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Abstract 

Background Primary care is widely seen as a core component of resilient and sustainable health systems, yet its 
efficiency is not well understood and there is a lack of evidence about how primary care efficiency is associated 
with health system characteristics. We examine this issue through the lens of diabetes care, which has a well-estab-
lished evidence base for effective treatment and has previously been used as a tracer condition to measure health 
system performance.

Methods We developed a conceptual framework to guide the analysis of primary care efficiency. Using data on 18 
European countries during 2010–2016 from several international databases, we applied a two-stage data envelop-
ment analysis to estimate (i) technical efficiency of primary care and (ii) the association between efficiency and health 
system characteristics.

Results Countries varied widely in terms of primary care efficiency, with efficiency scores depending on the range 
of population characteristics adjusted for. Higher efficiency was associated with bonus payments for the prevention 
and management of chronic conditions, nurse-led follow-up, and a financial incentive or requirement for patients 
to obtain a referral to specialist care. Conversely, lower efficiency was associated with higher rates of curative care 
beds and financial incentives for patients to register with a primary care provider.

Conclusions Our results underline the importance of considering differences in population characteristics 
when comparing country performance on primary care efficiency. We highlight several policies that could enhance 
the efficiency of primary care. Improvements in data collection would enable more comprehensive assessments 
of primary care efficiency across countries, which in turn could more effectively inform policymaking.
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Background
Efficiency is considered a key measure of health system 
performance [1]. Assessments of overall system effi-
ciency might conceal important variation between dif-
ferent parts of the health system, and it is important to 
understand how the various sectors perform in order to 
effectively inform decision-making by mangers and poli-
cymakers [2]. Related research has tended to focus on 
hospitals (including different types of ownership), not 
least due to the availiability of data [3–5] and because 
the hospital setting has clear boundaries [6]. Efficiency 
in primary care is less well understood and the impre-
cise boundaries and wide range of outputs mean that 
efficiency is more difficult to assess [2, 7, 8]. Yet, primary 
care is recognised to be at the core of resilient and sus-
tainable health systems [9], with evidence pointing to its 
key role in improving health outcomes, health system 
efficiency and health equity [10, 11]. Primary care also 
plays an important role in the effective prevention and 
integrated management of the rising burden of chronic 
disease globally [12]. It is against this background that 
assessing the performance and efficiency of primary care 
has become ever more important [13].

Most studies of efficiency in primary care have been 
conducted in European countries, with a focus on techni-
cal efficiency of primary care providers, such as general 
practices, primary care centres or primary care teams 
within countries [8, 14, 15]. Only one study [16] specifi-
cally examined primary care efficiency across [22] Euro-
pean countries, finding that countries varied considerably 
in terms of their efficiency in translating care structures 
into processes and care processes into quality outcomes. 
The study provided important insights into technical 
efficiency as measured by primary care structures, such 
as governance, financing or workforce; processes (e.g. 
access, continuity of care) and outcomes (quality, effi-
ciency, equity). However, it did not explore the factors 
that could explain variation between countries in terms 
of primary care efficiency. Such an analysis would allow 
for inferences about the likely contribution of national-
level policies to improve efficiency [2].

This paper seeks to address this important research gap 
by investigating the relationship between health system 
characteristics and primary care efficiency across Euro-
pean countries. Specifically, we seek to explore whether 
a given characteristic is associated with higher or lower 
primary care efficiency. We examine this issue through 
the lens of diabetes care, which has a well-established 
evidence base for effective treatment, much of which can 
be delivered in primary care [17]. Diabetes has been pro-
posed as a useful tracer condition to assess health system 
performance [18]. As efficiency analysis is inherently a 
comparative exercise, focusing on a single condition can 

enhance the comparability of efficiency measures across 
countries [2] and may facilitate the identification of out-
puts attributable to primary care.

Methods
Definition of primary care
We defined primary care in line with the European Com-
mission (2014) as “the provision of universally accessible, 
integrated person-centred, comprehensive health and 
community services provided by a team of professionals 
accountable for addressing a large majority of personal 
health needs. These services are delivered in a sustained 
partnership with patients and informal caregivers, in the 
context of family and community, and play a central role 
in the overall coordination and continuity of people’s care.” 
[19] (p. 18). Our focus is on technical efficiency, which 
refers to the ability to maximise outputs (or outcomes) 
given a set of limited inputs or resources or to minimise 
inputs to obtain a given level of outputs [2].

Conceptual framework of primary care performance 
on efficiency
We developed a conceptual framework (Fig.  1). It 
describes a simplified pathway from pre-diagnosis to 
diabetes treatment and management along the primary-
secondary care continuum, along with intermediate and 
final outcomes of diabetes care [20]. It identifies the 
range of factors acting at patient, population and health 
system levels that can impact the journey and, ultimately, 
the outcomes along the care continuum.

Data
Our choice of variables was informed by the conceptual 
framework (Fig.  1) and data availability. We considered 
18 European OECD member countries, for which rel-
evant data on key input and output variables were avail-
able for the period 2010–2016. We merged data from ten 
different sources. Information on data sources, missing 
data and variable definition and construction is available 
in Supplementary file, Table S1.

Input and output variables
We sourced data on input and output variables from the 
OECD Health Statistics database [24]. The input variable 
was the number of generalist medical practitioners, per 
1,000 population, a widely used measure of primary care 
resources.

We considered eight variables reflecting population 
characteristics as ‘uncontrollable’ inputs [25] as they 
are outside of the direct control of the primary care 
system, at least in the short term, specifically: preva-
lence of diabetes [26] and obesity [27]; smoking rates 
(population aged 15  years and over) [28]; per capita 
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alcohol consumption [24]; levels of deprivation [29]; 
educational achievement [30]; per capita income [31] 
and the incidence of long-term (one year and over) 
unemployment [31]. Countries with a higher preva-
lence of diabetes may have higher rates of diabetes 
hospital admissions [32] and amputations [33]. Obe-
sity and smoking are risk factors for diabetes hospital 
admission [34], and smoking is also a risk factor for 
lower limb amputation [35] while alcohol use has been 
associated with a lower risk of hospital admission [34]. 
Socio-demographic factors including deprivation, edu-
cation, income and unemployment have also been asso-
ciated with poor diabetes outcomes [20, 36–38].

Output variables were diabetes hospital admissions 
per 100,000 population and admissions based on dia-
betes lower extremity amputation, per 100,000 popula-
tion, which measure utilisation and quality of primary 
care [33, 39]. Both variables were adjusted for age and 
sex. Data envelopment analysis (DEA) (detailed expla-
nation below in the section “Two-stage data envel-
opment analysis”) assumes that the measurement 

of outputs implies ‘more is better’ [40] that is, larger 
numerical values correspond to greater production 
[41], suggesting that outputs should be maximised 
[42]. However, the interpretation of diabetes admis-
sion and amputation rates is that lower rates point to 
better quality of care. Therefore, we transform the out-
put variables using the multiplicative inverse in order 
to incorporate them into the models as desirable out-
puts [42] that we wish to maximise.

Explanatory variables: Health system characteristics
Based on availability of data, we selected the following 
health system characteristics: number of curative care beds 
per 1,000 population [24], availability and use of electronic 
health records (EHR) by GPs [43], bonus payments for pri-
mary care providers achieving targets related to the preven-
tion and management of chronic diseases [44], nurse-led 
follow-up of people with chronic conditions [44], require-
ment for patients to register with a primary care provider 
[44], requirement for patients to obtain primary care refer-
ral to specialist care [44], arrangements for out-of-hours 

Fig. 1 Conceptual framework. Note: Health system characteristics included in the analysis are highlighted in bold and italic. Source: Modified based 
on Brown et al. [20] and the World Health Organisation [21–23]
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primary care (group of physicians on a rota basis) [44–47], 
existence of a diabetes registry [48], existence of govern-
ment-approved evidence-based national guidelines for the 
management of diabetes [45, 48, 49], and task-shifting from 
physicians to nurses in primary care [50] (for further details 
see Supplementary file Table S2).

We expected a higher rate of curative care beds to be 
associated with lower efficiency as higher rates of beds 
could translate into higher rates of admissions. For the 
remaining variables, we expected a positive association 
with efficiency.

Two‑stage data envelopment analysis
We used a two-stage DEA [51] to investigate the relation-
ship between efficiency and health system characteristics. 
DEA is a recommended approach for measuring efficiency 
in the context of small sample sizes and multiple inputs and 
outputs [25].

First, we measured technical efficiency, using DEA, 
whereby efficiency is defined as the ratio of a weighted sum 
of outputs to a weighted sum of inputs. The DEA method 
chooses the set of ouput and input weights that maximise 
the efficiency of country i, subject to the constraint that the 
efficiency score is less than or equal to one. We assumed 
an output orientation, which implied that output could be 
increased given a specified level of input as our aim was to 
estimate the potential increase in primary care quality (out-
put) that could be achieved with the available primary care 
resources (input). Therefore, our objective was to maxim-
ise weighted outputs conditional on weighted inputs being 
equal to one:

Subject to:

where xi is a vector of inputs and yi is a vector in outputs 
for each of the I countries [25].

Countries with the highest ratio of output to input 
formed the efficiency frontier. The efficiency of coun-
tries not on the frontier was assessed relative to the most 
efficient countries or ‘peers’ that comprised the frontier 
[52]. We used the Banker, Charnes and Cooper specifi-
cation i.e. variable returns to scale [53], which is recom-
mended when outputs are expressed in ratios [54].

We adjusted efficiency scores to reflect differences 
in population characteristics across countries, identi-
fying population characteristics that had a statistically 

Maxu,y u′y0

v′ = 1

u′yi − v′xi ≤ 0i = 1, . . . ., I

u, v ≥ 0

significant association with efficiency and including 
these in the DEA models as ‘uncontrollable’ inputs’ to 
ensure a more meaningful comparison of countries. 
We first estimated a baseline model without any popu-
lation characteristics; it included generalist medical 
practitioners as input and diabetes hospital admissions 
per 100,000 population and admissions for diabetes 
lower extremity amputation per 100,000 population as 
outputs. We then estimated separate DEA models for 
each statistically significant population characteristic 
to evaluate its effect on countries efficiency scores. 
We computed Spearman rank correlations between 
the efficiency estimates from the different models to 
assess their internal validity [3]. DEA does not account 
for measurement error and the efficiency frontier is an 
estimate of the true frontier based on our data sample. 
In order to adjust the efficiency estimates for sampling 
bias, we applied bootstrapping as proposed by Simar 
and Wilson [55]. We ran the bootstrap for 2,000 iter-
ations. We computed the bias-corrected efficiency 
scores for each year using the Benchmarking package 
in R [56].

Second, we estimated a truncated regression with the 
efficiency estimates from each model as the dependent 
variable and health system characteristics as explana-
tory variables. We corrected the standard errors for 
sampling bias and the correlation between efficiency 
scores using bootstrapping with 2,000 iterations [51]. 
We pooled data across years to estimate the regres-
sions. While it would be informative to model several 
health system characteristics variables simultaneously, 
we included each variable separately due to the small 
number of countries (n = 18). The regressions were esti-
mated using the truncreg command in Stata 17 [57].

Ethical issues/statement
Ethics approval was not required as we used secondary 
data that was aggregated at the country-level.

Results
Descriptive statistics
Table  1 shows the descriptive statistics for the input, 
output, population and health system characteristics 
variables (see also Supplementary file Figures S1-S13).

Country‑level efficiency
Six variables showed a statistically significant associa-
tion with efficiency: the prevalence of diabetes, obesity, 
smoking, alcohol consumption, education and income 
(Supplementary file, Table S3). We estimated a model 
for each of these and we show the results in Table  2. 
Efficiency scores lay within the range of zero to one 
(but scores were less than one due to bootstrapping), 
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Table 1 Descriptive statistics of study variables

Continuous variables, n = 106a

Variable Mean Standard deviation Min Max

Input variable

 Generalist medical practitioners, per 1,000 population 0.99 0.46 0.33 2.74

Population characteristics (uncontrollable inputs)

 Diabetes prevalence, % 5.36 1.45 2.77 9.26

 Smoking, % 27.25 4.52 18.80 37.30

 Alcohol consumption, litres per capita 10.08 1.95 6.00 14.70

 Obesity, % of population aged 18 years and over 21.29 2.31 17.40 27.80

 Deprivation, % of population 5.92 4.30 0.50 19.80

 Income per capita, US$ PPP 44746.46 16223.48 21088.60 103723.70

 Percentage of total unemployed population unemployed for one year or more 36.69 12.42 16.80 61.70

 Upper second level education, % of population aged 25–64 years 43.76 11.24 20.74 66.05

Output variables

 Diabetes hospital admissions, per 100,000 population 142.42 64.91 43.80 281.10

 Admission based diabetes lower extremity amputation, per 100,000 population 6.53 3.96 2.60 24.40

Estimated dependent variables

 Efficiency scores, baseline model 0.58 0.21 0.17 0.90

 Efficiency scores, baseline model with diabetes prevalence 0.57 0.20 0.17 0.90

 Efficiency scores, baseline model with alcohol 0.71 0.17 0.31 0.92

 Efficiency scores, baseline model with obesity 0.58 0.20 0.17 0.90

 Efficiency scores, baseline model with smoking 0.67 0.19 0.28 0.90

 Efficiency scores, baseline model with education 0.58 0.21 0.17 0.88

 Efficiency scores, baseline model with income 0.61 0.21 0.17 0.91

Health system characteristics continuous variables

 Curative care beds, per 1,000 population 3.78 1.33 2.15 6.28

 Availability and use of Electronic Health Records (EHR) by GPs 2.87 0.44 1.39 3.33

Health system characteristics binary variables, n = 18 Number Percentage Min Max

Bonus payment for primary care providers

 No 11 61 0 0

 Yes 7 39 1 1

Nurse-led follow-up of patients with chronic conditions

 No 9 50 0 0

 Yes 9 50 1 1

Patient registration with primary care provider

 Not required or incentivised 6 33 0 0

 Incentivised 5 28 1 1

 Required 7 39 2 2

Patient referral to secondary care

 Not required or incentivised 3 17 0 0

 Incentivised 5 28 1 1

 Required 10 56 2 2

Out of hours primary care: physicians rota

 No 4 22 0 0

 Yes 14 78 1 1

Diabetes registry

 No 10 56 0 0

 Yes 8 44 1 1

National guidelines for the management of diabetes

 No 5 28 0 0

 Yes 13 72 1 1

Task-shifting from physicians to nurses in primary care

 None 6 33 0 0

 Limited 8 45 1 1

 Advanced 4 22 2 2

a Number of countries = 18 and number of time periods = 3–7
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with a higher score indicating higher efficiency. For 
example, in the baseline model, Austria and Germany 
had the lowest efficiency scores, while Italy and the 

United Kingdom (UK) had the highest scores. These 
differences are likely driven by differences in dia-
betes admission and amputation rates, which were 

Table 2 Country-level efficiency, average scores 2010–2016

Country Baseline model Baseline model with 
diabetes prevalence

Baseline 
model with 
alcohol

Baseline 
model with 
obesity

Baseline model 
with smoking

Baseline model 
with education

Baseline 
model with 
income

Austria 0.21 0.21 0.52 0.21 0.53 0.21 0.21

Belgium 0.58 0.57 0.70 0.61 0.78 0.58 0.57

Denmark 0.33 0.33 0.41 0.33 0.34 0.33 0.34

Finland 0.68 0.65 0.71 0.70 0.68 0.67 0.67

France 0.58 0.58 0.85 0.58 0.82 0.57 0.57

Germany 0.26 0.25 0.45 0.27 0.45 0.26 0.26

Ireland 0.76 0.75 0.85 0.73 0.82 0.77 0.76

Italy 0.81 0.77 0.85 0.80 0.84 0.80 0.78

Latvia 0.50 0.50 0.72 0.49 0.79 0.50 0.77

Lithuania 0.42 0.42 0.80 0.40 0.62 0.42 0.75

Luxembourg 0.37 0.36 0.68 0.38 0.39 0.36 0.37

Netherlands 0.80 0.80 0.87 0.80 0.85 0.79 0.81

Norway 0.57 0.57 0.60 0.58 0.59 0.57 0.58

Poland 0.74 0.74 0.82 0.74 0.79 0.74 0.75

Portugal 0.56 0.65 0.63 0.56 0.57 0.73 0.81

Spain 0.80 0.77 0.83 0.77 0.79 0.74 0.78

Sweden 0.75 0.75 0.79 0.75 0.78 0.76 0.76

United Kingdom 0.83 0.74 0.83 0.74 0.84 0.79 0.82

Fig. 2 Efficiency scores from baseline model and model adjusted for alcohol consumption, average 2010–2016
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comparatively high for Austria and Germany but rela-
tively low for Italy and the UK (Supplementary file, 
Figures S2 and S3).

Adjusting for different population characteristics 
improved the efficiency of countries although patterns 
varied. Most countries saw an improvement in effi-
ciency scores after adjustment for alcohol consumption 
and smoking (Fig.  2). Portugal was the only country 
where adjusting for diabetes prevalence increased the 
primary care efficency score (from 0.56 to 0.65) as did 
adjusting for education. These observations are perhaps 
not suprising, since, for example, Portugal had the sec-
ond-highest prevalence of diabetes and the lowest pro-
portion of people with educational attainment to upper 
secondary level (Supplementary file 2 Figures  S4 and 
S9). Similarly, levels of alcohol and tobacco use have 
traditionally been high in countries such as Austria, 
France, Germany, Lithuania and Luxembourg (Supple-
mentary file Figures S5 and S7). Adjustment for income 

improved the efficiency score for several countries, 
most notably Latvia, Lithuania and Portugal. Adjust-
ment for obesity changed efficiency scores only mar-
ginally, except in the United Kingdom, which had the 
highest level of obesity (26%) in the sample (Figure S6 
in Supplementary file).

While the inclusion of different population charac-
teristics changed country rankings to some extent, the 
Spearman rank correlations were relatively high (rang-
ing from 0.63 to 0.97; also Table S4 in Supplemen-
tary file), suggesting a good degree of internal validity 
and relatively consistent country rankings across the 
models.

Associations of efficiency and health system characteristics
Table  3 shows the results of the regression analysis 
investigating associations between health system char-
acteristics and primary care efficiency across countries 

Table 3 Association of efficiency with health system characteristics

Note: + : positive statistically significant association, -: negative statistically significant association, n.s.: not statistically significant

Health system 
characteristics

Baseline 
model

Baseline model with 
diabetes prevalence

Baseline 
model with 
alcohol

Baseline 
model with 
obesity

Baseline 
model with 
smoking

Baseline model 
with education

Baseline 
model with 
income

Curative care beds, 
per 1,000 population

- - - - - - -

Availability and use of Elec-
tronic Health Records (EHR) 
by GPs

 +  + n.s  + n.s  + n.s

Bonus payment: Yes (Refer-
ence = No)

 +  +  +  +  +  +  + 

Nurse-led follow-up: Yes 
(Reference = No)

 +  +  +  +  +  +  + 

Registration: Incentive 
(Reference = No incentive 
or obligation)

- - - - - - -

Registration: Required 
(Reference = No incentive 
or obligation)

n.s n.s n.s n.s n.s n.s  + 

Referral: Incentive (Refer-
ence = No incentive 
or obligation)

 +  +  +  +  +  +  + 

Referral: Required (Refer-
ence = No incentive 
or obligation)

 +  +  +  +  +  +  + 

Out of hours primary care: 
physicians rota: Yes (Refer-
ence = No)

- - n.s - n.s - -

Registry: Yes (Refer-
ence = No)

n.s n.s - n.s - n.s n.s

Guidelines: Yes (Refer-
ence = No)

n.s  + n.s n.s n.s n.s n.s

Task-shifting: Limited (Refer-
ence = No task-shifting)

 +  + n.s  +  +  +  + 

Task-shifting: Extensive (Ref-
erence = No task-shifting)

 +  +  +  +  +  +  + 
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(see Table S5 in Supplementary file for quantitative 
results).

We found that bonus payments for the prevention and 
management of chronic conditions and nurse-led follow-
up were positively associated with efficiency in all mod-
els as was an incentive or requirement for primary care 
referral to specialist care. Task-shifting from physicians 
to nurses in primary care was positively associated with 
efficiency in all models except for limited task-shifting 
in the model adjusted for alcohol. There was also a posi-
tive association with efficiency for the availability of evi-
dence-based national guidelines for diabetes, but only 
in the model adjusted for diabetes prevalence. Similarly, 
positive associations with efficiency for the availability 
and use of EHR by GPs were found for the baseline model 
and the models adjusting for diabetes prevalence, obesity 
and education. Conversely, higher rates of curative care 
beds were associated with lower efficiency in all models, 
as were incentives for patients to register with a primary 
care provider. The existence of a diabetes registry was 
negatively associated with efficiency in the models that 
included alcohol consumption and smoking. There was a 
negative association between efficiency and out-of-hours 
primary care provided by a rota of physicians in all mod-
els except for the models that adjusted for alcohol con-
sumption and smoking.

Discussion
In this paper, we investigated the efficiency of primary 
care systems in European countries and explored the 
associations between efficiency and health system char-
acteristics. Primary care efficiency scores improved when 
a range of population characteristics were taken into 
account. We found that bonus payments, nurse-led fol-
low-up of people with chronic conditions, and an incen-
tive or requirement for patients to have a referral from 
primary to specialist care were associated with increased 
efficiency whereas the number of curative care beds and 
incentives for patients to register with a primary care 
provider reduced efficiency. For other health system vari-
ables, associations were less consistent.

Our finding that bonus payments were associated 
with higher efficiency aligns with other evidence sug-
gesting that incentive payments in primary care, such as 
pay-for-performance schemes targeted at the manage-
ment of chronic conditions, is associated with reduced 
resource use [58, 59] and gains in efficiency [60]. Like-
wise, the positive association between nurse-led follow-
up of people with chronic conditions and efficiency, and 
task-shifting from physicians to nurses in primary care 
is also reflected in the wider literature suggesting that 
substitution of physicians by nurses in primary care can 

have a positive effect on health outcomes and patient 
satisfaction, although the effect on costs, health system 
outcomes, and quality of life is less conclusive [61–64]. 
Similarly, the association of a requirement to obtain a 
primary care referral to specialist care with higher effi-
ciency aligns with previous studies [65, 66] that reported 
higher efficiency scores for OECD countries that had pri-
mary care gatekeeping arrangements in place.

Somewhat counterintuitively, evidence of an asso-
ciation between patient registration with a primary care 
provider and efficiency was mixed, with compulsory 
registration significantly positive only in the model that 
adjusted for income while voluntary registration using 
incentives was negatively associated with primary care 
efficiency in all models. Patient registration has been 
linked to enhancing care continuity and coordination 
[67], which, in turn, has been linked to improved patient 
outcomes [68] and lower service use and cost [69]. How-
ever, the nature and extent of how countries define and 
implement ‘patient registration’ varies substantially [70], 
and it is likely that the variable as conceptualized in the 
data source [44] used in this study captures some other 
mechanism that would explain our finding.

We also found some evidence that EHR availability and 
use may be associated with improved efficiency, although 
this applied to certain models in our study only. There is 
limited evidence, mostly from the United States, which 
points to the potential of EHR to increase efficiency in 
some contexts [71] while other studies have highlighted 
the negative impacts of inadequate design of EHR sys-
tems [72, 73].

A higher rate of curative care beds was associated with 
reduced efficiency. This finding is perhaps unsurpris-
ing as hospital beds built are likely to be used (‘Roemer’s 
Law’ [74–77]) although the relationship between hospital 
bed capacity and use is more complicated. For example, 
in an international comparative study Van Loenen et al. 
[78] found hospital bed supply to be strongly associated 
with admission rates for uncontrolled diabetes and long-
term complications. They also highlighted the possibil-
ity of reverse causation, finding that countries that had a 
stronger primary care orientation also had lower hospital 
bed supply. Moreover, the price of hospital services var-
ies widely across countries [79], which may have implica-
tions for efficiency.

We further found a negative association between effi-
ciency and the organisation of out-of-hours primary care 
using a rota of physicians in all models except those that 
adjusted for alcohol consumption and smoking. A phy-
sician rota for out-of-hours primary care was the most 
common organisational model in our sample. Alternative 
approaches such as general practice co-operatives may be 
more efficient [80], but this model was not widespread 
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and there may be insufficient statistical power to detect 
a positive association. A recent review [81] of national 
diabetes registries found that most registries served to 
monitor and improve the quality of diabetes care and 
that national registries may also help to achieve efficiency 
gains by identifying the causes of variation in outcomes. 
We did not find evidence to support this observation.

The study period covers six years (2010–2016), which 
coincided with primary care reform efforts in several 
countries that may be associated with efficiency. For 
example, in 2010, the Netherlands introduced a bun-
dled payment for diabetes care provided in primary 
care settings. Evaluations showed that the reform led 
to improved care coordination and adherence to qual-
ity guidelines, improvements in clinical outcomes, and 
a reduction in the use of specialist care and associated 
costs [82]. Since the introduction of a new payment sys-
tem for GPs in 2015, the bundled payment accounts for 
around 15% of GP income [83]. Similarly, Denmark intro-
duced a bundled payment system in primary care for dia-
betes patients in 2007, but this was discontinued in 2014 
due to low participation by GPs [84]. Evaluations have 
found that bundled payment models were associated 
with increased efficiency compared to separate payment 
for different services [85]. Therefore, we might expect 
that bundled payment would be positively associated 
with primary care efficiency. However, we are unable to 
test this hypothesis based on available data.

The implementation of austerity measures, following 
the 2007–08 financial crisis and subsequent global reces-
sion, may have affected primary (and secondary) care 
access and efficiency. However, it is difficult to investi-
gate these changes given the diversity of responses across 
countries, encompassing changes to public funding, 
health coverage and health service planning, purchas-
ing and delivery [86]. Additionally, an examination of the 
relationship between efficiency and quality regulations 
and regulatory actors was beyond the scope of this study.

While we included a variable measuring task-shifting 
from physicians to nurses in primary care, we did not 
consider the substitution of specialist care to primary 
care. A review of interventions involving the transfer of 
(elements of ) services from specialist to primary care 
found some evidence of a reduction in the utilisation of 
specialist care but a lack of information on costs [87]. 
Evidence suggests that the relocation of specialists to pri-
mary care settings is associated with shorter waiting lists 
and times and improved patient satisfaction [88] as well 
as lower costs [89].

Not all countries in our study provide universal access 
to primary care. In Ireland, eligibility for free primary 
care services is based on age and income and less than 
half of the population meet the relevant criteria. Evidence 

suggests that people not eligible for free primary care are 
more likely to report unmet need for health care [90], and 
to forgo preventative [91], and chronic care [92]. While 
Irish government policy has prioritised universal pri-
mary care, modelling suggests that significant numbers 
of additional GPs would be needed to meet the increased 
demand arising from the introduction of universal pri-
mary care. One proposed solution to address the poten-
tial shortage of GPs is increased nurse substitution [93] 
and our findings of a positive relationship between task-
shifting and efficiency would lend support to this policy.

While the time period of our study does not cover the 
COVID-19 pandemic, some of our results have relevance 
for the changes in health care delivery that were adopted in 
response to the pandemic. For example, the use of digital 
health tools increased substantially during the pandemic 
[94]. We found that the availability and use of one such tool 
(EHR) was associated with increased efficiency. A key find-
ing of our study, namely that task-shifting from physicians 
to nurses in primary care was associated with increased 
efficiency, is very likely to remain significant given the con-
tinued efforts of countries to move to more systematic use 
of the non-physician workforce in primary care.

Strengths and limitations
We used two indicators on the quality of primary care 
for diabetes, admissions and lower extremity amputa-
tion for diabetes. These are widely used in health system 
performance comparisons as indicators of the quality of 
diabetes care [95] and have also been used in a previ-
ous study [96] measuring the efficiency of diabetes care 
at a national level. National studies have also used more 
refined measures of diabetes care including diabetes-
related medication [97, 98], the number of diabetic 
patients with a complete diabetes annual review [97] 
and a composite indicator of diabetes prevention and 
quality [96]. However, data on such indicators across 
countries and over time are currently unavailable. While 
focusing on a single condition facilitated the identifica-
tion of appropriate outputs and cross-country compari-
sons, it is important to note that it does not reflect the 
wide range of activity undertaken in primary care and 
therefore our results would not be representative of 
primary care as a whole. Nevertheless, our results on 
the positive relationship between certain health system 
characteristics and efficiency may be relevant for other 
chronic conditions managed in primary care. Bonus 
payment and nurse-led follow-up are measured in rela-
tion to chronic illness in general and not specifically dia-
betes. Similarly, an incentive or requirement to receive a 
referral from primary to specialist care, and task-shift-
ing from physicians to nurses are not restricted to a 
certain disease or patient population. While the OECD 
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collects data on generalist medical practitioners accord-
ing to a standardized definition, countries may differ in 
the extent to which their national data collection sys-
tems adhere to this definition, which may contribute 
to some of the differences across countries. As high-
lighted in our conceptual framework, nurses and other 
health care professionals play an important role in the 
care of people with diabetes, including in primary care 
settings. The OECD Health Statistics database includes 
data on nurses and pharmacists but does not distin-
guish between care settings. The lack of comparable 
data on nurses and other health professionals working 
in primary care settings, across countries and over time 
should be addressed in international databases. The 
exclusion of other primary care professions as inputs 
in the DEA models may have led to potential bias aris-
ing from the underestimation of the efficiency estimates 
[99, 100]. Many countries are implementing new models 
of delivering primary care using a team-based approach 
[11] and research suggests that collaborative and team-
based care may improve clinical outcomes for diabetes 
care [101], and reduce the use of acute care for patients 
with chronic illness [102]. However, heterogeneity in the 
composition of primary care teams and the lack of com-
parable data across countries restricted consideration of 
the relationship between team-based care and efficiency. 
We pooled data over time in order to increase the sam-
ple size and the reliability of our results but a potential 
drawback is that we overlook change in efficiency over 
time. Nevertheless, our approach is in line with previous 
studies in the healthcare context [3, 103, 104].

Conclusions
This study contributes to the evidence base on meas-
uring the efficiency of primary care systems across 
countries and their relevant correlates and explanatory 
factors. Differences in efficiency across countries were 
driven, to a considerable degree, by population differ-
ences but our findings also suggest that countries might 
achieve greater efficiency by implementing systematic 
efforts for enhancing the management of chronic dis-
eases in primary care supported by bonus payments, 
nurse-led patient follow-up, and appropriate referral 
systems. There is a need to improve and extend current 
data collection in order to produce a set of core indi-
cators that would enable more comprehensive assess-
ments of primary care efficiency across countries. 
Future qualitative, in-depth country case study research 
could also provide useful additional insights into the 
features of those countries that this study revealed as 
better performers on efficiency.
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