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Epidemiological studies often have missing data, which are commonly handled by
multiple imputation (MI). In MI, in addition to those required for the substantive
analysis, imputation models often include other variables (“auxiliary variables”).
Auxiliary variables that predict the partially observed variables can reduce the
standard error (SE) of the MI estimator and, if they also predict the probability
that data are missing, reduce bias due to data being missing not at random.
However, guidance for choosing auxiliary variables is lacking. We examine the
consequences of a poorly chosen auxiliary variable: if it shares a common cause
with the partially observed variable and the probability that it is missing (i.e., it is
a “collider”), its inclusion can induce bias in the MI estimator and may increase
the SE. We quantify, both algebraically and by simulation, the magnitude of bias
and SE when either the exposure or outcome is incomplete. When the
substantive analysis outcome is partially observed, the bias can be substantial,
relative to the magnitude of the exposure coefficient. In settings in which a
complete records analysis is valid, the bias is smaller when the exposure is
partially observed. However, bias can be larger if the outcome also causes
missingness in the exposure. When using MI, it is important to examine, through
a combination of data exploration and considering plausible casual diagrams
and missingness mechanisms, whether potential auxiliary variables are colliders.
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1. Introduction

Missing data are ubiquitous in health and social research, with multiple imputation (MI) a

commonly used, general and flexible method for analysing partially observed datasets (1). When

imputation models are appropriately specified, MI gives valid inferences if data are missing

completely at random (MCAR) or missing at random (MAR), conditional on the observed

data, but not (unless additional information is available) if data are missing not at random

(MNAR) (Table 1). In MI, in addition to the variables used in the analysis model,

imputation models often include auxiliary variables (Table 1). Auxiliary variables have two

main functions: (1) to improve the predictive ability of the imputation model, over and above

the information recovered via the analysis model variables, thus increasing precision (3); and
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TABLE 1 Missing data definitions.

Term Definition
CRA Analysis is restricted to individuals who have complete data for all variables in the analysis model.

MCAR The probability that data are missing is independent of the observed and missing values of variables in the analysis model, and of any related variables. Data
can be MCAR if missingness is caused by a variable independent of all these, e.g., if missingness is for administrative reasons.

MAR Given the observed data, the probability that data are missing is independent of the true values of the incomplete variable. Any systematic differences
between the observed and missing values can be explained by associations with the observed data.

MNAR If data are neither MCAR nor MAR, data are said to be MNAR. The probability that data are missing depends on the (unobserved) values of the incomplete
variable, even after conditioning on the observed data.

MI MI is a method for handling missing data. It consists of three steps:
1. An imputation model is fitted to the observed data (this is usually some form of regression model). The missing values are replaced with draws

(“imputed”) from their conditional predictive distribution (after first perturbing the model parameters). This imputation stage is carried out multiple
(M) times, to give M completed datasets.

2. The analysis model is fitted to each of the M completed datasets.
3. The M sets of results are combined using Rubin’s rules (2), to correctly account for the uncertainty about the missing values.

Auxiliary
variable

A variable that is not in the analysis model but that is included as a predictor in the imputation model to recover information about the missing data.
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(2) to reduce bias due to data being MNAR (this is sometimes

described as “making the MAR assumption more plausible”) (4).

However, previous studies have shown that inclusion of auxiliary

variables that are only weakly correlated with the partially observed

variable, conditional on the remaining imputation model variables,

can increase the standard error (SE) of the MI estimate (3, 5). In

this paper, we highlight another, little known, consequence of

incorrect choice of auxiliary variable: inclusion of an auxiliary

variable that shares a common cause with the partially observed

variable and its missingness (in causal inference, such a variable is

referred to as a “collider” (6)) can lead to biased MI estimates by

inducing a MNAR mechanism. We also demonstrate that inclusion

of a collider in the imputation model may also increase the SE,

despite the collider being (conditionally) predictive of the missing

data. The consequences of including a collider in the imputation

model were discussed in principle by Thoemmes and Rose (7).

Here, we quantify the bias and SE of the MI estimator based on a

collider. We expand the scenarios discussed by Thoemmes and

Rose, considering settings in which the (continuous or binary)

partially observed variable is either the analysis model outcome or

the exposure. We further illustrate our results using simulation and

real data examples. All analyses were conducted using Stata version

17.0 (StataCorp LLC, College Station, TX, USA). The Stata code

used to perform the simulation studies is included in

Supplementary Material, Section S8. The Stata code used to

perform the real data analysis is included in Supplementary

Material, Section S9.
FIGURE 1

Directed acyclic graph depicting the relationship between outcome Y,
exposure X, missingness indicator Rind and potential auxiliary variables
Z, W and U. Lines indicate related variables, with arrows indicating the
direction of the relationship; absent lines represent variables with no
direct causal relation.
2. Bias and SE of the MI estimator
including a collider in the imputation
model when a continuous outcome is
partially observed

2.1. Model set-up

We first consider the setting depicted in the causal diagram [or

directed acyclic graph (DAG)] in Figure 1 (lines indicate related

variables, with arrows indicating the direction of the relationship;
Frontiers in Epidemiology 02
absent lines represent variables with no direct causal relation).

We examine the bias and SE of the MI estimator in detail in this

simplified setting, to give insights into the more complex settings

that typically occur in epidemiological practice. Suppose, for

example, Figure 1 depicts the relationship between a child’s body

mass index (BMI) at the age of 7 years (our continuous

outcome, denoted by Y ) and maternal education (our exposure,

denoted by X ), with βYX denoting the parameter of interest.

Further suppose that the BMI at age 7 years is partially observed

(with binary variable Rind indicating whether BMI at age 7 years

is observed, such that Rind = 1 if BMI is observed, and 0

otherwise), maternal education is fully observed, and that there

are only two fully observed candidate auxiliary variables available

for use in the imputation model for BMI at age 7 years:

pregnancy size (singleton vs. twin birth, denoted by Z in

Figure 1); and child’s birth weight (denoted by W in Figure 1)

—noting that in reality there will be many other measured

variables related to those discussed here. Here, we assume that

birth weight is related to both BMI at age 7 years (via pregnancy

size) and its missingness (via some unmeasured variable(s),

depicted as U in Figure 1). Since birth weight shares a common

cause with both BMI at age 7 years and its missingness, we say

that birth weight is a “collider” of BMI at age 7 years and its

missingness. Note that the plausibility of our assumptions is

discussed in the real data analysis, in Section 3.
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We further assume that we know (having considered the DAG)

the “substantive model” we would fit to address our scientific

question if there were no missing data. In this case, this is simply

the regression of BMI at age 7 years on maternal education,

because the other variables depicted in the DAG do not

confound the relationship between BMI at age 7 years and

maternal education.

Since Rind is unrelated to BMI at age 7 years conditional on

maternal education, both complete records analysis (CRA) and

MI using maternal education as the predictor in the imputation

model for BMI at age 7 years are valid analysis strategies (8) and

will yield unbiased estimates given correctly specified models.

Note, as per current guidelines (9), the imputation model should

always include the other analysis model variable(s), i.e., maternal

education. However, MI using just maternal education will

recover no additional information compared to CRA (10).

Therefore, we may wish to include auxiliary variables in our

imputation model (i.e., either pregnancy size, birth weight or

both) to improve the precision of our estimate of βYX. Our aim

is to choose the most appropriate set of predictors to include in

the imputation model for BMI at age 7 years, choosing between

the following: (1) maternal education; (2) maternal education

and pregnancy size; (3) maternal education and birth weight; or

(4) maternal education, pregnancy size and birth weight. In

addition to set (1), already discussed, sets (2) and (4) (i.e.,

including pregnancy size, or birth weight and pregnancy size, in

the imputation model as well as maternal education) are valid

analysis strategies. However, since birth weight is a collider, set

(3) (including maternal education and birth weight but not

pregnancy size in the imputation model) will induce bias in the

MI estimator. In causal inference, this type of bias is often

referred to as “M-bias” (11), due to the “M” shape of the causal

pathways, as shown in Figure 1. Note that bias will be induced,

regardless of the distribution of the variables and/or the form of

their relationships (e.g., whether these are linear or non-linear),

because the rules of DAGs that we have applied here do not

make any distributional assumptions. However, the magnitude

of the induced bias and the SE of the MI estimator will depend

on the distributions and forms of relationships of all the

variables. In the following sections, we explore the consequences,

in terms of bias and precision, of choosing set (3) as predictors

in the imputation model, deriving theoretical results for bias and

SE in the specific setting in which the analysis outcome is

continuous and all variables are normally distributed, with linear

associations.
2.2. Bias in the MI estimator when including
a collider in the imputation model for a
continuous outcome as the proportion of
missing data increases

We first provide a general expression for the bias of the MI

estimator when including a collider in the imputation model for

a continuous outcome (i.e., in terms of the variables in Figure 1,

using X and W, but not Z, as predictors in the imputation model
Frontiers in Epidemiology 03
for Y ). A detailed explanation of this result is included in the

Supplementary Material (Section S1). The main argument is

described below.

We assume that Y, X, Z, U andW are normally distributed, and

Rind is defined as follows: there exists a normally distributed

variable R with mean µR and variance VR, such that

P(Rind ¼ 1) ¼ P(R � r) ¼ F r � mRffiffiffiffi
VR

p
� �

, where Φ denotes the

cumulative distribution function of the standard normal

distribution. Furthermore, we assume that each of Y, W and R is

a linear combination of the variables causing it plus an error

term (with X, Z and U having no direct causes), with no

interactions, all errors uncorrelated, no model mis-specification

and no measurement error. Finally, we assume an ordinary least

squares (OLS) estimator is used to obtain estimates in both

analysis and imputation models.

We consider the situation in which MI is performed by

replacing missing values of Y with draws from a linear regression

model [note this is the default method for continuous variables

when using mi impute in Stata (12) or proc mi in SAS (13),

although predictive mean matching (14) is the default method

when using mice in R (15)]. As described above, we assume both

X and W are included as predictors in the imputation model for

Y, i.e., the imputation model is of the form:

E(Y) ¼ a0 þ a1X þ a2W, where E(.) denotes the expected value.

Following the argument of Carpenter and Kenward (5) and

noting, implicit from Figure 1, that βYX conditional on

W(bYXjW) is equivalent to βYX in our scenario, the MI estimator

of βYX (denoted by bMI
YX) equals the regression parameter for X

from the imputation model for Y based on records with observed

values of Y (we denote this parameter by aOBS
1 ). Hence, the MI

estimator is unbiased only if aOBS
1 is unbiased.

In general (see Supplementary Material Section S1 for further

explanation of this result), the bias of the MI estimator is bounded

as follows: 0 � bias � jbYXjW,R � bYX j. If there are no missing

values of Y, the MI estimator is unbiased. As the probability that

Y is missing (i.e., P(Rind = 0), denoted by π0) increases, the

magnitude of bias of the MI estimator increases. In the

hypothetical situation in which all values are missing, bias takes

its maximum value of jbYXjW,R � bYX j.
2.3. Standard error of the MI estimator
when including a collider in the imputation
model for a continuous outcome as the
proportion of missing data increases

Here, we provide general formulas for quantifying the SE of the

MI estimator when including a collider in the imputation model,

additionally comparing this to the SE of the CRA estimator.

The SE of the MI estimator when including collider W in the

imputation model, SE(bMI
YX), will always be greater than the SE of

the imputation model coefficient aOBS
1 , SE(aOBS

1 ), with aOBS
1 as

defined above, tending towards SE(aOBS
1 ) as the number of

imputations increases (5). Hence, given a large number of

imputations, SE(bMI
YX) � SE(bYXjW) when π0 = 0 and
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SE(bMI
YX) ! SE(bYXjW,R) as p0 ! 1 (see Supplementary Material

Section S1 for further explanation of this result).

In general, the SE of the OLS estimator of a regression

coefficient, SE(b), equals the square root of the residual variance

divided by the square root of the product of the sample size (n)

and the variance of X for the fitted model. Hence, we can

calculate SE(bYXjW) and SE(bYXjW,R) as follows:

SE(bYXjW) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Y – Ŷ jX, W)

nVar(XjW)

q
and SE(bYXjW,R) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Y – Ŷ jX, W, R)

nVar(XjW, R)

q
,

where, in this setting, n represents the number of records with

an observed value of Y, and Ŷ represents the mean value of Y

predicted using the specified imputation model.

Since Cov(X, W ) = 0 and Var(XjW) ¼ Var(X) (see

Supplementary Material Section S2 for proof of this and other

expressions in this section), SE(bYXjW) can be expressed fairly

simply as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Y) – b2

YXVar(X) – Cov
2(Y , W)=Var(W)

nVar(X)

s
(1)

The expression for SE(bYXjW,R) is more complicated; if the

imputation model parameters for X, W and R are denoted by b1,

b2 and b3, respectively, SE(bYXjW,R) has the general form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Y) – b21Var(XjW, R) – b22Var(jWjX, R) – b23Var(RjX, W) –

2b1b2Cov(X, WjR) – 2b1b3Cov(X, RjW) – 2b2b3CovjW, RjX)
nVar(XjW, R)

vuuuut
(2)

The size of this expression, relative to the magnitude of Equation 1,

will depend on the strength of the associations between Y, X, Z, W,

U and R. Since Var(XjW, R) � Var(X), if the residual variance

(i.e., the numerator in Equation 2) is at least as large as that for

SE(bYXjW) (i.e., the numerator in Equation 1), SE(bYXjW ,R) will

be greater than SE(bYXjW) given the same sample size n.

Further note that the SE of the CRA estimator is equal to

SE(bYX) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Y)–b2

YXVar(X)
nVar(X)

s
(3)

when π0 = 0, tending to

SE(bYXjR) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Y � Ŷ jX, R)

nVar(XjR)

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(Y)–b2
YXVar(X)

n{Var(X)–Cov2(X, R)=Var(R)}

s
(4)

as p0 ! 1 (noting Y is unrelated to R given X so Ŷ jX, R ¼ bYXX).

Note this is also, given a large number of imputations,

approximately the SE of the MI estimator when only X is

included in the imputation model. Comparing Equations 3 and 4,
Frontiers in Epidemiology 04
we see, as expected, that the SE of the CRA estimator increases

as p0 ! 1. Furthermore, comparing Equations 3 and 4 with

Equations 1 and 2, the SE of the CRA estimator, or the MI

estimator using only X, may be greater in magnitude than the SE

of the MI estimator including W in the imputation model,

depending on the strength of the associations between Y, X, Z,

W, U, R and π0 (although the SE of the CRA estimator, or the

MI estimator using only X, will always be greater than the SE of

the MI estimator including W in the imputation model when

π0 = 0, given Cov(Y, W )≠ 0).
2.4. Illustration of the bias and standard
error of the MI estimator when including a
collider in the imputation model for a
continuous outcome as the proportion of
missing data increases

We illustrate how the bias and SE of the MI estimator when

including a collider in the imputation model vary with π0, using

a simple simulation (see Supplementary Material Section S3 for

further details). For reference, we also illustrate how the SE of

the CRA estimator varies with π0 (the CRA estimator is always

unbiased in this setting). This example is based on the

relationships depicted in Figure 1, setting the mean of each

variable (including R) equal to 0, all direct effect sizes equal to 1

and all error variances equal to 1.

Figure 2 shows, as π0 increases, (a) estimated bias and (b)

estimates of SE of the MI estimator when the imputation model

includes a collider, compared with SE of the CRA estimator. For

reference, the true values of βYX, bYXjW,R, SE(bYXjW),

SE(bYXjW,R), SE(βYX) and SE(bYXjR) are shown (with the residual

variance of SE(bYXjW,R) calculated empirically due to the

complexity of the algebraic form for this quantity). As expected,

when there were no missing values, bias of the MI estimator

equalled 0, SE of the MI estimator was equal to SE(bYXjW) and

SE of the CRA estimator was equal to SE(βYX). As π0 increased,

bias, SE of the MI estimator, and SE of the CRA estimator

increased at a similar, approximately linear rate (until π0 was

very close to 1), approaching jbYXjW,R � bYX j, SE(bYXjW,R) and

SE(bYXjR), respectively, as π0 approached 1. The approximately

linear growth with the proportion of missing data is due to the

fact that the transformation from the binary indicator Rind to the

underlying normal variable R is approximately linear (16). Bias

was approximately half the maximum value when π0 = 0.5. In

this particular example, for each value of π0, the SE of the MI

estimator was smaller than the SE of the CRA estimator.

However, note that this will not always be the case, e.g., if the

strength of the associations between both Y and Z, and W and Z

are reduced to 0.5 (with the setting otherwise as depicted in

Figure 2), the SE of the MI estimator will be greater than the SE

of the CRA estimator if the proportion of missing data is greater

than approximately 40% (see Supplementary Material Section S1,

Figure S1 and also Section S5, Figure S2 which illustrates the

relative precision of the MI and CRA estimators for various direct

effect sizes). The difference between b̂MI
YX and âOBS

1 was negligible
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FIGURE 2

(A) Estimated bias and (B) SE of the MI estimator of βYX when the imputation model includes a collider, W, and SE of the CRA estimator of βYX, plotted
against the proportion of records with missing data, when continuous outcome Y is partially observed, assuming 1,000 observed values. All direct
effect sizes and error variances equal 1. Horizontal grey solid lines represent the values of bias and SE of the MI estimator when the proportion of
records with missing data is 0 (lower line) or tends to 1 (upper line). Horizontal grey dashed lines represent the values of the SE of the CRA estimator
when the proportion of records with missing data is 0 (lower line) or tends to 1 (upper line).

Curnow et al. 10.3389/fepid.2023.1237447
(the median difference was 0.0001, 5th–95th percentile: −0.0003 to

0.0001).
2.5. General expression for the maximum
bias of the MI estimator when including a
collider in the imputation model for a
continuous outcome in terms of the direct
effect sizes

We next provide a general expression for the maximum bias of

the MI estimator when including a collider in the imputation

model, in terms of the direct effect sizes and error variances. The

maximum bias of the MI estimator when including a collider in

the imputation model is

bRXbRUbWUbYZbWZs
2
Zs

2
U

(b2
RUs

2
U þ s2

R)(b
2
WZs

2
Z þ s2

W)þ b2
WUs

2
Us

2
R

(5)

where the direct effect sizes are denoted by b::, e.g., bRX denotes

the direct effect of X on R, and the variances of the errors are

denoted by s2
: , e.g., s

2
X denotes the variance of the error of X.

Equation 5 was verified by simulation (see Supplementary

Material Section S4).

From Equation 5, we can see that the magnitude of the

maximum bias does not depend on βYX and that the direction of

the maximum bias depends on the sign of the product
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bRXbRUbWUbYZbWZ (because s2
Zs

2
U

(b2
RUs

2
Uþs2

R)(b
2
WZs

2
Zþs2

W )þb2
WUs

2
Us

2
R

is

strictly positive assuming non-zero error variances). There will be

no bias if at least one of βRX, βRU, βWU, βYZ or βWZ is equal to 0,

consistent with the underlying DAG (Figure 1).
2.6. Illustration of maximum bias formula
for a continuous outcome in terms of the
direct effect sizes

We illustrate how the maximum bias varies with the direct

effect sizes using a numerical example. In this example, we used

moderate values of the direct effect sizes βRX, βRU, βWU, βYZ and

βWZ (relative to the error variances s2
U , s

2
Z , s

2
W and s2

R, which

were all equal to 1): direct effect sizes were each set to 0.00, 0.25,

0.50, 0.75 or 1.00. For βRX and βRU, note that these values

correspond approximately to odds ratios from a logistic

regression model for Rind of 1.00, 1.50, 2.30, 3.50 or 5.30 (using

the general rule for transforming a parameter from a logistic to a

probit model (16) by multiplying the logarithm of the odds ratio

by 0.6; note this is valid unless the proportion of complete

records is very close to 0 or 1).

Figure 3 illustrates the impact of the direct effect sizes on the

maximum bias of the MI estimator. We focus particularly on the

impact of βRX, βYZ and βWZ because unbiased estimates of these

effect sizes can be calculated using the observed data, assuming

that X, W and Z are fully observed and—implicit from Figure 1

—that bYZjR ¼ bYZ (note βRU and βWU cannot be estimated in
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FIGURE 3

Maximum bias of the MI estimator of βYX when continuous outcome Y is
partially observed, varying direct effect sizes βRX, βRU, βWU, βYZ and βWZ.
The distribution of maximum bias in each box plot is averaged over the
values of βRU and βWU.

Curnow et al. 10.3389/fepid.2023.1237447
our setting because we assume U is unmeasured). In each panel,

maximum bias is plotted against βYZ and βWZ, for a single value

of βRX (which increases across the panels). The distribution of the

maximum bias for each value of βRX, βYZ and βWZ (represented

as a box plot) is due to the variation in the other two parameters;

that is, each is averaged over the values of βRU and βWU.

As noted previously, maximum bias is equal to zero if any of

the direct effect sizes are equal to zero (hence the panel with

βRX = 0 is not displayed) and increases with each of the direct

effect parameters. Note that all parameters have a zero or

positive value in this illustration. However, if, for example, we
Frontiers in Epidemiology 06
take the same parameter values as mentioned above for βRU,

βWU, βYZ and βWZ, but set βRX to negative values, then the bias

would be of the same magnitude but negative.
2.7. Relative increase in precision of the MI
estimator when including a collider in the
imputation model for a continuous
outcome in terms of the direct effect sizes

In the setting shown in Figure 1, in which bias was maximised

(i.e., as p0 ! 1), we also examined how the relative increase in

precision of the MI estimator including W in the imputation

model, compared with the CRA estimator, varied with the direct

effect sizes. All direct effect sizes were set to 0.00, 0.50 or 1.00,

and each variable had a mean of zero and an error variance of

1. For each combination of direct effect sizes, the SE of the CRA

estimator was calculated algebraically using Equation 4. As above,

due to the complexity of the expression for the SE of the MI

estimator (Equation 2), this was calculated empirically. The

relative increase in precision was calculated as 100 × (1− (SE of

the MI estimator)2/(SE of the CRA estimator)2). The results are

illustrated in Supplementary Material Section S5, Figure S2. As

discussed above, these show that, as p0 ! 1, the SE of the MI

estimator including W in the imputation model can be larger or

smaller than the SE of the CRA estimator, depending on the

magnitude of the direct effect sizes.
3. Bias and SE of the MI estimator
including a collider in the imputation
model when a continuous exposure is
partially observed

3.1. Setting in which complete records
analysis is valid (missingness of the
exposure does not depend on the outcome)

We also considered the effect of collider bias in settings in

which a continuous exposure X was partially observed. First, we

considered the setting in which CRA (and MI) was, in

principle, valid, with variables related as per Figure 4. In this

setting (given the same assumptions and using the same MI

method as in the previous setting), the theoretical magnitude of

the maximum bias (when including collider W in the

imputation model for X ) has a more complicated form because

the imputation and substantive models are not the same. Here,

the imputation model is of the form: E(X) ¼ a0 þ a1Y þ a2W,

where E(.) denotes the expected value. The MI estimator of βYX
will be unbiased only if an unbiased estimate of each

imputation model parameter can be obtained using records

with observed values of X, i.e., only if aOBS
0 ¼ a0, aOBS

1 ¼ a1

and aOBS
2 ¼ a2.

Taking α1 as an example, and using a similar argument to the

previous setting, the bias of aOBS
1 is bounded as follows:

0 � bias � jbXY jW,R � bXY jW j. If there are no missing values of
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FIGURE 4

Directed acyclic graph depicting the relationship between outcome Y,
exposure X, missingness indicator Rind and potential auxiliary variables
Z, W and U. Lines indicate related variables, with arrows indicating the
direction of the relationship; absent lines represent variables with no
direct causal relation.
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X, aOBS
1 is unbiased. Bias will increase in magnitude with the

probability that X is missing. In the hypothetical situation in

which all values are missing, bias will take its maximum value of

jbXY jW,R � bXYjW j, where this depends on the magnitude of the

conditional and marginal values of both the variance of Y and

the covariance of X and Y, as well as the strength of the

relationship between W and missingness variable R; specifically,

the maximum bias of aOBS
1 ¼ A{Var(Y)Cov(Y , XjW)� Cov(Y , X)Var(YjW)}

Var(YjW){Var(YjW) – AVar(Y)} ,

where A ¼ Cov2(R, W)
Var(R)Var(W) (see Supplementary Material Section S6

for further details of this derivation). Similar expressions can be

derived for the maximum bias of aOBS
0 and aOBS

2 .

Due to its complexity in this setting, an expression for the

theoretical magnitude of the maximum bias of the MI estimator

is not derived here. However, we illustrate the effect on the MI

estimate from including collider W in the imputation model by

simulation. This example is based on the relationships depicted

in Figure 4, setting the mean of each variable (including R)

equal to zero, all direct effect sizes equal to 1 and all error

variances equal to 1 (see Supplementary Material Section S7 for

further details). Note that we refer to the MI or CRA “estimate”

when describing simulation study results, rather than “estimator”

(which we have used when describing algebraic results). Figure 5
FIGURE 5

Bias of the MI estimate of βYX, when 50% of values of a continuous expos
The distribution of bias in each box plot is averaged over the values of βRU an
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illustrates the impact of the direct effect sizes on the bias of the

MI estimate when X was missing for 50% of the records,

focusing particularly on the impact of βYX, βXZ and βWZ. In each

panel, bias is plotted against βXZ and βWZ, for a single value of

βYX (which increases across the panels). The distribution of the

bias for each value of βYX, βXZ and βWZ (represented as a

box plot) is due to the variation in the other two parameters;

that is, each is averaged over the values of βRU and βWU.

Figure 5 shows that bias is very small, regardless of the direct

effect sizes. In addition, examining the relative increase in

precision, compared with the CRA estimate (see Supplementary

Material, Section S7, Figure S3), shows that the SE of the MI

estimate including W in the imputation model can be larger or

smaller than the SE of the CRA estimate, depending on the

magnitude of the direct effect sizes.
3.2. Setting in which complete records
analysis is not valid (missingness of the
exposure additionally depends on the
outcome)

In our setting with a partially observed continuous exposure

X, the magnitude of bias was much smaller than in the setting

with a partially observed continuous outcome Y. This is because

there is only one pathway between the partially observed

variable and its missingness in the X setting (via Z-W-U),

whereas there are two pathways in the Y setting (via Z-W-U

and X ). Hence, the cumulative bias (i.e., the sum of the bias

via each pathway) is potentially larger in the Y setting.

Therefore, to provide a more comparable setting to that when Y

is partially observed, we considered an additional setting when

continuous variable X was partially observed, in which Y was

also a cause of missingness of X (Figure 6). The relationships

depicted in Figure 6 are the same as those in Figure 4, with

the addition of an arrow from Y to R. There are now two

potential pathways between X and its missingness, via Z-W-U
ure X are missing, varying direct effect sizes βYX, βXZ, βWZ, βRU and βWU.
d βWU.
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FIGURE 6

Directed acyclic graph depicting the relationship between outcome Y,
exposure X, missingness indicator Rind and potential auxiliary variables
Z, W and U. Lines indicate related variables, with arrows indicating the
direction of the relationship; absent lines represent variables with no
direct causal relation.
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and Y. Note that the CRA is no longer valid in this setting,

because missingness depends on the analysis outcome Y.

However, MI using Y, or Y and Z, in the imputation model for

X would be valid. Using the same simulation approach as

before (see Supplementary Material Section S7 for further

details), Figure 7 illustrates the effect on the MI estimator from

including collider W in the imputation model. Figure 7 shows

that when missingness in X is caused by U and Y and βYX is

close to 0, bias is similar in magnitude to that in the setting in

which missingness in Y is caused by U and X.

Note that in similar settings to those discussed here, with a

binary partially observed variable (i.e., the same settings as

depicted in Figures 1, 4 but with either partially observed binary

Y or partially observed binary X ), the bias of MI estimates will

be approximately the same magnitude as for the continuous

cases, provided the probability of each value of the binary

variable is not close to 0 or 1 (see Supplementary Material

Section S7, Figures S4, S5). This follows in each case by

assuming that the binary variable has an underlying normal

distribution, in which case the results described here will still

approximately apply.
FIGURE 7

Bias of the MI estimate of βYX when 50% of values of a continuous exposure X a
sizes βYX, βXZ, βWZ, βRU, βRY, and βWU. The distribution of bias in each box-plot
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4. Real data example

4.1. Methods

We illustrate the use of our formula for maximum bias given a

partially observed continuous outcome, as per the setting described

in Section 2.1, using data from the Avon Longitudinal Study of

Parents and Children (ALSPAC). ALSPAC is a prospective study

that recruited pregnant women with expected dates of delivery

between 1 April 1991 and 31 December 1992, in the Bristol area

of the UK (17, 18). We used data from the initial recruitment

phase, in which 14,541 pregnant women enrolled, resulting in

14,062 live births (13,988 alive at 1 year of age). Children and

their mothers have been followed up since birth through

questionnaires, clinics and linkage to routine datasets. Ethical

approval for the study was obtained from the ALSPAC Ethics

and Law Committee and local research ethics committees.

Informed consent for the use of data collected via questionnaires

and clinics was obtained from participants following the

recommendations of the ALSPAC Ethics and Law Committee at

the time.

Here, as described earlier, our substantive model of interest was

the regression of child’s BMI at age 7 years (which was partially

observed) on maternal education (defined as a binary variable

indicating whether the child’s mother held a post-16 years

qualification). We restricted analysis to all singletons and first-

born twins (excluding the second-born twin to avoid family-level

clustering) who were alive at 1 year (n = 13,745). For illustrative

purposes, as before, we assumed that there were only two

candidate auxiliary variables available for use in the imputation

model for BMI at age 7 years: pregnancy size (singleton vs. twin

birth); and child’s birth weight (in reality, a large amount of

individual-level data are available: the ALSPAC study website

contains details of all available data through a fully searchable

data dictionary and variable search tool: http://www.bristol.ac.uk/

alspac/researchers/our-data/). We further assumed that the
re missing and missingness is additionally caused by Y, varying direct effect
is averaged over the values of βRU, βRY, and βWU.
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exposure and auxiliary variables were fully observed (in reality, a

small proportion of participants had missing values for these

variables: 1,684 participants, 12%, were missing values of

maternal education, n = 1,510, birth weight, n = 150 or both, n =

24). Therefore, we analysed 12,061 participants with observed

values of maternal education, pregnancy size and birth weight, of

whom 7,248 (60%) had an observed value of BMI at age 7 years.

Figure 8 depicts the relationships between BMI at age 7 years,

maternal education, pregnancy size, birth weight and missingness

indicator Rind (a binary variable indicating whether BMI at age 7

years is observed), plus unmeasured variable(s), U [related to the

analysis model variables and/or their missingness, e.g., markers

of socioeconomic position (SEP)]. Figure 8 shows both the

relationships assumed in the theoretical scenario (i.e., as per

Figure 1, represented by straight, solid lines) and additional

relationships that are plausible in our real data example, based

on prior research (19–22) (represented by curved, dashed lines).

For example, in the theoretical scenario, we assume that only

maternal education and pregnancy size cause BMI at age 7 years,

and only maternal education and U cause missingness in BMI at

age 7 years. In the real data scenario, it is plausible that BMI

at age 7 years is MNAR, because U may be related to both BMI

at age 7 years and Rind. We assume that pregnancy size is not a

cause of Rind, although pregnancy size may be related to Rind via

U (e.g., because assisted reproduction is associated with higher

SEP). Similarly, we assume that birth weight is not a cause of

BMI at age 7 years (as per, for example, (23)) or Rind, but shares

a common cause with both, i.e., birth weight is a collider.

We assessed the potential impact on the MI estimate from

including a collider (birth weight) in the imputation model for

BMI at age 7 years in two steps:

1. We assessed whether our hypothesised relationships with birth

weight were plausible by exploring the relationships between

maternal education, pregnancy size, birth weight and Rind.

We assessed relationships using linear or logistic regression
FIGURE 8

Directed acyclic graph depicting the relationship between child’s body
mass index at age 7 years (bmi7), maternal education (mated: a binary
variable indicating whether the child’s mother held a post-16 years
qualification), pregnancy size (pregsize: singleton or twin birth), child’s
birth weight (bwt), missingness indicator Rind (a binary variable
indicating whether bmi7 is observed) and unobserved variable(s) U.
Lines indicate related variables, with arrows indicating the direction of
the relationship. Straight solid lines depict the relationships assumed
in the theoretical scenario in which the analysis model outcome is
missing at random; curved dashed lines depict additional relationships
that are plausible in our real data example; absent lines represent
variables with no direct causal relation.
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models (for continuous and binary outcomes, respectively)

for each pair of variables in turn (deciding which variable

was the dependent variable and which the explanatory

variable in any given pair according to the probable causal

direction), adjusting for any observed confounders.

2. Based on our results from Step 1, we applied our formula

(Equation 5) for maximum bias of the MI estimator if the

hypothesised collider birth weight was included in the

imputation model for BMI at age 7 years. Since not all the

direct effect sizes were estimable from the observed data, we

used an alternative (equivalent) version of our maximum bias

formula, expressed in terms of the variances and covariances

of the observed (or partially observed) variables. We also

assumed (without loss of generality) that R had a mean of

zero and a variance of 1. Therefore, we used the following

version of the formula to calculate maximum bias:
Cov(X, R)Cov(W, R)Cov(Y , W)

{Var(X)-Cov2(X, R)}Var(W) - Var(X)Cov2(W, R)

where, in our setting, X denotes maternal education,W denotes

birth weight and Y denotes BMI at age 7 years. Since we observe

Rind (i.e., whether BMI at age 7 years is observed) rather than the

underlying normal variable R, covariance terms involving R were

approximated by applying the general rule for transforming a

parameter from a logistic to a probit model (16), as before,

such that: Cov(:, R) ¼ 0:6� logORRind �Var(:), where

logORRind denotes the logarithm of the odds ratio (i.e., the

regression parameter) from a logistic regression of Rind on the

specified covariate. For example, Cov(X, R) was approximated

by 0:6� logORRindX �Var(X). We estimated Var(X ) using the

normal approximation to the binomial because X was binary.

We estimated Cov(Y, W ) using the complete records and other

terms using all records. For simplicity, we assumed that the

relationship between birth weight and BMI at age 7 years was

linear. We also assumed that estimates of the variances and

covariances used in our maximum bias formula were unbiased

(which may not have been the case if Y was MNAR or if there

were unmeasured confounders).

We compared our estimate of the exposure coefficient based on our

formula for maximum bias to both the CRA estimate and MI

estimates using no auxiliary variables or either pregnancy size,

birth weight or both, as auxiliary variables. Each imputation

model also included the analysis model exposure, maternal

education. We used a large number of imputations (100) to ensure

we obtained stable estimates of the exposure coefficient and its SE.
4.2. Results: magnitude of bias due to a
collider auxiliary variable

4.2.1. Step 1
Relationships between maternal education, pregnancy size, birth

weight and Rind are summarised in Table 2. In particular, these

suggest that Rind is strongly associated with both maternal

education and birth weight, but less so with pregnancy size.

However, adjusting for birth weight increases the strength of the

relationship between Rind and pregnancy size [unadjusted odds

ratio (OR): 1.07, 95% confidence interval (CI): 0.77–1.48 vs.
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TABLE 2 Relationships between maternal education (mated), pregnancy size (pregsize), child’s birth weight (bwt) and whether child’s BMI was observed
at age 7 years (Rind), determined using linear or logistic regression models (for continuous and binary outcomes, respectively).

Dependent variable

pregsize bwt Rind
Explanatory
variable

mated Odds of twin birth is slightly reduced
when mother holds a post-16 years
qualification (OR: 0.96, 95% CI:
0.69–1.34)

Mean birth weight increases by
0.05 kg (95% CI: 0.03–0.07) when
mother holds a post-16 years
qualification

Odds of observed BMI at 7 years is twice as great when
mother holds a post-16 years qualification (OR: 2.31,
95% CI: 2.13–2.51)

pregsize Mean birth weight decreases by
0.91 kg (95% CI: 0.82–0.99) for twin
birth (vs. singleton)

Odds of observed BMI at 7 years is slightly greater for a
twin birth (vs. singleton) (OR: 1.07, 95% CI: 0.77–1.48).
Conditional on birth weight, relationship appears
stronger (OR: 1.25, 95% CI: 0.90–1.75)

bwt Conditional on maternal education, odds of observed
BMI at 7 years increases for each kg increase in birth
weight (OR: 1.15, 95% CI: 1.07–1.23)

Unmeasured
variable(s)

Possibly related—cannot be assessed using the observed data

For each cell, the row indicates the explanatory variable and the column indicates the dependent variable of the regression model. All parameter values are estimates based

on the full data and are conditional on any observed confounders. Relationships opposite to the probable direction of causality were not assessed. We assume that

maternal education is not caused by any other observed variable, and that whether BMI is observed at age 7 years is not a cause of any other variable. We note that,

in addition to the observed relationships depicted, each observed variable may be related to other, unmeasured variable(s).

The bold text emphasises the key result in this table.
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adjusted OR: 1.25, 95% CI: 0.90–1.75]. These results, combined with

our prior knowledge of the data, suggest that birth weight is a collider.

Therefore, inclusion of birth weight in the imputation model for BMI

at age 7 years may induce or inflate bias due to data being MNAR.
4.2.2. Step 2
Substituting values based on the observed data [as per Table 2,

and additionally, using estimates of Var(W ), Var(X ) and

Cov(Y, W ) of 0.286, 0.228 and 0.171, respectively] into our

theoretical expression, we estimated the maximum bias from

including birth weight in the imputation model for BMI at age 7

years to be 0.008 (towards the null). We can use the SE of the

MI estimate including birth weight (Table 3) as an approximate

estimate of the SE of the maximum bias (assuming the true

value of the exposure coefficient is fixed, i.e., does not vary).

Thus, we can construct an approximate confidence interval for

the maximum bias as follows: maximum bias ± 1.96 × SE of the

MI estimate including birth weight. This gives a 95% CI of

−0.084 to 0.100, although we note there may be additional

variation due to uncertainty about the estimated effect sizes and

variance/covariance terms used in our formula. This result

suggests that even though there is the possibility of collider bias

due to inclusion of birth weight in the imputation model, the

magnitude of bias is small in this particular setting.
TABLE 3 Mean change in child’s body mass index (kg/m2) at age 7 years
when mother holds a post-16 years qualification (vs. no post-16 years
qualification), estimated using different analysis strategies.

Analysis strategy Estimate (SE) 95% CI
Complete records analysis −0.108 (0.049) −0.203 to −0.013
MI with no auxiliary variables −0.106 (0.049) −0.209 to −0.011
MI with pregnancy size as auxiliary variable −0.107 (0.047) −0.198 to −0.015
MI with child’s birth weight as auxiliary
variable

−0.085 (0.047) −0.176 to 0.007

MI with pregnancy size and child’s birth
weight as auxiliary variables

−0.091 (0.050) −0.189 to 0.006

Frontiers in Epidemiology 10
The analysis results (Table 3) confirmed that the CRA and MI

estimates of the exposure coefficient were very similar, regardless of

the auxiliary variable(s) used in the MI procedure. However, as

predicted, there was slight attenuation in the MI estimate when

birth weight was included in the imputation model for BMI at

age 7 years. This was the case even when pregnancy size was also

included. This suggests that there was at least one other

unobserved variable that had similar relationships with other

variables as pregnancy size (e.g., child’s sex), so adjusting for

pregnancy size did not completely remove the bias induced by

inclusion of birth weight in the imputation model. The difference

between the CRA estimate and the MI estimate including birth

weight was 0.023 (towards the null), which was larger than our

estimate based on the theoretical magnitude of bias, although in

the same direction and within the approximate confidence interval.

As expected, the SE of the CRA estimate was similar to the SE

of the MI estimate using no auxiliary variables and larger than the

SE for MI estimates using pregnancy size or birth weight as

auxiliary variables. However, the SE of the MI estimate using

both pregnancy size and birth weight as auxiliary variables was

larger than that for all other analysis strategies. This may be

because pregnancy size has only a weak direct effect on BMI at

age 7 years, i.e., pregnancy size is largely redundant if the

imputation model already includes birth weight; thus, its

addition leads to a decrease in precision (5).
5. Discussion

In this paper, we quantify, algebraically and by simulation, the

magnitude of bias and SE of the MI estimator induced by

including a collider in the imputation model, in settings where it is

possible to specify an imputation model that gives unbiased

inference for the population parameter values. We have derived an

algebraic expression for the maximum bias and its relationship to
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the proportion of incomplete records when a continuous outcome is

partially observed. We have demonstrated that in this setting (and

also if the outcome is binary), the bias can be substantial, relative

to the magnitude of the exposure coefficient. We found, in settings

in which the CRA was valid, the bias due to the inclusion of a

collider in the imputation model was smaller when the exposure in

the analysis model (either binary or continuous) was partially

observed. However, bias was larger in magnitude if the outcome

also caused missingness in the exposure (in which case the CRA

was no longer valid but MI, using a correctly specified imputation

model and correct choice of auxiliary variables, was valid).

When the outcome is partially observed, we have shown that the

magnitude of the bias of the MI estimator from including a collider

in the imputation model depends on the magnitude of the

associations between the exposure and missingness, between the

collider and missingness, and between the collider and the outcome,

as well as on the proportion of missing data. Crucially, it does not

depend on the magnitude of the association between outcome and

exposure. Therefore, if the association between outcome and

exposure is much weaker than the associations between other pairs

of variables and the proportion of incomplete records is fairly large

(precisely the situation in which one may wish to use auxiliary

variables), the relative bias of the MI estimator could be substantial.

In our real data example, we assumed that both auxiliary variables

(direct predictor pregnancy size and collider birth weight) were

measured. However, note that the bias can still be estimated even if

the direct predictor is unmeasured, because the maximum bias

formula does not depend on this variable. However, in this case,

assessing whether an auxiliary variable is a collider may need to

rely on both prior knowledge and inspection of the hypothetical

causal model of interest, because it may be difficult to assess

whether it is a collider using the observed data alone. The likely

impact of including a collider in the imputation model(s) can still

be assessed using our suggested formula and/or our plots based on

simulations, estimating the strength of each relevant association

using either the observed data or published results. In our

theoretical settings, the MI estimator is unbiased when Z is

included in the imputation model, in addition to W (implicit from

the DAG for each setting). However, in practice, this strategy may

still result in biased estimates, due to unmeasured confounding of

the relationship between Y and W. For example, in our real data

analysis, adjusting for pregnancy size did not remove the bias

induced by inclusion of the collider, birth weight, in the imputation

model due to unmeasured confounding of the relationship between

BMI at age 7 years and birth weight. Therefore, we recommend

that a collider should not be included in the imputation model (as

opposed to including a collider and then attempting to mitigate for

its inclusion using other auxiliary variables).

In addition to inducing bias, including a collider in the

imputation model may increase, rather than decrease, the SE of

the MI estimator. We have shown that this depends on the

magnitude of the associations between the exposure, outcome,

collider and missingness. However, inclusion of a collider in the

imputation model may recover more information about the

missing data than CRA, or MI including only the other analysis

model variables in the imputation model, and increase precision.
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Therefore, where the likely bias from inclusion of a collider is

small, we recommend performing a sensitivity analysis,

comparing the precision of the MI estimate when the imputation

model does or does not include a collider. If the gain in

precision is sufficiently large, it may be preferable to include a

collider in the imputation model, at the expense of some bias,

especially if no other auxiliary variables are available. Conversely,

if both the gain in precision and the likely bias are large (noting

that the direction of bias depends on the signs of the associations

between other pairs of variables and not on the sign of the

association between outcome and exposure), the inclusion of a

collider could lead to more precise, but incorrect, estimates of

both the strength and direction of the effect. It is possible, for

example, that this could result in a weak positive association

being incorrectly estimated as a strong negative association.

A strength of our approach is that we have considered a range

of commonly occurring scenarios, in which the partially observed

variable is either the analysis model outcome or the exposure, as

well as either continuous or binary. By using both algebraic

quantification and simulation, we have been able to provide a

detailed illustration of the effect on both bias and SE, and how

these are related to the magnitude and sign of individual

associations between exposure, outcome, auxiliary variables and

missingness. A limitation is that we have only considered simple

models in which variables are normally distributed, or binary,

without interactions or non-linear relationships. Our results for

the magnitude of bias and SE naturally extend to certain types of

skewed/non-normal and categorical variables, e.g., a variable with

a log-normal distribution, or a polytomous variable that can be

expressed as a set of binary “dummy” variables. In addition,

because our general argument is based on the DAG for the

substantive model of interest, which does not make any

distributional assumptions, our findings also extend to more

complex situations, e.g., if there is an exposure–confounder

interaction. In this case, the expression for the maximum bias

would be more complicated (and the relationship between

maximum bias and the direct effect sizes may be non-linear). In

applied examples with specific forms for the variables and their

relationships, simulation could be used to assess the likely

magnitude of the bias and SE if a collider is included in the

imputation model. Furthermore, although we have only

considered settings in which the MAR assumption was valid,

note that even if data were MNAR (in which case the MI

estimator would be biased), inclusion of a collider as an auxiliary

variable could amplify this bias (7).

A further limitation of our study is that in each of our scenarios,

only a single variable has missing values. When multiple variables

have missing values, assessing whether imputation models include

colliders is likely to be a more complex process. If multiple

missingness is handled using MI by chained equations (also known

as MI by fully conditional specification) (24), each imputation model

only considers one variable to have missing values, as here. In this

case, auxiliary variables should be considered separately for each

imputation model, because an auxiliary variable may be a collider

for one partially observed variable, but not another. If an auxiliary

variable is included in several imputation models and could be a
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collider in all of them, then the bias may be amplified across the

imputed variables. For example, returning to our real data setting, if

our exposure was also partially observed, and we included birth

weight in the imputation model for both our outcome, BMI at age 7

years, and our exposure, maternal education (noting that the default

in most software implementations of MI is to include all the listed

predictors in the imputation models for all partially observed

variables), we may expect more bias than when just including birth

weight in the imputation model for our outcome, BMI at age 7 years.

In summary, we conclude that, although auxiliary variables have

the potential to improve precision of theMI estimate and reduce bias

compared with an imputation model that only includes analysis

model variables, poorly chosen auxiliary variables can increase

both bias and SE. Therefore, it is important that auxiliary variables

are selected carefully. In particular, we recommend examining

whether any potential auxiliary variables are colliders. This can be

achieved through a combination of data exploration and

consideration of the plausible casual diagrams and missingness

mechanisms (e.g., by using a missingness DAG (25, 26)).
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