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Abstract: Background: Accurate estimation of dietary intake is challenging. However, whilst some
progress has been made in high-income countries, low- and middle-income countries (LMICs) remain
behind, contributing to critical nutritional data gaps. This study aimed to validate an objective,
passive image-based dietary intake assessment method against weighed food records in London,
UK, for onward deployment to LMICs. Methods: Wearable camera devices were used to capture
food intake on eating occasions in 18 adults and 17 children of Ghanaian and Kenyan origin living
in London. Participants were provided pre-weighed meals of Ghanaian and Kenyan cuisine and
camera devices to automatically capture images of the eating occasions. Food images were assessed
for portion size, energy, nutrient intake, and the relative validity of the method compared to the
weighed food records. Results: The Pearson and Intraclass correlation coefficients of estimates of
intakes of food, energy, and 19 nutrients ranged from 0.60 to 0.95 and 0.67 to 0.90, respectively.
Bland–Altman analysis showed good agreement between the image-based method and the weighed
food record. Under-estimation of dietary intake by the image-based method ranged from 4 to 23%.
Conclusions: Passive food image capture and analysis provides an objective assessment of dietary
intake comparable to weighed food records.

Keywords: dietary intake assessment; wearable camera; food; nutrients; portion size; nutritional analysis

1. Introduction

Populations in low and middle-income countries (LMICs), such as those in sub-
Saharan Africa, are undergoing a triple burden of malnutrition, characterised by a long-
term steady rise in undernutrition, micronutrient deficiency, and the emergence of obesity
and non-communicable diseases such as hypertension and type 2 diabetes [1,2], with poor

Nutrients 2023, 15, 4075. https://doi.org/10.3390/nu15184075 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu15184075
https://doi.org/10.3390/nu15184075
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-7350-6980
https://orcid.org/0000-0002-5024-1465
https://orcid.org/0000-0002-3858-4473
https://orcid.org/0000-0001-7792-4234
https://orcid.org/0000-0001-7948-9205
https://orcid.org/0000-0001-7048-8337
https://doi.org/10.3390/nu15184075
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu15184075?type=check_update&version=1


Nutrients 2023, 15, 4075 2 of 16

dietary intake being a primary contributor. The traditional diets of these populations are
mostly composed of starchy foods, served with small amounts of green leafy vegetables
with little-to-no animal-sourced foods [3]. As the accessibility and affordability of processed
foods increase globally, ingredients such as refined flour, sugar, rice, cooking oil, saturated,
and trans fats have been added to diets [4]. In addition, affluent urban populations in
these countries are being enticed by western-type nutritionally poor fast foods, producing
a malnutrition spectrum comprised of both undernutrition and overnutrition (obesity and
overweight), with serious adverse health and economic implications [5].

Despite a good general understanding of the types of foods eaten in LMICs, existing
knowledge of the amounts, energy, and nutritional content (i.e., carbohydrate, fat, protein,
vitamins, and minerals) of the foods consumed across different populations, households,
and individuals is inadequate, contributing to a significant nutritional data gap [6]. Among
other things, the gap in nutrition data is attributable to the limited availability of nutritional
assessment tools, including dietary intake assessment methods. Accurate assessment of
dietary intake is very challenging, even in high-income countries. Most current methods
rely on self-reports of intake, which are affected by random and sometimes systematic
errors [7]. Efforts such as transitioning from traditional pen and paper-based methods,
relying on sheer memory, to using web and computer-based methods with picture aids for
portion size estimation have made significant strides in the quest to accurately estimate
dietary intake, although reporting errors remain a challenge [8]. However, deploying web
and computer-based methods to LMICs is problematic due to issues relating to cost, low
literacy, low computer ownership, and reliable internet connectivity. Other methods, such
as mobile phone-based methods, look promising [9]. However, these methods too require
an understanding of the commands and instructions set in the phones to capture food
images, which might be difficult for populations with poor literacy. In addition, mobile
phone capture of food images might be burdensome for large households, especially those
with younger children, where parents or caregivers are expected to take images of their
own food intake and those of the children, presenting a challenge to their use in LMICs.
Methods that are easy to use in a poorly literate population, do not require computer and
internet connectivity, and are less burdensome on the user might be valuable alternatives
to the challenges associated with current dietary intake assessment methods.

An objective, passive image-based dietary intake assessment method was developed
for use in LMIC households [10]. This method uses wearable camera devices to progres-
sively take images of food intake during eating occasions and custom software to estimate
the amount of food eaten and its nutritional content. Individuals in households are as-
signed a wearable camera device that, when switched on, automatically captures images
of food intake without a direct/active role of the wearer in the image capture. Manual
and automated approaches are then used on the captured food images to identify foods,
estimate portion size, and calculate nutrient intake, thus providing an objective, passive,
image-based dietary intake assessment method.

This paper reports the findings of a pilot study designed to assess the acceptability and
functionality of wearable camera devices in food image capture and the relative validity of
the passive image-based method in estimating portion size and nutrient intake compared
to weighed food records among adults and children of Ghanaian and Kenyan origin living
in London, United Kingdom (UK), to provide evidence to support the deployment and
further testing of the devices in households in LMICs.

2. Materials and Methods
2.1. Study Population

This study was carried out between December 2018 and July 2019. Adults and children
living in London, UK, who identified themselves as of Ghanaian or Kenyan origin were
recruited. Recruitment was carried out through poster advertisements, word of mouth, and
referrals. Adults and children were recruited and enrolled separately in two sub-studies.
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For the adult sub-study, interested adults were invited to the National Institute for
Health Research (NIHR) Clinical Research Facility (CRF) at Hammersmith Hospital, Im-
perial College London, UK, for eligibility assessment and informed consent. A potential
participant was eligible if s/he was an adult (≥18 years) of Ghanaian or Kenyan origin, eats
food of Ghanaian or Kenyan origin, had no known food allergies, and was willing to wear a
camera device while eating. Eligible adults were given a participant information sheet and
consent form to read, discuss with study staff, and, if possible, provide informed consent.
Potential participants were given up to 48 h from the visit date to provide informed consent.
Consenting adults were enrolled into the study and allocated to a study group.

Participants for the child sub-study were enrolled through the recruitment of house-
holds in London. Households that showed interest were visited by study staff for eligibility
assessment and informed consent. Households were eligible if they were of Ghanaian
or Kenyan origin, had a child or children aged 0–17 years, cooked foods of Ghanaian or
Kenyan origin, had no food allergies, and were willing to wear a camera device during
eating. Household heads (mothers mainly) in eligible households were given a participant
information sheet to read and discuss with project staff and an informed consent form.
Assent was sought from minors (aged 13–17 years) who were able to read. Consenting
households were enrolled in the study and assigned a household identification num-
ber. The study is registered at www.clinicaltrials.gov (accessed on 2 February 2023)
as NCT03723460.

2.2. Study Design

This study was designed to test the acceptability and functionality of wearable camera
devices for passive image capture of food intake during eating episodes and the validity of
using the captured images to estimate food portion size and nutrient intake in comparison
to observed weighed food records. The devices were tested in representative populations
of LMICs in London under conditions similar to those in LMICs, such as using indigenous
foods, testing in a dimly lit room (mimicking a condition of inadequate electricity availability),
and eating from shared plates (i.e., where two or more people eat from a single plate of
food). Wearable camera devices: (a) AIM (Automatic Ingestion Monitor)—a micro camera
device attached to the frame of eyeglasses; (b) eButton—a circular camera device attachable to
clothing; and (c) ear-worn—a micro-camera device worn on the ear, resembling a Bluetooth
headset (Figure 1)—were used by participants during eating occasions to capture images of
their food intake [11,12]. The devices captured images every 5–15 s. The study was carried out
in laboratory and household settings among adults and children, respectively, to understand
the strengths and weaknesses of the camera devices and to provide evidence to support
their deployment in LMICs. The outcomes of interest were: (a) participants’ grading of the
acceptability of the devices; (b) an independent assessor’s grading of the functionality of the
devices; and (c) estimates of food portion size and nutrient intake from weighed food records
and food images captured by the wearable devices.

2.3. Testing of the Devices in Adults

A detailed protocol describing the procedure for testing the devices in the study
population was previously published [10]. Briefly, adult participants were divided into
groups, and each group visited the CRF at Imperial College London three times, once a
week, within a three-week period. On each visit, participants were provided with pre-
weighed (weighed using Salter Brecknell, Smethwick, UK) foods of Ghanaian and Kenyan
origin and a wearable camera device (AIM, eButton, or ear-worn). During the three visits,
participants completed three study activities: (a) ate a meal in a well-lit room; (b) ate a meal
in a poorly lit room; and (c) ate their meal using a shared plate. Participants completed
one activity using only one device per visit (Figure 2). Participants were asked to eat a
pre-weighed meal until full, and leftover foods were weighed and recorded for completion
of the observed weighed food records. At the end of each eating episode, images captured
by the wearable camera devices were uploaded onto a computer and transferred to

www.clinicaltrials.gov
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a secure cloud storage for an estimation of the functionality of the devices and food
portion sizes.
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Figure 2. Allocation of wearable camera devices for the capture of food images during eating
occasions. Participants were divided into three groups (six participants per group). Separately, the
groups made three visits to the Imperial College London CRF (Clinical Research Facility) a day per
week during a three-week period. On each visit, participants in the groups were allocated a camera
device. EW (ear-worn), eB (eButton), or AIM (Automatic Ingestion Monitor) and given pre-weighed
portions of Ghanaian or Kenyan foods to eat under conditions of: (1) good lighting, (2) dim lighting,
or (3) shared plate eating.
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At the end of each visit, participants were given a questionnaire to assess their percep-
tion of the acceptability of each device. The questionnaire asked participants to rate from
1–5 (low to high) ease of use, convenience, likelihood of using a similar device in the future,
and choosing their preferred device among the three devices. Study staff did not interact
with the participants during the completion of the questionnaire to prevent implicit bias.

2.4. Testing of the Devices in Children

Households that consented and enrolled in the study were visited twice (two days)
by study staff. On each day, a meal of Ghanaian or Kenyan origin was cooked. Before
and during cooking, study staff and the household cook used a weighing scale (Salter
Brecknell, Smethwick, UK) to weigh and record the weights of all the ingredients that went
into the cooking. At the end of cooking, a pre-weighed portion of the meal was dished
onto a plate, recorded, and given to the child/children in the household to eat. A wearable
camera device, an eButton, or AIM, was placed on the child/children to take images of the
eating episode. Only one camera device was used per child during each visit. The ear-worn
device was not included for testing on children. Children were asked to eat ad libitum. At
the end of the eating occasion, leftover foods were weighed (post-weight) and recorded for
completion of weighed food records. Images captured by the devices were uploaded onto a
laptop computer and subsequently transferred to secure cloud storage. The stored images
were then used for an assessment of the functionality of the devices and an estimation of
portion size and nutrient intake.

At the end of each visit, participants were given a questionnaire to assess the ac-
ceptability of the devices. The questionnaire asked for a grading, ranging from 1–5 (low
to high) of ease of use, convenience, interference with their eating, likelihood of using
similar devices in the future, and their preferred choice of device. Parents were allowed
to complete the questionnaire for younger children who were unable to provide coherent
answers. Study staff did not interact with the participants during the completion of the
acceptability questionnaire to prevent bias.

2.5. Assessment of the Functionality of the Camera Devices

Access to the secure cloud storage containing the food images was given to engineers
with experience in image processing at the National Electronic and Computer Technology
Center (NECTEC), Thailand, to provide an independent (i.e., not present during data
collection) assessment of the functionality of the devices. To visually estimate the portion
size of foods captured on images, a trained dietitian/nutritionist would need clear images
of the food plate at the start, during, and end of eating. Functionality was thus estimated as
an indication of the ability of the wearable camera devices to progressively capture quality
images of an entire eating occasion from start to finish.

Images of eating episodes were labelled for study activity and device used. The images
were chronologically arranged to allow viewing from the beginning to the end of an eating
occasion. An assessor went through the captured image files from each device and assessed
them for clarity, the ability to see the full food plate at the beginning of eating, the ability to
see the progression of eating, and the ability to see the full food plate at the end of eating.
These functional characteristics were assigned a numerical value ranging from 1–5 (i.e., low
to high imaging quality) to facilitate comparison between the devices.

2.6. Assessment of Portion Size of Food Captured on Images

Prior to using the captured images for assessment of portion size, images of complete
eating episodes were processed to remove artefacts inherent in wearable camera imaging.
These artefacts include barrel distortion, motion blur, and dark images due to poor lighting.
Blurred images were manually removed. Barrel distortion and enhancement of dark images
were corrected using previously described protocols [13].
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Portion size estimation from food images was conducted by a trained dietitian different
from the one who conducted the weighed food records. Images for each eating occasion
were viewed using a custom JAVA-based software, available in the AIM software [14],
which allowed for both simultaneous and sequential review of all images from each eating
occasion and zooming in and out on particular food items (Figure 3). Prior to estimation, all
images within a meal were reviewed sequentially to gain an overview of the meal process,
e.g., whether additional portions were added to the plate or bowl, whether all food items
were consumed in full, or whether there were leftovers. The best-quality images at the start
and end of the meal, and any others as needed, were selected for estimation of portion size.
In some cases, more than one image was used to gain the best view of each item. Portion
size aids (Hess book [15], Kenyan [16], and Ghanaian Food Atlases [17]) and comparison of
food with common reference objects were used to estimate portion sizes. Reference objects
included serveware (plates, bowls, cups, eating utensils, etc.) and hands/fingers appearing
in images next to the foods. Most foods were estimated as a volume in ml and converted
to weight using estimated density (grams/mL) from INFOODS (International Network
of Food Data Systems) [18], while some foods, such as meats, were estimated directly in
ounces and converted to grams (1 oz = 28.4 g). For each food item, if there was a leftover
uneaten portion, the estimate was subtracted from the initial portion to obtain the estimate
of the portion consumed.
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episode. The custom software allows viewing of images of food intake from the start to the end of an
eating episode. The software also allows zooming in and out on the images for food identification
and visual estimation of portion sizes.

2.7. Assessment of the Nutrient Content of Foods

Analyses of energy and nutrient intake were only conducted on the child cohort
where complete records of household recipe information were available. Analyses of food
and nutrient intake were conducted on discrete eating occasions; shared plates were not
included. Study-specific, standardised recipes were developed for each eating occasion
using the recipe information collected in the households (child sub-study). The nutritional
composition of each recipe was calculated using nutritional analysis software Dietplan7.0
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(Forest field Software Ltd., Horsham, UK) based on McCance and Widdowson’s 7th Edition
Composition of Foods UK Nutritional Dataset (UKN) [19]. Ingredients were matched to the
appropriate UKN food code within 10% of energy and macronutrient content. Ingredients
within each recipe were entered in their ‘raw’ form. Recipe ingredients not found within
the UKN were added to the database as a study-specific food. West African [20] and
Kenyan [16] food composition tables were used to estimate the nutrient composition,
per 100 g, of the study-specific foods. A factor was applied to each recipe to take into
consideration ingredient weight changes because of water loss or gain through the cooking
process. Nutrient intake from food consumption was estimated for each participant using
the Dietplan 7.0 software [21] and portion size estimates from weighed food records and
food images.

2.8. Statistical Analysis

The outcomes of interest included: (a) acceptability of the devices; (b) functionality of
the devices; and (c) relative validity of the estimation of the intake of food (portion size),
energy, and 19 nutrients. Acceptability and functionality were assessed using a one-way
ANOVA (analysis of variance), a Tukey post-hoc test, and an independent (unpaired)
samples t-test to calculate and compare the mean ratings of the different acceptability
and functionality characteristics of the devices. A device was determined acceptable if it
received a mean acceptability rating of ≥3. Participants’ preferred choice of device was
determined using the highest proportion of choices.

Food and nutrient intake data were log-transformed and back-transformed for analy-
ses. Relative validity of estimates of food portion size and nutrient intake were established
using the Pearson correlation coefficient, Intraclass correlation coefficient, Bland–Altman
test, and mean percentage differences. The Pearson correlation coefficient was used to
show the strength of a linear relationship between estimates of portion size, energy, and
nutrient intake from the two methods (i.e., the weighed food record and the passive image-
based method). ICC (two-way mixed, absolute agreement type) and 95% CI (confidence
interval) were used to evaluate the level of agreement between the two methods. The
estimated agreement of the methods was interpreted using the cut-offs: poor (ICC < 0.5),
moderate (ICC 0.5–0.75), good (ICC 0.75–0.90), and excellent agreement (ICC > 0.9) [22].
Bland–Altman analysis indicating the mean difference and 95% limits of agreement (LOA)
(i.e., mean difference ± 1.96 × SD (standard deviation) of mean difference) was conducted
to determine the level of agreement between estimates of the two methods [23]. Linear
regression of the differences and means of estimates of portion size, energy, and nutrient
intake from the two methods was further incorporated to investigate the degree of pro-
portional bias. Perfect agreement was taken as zero [24], indicating no bias. The mean
percentage difference was used to establish the difference in estimates of absolute intake
of portion size, energy, and nutrients between the weighed food record and the passive
image-based method.

The power calculation of method comparison studies depends on the statistical method
chosen, and currently there is no consensus on the best statistical method for assessing
the validity of dietary assessment tools. For Bland–Altman limit of agreement analysis,
at least 50 pairs of measurements are considered desirable for the analysis of agreement
between methods [23,25]. Thus, the study attempted to conduct a direct comparison of
weighed food record with the passive image-based method in estimating portion size
and nutrient intake of a minimum of 50 food items in each cohort. All statistical analyses
were conducted using IBM SPSS Statistics 26 (IBM Corps) [26]. p < 0.05 was considered
statistically significant.
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3. Results
3.1. Participant Characteristics

Characteristics of the study population are reported in Table 1. The study was conducted
between December 2018 and July 2019, during which time 35 participants—18 adults and
17 children—were enrolled. In the adult cohort, the mean (range) age of the adults was
37.8 (20–71 y) years. Most adults were female (72.2%) and of Ghanaian origin (77.8%). In
the child cohort, the mean (range) age of the children was 9 (1–17 y) years. There was a
similar proportion of female and male children. Most of the children were from households
identified as of Ghanaian origin (82.4%). BMI (body mass index), socioeconomic status,
educational attainment, etc., were not collected since they were not pertinent to the study’s
primary objectives.

Table 1. Characteristics of the study participants.

Characteristics Adult Cohort (n = 18) Child Cohort (n = 17)

Age 1 37 (20–71) 9 (1–17)
Female 13 (72.2) 9 (53.0)
Male 5 (27.8) 8 (47.0)

Ghanaian origin 14 (77.8) 14 (82.4)
Kenyan origin 4 (22.2) 3 (17.6)

1 Age is given in mean (range). The other characteristics are given in n (%).

3.2. Assessment of Acceptability of the Devices

The devices received high acceptability ratings. The responses to the questions had
mean ratings higher than 3, the a priori assigned cut-off for determining acceptability. In
the adult cohort, the mean rating of ease of use of the devices was higher for the AIM and
eButton devices compared to the ear-worn devices (4.6, 4.7 vs. 3.7, respectively, p = 0.005).
Likewise, the mean ratings on convenience of the devices were higher for AIM and eButton
devices compared to the ear-worn device (p = 0.04). A similar trend was observed in the
ratings on the likelihood of future use of the devices (p = 0.004) (Table 2). Most adults (67%)
preferred the eButton as their primary choice of wearable device compared to 28% and 5%
for AIM and ear-worn device, respectively (Table 2).

Table 2. Evaluation of the acceptability of using wearable camera devices during eating.

Adult Cohort (n = 18) Child Cohort (n = 17)

Characteristics 1 AIM eButton Ear-Worn 2 p 3 AIM eButton p 4

Ease of use 4.6 (3–5) a 4.7 (4–5) a 3.7 (1–5) b 0.005 4.3 (3–5) 4.4 (1–5) 0.81
Convenience 4.4 (2–5) a 4.5 (3–5) a 3.7 (1–5) a 0.04 4.3 (2–5) 4.2 (2–5) 0.86

Likelihood of future use 4.5 (3–5) a 4.7 (3–5) a 3.5 (1–5) b 0.004 3.8 (1–5) 3.9 (2–5) 0.38
Interference with eating 5 -- -- -- 1.6 (1–3) 2.3 (1–5) 0.49

Preferred device 6 28% 67% 5% 58% 42%
1 Data are mean (range) ratings. The rating scale used was 1–5, with 1 being low and 5 being high. 2 Ear-worn
devices were only included for testing in the adult cohort. 3 Calculated using a one-way ANOVA (analysis
of variance). Different letter superscripts on the mean values denote statistically significant differences in the
Tukey post-hoc test. 4 Calculated using an independent (unpaired) samples t-test. 5 Questions on interference of
the devices with eating were only asked in the child cohort. 6 Preferred device is given as a proportion (%) of
participants choice of the devices.

The acceptability of AIM and eButton devices was further tested in children. The ear-
worn device was excluded from the testing in children owing to its disapproval among the
adult participants. In addition to the set of acceptability questions asked in the adult cohort,
testing in children included a question to determine whether the devices interfered with a
normal eating process. Overall, AIM and eButton devices had very similar acceptability
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among children. The mean ratings on ease of use, convenience, and likelihood of future use
were very similar for the two devices. Children reported that both devices had minimal
interference on their normal eating process. However, the AIM device had less interference
with normal eating than the eButton (Table 2). In addition, the AIM device had somewhat
higher preferability than the eButton among the children (Table 2).

3.3. Assessment of the Functionality of the Devices

The results of the independently verified functional capacity showed some variability
in the imaging quality of the wearable devices, but not to a statistically significant level.
In the adult cohort, the AIM and ear-worn devices had higher image clarity (p = 0.09) and
higher visibility of the food plate at the onset (p = 0.06) and during eating than the eButton
device. The AIM device had higher visibility of the food plate at the end of eating than
both the ear-worn and the eButton, which performed similarly (Table 3). In the child cohort,
the eButton had a higher image clarity than the AIM device; mean ratings were 3.7 vs. 3.3.
However, the AIM device had a higher quality of visibility of the food plate at the onset,
during, and end of eating (Table 3).

Table 3. Evaluation of functional characteristics of wearable camera devices in capturing food images.

Adult Cohort (n = 18) Child Cohort (n = 17)

Characteristics 1 AIM eButton Ear-Worn 2 p 3 AIM eButton p 4

Clarity of images 3.9 (2–5) 3.5 (2–5) 4.2 (2–5) 0.09 3.3 (2–4) 3.7 (2–5) 0.45
Food plate visibility at eating onset 3.9 (1–5) 2.8 (1–5) 3.9 (1–5) 0.06 4.2 (3–5) 3.3 (2–4) 0.11
Food plate visibility during eating 3.7 (1–5) 2.9 (1–5) 3.9 (1–5) 0.18 3.9 (2–5) 3.7 (1–5) 0.63

Food plate visibility at the end of eating 3.7 (1–5) 3.1 (1–5) 3.0 (1–5) 0.32 3.7 (2–5) 2.4 (1–4) 0.18
1 Data are the mean (range) rating of the functionality of the wearable camera devices. 2 Ear-worn devices were
only included for testing in the adult cohort. 3 Calculated using a one-way ANOVA. 4 Calculated using an
independent samples t-test.

3.4. Assessment of the Validity of Food Portion Size Estimation

Dietary data were collected from 70 eating occasions, 36 and 34 in the adult and child
cohorts, respectively. The eating occasions included 199 food items, 121 in the adult cohort,
and 78 in the child cohort. Some of the indigenous foods provided in the study were
Plantain, Yam, Banku, Jollof Rice, Fufu in Ghanian foods and Ugali, Pilau, Chapati, etc. in
Kenyan foods.

In the adult cohort, images were not available in 27.8% (10/36) of the eating occasions,
where the ear-worn device failed to capture seven eating occasions and the eButton failed
in three eating occasions. In the available 26 eating occasions, containing 84 food items,
the Pearson correlation coefficient showed a significant positive correlation between food
portion sizes estimated by the weighed food record and the passive image-based method
(r = 0.71, p = 0.01); the ICC value was 0.83, indicating good reliability of the passive image-
based method. In addition, Bland–Altman analysis showed a good degree of agreement
between the two methods (Figure 4) with no significant bias. All devices had very similar
agreement with the weighed food record in a Bland–Altman analysis.

In the child cohort, images were not available in only 8.8% (3/34) of the eating
occasions, where eButton failed to capture the complete eating episodes of all 3. In the
available 31 eating occasions, containing 68 food items, there was a significant positive
correlation between estimates of food intake (portion size) (r = 0.75, p = 0.01), and the Bland–
Altman analysis showed a good degree of agreement with no significant bias between
the two methods (Table 4). The ICC value was 0.75, showing a good degree of agreement
(reliability) between the two methods for estimating portion size. However, the mean
percentage difference in portion size estimation between the two methods is somewhat
large, indicating an underestimation of up to 14% in the passive image-based method.
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agreement); dotted lines represent the mean difference and zero. WFR (weighed food record); PIB
(passive image-based).
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Table 4. Validity of a passive image-based dietary intake assessment method in estimating food, energy, and nutrient intake relative to weighed food record.

Weighed Food Record Passive Image-Based Pearson
Correlation

Bland–Altman Analysis

Food and Nutrient 1 Mean 95% CI Mean 95% CI % Difference 2 ICC 3 95% CI Mean Difference 4 95% LOA Bias

Portion Size (g) 12.2 [10.7, 13.7] 10.3 [9.14, 11.4] −14 0.75 0.75 [0.28, 0.88] 2.37 −1.42 to 6.17 0.45
Energy (Kcal) 14.3 [12.4, 16.2] 11.8 [10.4, 13.1] −16 0.78 0.69 [0.28, 0.80] 3.07 −1.77 to 7.92 0.43

Protein (g) 3.29 [2.67, 3.90] 2.89 [2.37, 3.41] −11 0.93 0.91 [0.75, 0.96] 0.60 −0.33 to 1.54 0.19
Fat (g) 4.50 [2.52, 6.47] 2.89 [2.10, 3.69] −23 0.76 0.76 [0.25, 0.91] 1.09 −1.30 to 2.39 0.11
SFA (g) 1.53 [1.25, 1.81] 1.11 [0.89, 1.33] −23 0.65 0.67 [0.22, 0.86] 0.47 −0.63 to 1.57 0.31

MUFA (g) 2.28 [1.85, 2.71] 1.62 [1.23, 2.01] −23 0.74 0.77 [0.40, 0.90] 0.74 −1.11 to 2.07 0.16
PUFA (g) 2.01 [1.64, 2.37] 1.43 [1.15, 1.71] −22 0.68 0.67 [0.15, 0.87] 0.62 −0.82 to 12.1 0.28
Fibre (g) 2.15 [1.85, 2.46] 1.74 [1.51, 1.97] −17 0.71 0.68 [0.16, 0.87] 0.47 −0.45 to 1.40 0.31

CHO (mg) 5.79 [5.01, 6.58] 4.58 [4.23, 5.47] −13 0.60 0.71 [0.33, 0.88] 1.48 −0.64 to 3.59 0.39
Sodium (mg) 16.8 [13.5, 20.1] 12.7 [9.72, 15.7] −21 0.88 0.85 [0.51, 0.94] 4.71 −4.59 to 14.0 0.09

Potassium [27] 17.5 [14.4, 20.5] 14.2 [12.0, 16.4] −16 0.91 0.80 [0.45, 0.92] 3.73 −3.02 to 10.5 0.34
Calcium (mg) 6.38 [5.46, 7.29] 5.46 [4.68, 6.24] −12 0.77 0.79 [0.46, 0.91] 1.43 −0.60 to 3.47 0.24

Magnesium (mg) 6.79 [5.76, 7.83] 5.57 [4.76, 6.38] −16 0.84 0.78 [0.31, 0.92] 1.41 −0.99 to 3.81 0.25
Iron (mg) 1.48 [1.23, 1.73] 1.21 [1.00, 1.43] −17 0.94 0.89 [0.64, 0.96] 0.29 −0.21 to 0.80 0.18
Zinc (mg) 1.51 [1.22, 1.80] 1.25 [1.00, 1.49] −15 0.95 0.90 [0.69, 0.96] 0.33 −0.19 to 0.85 0.19

Copper [27] 0.66 [0.55, 0.76] 0.53 [0.45, 0.61] −17 0.82 0.77 [0.27, 0.91] 0.15 −0.08 to 0.37 0.24
Niacin (mg) 1.85 [1.51, 2.18] 1.57 [1.25, 1.88] −13 0.85 0.87 [0.68, 0.94] 0.46 −0.33 to 1.25 0.14

Carotene (µg) 20.8 [14.9, 26.6] 16.1 [11.6, 20.6] −16 0.88 0.84 [0.62, 0.93] 5.93 −6.91 to 18.8 0.29
Folate (µg) 6.22 [4.98, 7.45] 5.09 [3.97, 6.22] −16 0.79 0.86 [0.67, 0.94] 1.38 −1.42 to 4.19 0.28
Iodine (µg) 2.15 [1.71, 2.59] 1.89 [1.53, 2.23] −9 0.74 0.75 [0.36, 0.89] 0.47 −0.29 to 1.22 0.23

Selenium (µg) 2.56 [2.10, 3.01] 2.45 [2.05, 2.85] −4 0.71 0.80 [0.54, 0.91] 0.59 −0.25 to 1.43 0.24
1 Data are the geometric mean and 95% CI (confidence interval) of food, energy, and intake of 19 nutrients in two eating occasions (equivalent to two lunches) in 17 children of Ghanaian
and Kenyan origin living in London. 2 % Difference = [(PIB − WFR)/WFR] × 100. 3 ICC (Intraclass correlation) and 95% CI. 4 Bland–Altman analysis given as the mean difference,
95% LOA (limit of agreement), and bias. Bias was not significant (range: p = 0.45 to 0.89) for all analyses. Pearson correlation is significant at the 0.01 level (2-tailed) for all analyses. The
Pearson correlations are statistically significant. Abbreviations are CHO (carbohydrates), SFA (saturated fatty acid), MUFA (monounsaturated fatty acid), PIB (passive image-based) and
WFR (weighed food record).
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3.5. Assessment of the Validity of Nutrient Intake Estimation (Child Study)

Estimates of energy intake and of the 19 nutrients from two eating occasions for
children are presented in Table 4. Pearson correlation coefficients (r) of estimated intake
of energy and nutrients between the weighed food records and passive image-based
method ranged from 0.60 for carbohydrates to 0.95 for zinc, showing a significant positive
relationship between the two dietary intake assessment methods. The r results were
further supported by ICC, which ranged from 0.67 for SFA and monounsaturated fatty
acid (MUFA) to 0.90 for zinc, indicating acceptable to excellent agreement between the
two methods. Furthermore, the Bland–Altman test showed a good degree of agreement
with no significant bias between the two methods for most of the nutrients. However, the
mean percentage difference showed that the passive image-based method consistently
underestimated intakes. The mean percentage difference in estimates of fats (fat, SFA,
MUFA, and PUFA) and sodium showed an underestimation of around 20% in the passive
image-based method. Iodine and selenium had the lowest mean percentage difference, −9%
and −4%, respectively, which are within the recommended acceptable mean percentage
difference range (±10%) [28].

4. Discussion

The findings of this study show that using wearable camera devices to capture food
images during eating episodes is highly acceptable. Majority of the study participants
(70–88%, analysis not included) reported that the devices were convenient, easy to use,
and did not interfere with their eating. However, comparative analysis showed that the
devices had different levels of acceptability. In the adult cohort, participants perceived that
the AIM and eButton devices were easier to use and more convenient, and they would
be more likely to use them in future studies than the ear-worn devices. Most (67%) adult
participants selected the eButton as their primary choice of wearable device. The popularity
of the eButton could be due to its simple design. It is attached to the chest area of an upper
garment using a pin or magnet, making it easier and more comfortable to wear, even for
an extended period. In contrast, the AIM device is attached to the temple of eyeglasses;
using it requires wearing eyeglasses during eating episodes, which might be challenging,
especially for non-eyeglass wearers. Likewise, the ear-worn device is similar to a Bluetooth
headset; using it during food intake might be uncomfortable for some people.

All the devices were able to capture images of food intake during eating episodes.
However, in comparing the mean ratings of the functional capacities of the devices, the
AIM and ear-worn devices had higher image clarity and better imaging of the full food
plate at the beginning and during eating than the eButton. In addition, the AIM device
outperformed the other two devices at capturing images of full food plates at the end
of eating events—a critical functional capacity of a wearable camera device for accurate
dietary intake assessment. The diminished ability of the eButton to capture images of the
entire eating event was due to problems with misalignment. As the device is attached to
the upper garment, it tends to move out of view with the slightest movement of the wearer.
In participants wearing light clothing, such as the silky satin type, the weight of the device
slightly pulled the clothing down, taking the device out of alignment with the food plate.
This was a unique weakness of eButton. In the child study, eButton was worn around the
neck on a lanyard to improve its imaging.

Despite the somewhat good imaging quality of the ear-worn device, it was highly
unpopular. Only 5% of adult participants selected it as their primary choice of device.
Its unpopularity, which stemmed from challenges in properly fitting the ears of some
participants, and the fact that it missed seven eating occasions resulted in a decision to not
include it in testing in children. In the child cohort, the eButton and AIM devices performed
similarly in terms of their acceptability. However, the children narrowly favoured AIM
as their primary choice of wearable device, and the AIM device had less of an effect on
interference with their eating than the eButton. In the child study, the eButton device had
higher image quality, but the AIM device performed better at tracking the progression of
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entire eating occasions. The AIM device sits on eyeglasses worn by the wearer, and humans
instinctively look at food when eating. As a result, the device is consistently in view of the
food plate, contributing to its robust functional capacity.

This study used a restaurant in London experienced in African cuisine to provide
foods used in the adult sub-study but had difficulty obtaining reliable recipe information
from the restaurant. Consequently, we only compared estimates of portion size from the
two methods in the adult study. No data on intakes of energy and nutrients were available.
Recipe information from Ghanaian and Kenyan food books could have been used, but
these might be highly variable from the recipes used in the London restaurant. In the child
study, however, detailed information on ingredients used during cooking were collected to
facilitate comprehensive nutritional analysis. Multiple statistical approaches were used to
assess the relative validity of the passive image-based method in comparison to observed
weighed food records. There was a significant positive correlation between estimates of food
(portion size), energy, and nutrient intake (Table 4), with the Pearson correlation coefficient
ranging from 0.60 to 0.95, indicating a good relationship between the two methods. In
studies of the validation of dietary assessment methods, a correlation coefficient of ≥0.50 is
considered a good outcome [28]. In addition, the range of correlation coefficients obtained
in this study is higher than those published in some validation studies of self-reported
dietary intake assessment methods such as the FFQ (Food Frequency Questionnaire) [29,30]
and 24-h recall [31]. Since evidence of an association does not necessarily denote agreement,
ICC was used to further test for agreement between the methods. The test indicates that
the passive image-based method has a good agreement with the weighed food record,
ranging from moderate to excellent agreement across estimates of portion size, energy, and
19 nutrients. The ICC obtained in this study is higher than those reported for on-line 24-h
dietary recall tools (myfood24 and Oxford WebQ) in validation against biomarkers [32,33].
In the current study, assessment of agreement between the two methods was further
investigated using the Bland–Altman test, which also showed a good degree of agreement,
indicating that the passive image-based method is accurate. However, comparisons of
absolute intakes of portion size, energy, and nutrients between the methods showed that
the passive image-based method systematically underestimated intake. Underestimation
of fat, SFA, MUFA, PUFA, and sodium intakes was high (>20%) in the current study.
However, the mean percent difference reported for fat and SFA in our study is much lower
than those reported elsewhere using FFQ [30]. The mean percentage underestimation
of energy in the current study was 16%, which is higher than the energy intake under-
reporting (10–12%) reported for mobile Food Record (mFR)—an image-based dietary
assessment tool for mobile phone devices [34], and also higher than the energy under-
reporting (8–9%) reported for a wearable camera device (SenseCam) used in addition to
24-h recall in an image-assisted dietary recall method [35]. Conversely, underestimation
of energy intake in the current passive image-based method is comparable to ASA24
(Automated Self-Administered 24) and much lower than FFQ and 4DFR (4-day Food
Records) [36]. Furthermore, the underestimation of protein and micronutrients is much
lower in the current passive image-based method than most self-reported assessments of
dietary intake [30,32,36]. Although estimates of intakes of energy and nutrients were not
available for the adult sub-study, Pearson correlation coefficient, ICC, and Bland–Altman
analysis of portion size estimates from weighed food records and the passive image-based
method were similar to those reported in the child study. If the recipe information were
available, it is highly likely the nutritional outcome would have been similar to that reported
in the child study.

A strength of this study is the use of weighed food records collected by staff to validate
an objective image-based method for estimating food, energy, and 19 nutrient intakes.
Dietary assessment from the weighed food records and food images was performed by two
different nutritionists/dietitian in different locations to eliminate bias. Multiple statistical
methods preferred in dietary assessment studies were used [28]. Objective passive image-
based methods offer the potential to minimise misreporting errors associated with self-
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report and volitional memory limitations in mobile phone-based methods of dietary intake
assessment. The objective method reported in this study is simple, easy, and can be used in
different settings. It does not require the extensive and often time-consuming design of
food intake questionnaires involved in self-report methods, the complexity of which varies
between different settings and populations.

The primary limitation of this study is the small sample size and short duration. A
sample size of 35 is smaller than most studies of validation of dietary assessment tools,
and the devices were used for capturing food images of two eating occasions in two days.
Extensive use of the devices to take images of whole day (morning to night) food intake
might reveal challenges that were not encountered in this pilot study. Image capture of
eating occasions in households is considered intrusive and raises questions about privacy.
We are committed to maintaining the privacy of study participants, and have incorporated
measures in our protocol to achieve that goal. These measures include allowing participants
to review the captured images and delete any image that they are uncomfortable with. In
addition, the image analysis software used in this study is able to distinguish between
food and non-food images. As a result, all non-food images, including images of faces that
might have been inadvertently captured during imaging, are easily deleted. Furthermore,
the captured images are stored on a secure server accessible only to the study investigators.

5. Conclusions

In conclusion, this study provides evidence that passive food imaging using wearable
camera devices and subsequent analysis of the images is an acceptable, reliable, and
accurate tool for dietary intake assessment. The method of estimation of food intake from
food images reported in this study is based on a visual estimation of portion sizes by a
trained analyst. We are currently automating this process using AI (artificial intelligence)
algorithms. The devices are currently undergoing further testing in households in Ghana
and Uganda to determine the feasibility, acceptability, and validity of using our method in
large population-based dietary assessments in LMICs.
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