop participants in Beijing and Shanghai have a strong need for quantitative air pollution 

concentrations for the next one to several months under the condition that the science is available to 

generate the forecast with sufficient accuracy. HEEHPWFC expressed a cautious view towards relying 

upon on the quantitative air pollution forecasts provided by numerical air pollution models as the 

outputs are perceived to be insufficiently reliable for operational purposes. Instead, information about 

meteorological conditions that are conducive to the accumulation or dispersion of air pollutants is 

considered to be more useful by the HEEHPWFC since such data can be incorporated into its own 

statistical model, which uses neural-network methodologies to correlate the meteorology conditions to 

the air pollution levels. 
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The survey results suggest the type of air pollutant or indicator is a less important attribute than spatial-

scale, time-scale and reliability of prediction (Figure 3). The utility of air quality forecasts for PM2.5 

concentrations, the AQI and air quality indices related to weather showed no significant difference 

(Figure 4). The utility of ozone forecast is significantly lower than PM2.5 concentrations, AQI or weather–

related AQ indices. This result is in line with the suggestion from the workshop that, while ozone has 

become increasingly important, the priority for most agencies is still lowering PM2.5 levels. 

We also explored the need for different types of values through the survey. No significant difference 

was found among the utilities of absolute numerical value, anomaly in numerical value, qualitative 

anomaly statement, and broader qualitative description (Figure 4). The type of value is the least 

important attribute (Figure 3). 

3.3.4. Uncertainty 
A high level of certainty is required by decision-makers because of the economic and social 

consequences of the forecast. There is a heavy responsibility for decision-makers to meet the air 

quality targets, for example, the mayors on provisional, prefectural and county-level are directly 

responsible for fulfilling their respective air quality targets. Also, if the air quality is forecast to be worse 

than the expected level, acute emergency actions will be taken by the government such as shutting 

down factories, which will cause impacts on the economy and would damage the credibility of the 

agencies and local government if the poor air quality episode does not happen. BJEEB stated that an 

air quality forecast needs to reach 60%-70% accuracy for it to be perceived as useful by decision-

makers (Figure 2). 

Two main sources of uncertainty in generating long-term air quality forecasts were expressed by 

workshop participants. Firstly, the rapid changes in emissions result in uncertainty in emission 

inventories data, e.g. some factories may shut down permanently or temporarily due to a change in 

regulations or the volatility of demand which cannot easily be represented in the emission inventory or 

move in location (as noted by HEEHPWFC and SEMC). Secondly, the inherent uncertainty in the 

weather data (SEMC), which is used in creating correlations between air pollution and meteorological 

variables or as input for air pollution modelling with atmospheric chemistry transport models.  

Two main ways of indicating model uncertainties were highlighted by the BCC, although uncertainty 

can be a different concept to different users. One is to compare model results in a multi-model 

ensemble forecast. For example, elucidate probabilistic estimates of how many model ensemble 

members predict the temperature in the next season in Beijing to be above or below normal. This does 

not measure the true probability that the temperature in the next season is going to be above or below 

normal, but is rather a statistical representation based on ensemble members that may be biased 

relative to the real situation. Another indicator of uncertainty is reliability, which is a measurement of the 

accuracy of past model forecasts or “hindcasts”.  

The HEEHPWFC uses a fixed range to express uncertainty for the current 3-5-day AQI forecast. The 

range is usually +/- 15 units and +/- 25 units for severe haze episodes. For example, if the AQI is 

predicted to be 50 (not severe), the AQI released to the public would be 35-65.  

Reliability of prediction is the joint second most important attribute highlighted in the survey (Figure 3). 

The survey results show that higher reliability levels were preferred compared with lower reliability 

levels, in alignment with the workshop results (Figure 4).  
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4. Discussion and conclusions 
The Chinese government has been active in implementing strict regulations to improve air quality and 

prevent the negative health impacts of air pollution, and such activities involve strong interactions 

between policy-makers and scientists (Huang et al., 2018, Zheng et al. 2018). In order to enhance the 

science-policy interplay in the provision of air quality climate services, decision-maker needs on air 

quality climate services in China have been investigated in this study with a mixed-methods approach. 

Mixed-methods approaches have been widely applied to social, health, management and have been 

shown to potentially provide deeper understanding (Bergeron, 2016; Bryman, 2016). In this study, 

qualitative and quantitative information on decision-makers’ needs for air quality climate services were 

compared and combined, so as to better understand the priority and basis of such needs. We reported 

on the consensus opinions of those whom we engaged with by location (i.e., Beijing, Shanghai and 

Hebei) for brevity.  

Previous studies have examined aspects of climate services most desirable for users such as regional 

detail (Golding et al. 2019). Here, we have examined the importance of key attributes of air quality 

climate services: spatial-scale, time-scale, type of air pollutant information and uncertainty 

communication. The workshop and the survey results are largely in agreement. Both showed similar 

preferences for air pollution forecasts for PM2.5, Air Quality Index (AQI) and air quality indices related to 

weather on monthly to seasonal time-scales. The need for prediction of ozone pollution was 

significantly lower in the survey than for PM2.5 pollution, though stakeholders in Beijing, Hebei and 

Shanghai noted that ozone pollution is becoming more important. This is in accordance with research 

findings that ozone pollution is worsening in the Beijing-Tianjin-Hebei and the Yangtze River Delta 

regions and targeted control of precursors is crucial in controlling ozone pollution (Wang et al., 2017). 

This is also in agreement with the findings in Zheng et al. (2018) that during 2010-2017, anthropogenic 

emission of PM2.5 decreased, whereas emissions of Volatile Organic Compounds (VOCs), precursors of 

ozone pollution, increased, indicating a lack of effective control measures on VOCs and ozone. Facing 

an increase in summer ozone pollution episodes (Li et al., 2020), the MEE (2020) published an action 

plan on Volatile Organic Compounds Governance in order to control ozone pollution. This is in accord 

with the findings of this study of an increasing need for ozone pollution forecasts. An interest in long-

term air quality projection under climate change was noted by both the workshop participants and the 

survey respondents. We postulate that a possible reason for climate change-related time-scales 

gaining larger preference than decadal time-scales in the survey result is that the term “climate change” 

is a ‘hot topic’ for both academic and administrative communities (Jiang et al, 2013).   

All user agencies highlighted emission inventories as a major source of uncertainty for air pollution 

modelling as well as inherent uncertainties in weather forecasting. These suggestions are largely 

consistent with uncertainties identified by scientific studies in the literature. Wang et al. (2018) 

evaluated the Nested Air Quality Predicting Modelling System (NAQPMS) with observations in five 

Chinese cities for 2013-2015 and found the uncertainties mainly arose from the input emission 

inventories, meteorological data and lack of air pollution observations prior to 2013. Uncertainties in 

emission inventories arise from both the modelling of spatial, vertical and temporal variation of 

emissions (de Meij et al., 2006) and the quantification of emissions, including source location, emission 

activity, emission factor (amount of emission per unit activity) and end-of-pipe removal efficiency 

(Cheng et al. 2019).  

When severe air pollution is forecast, a series of contingency measures are implemented to reduce 

emissions, e.g. certain industries have to reduce their production or shut down (Beijing Government, 

2018). Facing potentially severe economic and social consequences of forecast air quality outcomes, 
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users understandably prefer high levels of confidence in the accuracy of air quality forecasts. Decision-

makers lack confidence in the ability of scientists to measure the uncertainty associated with the 

numerical models and data inputs that are used to produce forecasts. Scientists are exploring a variety 

of uncertainty measurements to help guide stakeholders such as probability and reliability. We 

focussed our discussion on the information needs regarding uncertainty as in Section 3.3.4. Although 

we initially aimed to also explore how policy-makers make decisions when faced with uncertainty, this 

was not fully discussed in our workshops. However, our findings on the sources and perceptions of 

uncertainties are of potential use for communicating and making decisions that involve uncertainties. 

To conclude, this study investigated the needs for air quality services on climate time-scales in China 

by environmental agencies tasked with air quality policy and regulation and by users of air pollution 

information in the health sector, including researchers who provide technical support to such agencies. 

In general, both qualitative and quantitative evidence from workshops and surveys suggests a strong 

need for a forecast for PM2.5 and haze events in the coming winter of a given year, with an increasing 

need for ozone forecast for the coming summer. There were different user preferences for air pollution 

forecasts by numerical models versus results derived from statistical models based on the 

meteorological conditions influencing the dispersion of air pollution, partly driven by uncertainties in the 

numerical models, emission inventories and lack of air pollution observations prior to 2013. Both the 

environment and the health sectors expressed a preference for air quality information under climate 

change. User perceptions on forecast uncertainties were also discussed. The findings in this paper 

enhance the understanding of the needs of air pollution decision-makers. The specific user needs in 

these sectors can inform future research aimed at the improved provision of tailored air quality services 

to decision-makers. 
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