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Abstract 

Ethiopia is the second most populous country in sub-Saharan Africa. Although fertility rates in Ethiopia 

gradually decreased from 5.5 in 2000 to 4.6 in 2016, regional variations in fertility became wider, as 

evidenced by a TFR of 5.2 in the Somali region and 2.2 in Addis Ababa in 2016. 

From the perspective of demographic theory, geographical variations in fertility are often seen as either 

a reaction to different socioeconomic conditions (the adaptationist approach) or the diffusion of social 

acceptability of fertility control through geographical distance or linguistic similarity (the diffusionist 

approach). Recent fertility studies in high- and middle-income countries used spatial models to assess 

how the adaptation and spatial diffusion effects can jointly account for district-level fertility variations. 

However, such studies are rare in sub-Saharan Africa due to the shortage of district-level data. This 

DrPH uses a spatial approach to explore geographical variations in district-level fertility in relation to 

key selected determinants of fertility for 981 districts using the four Ethiopia Demographic and Health 

Surveys (2000, 2005, 2011, and 2016). 

I began by applying a Bayesian geostatistical approach to estimate the total fertility rate (TFR) and two 

proximate factors (modern contraceptive prevalence (mCP) and median age at first marriage) and two 

socioeconomic factors (proportions of women living in urban areas and with secondary education) and 

one ethnolinguistic factor for 981 districts in 2000, 2005, 2011, and 2016. I found that district-level 

TFRs within the same region were similar in 2000 and 2005, but they substantially varied in 2011 and 

2016. In particular, spatial spreads of lower fertility were observed from the capital city to the northern 

and western parts of the country in 2011 and 2016. 

I then used spatial models to explore spatial autocorrelation of district-TFR and the spatially 

heterogeneous relationship between TFR and key selected factors affecting TFRs. I found that spatial 

autocorrelation of TFR became stronger in recent years. Results show that urban-rural differences in 

fertility were more associated with different socioeconomic conditions, and the recent spatial spread of 

lower fertility from Addis Ababa to the Amhara region was more associated with spatially 

heterogeneous effects of mCP, age at marriage, and ethnolinguistic diversity. 

This DrPH thesis demonstrates that the geographical location of and distance between districts are 

important aspects of the recent geographical variations in fertility in Ethiopia. Socioeconomic and 

cultural characteristics of districts substantially differ even within the same region in Ethiopia, and 

fertility in a district is affected by where a district is spatially located and the characteristics of nearby 

districts (diffusion effects), as well as by its own characteristics (adaptation effects). This DrPH thesis 

provides additional insights into how spatial aspects, as well as socioeconomic, cultural characteristics, 

and reproductive behaviours in districts, can jointly shape geographical variations in fertility in Ethiopia. 
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1.1. Introduction 

Interest in understanding local differences in the health and demographics of people grew considerably 

during the period 2000-2015, sometimes termed the Millennium Development Goal era (WHO, 2016, 

Hosseinpoor et al., 2018). With this increased focus, it became evident that considering data solely at 

the country level obscures the important and meaningful differences observed between local areas 

within a country. Understanding and acknowledging these differences is crucial for effective planning 

of public health policies and programs, and to ensure that the most vulnerable populations are not 

overlooked. Consequently, the overarching principle of the post-2015 Sustainable Development Goals 

(SDG) – "leave no one behind" – emphasizes the need for disaggregated data based on geographic 

location and other relevant characteristics within national contexts. 

Ethiopia, the second most populous country in sub-Saharan Africa (SSA) after Nigeria, is 

projected to become the eighth largest population in the world by 2050, even with the assumption of a 

continued decline in fertility rates (UN, 2019). Ethiopia is known for its significant variations in fertility 

levels across different geographical regions. For instance, in 2016, rural areas had a total fertility rate 

(TFR) of 5.2, while urban areas had a TFR of 2.2 (ICF, 2016). Despite these variations, very little is 

known about fertility differences between districts due to the lack of updated district-level data in 

Ethiopia. Understanding and acknowledging geographical fertility differences between districts are 

particularly important in Ethiopia, as Ethiopia’s districts, woredas, are essential administrative units for 

health policy planning and service delivery. Ethiopia’s National Health Sector Transformation Plan 

2021-2025, therefore, lays particular emphasis on the ‘Woreda transformation’. Additionally, with 

more than 80 ethnolinguistic groups residing in Ethiopia, ethnolinguistic identity serves as an important 

criterion for defining administrative boundaries in the country. 

From the perspective of demography, geographical variations in fertility are often seen as either 

a reaction to different socioeconomic conditions (the adaptationist approach) or the spatial diffusion of 

new information or social acceptability of fertility control (the diffusionist approach)  (Carlsson, 1966). 

Recent fertility studies in high- and middle-income countries have used spatial models to assess how 

the adaption and diffusion effects can jointly account for variations in district-level fertility (Campisi et 

al., 2020, Wang and Chi, 2017, Vitali and Billari, 2017, Sabater and Graham, 2019, Haque et al., 2019). 

However, such studies have been rare in sub-Saharan African countries.  This DrPH thesis contributes 

to the growing field of research into spatial dimension of fertility to improve our understanding of 

geographical variations in fertility decline at the district level in sub-Saharan Africa.  

1. Chapter 1: Introduction 
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1.2.  Aim and objectives 

 

The aim of this Doctor of Public Health (DrPH) thesis is to investigate the geographical variations in 

fertility across 981 districts in Ethiopia from 2000 to 2016, employing geostatistical and spatial 

modelling approaches. To accomplish this aim, the thesis will address the following research questions 

and objectives: 

  Question 1: Are there geographical variations in fertility at the district level between 2000- 2016? 

  Question 2: What determines geographical variations in fertility at the district level? 

 

1.3.  Thesis outline 

 

This research paper style thesis contains six chapters. This chapter is an introduction, explaining the 

aim and objectives. The rest of this thesis has five chapters: 

 

Chapter 2  Background and theoretical perspective  

 Chapter 2 provides backgrounds outlining geographical variations in fertility and 

provision of population and family planning policies in Ethiopia. Chapter 2 also 

explains the theoretical perspectives on and determinants of geographical 

variations in fertility. 

  

Objective 1 To estimate TFRs and key selected proximate and distal determinants for 981 

districts in 2000, 2005, 2011 and 2016 by using a geostatistical modelling approach.   

Objective 2 To describe and explore spatial and temporal patterns of TFR and key selected 

proximate and distal determinants at the district level in 2000, 2005, 2011 and 2016. 

 

Objective 3 To assess effects of key selected proximate and distal determinants on geographical 

variations in fertility at the district level between 2000-2016 with a non-spatial 

model. 

Objective 4 To assess spatial autocorrelation of district-level fertility by using a spatial model. 

Objective 5 To explore spatial heterogeneity in relationships between TFRs and both proximate 

and distal determinants in Ethiopia by using geographically weighted regression 

between 2000 and 2016. 
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Chapter 3 Data and Methods 

 Chapter 3 provides an overview of the data sources and methods used in the two 

research papers. More detailed information on the methods employed in each of 

the research papers can be found in Chapters 4 and 5. 

Chapter 4 Are there geographical variations in fertility at the district level between 2000- 

2016? (Paper 1) 

 In Chapter 4, study objectives 1 and 2 are addressed to identify geographical 

variations in fertility and key selected proximate and distal determinants at the 

district level in Ethiopia between 2000 and 2016. Model-based geostatistics will be 

employed to carry out spatial interpolation of fertility and key determinants across 

the 981 districts. Additionally, spatial and temporal changes in district-level 

fertility and the key selected determinants will be explored between 2000 and 2016. 

Chapter 5 What determines geographical variations in fertility at the district level? 

(Paper 2)  

 In Chapter 5, I address study objectives 3-5 by using different spatial and non-

spatial models to identify and investigate spatial dependency and heterogeneity of 

district-level fertility in association with the key selected determinants between 

2000 and 2016.  

   

Chapter 6 Discussion and Conclusion 

 Chapter 6 presents a comprehensive discussion of the research findings, integrating 

the results from Chapters 4 and 5. Furthermore, it explores the implications of the 

findings for population and family planning policies in Ethiopia. Additionally, the 

chapter provides insights into possible directions for future research. 

 

 

 

Each chapter ends with its references.   
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2.1.  Overview   
  

Chapter 2 provides backgrounds outlining geographical variations in fertility and the provision of 

family planning policies in Ethiopia. This chapter also introduces two theoretical perspectives on 

geographical variations in fertility and explains the importance of proximate and distal determinants in 

understanding and explaining geographical variations in fertility in sub-Saharan Africa (SSA). 

 

2.2. Geographical contexts in Ethiopia 
 

2.2.1.  Ethnolinguistic geography of Ethiopia    

Ethiopia is the most populated landlocked nation in the world and is categorised as a low-income 

country with a GDP per capita of $890 (2020, current USD). The country shares its borders with Eritrea 

and Djibouti to the north, Kenya to the south, Somalia to the east, Sudan and South Sudan to the west 

(Figure 2.1). Ethiopia is primarily a rural and agricultural nation, with approximately 70% of the 

population engaged in agriculture and 80% of the population residing in rural areas(OECD, 2020).  

Ethiopia is the tenth largest country in SSA, but the second most populous country (115 million) 

in SSA. Ethiopia’s population is made up of more than 90 different ethno-linguistic groups and ethno-

linguistic identity is the most important criterion for shaping the administrative boundaries between the 

11 primary sub-national divisions of the country (Admin 1) (Abbink, 2011, Levine, 2014) (Figure 2.2). 

This is the result of the 1995 Constitution of Ethiopia based on ethnic-based federalism, dividing 

Ethiopia along ethnic lines into five regional states dominated by a single ethnic group (Amhara, Tigray, 

Afar, Oromia, Somiali), four multi-ethnic regional states (Harari,  Southern Nation, Nationalities and 

Peoples (SNNP), Benishangul-Gumuz, Gambella), and two multi-ethnic cities (Addis Ababa and Dire-

Dawa) (Erk, 2017, Mengisteab, 1997). The Ethiopian constitution explicitly declares that every ethno-

linguistic group has the right to establish self-administrative areas starting at the district (woreda) level, 

and at zonal and regional levels depending on the size of each ethno-linguistic community (Ethiopia, 

1995). This legal framework allows the development and implementation of specific cultural policies 

within ethno-linguistic boundaries (Abbink, 1998, Abbink, 2011). Consequently, larger ethno-linguistic 

groups have established their self-administrative areas at the regional level, resulting in regional states 

being named after their majority ethno-linguistic groups. For example, the Tigray regional state is 

predominantly inhabited by Tigreans, while the Amhara, Somali, and Oromia regional states are 

predominantly occupied by Amharas, Somalis, and Oromos, respectively. On the other hand, smaller 

ethnic groups come together to form "multi-ethnolinguistic" regional states such as SNNP, Gambella, 

2. Chapter 2: Background and theoretical perspectives 
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and Benishangul-Gumuz. For instance, the SNNP and Gambella regional states comprise over 50 and 

16 indigenous ethno-linguistic groups, respectively. Within these multi-ethnolinguistic regional states, 

many ethno-linguistic groups have their own administrative zones and districts known as special 

woredas. For example, the Nuer zone in the Gambela regional state is inhabited by the Nuer ethno-

linguistic group, and the Yem special woreda in the SNNP regional state is named after the most 

populous ethno-linguistic group. However, not all ethno-linguistic groups have their own administrative 

divisions, and as a result, some newly emphasized ethno-linguistic groups advocate for their separate 

administrative areas. This is exemplified by the creation of the Sidama and South West regional states 

in June 2020 and November 2021, respectively, following the Sidama ethno-linguistic group and the 

people of southwest Ethiopia voting in favour of establishing their own regional states separate from 

SNNP. Therefore, the formation of the administrative territorial structure based on ethno-linguistic 

backgrounds is an ongoing process in Ethiopia (Figure 2.1).  

This ethnolinguistic-based territorial practice makes Ethiopia unique in SSA, as other SSA 

countries do not have a formalised system based on ethnolinguistic groups in their geographical and 

political structure (Abbink, 2011, Abbink, 2009). For example, while ethnicity can play a significant 

role in the subtext of political elections in many SSA countries, formal ethnic parties are not permitted 

(Bogaards et al., 2010). In contrast, Ethiopia had an ethnolinguistic federalist political coalition, the 

Ethiopian People's Revolutionary Democratic Front (EPRDF), leading the government from 1988 to 

2019. The EPRDF was a coalition of four ethnolinguistic-based parties: the Oromo Democratic Party 

(ODP), Amhara Democratic Party (ADP), Tigray People's Liberation Front (TPLF), and Southern 

Ethiopian People's Democratic Movement (SEPDM). However, in December 2019, the current prime 

minister, Abiy Ahmed, merged three ethnic-based parties (excluding the TPLF) into the new Prosperity 

Party. Therefore, until very recently, most political parties in Ethiopia explicitly supported their own 

ethnolinguistic and regional interests(Ø stebø et al., 2018). 
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Figure 2.1. Locations of Ethiopia and eleven regional states and regional capitals. 
Note: Blue areas on the map indicate the capitals of each region, while red lines depict the boundaries of 
newly established regions from SNNP. Currently, Hawassa serves as the capital for both the Sidama and the 
SNNP Regions. However, since Hawassa is located outside of the boundaries of the SNNP region, the SNNP 
government is planning to identify a new capital and relocate all government institutions within the region's 
boundaries.    

2.2.2. Links between demographic characteristics and geographic areas in 

Ethiopia 

In Ethiopia, it is difficult to track changes in population sizes of different administration areas over time 

because there have been only three national population and housing census (1984, 1994 and 2007) in 

Ethiopia. In addition, the 1984 census covered only about 80% of the population and therefore only the 

1994 and 2007 censuses covered the entire population. The Ethiopian Statistics Service provides the 

population projection annually. Although the 2021 population projection indicates that the population 

is projected to increase by 40% from 73,750,932 in 2007 to 108,998,001 in 2021, the proportions of 

population in terms of eleven regional states were almost similar between 2007 and 2021(CSA, 2021). 

Moreover, while the 2021 population projection provides information about population by woredas and 

urban-rural areas, it does not provide information about population by religion or ethnicity. As a result, 

this section presents the basic demographic characteristics of Ethiopia by the eleven regional states 

based on the most recent census conducted in 2007 (Table 2.1). 

According to the latest 2007 population and housing census in Ethiopia, the total population 

of Ethiopia was 73,750,932 (CSA, 2007). Three regional states, namely SNNP, Oromia, and Amhara, 

accounted for approximately 80% of the total population. The Tigray regional state comprised around 

6% of the total population. Additionally, the four regional states of Afar, Gambia, Somalia, and 

Benishangul-Gumuz are frequently categorised as Developing Regional States (DRS), which are 
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primarily populated by pastoral and migratory communities whose health and socio-economic 

outcomes lag behind the other regions in Ethiopia. The population of the DRS accounted for 10% of 

the total population in 2007. Harari regional state, being the smallest regional state in Ethiopia, 

represented 0.3% of the total population. The two multi-ethnolinguistic cities of Addis Ababa and Dire-

Dawa constituted approximately 4.2% of the total population. It is worth noting that the populations of 

certain woredas, such as Gondar (233,224) in the Amhara region and Adama (220,212) in the Oromia 

region, exceeded the population of the Harari regional state (183,415). 

In terms of religion, the northern parts of Ethiopia, including the Tigray and Amhara regional 

states, are predominantly inhabited by followers of the Christian Orthodox faith. Conversely, the eastern 

parts of Ethiopia, including the Somali, Afar, Harari regional states, and Dire Dawa, have a 

predominantly Muslim population. The relatively ethno-linguistically homogeneous regional states 

often align with a dominant religion, with the exception of Oromia, which has a diverse religious 

composition. On the other hand, the multi-ethnic regional states exhibit religious diversity. 

In Ethiopia, each ethnic group typically has its own language, and the Ethiopian Constitution 

also states that "All languages are given equal state recognition" (Article 5.1) and "Every ethnolinguistic 

group has the right to develop its own language and promote its culture" (Article 39.2). In 2020, the 

Ethiopian government officially recognised five languages (Amharic, Afaan Oromo, Tigrinya, Somali, 

and Afar) as the working languages of the federal government. Prior to 2020, Amharic was the only 

working language of the federal government, and each regional state had the discretion to determine 

their own working language. 

Before 2020, four regional states (Amhara, Benishangul-Gumuz, Gambela, and SNNP) and the 

two city regions (Addis Ababa and Dire Dawa) chose Amharic as their working language. However, 

alongside these working languages, there are still numerous minority languages spoken in 

ethnolinguistic territories. For example, in the SNNP regional state, although Amharic is the working 

language, students receive 8 years of primary education in their respective native languages. 

Despite the distinct territorial differentiation based on ethnolinguistic contexts in Ethiopia, 

some scholars argue that different regional states, zones, and districts also share common "pan-

Ethiopian" themes, such as their history and beliefs in supernatural beings, among other aspects (Levine, 

2014, Bach, 2013, Záhořík, 2022). However, it is crucial to acknowledge that the perceived differences 

between ethnolinguistic groups in Ethiopia are often delineated along geographical boundaries. 
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Figure 2.2. Majority ethnic group in each district of Ethiopia according to the 2007 Census 
Data source:  The 2007 Ethiopia Population and Housing Census 

 

Table 2.1. Ethiopia's demographic characteristics in 11 regional states in 2007 

Category Region Capital Population  Residence Religion Ethnicity 

Urban and 
Multi- 
Ethnic 
region 

 

Addis Ababa 
Addis 
Ababa 

2,739,551 
(3.7%) 

Urban 
(98.7%) 

Rural 
(1.3%) 

Orthodox (74.7%) 
Muslim (16.2%) 

Protestant(7.77%) 
Others (1.33%) 

Amhara (47.0%) 
Oromo (19.5%) 
Gurage (12.3%) 

Tigrayan(11.2%) 
Others (10.0%) 

Dire Dawa 
Dire 

Dawa 
341,834 

(0.5%) 

Urban 
(68.2%) 

Rural 
(31.8%) 

Muslim (70.8%) 
Orthodox (25.7%) 
Protestant (2.8%) 

Others (0.7%) 

Oromo (46.0%) 
Somali (24.0%) 

Amhara (20.0%) 
Gurage (4.5%) 
Others (5.5%) 

Harari Harar 
183,415 

(0.3%) 

Urban 
(54.2%) 

Rural 
(45.8%) 

Muslim (69.0%) 
Orthodox (27.1%) 

Others (3.9%) 

Oromo (56.4%) 
Amhara (22.8%) 

Harari (8.7%) 
Gurage (4.3%) 
Others (7.8%) 

Multi-
ethnic 
region 

Benishangul-
Gumuz 
(DRS) 

Asosa 
784,345 

(1.1%) 

Urban 
(13.5%) 

Rural 
(86.5%) 

Muslim (44.9%) 
Orthodox (33.3%) 
Protestant(13.5%) 

Others (8.3%) 

Amhara (25.4%) 
Berta (21.7%) 

Gumuz (20.9%) 
Oromo (13.6%) 
Others (18.4%) 

Gambela 
(DRS) 

Gambela 
307,096 

(0.4%) 

Urban 
(25.4%) 

Rural 
(74.6%) 

Protestant(70.1%) 
Orthodox (16.8%) 

Muslim (4.9%) 
Others (8.2%) 

Nuer (46.7%) 
Anuak (21.2%) 
Amhara (8.4%) 
Kfficho (5.1%) 

Others (18.6%) 

SNNP Hawassa 
14,929,548 

(20.2%) 

Urban 
(10.0%) 

Rural 
(90.0%) 

Orthodox (45.6%) 
Protestant(24.8%) 

Muslim (16.7%) 
Others (12.9% ) 

Gurage(19.5%) 
Welayta(10.6%) 

Hadiya(7.9%) 
Kafficho (5.4%) 

Others (56.6) 

Ethnically 
homogene
ous region 

Amhara Bahir Dar 
17,221,976 

(23.4%) 

Urban 
(12.3%) 

Rural 
(87.7%) 

Orthodox (92.5%) 
Muslim (7.2%) 
Others (0.3%) 

Amhara (91.5%) 
Others (8.5%) 
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Afar 
(DRS) 

Semera 
1,390,273 

(1.9%) 

Urban 
(13.3%) 

Rural 
(86.7%) 

Muslim (95.2%) 
Orthodox (3.9%) 

Others (0.9%) 

Afar (91.8%) 
Others (8.2%) 

 
 

Oromia 
Addis 
Ababa 

26,993,933 
(36.6%) 

Urban 
(11.3%) 

Rural 
(88.7%) 

Muslim (47.5%) 
Orthodox (30.4%) 
Protestant(17.8%) 

Others (4.3%) 

Oromo (85.0%) 
Others (15.0%) 

Somali 
(DRS) 

Jijiga 
4,445,219 

(6.0%) 

Urban 
(20.0%) 

Rural 
(80.0%) 

Muslim (98.4%) 
Others (1.6%) 

Somalis (99.2%) 
Others (0.8%) 

Tigray Mekele 
4,316,988 

(5.9%) 

Urban 
(19.6%) 

Rural 
(80.4%) 

Orthodox (95.6%) 
Muslim (4.0%) 
Others (0.4% ) 

Tigrayan (96.6%) 
Others (3.4%) 

Special Enumeration areas 96,754 (0.1%) - - 

Total 73,750,932 (100%) - - 

 DRS: Developing Regional States 
 Special Enumeration areas: areas such as national parks, forest reserves 
 Data source: The 2007 Ethiopia Population and Housing Census 

 

2.3.  Geographical variations in fertility and family planing 

policies in Ethiopia 
 

2.3.1. Geographical variations in fertility in Ethiopia 

Ethiopia exhibits significant subnational variations in fertility compared to other countries in SSA 

(Eloundou-Enyegue et al., 2017, ICF, 2016). Ethiopia’s fertility levels were on a gradual decline from 

2000 to 2016 according to the Ethiopia Demographic and Health Surveys (EDHS) report (Figure 2.3), 

even though a  few studies have pointed out that fertility decline observed in some countries can be 

spurious due to data quality issues, including age displacement of children age, omissions of children, 

or different composition of women respondents across the successive surveys (Schoumaker, 2008, 

Machiyama, 2010). Between 2000 and 2016, the national total fertility rate (TFR) in Ethiopia decreased 

by 16 percent from 5.52 (95% CI: 5.30-5.74) to 4.56 (95% CI: 4.26-4.87) (ICF, 2000, ICF, 2016). Addis 

Ababa, for instance, exhibited much lower fertility levels compared to the national average. In 2000, 

the TFR in Addis Ababa had already declined to 1.8 and further dropped to 1.4 in 2005, which is below 

the replacement level. Although there was a slight increase to 1.8 in 2016, a recent fertility study across 

932 first subnational administrative units (Admin 1) in 70 low-income and middle-income countries, 

using the most recent DHS data, identified Addis Ababa as having the lowest TFR in SSA (Pezzulo et 

al., 2021). In terms of trends, the Amhara and SNNP regional states had decreasing trends, while the 

Afar and Somali regional states experienced increasing trends, albeit some overlap between 95% 

confidence intervals.  
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In February 2021, the Ministry of Health of Ethiopia launched the second phase of the Health 

Sector Transformation Plan (HSTP) II (2020/21-2024/25). The HSTP II recognized the significant 

variation in Total Fertility Rates (TFRs) across regional states. Therefore, the HSTP II places particular 

emphasis on addressing equity in healthcare by providing special support to relatively disadvantaged 

regions (MoH, 2021). In addition to the HSTP II, several studies have explained that regional 

differentials in fertility in Ethiopia are influenced by multiple factors, such as place of residence (urban 

vs rural), educational status of women (Shifti et al., 2020, Tessema and Tamirat, 2020), use of 

contraceptives and access to health facilities (Tessema et al., 2020, Tigabu et al., 2021, Tegegne et al., 

2020).  

 

 
Figure 2.3. National and regional variation of total fertility rates (TFRs) in Ethiopia between 2000 and 2016 with the 95% 
confidential intervals. 
Data sources: Ethiopia Demographic and Health surveys 2000, 2005, 2010 and 2016. 

 

 

2.3.2. Geographical variation in family planning policy 

In 1993, Ethiopia adopted the National Population Policy (NPP), which explicitly acknowledged 

significant geographical variations in population size between regional states, largely attributed to 

persistently high fertility levels in certain regions (Ethiopia, 1993). The policy also recognized that high 

fertility rates could result in regional disparities in socioeconomic and reproductive health outcomes, 

such as high unemployment and limited access to basic social and reproductive health services. 

Therefore, a key objective of the Ethiopian population policy was to improve and expand the quality 

and coverage of family planning services, with the aim of increasing contraceptive prevalence from 4.8% 
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in 1990 to 44% by the year 2015 (Ethiopia, 1993). To achieve this target, the policy emphasised that a 

close and functional relationship between the Central government and other regional and local 

government bodies is vital. Since the implementation of the population policy, there has been a decrease 

in fertility and an increase in the prevalence of contraception. For instance, total fertility decreased from 

5.5 in 2000 to 4.6 in 2016, while the prevalence of contraceptive use among married women rose from 

8.1% in 2000 to 35.9% in 2016 (ICF, 2016). 

In addition to the national population policy,  efforts to reduce regional disparities in 

reproductive health outcomes, particularly between the DRS (Somali, Afar, Gambella, and Benishangul 

Gumuz) and other regional states (Tigray, Amhara, Oromia, SNNP, and Harari regional states), were a 

major focus during the period of the HSTP I (2015/16 – 2019/20) (MoH, 2015). The results of the 

Ethiopia Demographic and Health Survey (EDHS) showed improvements in some regional states. For 

instance, in the 2005 EDHS, the prevalence of women using any modern method of contraception was 

34.3% in Addis Ababa, 6.6% in Amhara regional state, and 5.0% in SNNP regional state (ICF, 2005). 

However, in the 2019 Ethiopia Mini DHS, the prevalence increased in all three regional states, and the 

differences between them became much smaller, with rates of 47.6% for Addis Ababa, 49.5% for 

Amhara, and 44.6% for SNNP regional states (ICF, 2019).  

These achievements were largely attributed to the implementation of the national Health 

Extension Program (HEP) (Halperin, 2014, May and Rotenberg, 2020). The HEP, initiated in 2004, is 

a flagship program in Ethiopia that has contributed to improving access to family planning services and 

played a significant role in the country's recent advancements in reproductive health. The HEP delivers 

18 essential health service packages, including family planning, through a workforce of 39,878 health 

extension workers (HEWs) operating from more than 17,587 health posts in 2019 (MoH, 2020). HEWs 

actively provide family planning counselling and modern contraception in pastoral, rural, and urban 

communities. Initially, they offered short-acting methods like condoms, pills, and injectables, but since 

2009, their role has expanded to include the authorization to insert implants and provide counselling on 

where to access removal services (Costenbader et al., 2020).  According to the 2019 Mini EDHS, the 

Amhara regional state reported the largest increase in the use of modern contraceptives between 2005 

and 2019, rising from 6.6% to 49.5% (ICF, 2019). A study conducted in 2010 by UNICEF, which 

involved approximately 400 HEWs and their 10,000 clients, revealed that each health facility had an 

average of 153 new family planning clients and 157 revisiting clients. The performance in the Amhara 

regional state was even better, with an average of 245 new clients and 253 revisiting clients per health 

facility   (UNICEF, 2010).  

Although Ethiopia has witnessed the remarkable increases in modern contraceptive use, 

significant regional differences still persist, particularly in DRS, (Lakew et al., 2013, Tegegne et al., 

2020, Li et al., 2019a), indicating the need to refocus the family planning program to ensure more 
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equitable access to modern contraceptive methods throughout the country (Shiferaw et al., 2015). In 

2000, the modern contraceptive prevalence (mCP) ranged from 2.4% and 7.4% in the Somali and Afar 

regional states to 8.5% and 12.3% in the Gambela and Benishangul-Gumuz regional states. By 2019, 

the range had shifted to 3.4% and 12.7% in the Somali and Afar regional states, and 33.2% and 36.7% 

in the Gambela and Benishangul-Gumuz regional states. Previous studies have identified several 

reasons for the lower family planning use in the Somali and Afar regional states, including the influence 

of religious leaders, husbands, and women's attitudes toward family planning methods (Alemayehu et 

al., 2016, Chekole et al., 2019, Kahsay et al., 2018, Assaf and Wang, 2019, Getnet et al., 2017, Jalu et 

al., 2019). Moreover, Somali and Afar regional states are home to the largest agro-pastoralist or 

pastoralist communities in Ethiopia (Teka et al., 2019). These communities are typically nomadic and 

move seasonally for cattle grazing, making it challenging to access healthcare services, including family 

planning. Additionally, in agrarian and rural areas, the majority of Health Extension Workers (HEWs) 

are female, whereas male health workers dominate the pastoralist communities in these two regional 

states. This suggests that the cultural and environmental factors in Somali and Afar are not conducive 

to the inclusion and support of females (Getnet et al., 2017). Young (1999) further demonstrated that 

although Ethiopia's constitution does not make any distinction, a two-tier system of federalism in 

practice seems to be emerging in Ethiopia (Young, 1999). The highland regional states with higher 

levels of economic development and political power form one tier, while the four lowland regional 

states of Gambela, Benishangul-Gumuz, Somali, and Afar, often categorized as the DRS, stand out for 

their political marginalisation and lower levels of development. Thus, the link between demographic, 

socioeconomic, and geographical characteristics in the DRS may also contribute to regional differences 

in health status, including access to modern family planning methods. 

Additionally, it should be noted that each region in Ethiopia has a significant geographical size. 

Consequently, variations in fertility rates and family planning policies are not only expected between 

regional states but also within them. The HSPT II also calls for innovative solutions to address the 

health disparities between districts. While several studies in Ethiopia have investigated the determinants 

of fertility and family planning use in specific zones (Alene and Worku, 2008, Tilahun et al., 2014) and 

districts (Mekonnen and Worku, 2011, Gebremedhin and Betre, 2009, Atsbaha et al., 2016), there is 

limited evidence on geographical variations in fertility rates and family planning use across districts in 

Ethiopia as a whole. 
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2.4. Rationales for exploring geographical variation in health 

outcomes at the district level (Admin 3)  

  
To further enhance our understanding of fertility patterns at the district level, it is crucial to recognize 

the significance of the third-level administrative division, namely the district, in health policy planning 

and implementation in Ethiopia. 

 

2.4.1. District-based health policy planning and implementation system in 

Ethiopia  

The district-level administrative unit, woreda, holds significant importance for the implementation of 

population and health policies in Ethiopia. It serves as the third-level administrative division, following 

the regional states (Admin 1) and zones (Admin 2). While the federal government retains authority over 

various functions and responsibilities such as fiscal and diplomatic policies, the regional states and 

woredas have the responsibility of ensuring the provision of basic services within their respective 

jurisdictions. In particular, District level Decentralisation Programme (DLDP) implemented in 2001/02 

played a crucial role in devolving power and resources to woreda governments, while reducing the 

status and power of zonal administrations (Tesfay, 2015) (Figure 2.4). As a result, woredas have gained 

the autonomy to develop health policies and deliver services without requiring authorization from zonal 

governments. Additionally, financial resources are made available through block grant transfers from 

regional governments to woredas. 

The importance of woreda in health policy planning and implementation is prominently 

emphasised in Ethiopia's National Health Sector Transformation Plan II (HSTP II) 2021-2025. The plan 

places specific emphasis on the 'Woreda-based Health Sector Plan (WBHSP)', which aims to reduce 

disparities between high-performing and low-performing woredas (MoH, 2021).  The WBHSP is 

designed to foster alignment and harmonization of health systems for effective planning and monitoring 

(MoH, 2021). 

For instance, in 2017, a malaria elimination program was implemented in 239 targeted woredas 

across five regional states: Dire Dawa, Harari, Oromia, Tigray, and SNNP (Nega et al., 2020, Assefa et 

al., 2020). Additionally, since 2017, the Ministry of Health has introduced and promoted the use of a 

scorecard system at the woreda level to enhance accountability within the health system, with over 600 

woredas currently utilizing this system (Argaw et al., 2019). As a result, health policy implementation 

and targeted interventions are often based on woreda boundaries in Ethiopia. However, despite the 

significance of understanding and acknowledging the geographical variations in fertility between 
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districts in Ethiopia, there is limited knowledge on fertility differences at the district level due to the 

lack of updated district-level data in the country. 

 

Figure 2.4. Overview of the decentralised governance structure in Ethiopia after the District level 
Decentralisation Programmes (DLDP) 

Source: Zimmermann-Steinhart, P., & Bekele, Y. (2012) (Zimmermann-Steinhart and Bekele, 2012) 

 

2.4.2. Demographic and Health indicator estimates at subnational 

administrative level 

Although the Population and Housing Census (Census) provides essential demographic data at the 

district level, it is typically conducted every 10 years in most low-income nations, and sometimes even 

at longer intervals. In the case of Ethiopia, the latest census was conducted in 2007. It is worth noting 

that the population of Ethiopia is projected to be 102,887,001 in 2021, indicating an increase of 

approximately 40% from 73,750,932 recorded in the 2007 census, according to the Ethiopian Statistics 

Service (CSA, 2021). This implies that outdated census data cannot adequately reflect recent variations 

in demographic and fertility contexts across regions and districts, considering the differential population 

growth rates and unequal access to family planning services among districts. In addressing the scarcity 

of updated administrative-level data in low-resource settings, such as many sub-Saharan African 

countries, Burgert-Brucker et al. (2016) ) reviewed three potential approaches (Burgert-Brucker et al., 

2016b);  

i) Larger sample sizes: Increasing sample size for the nationally representative survey to have a 

representative sample for lower administrative units. 

ii) Routine health management information system: Using data from community-based 

healthcare facilities, such as health management information systems (HMIS). 

iii) Model-based geostatistics (MBG) framework: Producing spatially interpolated maps by using 

modelling techniques to estimate values at the lower administrative level.  
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With regard to the first option, it could be possible to carry out a standard DHS that would be 

representative at the lower administrative levels with larger sample sizes. However, the first option 

requires substantial financial and human resources to conduct the survey, and therefore, in countries 

with limited resources, this option may not be practical. Alternatively, a compromise can be made in 

which some key indicators are available at the lower administrative level (e.g., Admin 2), while others 

are available only for the higher administrative level (e.g., Admin 1). For instance, the sample size for 

the 2014 Kanya DHS was about 40,000, and some indicators were available at the second administrative 

level (47 counties), while others were only available at the first administrative level (8 regions) (ICF, 

2014). HMIS data for the second option is often difficult to access, and its data quality is not always 

reliable. The third option, which makes use of spatial modelling methods, has been increasingly applied 

for high-resolution mapping of important demographic and health data. The point estimate surface for 

important demographic and health variables is currently provided by the DHS program in 5 x 5 km 

pixels and can be downloaded from the Spatial Data Repository (Gething and Burgert-Brucker, 2017). 

  However, program managers and policymakers typically base their decisions on administrative 

units rather than the point estimate surface. Therefore, they would be better served by modelled 

estimates that correspond to their desired administrative units. Recently, the DHS Spatial Interpolation 

Working Group has also expressed the need for estimates at a lower administrative level than the 

subnational Admin 1, as health program implementation is decentralized and often occurs at the 

subnational administrative level 2 (Mayala et al., 2019a, Janocha et al., 2021).  The DHS Working 

Group further demonstrated that Admin 2 estimate maps are useful tools for policymakers, and therefore, 

these maps should be incorporated into formal decision-making (Kim et al., 2016, Howes et al., 2019, 

Janocha et al., 2021).  

In Ethiopia, the second administrative division (Admin 2) is the Zone. However, as explained earlier, 

the third-level administrative division (Admin 3), which is the district or woreda, holds more 

significance for health program implementation and policymaking in Ethiopia. To overcome the 

shortage of district-level data, the third option is considered to be the least resource-intensive method 

in Ethiopia for investigating geographical variations in district-level fertility. 
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2.5. Theoretical backgrounds for geographical fertility variations 

 

There are several theories that attempt to explain geographical variations in fertility. In 1966, Carlsson 

proposed two approaches known as adaptation and diffusion to explain these variations (Carlsson, 1966). 

Advocates of the adaptationist approach argue that fertility variations are primarily a response to 

socioeconomic conditions (Becker, 1960b, Easterlin, 1975). On the other hand, On the other hand, 

proponents of the diffusionist approach suggest that fertility variations are primarily influenced by the 

spread of new information or the social acceptability of fertility control methods (Bongaarts and 

Watkins, 1996, Cleland, 2001, Cleland and Wilson, 1987) . 

According to the adaptationist approach, as socioeconomic conditions vary geographically, we 

would expect variation in area-level socioeconomic conditions to shape geographical fertility 

differences. However, the adaptationist approach does not always align with observed data. In particular, 

socioeconomic conditions were found to be only weakly predictive in the Princeton European Fertility 

Project (EFP) conducted across 1229 provinces and smaller districts in Europe during the 1960s and 

1970s (Coale and Watkins, 1986). Hence, the EFP supported the view that it is unlikely that 

geographical fertility variation can be linked solely to the socioeconomic conditions to which people 

have adapted. 

After the release of evidence from the European Fertility Project, the diffusionist perspective 

on geographical fertility variation gained momentum. The diffusionist approach originates from the 

diffusion of innovation theory, which views all social changes through the lens of innovation diffusion. 

According to the diffusionist approach, the adoption of innovative items is initially slow as it often 

involves uncertainty and risk. However, the rate of adoption increases quickly due to the social effect 

of peer groups, as the innovative item becomes more familiar and the element of uncertainty decreases 

(Rosero-Bixby and Casterline, 1993, Rogers, 1995). Rogers refers to this as the 'diffusion effect.' 

Therefore, the diffusionist approach argues that geographical fertility variation can be predominantly 

shaped by the diffusion of new information that influences individuals or communities in their decisions 

regarding the adoption of deliberate fertility control (Cleland, 2001). The European Fertility Project 

further demonstrated that fertility changes occurred more rapidly within culturally similar and 

geographically close populations, irrespective of their high or low socioeconomic conditions  (Cleland 

and Wilson, 1987, Watkins, 1987). Hence, the diffusionist approach claims that socioeconomic 

development alone is insufficient to account for sub-national fertility differences, and the diffusion of 

fertility control through different communication pathways should be taken into account (Bongaarts 

and Watkins, 1996).  
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Demographers have also shown that the adaptation and diffusion approaches should be viewed 

as complementary rather than mutually exclusive (Goldstein and Klüsener, 2014, Lesthaeghe and Neels, 

2002). For example, individuals become aware of new socioeconomic conditions through both their 

own socioeconomic circumstances and communication with neighbours (Montgomery and Casterline, 

1996). Therefore, uneven development and variations in communication pathways within a country can 

mutually influence geographical fertility variations. 

In addition, historian demographers have stressed the importance of place and context in 

determining the history of fertility decline (Gillis, Tilly and Levine, 1992).  This is particularly because 

fertility decline is not a unitary national event, and therefore focusing solely on national or regional 

units to describe fertility decline may mask substantial sub-national differences in fertility decline. Alter 

(1992) argues that the notion of a unilinear fertility transition, where all societies follow the same 

fertility decline path, is cast into doubt by data collected for Europe. He particularly pointed out that 

industrialisation explained only a small portion of the geographical patterns of fertility decline within 

Europe, and geographical patterns align more closely with linguistic contexts rather than indicators of 

economic or social development (Alter, 1992). Furthermore, Szreter (1996) proposed the concept of a 

"communication community", where individuals in similar social classes and occupations can have 

significantly different fertility rates depending on their specific communities. Szreter and his colleagues 

revealed that the geographical fertility pattern is clearly underlined by the distinct occupational 

geography of England and Wales, where certain industries came to dominate in particular areas (Garrett, 

et al., 2001). For instance, in most textile areas in England, female labour force participation rates were 

high, with opportunities to remain at work after marriage or return to work after having had a child, and 

marital fertility rates were lower than in most working-class districts (Jaadla et al, 2020). Their works 

have emphasised that geography and community differences within and between regions both have 

important roles in determining patterns of fertility. Therefore, local contexts, including shared dialects, 

norms, and values are crucial elements of contextually varying fertility patterns within a country.  

In SSA, Caldwell also wrote that ‘most population scholars of the region are guilty of having 

placed too much emphasis on … similarities across the [Africa] continent and devoted too little 

attention to important sub-regional differences’ (Caldwell, 1994a). This is particularly evident in 

Ethiopia, where exhibits the substantial fertility differences between regional states and the largest 

urban-rural fertility difference among countries surveyed in the DHS programmes (Appendix 3). As 

introduced in the section 2.2 and 2.3 in this chapter, Ethiopia’s geographical and demographic 

characteristics such as explicit ethnolinguistic-based geographical boundaries, agro-pastoralist 

communities concentrated in DRS regions may contribute to these geographical fertility differences. 

Notably, Ethiopia's capital, Addis Ababa, the capital of Ethiopia, stands out due to its remarkable 

historical decline in fertility. Although Ethiopia had one of the highest fertility rates of 6.6 among SSA 
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countries in early 1990s, Addis Ababa's fertility rate had declined to nearly the replacement level of 2.2 

by 1984 (CSA, 1984) and further dropped below replacement to 1.8 by 1994 (CSA, 1994). Among SSA 

countries, South Africa has been relatively more industrialized and economically advanced, primarily 

due to its historical connections with Europe. It is worth noting that the Free State region in South Africa 

had the lowest fertility rates, reaching 2.2 in 1998 (Department of Health, 2002), which remained higher 

than the fertility rate observed in Addis Ababa during a similar period. While South Africa exhibited a 

higher degree of urbanization and had a history of stronger commitment to family planning in SSA 

during the 1990s (Caldwell, 1994b), this was not the case for Addis Ababa. During the 1990s, the living 

standards in Addis Ababa, while relatively better than the rest of Ethiopia, remained significantly lower 

compared to South Africa. Approximately 44% of Addis Ababa's population still lived below ‘the 

poverty line’ in 1994 (Tadesse, 1996). Additionally, a study evaluating family planning programmes in 

low-income countries categorised Ethiopia's program strength in 1994 as ‘weak effort’ (Ross and 

Mauldin, 1996). Previous studies have tried to provide explanations for the low fertility rates in Addis 

Ababa, attributing them to the high economic stress experienced by women of reproductive age (Gurmu 

and Mace, 2008, Sibanda et al., 2003). They explained that factors such as limited employment 

opportunities and relatively high housing costs contribute to this economic stress, leading to delayed 

marriages and reduced marital fertility.  

Overall, this approach demonstrates that the sub-national variations in fertility rates highlight 

certain limitations of fertility transition theory. These variations reveal a picture of multiple, 

independent fertility declines occurring within a single country, which challenge the assumption of a 

uniform and linear transition. Therefore, it is essential to acknowledge the significance of geographical 

place and its local contexts, as well as focusing on the relative influence of economic, cultural, or social 

factors on a singular process of fertility decline (Gillis, Tilly and Levine, 1992, Boyle, 2003).  

 

2.6. Determinants of geographical variations in fertility 

 

Demographers contend that comprehensive analysis of factors impacting fertility requires that a 

distinction be made between two sets of determinants: (1) distal  and (2) proximate determinants 

(Bongaarts, 1978). Proximate determinants refer to biological and behavioural factors that directly 

influence aggregate fertility levels. Distal determinants, on the other hand, encompass socioeconomic, 

cultural, and other contextual factors that indirectly shape fertility only through their impact on the 

proximate determinants (Davis and Blake, 1956, Bongaarts and Potter, 1983) (Figure 2.5). 
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Distal 
Determinants 

 

Proximate 
Determinants (PDs) 

 

Fertility 
e.g., Socioeconomic status 
         Education 
         Place of residence 
         Cultural factors 
         Etc. 

1) Marriage 
2) Contraceptive use 
3) Duration of postpartum 

infecundability 
4) Induced abortion 

Figure 2.5. Determinants of fertility  

Source: (Bongaarts and Potter, 1983)  

 

2.6.1. Distal determinants of geographical variation in fertility 

 

According to Carlsson (1966), if adaptation pressure is the primary driver of geographical fertility 

patterns, then these patterns would exhibit variations in socioeconomic conditions. On the contrary, if 

the diffusion effect is the main force shaping these patterns, then they would be structured by variations 

in communication pathways(Carlsson, 1966). 

In terms of variations in socioeconomic conditions, the most commonly identified 

socioeconomic factors associated with fertility variations are female education levels and urbanization. 

The adaptationist approach argues that population groups residing in urban areas or with higher levels 

of education are more likely to engage in the labour market, leading to higher opportunity costs of 

childbearing      (Becker, 1960b). This explanation helps understand the higher fertility levels observed 

in sub-Saharan African countries, where a lower percentage of the population lives in urban areas and 

female education levels are generally low (Bryant, 2007, Shapiro and Tenikue, 2017, Behrman, 2015, 

Kravdal, 2002, Kebede et al., 2019). However, fertility studies in sub-Saharan Africa have shown that 

the correlations between fertility and the proportion of urban population and education levels are not as 

strong as observed in non-African low- and middle-income countries (LMICs). This could be attributed 

to factors such as a higher proportion of people living in urban slums or engaging in informal 

employment in urban areas (Hassan and Mahabir, 2018, Cáceres-Delpiano, 2012). Furthermore, fertility 

in African countries has consistently remained higher than in non-African countries due to factors like 

pronatalist cultural practices(Bongaarts, 2017, Colleran and Snopkowski, 2018, Cleland and Rodriguez, 

1988, Caldwell and Caldwell, 1987).  

In terms of variations in communication pathways, individuals or communities often vary in 

their access to information, and the exchange of information is often moderated by cultural and 

geographical distance (Bongaarts and Watkins, 1996, Hägerstrand, 1965). A well-known study 

examining the cultural distance in relation to the geographical diffusion of fertility decline is the 
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Princeton European Fertility Project (EFP), which analysed province-level data in Europe and revealed 

spatial fertility patterns that closely mirrored Europe's cultural and linguistic geography (Coale and 

Watkins, 1986). The EFP also demonstrated that fertility decline gradually spread across neighbouring 

areas, particularly when those areas shared a common language, and the spread appeared to halt at 

linguistic and cultural boundaries (Watkins, 1987). Geographical fertility studies in local areas of 

developing countries have also shown that ethnic and cultural diversity can hinder the diffusion of 

knowledge and attitudes favouring modern reproductive behaviours (De Broe and Hinde, 2006, 

Yüceşahin and Özgür, 2008, Bongaarts and Watkins, 1996). However, cultural diversification in urban 

areas can accelerate the diffusion of fertility changes. This is because rural-urban migrants bring with 

them different cultural practices and ideas, and communication networks in urban areas are more likely 

to transcend socioeconomic status differences, gender, and ethnicity, facilitating the adoption of 

innovative reproductive behaviours (Kulu, 2005, Goldstein, 1973, Lee and Farber, 1984, Lerch, 2019, 

Bongaarts and Watkins, 1996, Klüsener et al., 2019).  

In addition, the diffusion of fertility changes can be influenced by geographical distance, as 

neighbouring areas with similar geographical environments and frequent cross-border commuting may 

exhibit more similarities in fertility patterns (de Castro, 2007, Goldstein and Klüsener, 2014). This 

observation aligns with Tobler's first law of geography, which states that "Everything is related to 

everything else, but near things are more related than distant things" (Tobler, 1970). Therefore, when 

analysing such data, it is important to consider the impact of spatial effects. In spatial statistics, spatial 

effects are typically categorised into two main terms: spatial dependence and spatial heterogeneity. 

Spatial dependence in this thesis refers to the degree of the spatial autocorrelation between 

independently measured values observed in districts, highlighting the tendency for similar values to 

cluster together in geographical space, regardless of socioeconomic conditions (Kitchin and Thrift, 

2009). More specifically, districts in close proximity are inclined to exhibit similar values due to the 

diffusion process. Spatial heterogeneity in this thesis refers to the variability in relationships across 

different locations, implying that the association between two study variables can vary instead of being 

uniform across all places (Anselin, 2010). It recognises that the factors influencing fertility may differ 

across districts in Ethiopia, leading to diverse patterns of fertility rates at the district level. 

  Recent studies conducted in high- and middle-income countries (HMICs) using spatial 

statistical models have identified both spatial dependence and heterogeneity as characteristic features 

of local fertility patterns. These studies have demonstrated that fertility decline in a particular area is 

associated with fertility decline in neighbouring areas, even after accounting for socioeconomic and 

cultural changes (Salvati et al., 2020, Sabater and Graham, 2019, Singh et al., 2017). Moreover, these 

studies have highlighted significant variations in the relationship between local fertility levels and 

socioeconomic and cultural factors, both in terms of magnitude and direction (Wang and Chi, 2017, 
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Vitali and Billari, 2017, Campisi et al., 2020, Haque et al., 2019, Costa et al., 2021, Evans and Gray, 

2018, Goldstein and Klüsener, 2014). Increasing evidence suggests that the diffusion of new ideas and 

behaviours may not strictly follow the structure of socioeconomic characteristics. For instance, rapid 

socioeconomic development in certain areas may not necessarily lead to significant changes in social 

norms and behaviours. Consequently, some areas may exhibit distinctive fertility behaviour that 

deviates from the general pattern, while other areas with similar socioeconomic and demographic 

characteristics may experience different fertility levels (Brunsdon et al., 2002). In Ethiopia, 

geographical areas often reflect specific ethnolinguistic and cultural attributes within the 

ethnolinguistic-based territorial structure. Therefore, both empirical evidence and theoretical arguments 

support the notion that understanding geographical variations in fertility in Ethiopia requires 

acknowledging the differences in local characteristics. However, studies in sub-Saharan Africa (SSA) 

have often overlooked the role of spatial effects on geographical variations in fertility, and studies in 

HMICs have frequently neglected to include proximate variables that could enhance our understanding 

of the underlying mechanisms driving geographical variations in fertility. 

 

2.6.2. Proximate determinants of geographical variation in fertility 

Bongaarts demonstrated that including the proximate variables in the study of the fertility variation is 

particularly important in SSA, as the offsetting effects of proximate determinants on fertility levels 

could make relationships between fertility and socioeconomic factors positive, negative or insignificant 

(Bongaarts et al., 1984). In 1978, Bongaarts proposed a model that incorporates four proximate factors: 

a) marriage, b) contraception, c) abortion, and d) post-partum infecundability. He provided evidence 

that the majority of variation in aggregate fertility between geographical regions can be explained by 

these four factors  (Bongaarts, 1978, Bongaarts et al., 1984). Previous studies conducted in SSA 

countries have utilised the Bongaarts model to examine sub-national variations in fertility and have 

found that delayed marriage and contraceptive use are two major factors contributing to these variations 

(Finlay et al., 2018, Singh et al., 1985, Rogers and Stephenson, 2018). Singh et al. specifically noted 

that postponed marriage often accounts for fertility differences between urban and rural areas, while 

contraceptive behaviour is a significant factor driving fertility differences among women with different 

educational levels (Singh et al., 1985). More recent research by Rogers and Stephenson (2018) analysed 

changes in the proximate determinants of fertility in 82 low- and middle-income countries between 

2000-2016. Their findings revealed that the fertility-promoting effects of shorter breastfeeding duration 

were counterbalanced by increased contraceptive use and delayed marriage, particularly in Eastern and 

Western African countries(Rogers and Stephenson, 2018). In particular, the study highlighted that the 

impact of age at marriage on fertility decline was weaker in SSA compared to Latin America and Asia, 

likely due to the prevalence of premarital births in many SSA countries(Clark et al., 2017). It has been 
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reported that in some SSA countries, such as Botswana and Namibia, more than 60% of first births 

occur before marriage (Singh, 1998, Garenne and Zwang, 2006). The impact of postponing marriage 

on fertility can vary depending on the context of premarital childbearing (Harwood-Lejeune, 2001). In 

settings where premarital childbearing is rare, delaying first marriage can have a greater effect in 

reducing total fertility levels compared to contexts where premarital childbearing is common. In the 

Ethiopian context, the country has the lowest median age at first marriage among Eastern African 

countries, with less than 5% of women giving birth before marriage (Clark and Hamplová, 2013). 

Consequently, Rogers and Stephenson further revealed that Ethiopia experiences a greater impact of 

increased age at marriage on fertility levels compared to other SSA nation (Rogers and Stephenson, 

2018). Given the similar ages at first marriage and first sexual encounter in Ethiopia (appendix 4), this 

suggests that the postponement of marriage significantly influences fertility levels in the country.  

 Sibanda et al. used the 1990 National Family and Fertility Survey (NFFS) and the 2000 

Ethiopia Demographic and Health Survey (EDHS) to investigate the decline in fertility in Addis Ababa, 

which decreased from 3.1 in 1990 to 1.9 in 2000. Their findings indicated that delayed marriage was 

the most influential proximate determinant contributing to the low fertility level in Addis Ababa 

(Sibanda et al., 2003). Similarly, Shallo (2020) conducted a study using the EDHS data from 2005, 

2011, and 2016 to examine the impact of proximate determinants on fertility decline in Ethiopia. The 

study concluded that contraceptive use was the most significant proximate determinant accounting for 

fertility decline over the past decade in Ethiopia (Shallo, 2020). Furthermore, Teklu et al. (2013) 

analysed the 2000, 2005, and 2011 EDHS data and identified contraception as the primary factor 

inhibiting fertility among women with secondary and higher educational backgrounds (Teklu et al., 

2013).   

Hence, contraceptive use has indeed emerged as a crucial proximate determinant of fertility in 

Ethiopia. The Ethiopian government has implemented effective family planning programs aimed at 

promoting and facilitating contraceptive uptake. Since 2004, Ethiopia's national family planning 

program has been implemented through the community-based Health Extension Program (HEP) (Olson 

and Piller, 2013), which involves the deployment of Health Extension Workers (HEWs) in various local 

districts, including rural, pastoral, and urban areas (May and Rotenberg, 2020). As a result, variations 

in contraceptive use between regions and districts are likely to be influenced by different contextual 

factors such as health infrastructure, ethnolinguistic diversity, and socioeconomic conditions. These 

variations in contraceptive use at the district level are associated with the geographical variations in 

fertility levels observed in Ethiopia. 

Overall, while the two key proximate determinants of fertility, namely delayed marriage and 

contraceptive use, play crucial roles in shaping fertility patterns in Ethiopia, there is a limited amount 

of district-level analysis specifically focusing on proximate determinants in the country. Furthermore, 
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previous studies on district-level fertility in high- and middle-income countries (HMICs) often 

overlooked the significance of proximate determinants in explaining geographical variations in fertility. 

As a result, there is a need for more research that examines the district-level dynamics of proximate 

determinants and their contributions to understanding the geographical variations in fertility in Ethiopia. 

 

2.7. Summary and research gap      
 

There is a clear need for understanding and acknowledging geographical fertility differences between 

districts in Ethiopia. Furthermore, research gaps in understanding the geographical variation in fertility 

in Ethiopia can be summarised as follows:  

1. Although districts (Admin 3) are essential administrative units for health policy implementation 

and delivery in Ethiopia, very little is known about geographical variations in fertility at the 

district level due to the shortage of district-level data in Ethiopia. 

2. Although theoretical and empirical studies support the presence of spatial dependency and 

heterogeneity of fertility in most populations, fertility studies in SSA countries, including 

Ethiopia, often neglect the spatial effects on sub-national variations in fertility.  

3. Recent spatial analysis of fertility in HMICs have revealed the spatially varying relationship 

between distal determinants and fertility levels at small-scale spatial units. However, these 

studies often exclude the role of proximate determinants, which are crucial factors accounting 

for geographical variations in fertility in SSA countries. 

 

Hence, to fill in the gap of research, the aim of this DrPH thesis is to explore geographical variations in 

fertility in Ethiopia in 981 sub-national areas between 2000 and 2016 by using geostatistical and spatial 

modelling approaches. This aim will be achieved by addressing the following questions and objectives: 

 

  Question 1: Are there geographical variations in fertility at the district level between 2000- 2016? 

Objective 1 To estimate TFRs and key selected proximate and distal determinants for 981 

districts in 2000, 2005, 2011 and 2016 by using a geostatistical modelling approach.   

Objective 2 To describe and explore spatial and temporal patterns of TFR and key selected 

proximate and distal determinants at the district level in 2000, 2005, 2011 and 2016. 
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  Question 2: What determines geographical variations in fertility at the district level? 

  

Objective 3 To assess effects of key selected proximate and distal determinants on geographical 

variations in fertility at the district level between 2000-2016 with a non-spatial 

model. 

Objective 4 To assess spatial autocorrelation of district-level fertility by using a spatial model. 

Objective 5 To explore spatial heterogeneity in relationships between TFRs and both proximate 

and distal determinants in Ethiopia by using geographically weighted regression 

between 2000 and 2016. 
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3.1. Overview 

This section introduces the data and methods for each paper and study objective in this thesis, as 

summarized in Table 3.1. Paper 1 focuses on estimating total fertility rates (TFR) and key selected 

determinants of fertility in 981 districts to describe changes in geographical variations in each study 

variable between 2000 and 2016. Building upon Paper 1, Paper 2 further explores the spatial relationship 

between TFR and the selected determinants at the district level. 

 

Table 3.1. Summary of the data and study methods 
 Study Objective 

 

Data 
 

Study method 

Paper 1:  Are there geographical variations in fertility at the district level in Ethiopia? 

Chapter4 Objective 1:  

To estimate total fertility rates 

and key selected proximate and 

distal determinants for 981 

districts in 2000, 2005, 2011 and 

2016 by using a geostatistical 

modelling approach.   

 

Secondary Data:  

1. Ethiopia Demography and 
Health Surveys 2000, 2005, 
2011, 2016  

2. Ethiopian Statistics Service-
Subnational Administrative 
Boundaries (shapefiles) 

 

Model-based 

geostatistics with 

INLA and SPDE  

Objective 2:  

To describe and explore spatial 

and temporal patterns of fertility 

and key selected determinants 

at the district level between 2000 

- 2016 

 

Secondary Data:  

1. Fertility & related-indicator 

estimates at 981 districts * 

2. Subnational Administrative 

Boundaries (shapefiles) 

 

Mapping of fertility 

and key indicator 

estimates at 981 

districts  

Paper 2: What determines geographical variations in fertility at the district level? 

Chapter5 Objective 3: 

To assess effects of key 

selected distal and proximate 

determinants on geographical 

fertility variation at the district 

level between 2000-2016 with 

non-spatial linear model 

 

Secondary Data:  

1. Ethiopia Demography and 
Health Surveys 2000, 2005, 
2011, 2016 

2. Fertility & related-indicator 
estimates at 981 districts * 

3. Subnational Administrative 
Boundaries (shapefile) 

 

- Non-spatial linear 

regression model 
- Semi-variogram 

 

Objective 4: 

To assess spatial dependency of 

local fertility by using spatial 

linear model 

 

Secondary Data:  

1.   Fertility & related-indicator    
      estimates at 981 districts * 
2.  Subnational Administrative   
     Boundaries (shapefile) 

 

- Spatial Linear 

regression 

model:  

    (Spatial Lag    

     Model) 

Objective 5: 

To explore spatial heterogeneity 

in relationships between district-

level fertility and both proximate 

and distal determinants in 

Ethiopia by using GWR model 

between 2000 and 2016 

 

Secondary Data:  

1.   Fertility & related-indicator    
      estimates at 981 districts * 
2.  Subnational Administrative   
     Boundaries (shapefile) 

 

- Geographically 

Weighted 

Regression 

(GWR) model  

 Modelled data generated from the outcome of Objective 1 

 

3. Chapter 3: Data and Methods  



48 
 

3.2. Paper 1: Are there geographical variations in fertility at the 

district level in Ethiopia? 

 

For paper 1, I use 2000, 2005, 2011, and 2016 Ethiopia Demographic and Health Surveys (EDHS) to 

predict TFRs and key selected determinants at 981 districts in Ethiopia by using a model-based 

geostatistical approach. In addition, I use the district-level fertility and key selected indicator estimates 

to describe changes in spatial and temporal patterns of district-level fertility and key selected 

determinants between 2000 and 2016. This research paper addresses study objectives 1 and 2 as outlined 

in Table 3 (Table 3.1). 

 

3.2.1. Objective 1: To describe and explore spatial and temporal patterns 

of study variables in 2000, 2005, 2011 and 2016 

 

3.2.1.1. Data 

I obtained data from Ethiopia Demographic and Health Surveys (EDHS) conducted in 2000, 2005, 2011, 

2016 (ICF, 2000, ICF, 2005, ICF, 2011, ICF, 2016). I used two data sets from each EDHS; the 

Individual Women’s Recode data and the GPS data. The Individual Women’s Recode data contains 

information about backgrounds, reproductive health of women of reproductive age (15-49) and a full 

history listing all live births that female respondents have given birth to. The GPS data provides the 

latitude, longitude for sampling units, and therefore the georeferenced datasets can be linked to the 

Individual Women’s Recode dataset through unique identifiers of each sampling unit. 

The EDHS samples are designed to give indicator estimates that are nationally representative, 

as well as representative for the 11 regional states. The four EDHS samples (2000, 2005, 2011 and 2016) 

are stratified by regional states and urban/rural areas and the samples were selected in two stages. In 

the first stage of sampling, census enumeration areas (EAs) are selected in the first stage as primary 

sampling units (PSUs) with probability proportional to size (PPS). In the second stage, approximately 

24-35 residential households are randomly selected from each selected PSU after a household listing 

operation has generated an updated, complete list of residential households in the selected PSU. To 

ensure that households and respondents’ confidentiality is maintained, especially in clusters with a small 

number of sampled households and respondents, the DHS apply a random displacement to the GPS 

latitude/longitude coordinates before releasing data externally. Therefore, they are an estimated centre 

of a cluster of households, which are point locations that actually represents an area of unknown size 

with fairly large variability across a country, especially between urban and rural locations. In addition, 
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these point locations are geo-masked from 0-2 km in urban locations and 0-5 km in rural locations, with 

1% of rural locations up to 10 km (Perez-Haydrich et al., 2013, Burgert et al., 2013). 

Of the total number of PSUs, I excluded 6, 9, 27, and 21 PSUs without GPS codes, resulting in 

the inclusion of 533, 526, 569, and 622 PSUs for the 2000, 2005, 2011, and 2016 EDHS, respectively 

(Table 3.2). It is important to note that due to security concerns in the Afar and Somali regions, a small 

number of zones were included in the 2000 and 2005 EDHS. Additionally, PSUs without GPS codes 

were predominantly concentrated in the Somali region in 2011 and 2016 (see Appendix 2). This may 

introduce bias to the representativeness of the estimates in the Afar and Somali regions. 

In addition, I obtained a shapefile of Ethiopia's administrative boundaries from the United 

Nations Office for the Coordination of Humanitarian Affairs (OCHA) Ethiopia. This shapefile includes 

the boundaries of the 11 regional states, 90 zones, and 981 districts (UNOCHA, 2020).  

Table 3.2. Number of clusters and women by survey 

 EDHS 2000 EDHS 2005 EDHS 2011 EDHS 2016 

PSU’s 
Locations 

    
No. of 

PSUs with 
GPS 

533 526 569 622  

No. of 
individuals 15,193 13,861 15,730 15,242 

Data sources: Ethiopia Demographic and Health surveys 2000, 2005, 2010 and 2016. 

 

3.2.1.2. Study Variables 

As mentioned earlier, the EDHS samples are selected using a stratified, two-stage cluster design. To 

account for the survey design and obtain representative estimates, I applied survey weights as 

recommended in the DHS manuals. These weights were incorporated into the calculations of the study 

variables using the srvyr R package. 

1) Outcome variable: Total fertility rates (TFR) 

 

The Total Fertility Rate (TFR) is a hypothetical measure used to estimate women's fertility during a 

specified period. It represents the average number of children a woman would have over her lifetime if 

she survived all her reproductive years (15-49 years) and experienced the exact age-specific fertility 

rates observed during that period. TFR can be calculated by adding up all the age-specific fertility rates 

(ASFR). In the DHS surveys, the individual women’s dataset contains information on the birth history 

of women aged between 15 and 49. To calculate the TFR, I aggregated the number of births and women-
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years of exposure to pregnancy into seven five-year age groups (15-19, 20-24, 25-29, 30-34, 35-39, 40-

44, 45-49 years). This also decreases sampling variability associated with small numbers of annual 

births due to women in single age groups. Then, 𝐴𝑆𝐹𝑅𝑎 can be written as follows; 

𝐴𝑆𝐹𝑅𝑎,𝑐 = (𝐵𝑎,𝑐/𝐸𝑎,𝑐)  × 1,000 

𝑎 = 1 - 7 refers to the seven age groups at the time of delivery and c denotes PSUs. 𝐵𝑎,𝑐 is the number 

of births to women in age group 𝑎 in PSU c during a referenced period and 𝐸𝑎,𝑐 denotes the number of 

person-years of exposure in age group 𝑎 in PSU c during a referenced period. In the DHS, TFR is 

calculated for a reference period of three years prior to the survey and therefore a women can contribute 

to more than one age category if she moves between two age bands within those three years. To account 

for this in the calculation women are allowed to contribute to at most two five-year age groups. This 

was calculated as follows (Croft, 2018): 

i) Higher age group: The number of months between the end of exposure (the date of the 

respondent's interview) and the age group's lower limit is used to calculate the total 

number of person-years of exposure. When the age group's number of months is greater 

than or equal to 36 months, the total number of person-years of exposure in the higher 

age group is 3 years (36 months), while it is zero in the lower age group. 

ii) Lower age group: The total number of person-years of exposure in the lower age group 

is considered when the number of months in the age group for a woman is less than 3 

years (36 months), and it is defined as the difference between 36 months and the number 

of months in the higher age group. 

Table 3.3 provides a summary of how to calculate women-year of exposure. Then, TFR for each PSU 

can be calculated as follows:  

𝑇𝐹𝑅𝑐 = 5 ×  ∑ 𝐴𝑆𝐹𝑅𝑎
𝑎,𝑐

 

Where, 𝑎 = 1 - 7 and refers to the seven five-year age groups and c are the primary sampling units 

(PSU).  

 

Table 3.3. Example of calculation of women-year of exposure in DHS 

Women 
information 

o Interviewed in December 2016 
o Born in May 1986 

o Interviewed in December 2016 
o Born in June 1983 

CMC date of 
interview 

12(Month) X (2016 - 1900)+12 (December) -
1  = 1403 

12(Month) X (2016 - 1900) +12(December)  
-1= 1403 

CMC date of 
birth 

12(Month) X (1986 - 1900) + 5(May) = 1037 
12(Month) X (1983 - 1900) + 6(June) 
= 1002 

Age in months 
at the date of 
interview 

1403 - 1037 = 366 1403 - 1002 = 401 

Age group at 
the date of 
interview 

a) 
366/60* = 6.1 
*60=12 months X 5 years interval 

a) 
401/60* = 6.68 
*60=12 months X 5 years interval 

b) 
Age group: 30-34 years* 
* 6.1 X 5 years interval=30.5 

b) 
Age group: 30-34 years*  
*6.68 X 5 years interval=33.4 



51 
 

Women-years 
of exposure 

Higher age 
group:  
30-34 

366 – (6 X 60)* + 1 =  
7 months 
*6th age group X 12months 
X 5 years intervals 
 
∴ 7÷12 = 0.58 years 
 

Higher age 
group:  
30-34 

401 – (6 X 60)* + 1 = 42 
months. 
*6th age group X 
12months X 5 years 
intervals 
 
Since the number of 
months is greater than 36 
months, she contributed 
36 months of exposure to 
age group 30-34 during 
the period (36 months) 
∴ 36÷12 = 3 years 

Lower age 
group:  
25-29 

Since this is less than the 
total number of months 
during the period (36 
months); 
36 - 7 = 29 months 
∴ 29÷12 = 2.42 years 

Lower age 
group:  
25-29 

No exposure to the lower 
age group during 36 
months 

 

2) Explanatory variables 

 

Previous studies have identified various factors that contribute to geographical variations in fertility, 

including cultural and socioeconomic differences. In line with the objectives of this study, which aim 

to describe the spatial patterns of selected key proximate and distal determinants of fertility and 

understand their heterogeneous influences on district-level fertility in Ethiopia, I have built upon this 

existing research by focusing on two proximate determinants and three distal determinants that have 

been widely recognized as significant contributors to geographical variations in fertility. 

 

a) Proximate determinants 

In 1978, Bongaarts proposed four proximate determinants to explain differences between populations 

in fertility levels (Bongaarts, 1978). However, I restricted the analysis to include the two main drivers 

of fertility from Bongaarts proximate determinants, contraception and marriage exposure. I have 

excluded the other two determinants, namely abortion and postpartum infecundability. This decision is 

based on previous research conducted in Ethiopia, which has indicated that the differences in the 

inhibiting effects of contraception and marriage on fertility between regional states in 2011 and 2016 

were more substantial compared to the effects of the other two determinants (Laelago et al., 2019).   

i) Median age at first marriage  

Median age at first marriage is an indicator that uses cumulated single-year percent distributions of age 

at first marriage. In Ethiopia, childbearing outside of marriage traditionally has not been tolerated 

(Lindstrom et al., 2009) and therefore, the country has one of the lowest premarital fertility rates in 

SSA , which never rose above 5% over the past three decades (Clark et al., 2017, Smith‐Greenaway 
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and Clark, 2018). Delays in age at first marriage are often partly responsible for the observed fertility 

declines in many SSA countries (Sobotka, 2017, Ouadah-Bedidi et al., 2012, Bongaarts, 1982, Shapiro 

and Gebreselassie, 2014, Hertrich, 2017). Although, the prevalence of girls married before the age of 

18 in Ethiopia reduced from 59% of females aged 20–24 years in 2005 to 40.3% in 2015 (Gavrilovic et 

al., 2020, Mekonnen et al., 2018), the prevalence of early marriage and median age at first marriage 

vary across Ethiopia (Alem et al., 2020). According to the 2016 DHS, the median age at first marriage 

was the lowest at 15.7 years in Amhara region and the highest at 22.9 years in Addis Ababa (ICF, 2016). 

The DHS provides the variable of ‘age at first marriage(v511)’. Therefore, I calculated the median age 

at first marriage for each PSU for 2000, 2005, 2011 and 2016. Median values were calculated from the 

cumulative single-year distribution of age at first marriage at each PSU. To calculate the cumulative 

single-year distribution, the number of women who were legally or formally married in each single-

year age category was used as the numerator. The number of women of all marital statuses, including 

never-married women, was used as the denominator. Then the median was determined by linearly 

interpolating between the single-year percentage distributions that correspond to the ages just before 

and after 50 percent of women have entered into their first marriage (Croft et al., 2018). 

ii)  Modern Contraceptive Prevalence (mCP) among married women of reproductive age  

 In the past few decades, increases in the prevalence of contraceptive practice have played a major part 

in reducing fertility in SSA countries (Cleland et al., 2006, Casterline, 2017). In this study, I used the 

mCP among married women aged between 15 and 49. According to the Guide to DHS statistics, mCP 

is defined as the percentage of married women using modern contraception methods (Croft et al., 2018). 

Among SSA countries, Ethiopia particularly achieved significant progress in enabling women to freely 

choose the number and timing of their births as evidenced by an increase in the mCP from 6.3% in 2000 

to 35.3% in 2016 (ICF, 2016). However, previous studies observed substantial variations in mCPs 

between regional states in Ethiopia, as an example of 46.9% in Amhara and 11.6% in Afar regions in 

2016 (Lakew et al., 2013, Tegegne et al., 2020, Hogan and Biratu, 2004, ICF, 2016). The DHS variable 

‘use of contraceptive method (V313)’ has four categories; no method, folkloric method, traditional 

method, modern method. Therefore, I calculated mCPs using binary outcomes (1= modern method; 

0=other than modern method) for each PSU during 2000, 2005, 2011 and 2016.  

b) Distal determinants 

 Although there remains some debate about which dimension of distal determinants of fertility is most 

important, urbanisation and improvements in female education are the two most thoroughly studied 

socioeconomic determinants of fertility (Kebede et al., 2019, Murtin, 2013, May and Rotenberg, 2020, 

Bongaarts, 2020, Bongaarts, 2017, Robinson, 1963, Gries and Grundmann, 2018). Moreover, according 

to most DHS reports, Ethiopia has the largest fertility differentials between residential areas (rural and 
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urban areas) and female educational levels among all countries surveyed by the DHS programme (see 

Appendix 2). In addition, previous studies also showed that geographical areas with common culture 

and language tend to experience fertility decline at similar time, regardless of the level of socioeconomic 

status (Watkins, 1987, Watkins, 1990, Bongaarts and Watkins, 1996). Furthermore, the analysis 

includes the three distal determinants of fertility: a) the proportion of women living in urban areas, b) 

the proportion of women with secondary or higher education, and c) ethnolinguistic diversity at the 

zonal level.  

i) Proportion of women living in urban areas  

Previous studies have shown that differences between urban and rural fertility levels are particularly 

large in SSA due to the slow pace of fertility decline in rural areas compared with the pace of the decline 

in rural areas elsewhere in the world (Shapiro and Tenikue, 2017, Garenne and Joseph, 2002, Lerch, 

2019). The percentage of people living in urban areas has been extensively used to measure the 

association between geographical fertility variations and level of urbanisation (Bongaarts, 2020, 

Bongaarts, 2017, Haque et al., 2019, Singh et al., 2017, Wang and Chi, 2017). Ethiopia is often 

described as being characterised by substantial differences in fertility levels between urban and rural 

areas, as evidenced by TFRs of 5.2 and 2.2 in rural and urban areas, respectively, in 2016 (ICF, 2016) 

Therefore, I calculated proportions of women living in urban areas using binary outcomes (1= living in 

urban area; 0=living in rural area) for each PSU. 

ii) Proportion of women with secondary and higher education 

A previous study in low-income countries (LICs) showed that the association between a few years 

of schooling and the level of total fertility rate (TFR) was inconsistent; however, for women with 

secondary or higher education, the association was significantly negative (Jejeebhoy, 1995). In SSA 

countries, fertility differentials also tend to widen as education increases through the secondary level 

and beyond, suggesting that increased educational attainment at the secondary level and above may 

hasten the speed of fertility decline in a region (Shapiro, 2012). During the 2000s, Ethiopia experienced 

a relatively large drop in the fertility of women with secondary or higher education, as both parity-

specific limitation and postponement behaviours among those women increased (Towriss and Timæ us, 

2018). The 2000 and 2005 EDHS defined 'secondary and higher education' as seven years of schooling 

or more, while the 2011 and 2016 EDHS defined it as nine years of schooling or more. In this thesis, I 

define 'secondary and higher education' as nine years of schooling or more using the DHS variable 

'Highest year of education (V107)'. Then, I calculated proportions of women with secondary and higher 

education using binary outcomes (1 = woman with secondary or higher education; 0 = women with no 

schooling or primary education) for each PSU during 2000, 2005, 2011, and 2016. 
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iii) Ethnolinguistic homogeneity at Zonal areas 

 The diffusionist approach argues that cultural heterogeneity, resulting from different ethnicities and 

languages, can hinder the equal diffusion of attitudes and information that support modern reproductive 

ideas and behaviours (Cleland and Wilson, 1987, Watkins, 1987). To assess the similarity or diversity 

in ethno-languages between neighbouring districts in Ethiopia, I utilized the standardized index of 

diversity at the zonal level. The UN OCHA shapefile consists of 90 zones, with an average of 10 

woredas per zone. The index of diversity, also known as the 'entropy index,' has previously been 

employed to measure the impact of ethnic or cultural diversity on fertility behaviour (Hogan and Biratu, 

2004) . The entropy index is defined as (White, 1986); 

𝐼𝐷𝑧 = − ∑ 𝑑𝑣𝑧𝑔ln (𝑑𝑣𝑧𝑔 )

𝑔=𝐺

𝑔=1

  

Where 𝑧  = 1 to 90  (The number of zonal areas for this study), and 𝑔  refers to the number of 

ethnolinguistic groups. Therefore,  

𝑑𝑣𝑧𝑔 =
𝑁𝑧𝑔 

𝑁𝑧 
 

where 𝑁𝑧𝑔  is the number of persons in the 𝑔𝑡ℎ ethnic group in the 𝑧𝑡ℎ local area, 𝑁𝑧 denotes the total 

population size of the 𝑧𝑡ℎ local area, and 𝐺 refers to the total number of ethnic groups in 𝑧𝑡ℎ local area. 

While lower values of the index (close to zero) indicate similarity in ethnolinguistic composition at 

zonal areas, larger values of the index show ethnolinguistic diversity at zonal areas. The EDHS variable 

'Ethnicity (v131)' contains approximately 90 ethnic groups in Ethiopia for individuals. Therefore, I 

calculated the index of ethnolinguistic diversity at the zonal level, resulting in PSUs within the same 

zone sharing the same value for the index, during 2000, 2005, 2011, and 2016. 

 

 

3.2.1.3. Data Analysis 

The Demographic and Health Survey (DHS) Program has provided georeferenced data on important 

demographic and health indicators in sub-Saharan Africa over the past twenty years, and this data has 

been widely used in recent years. The DHS Spatial Interpolation Working Group, which assessed 

properties of various Spatial Interpolation (SI) methods, suggested the Bayesian model-based 

geostatistical (MBG) technique as the most suitable for producing interpolated surfaces (Burgert-

Brucker et al., 2016b, Gething et al., 2015). The DHS Spatial Analysis Reports (SAR) 17 and 19 

recently produced estimates of health outcomes at the second subnational administrative level (Admin 

2) using a stochastic partial differential equation (SPDE) with the integrated nested Laplace 

approximation method (INLA), because health programs are frequently implemented at the Admin 2 

level (Mayala et al., 2019a, Fish et al., 2020). In this thesis, I utilise a similar Spatial Interpolation (SI) 
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method, namely MBG implemented through the INLA-SPDE approach. However, I generate estimates 

at the third subnational administrative level (Admin 3) in Ethiopia. This is because the District-level 

Decentralization Programme (The DLDP) in 2001/02 decentralized health planning and service 

delivery to the third subnational administrative level (Admin 3) in Ethiopia (Garcia and Rajkumar, 

2008). In this section, I provide an overview of the MBG model and outline the ten steps I used to 

predict Total Fertility Rate (TFR) and key selected proximate and distal determinants for 981 districts 

in Ethiopia using the four EDHS datasets (2000, 2005, 2011 and 2016). 

It is important to note that the methods employed in this thesis for estimating the values of 

study variables in small and unsampled areas (districts) differ from the conventional approach of small 

area estimation (SAE). In SAE, direct survey data is collected from a sample of individuals within each 

small area, and these estimates are combined with auxiliary information from a larger area, such as the 

entire nation, to enhance the precision of the small area estimates (Alho, 2001). For instance, this 

approach was adopted to estimate total fertility rates for over 5,000 municipalities in Brazil by using 

the 2000 Brazilian Census data (Schmertmann et al., 2013). They used a sophisticated small area 

estimation method by applying empirical Bayes methods, but this method has a limitation in estimating 

fertility levels for unsampled areas. Moreover, it should be noted that although Ethiopia's population 

census data provide fertility rates at the district level, the two most recent population censuses in 

Ethiopia were conducted in 1998 and 2007. Therefore, analysing the change in recent geographical 

patterns of fertility using Ethiopia's census data with the conventional approach is challenging. Instead, 

alternative types of data, including more frequently collected household sample surveys, can be used to 

estimate population indicators. In contrast to the conventional approach, the methods used in this thesis 

take alternative approaches, utilising model-based techniques to estimate the study variables in small 

and unsampled areas. Rather than relying solely on direct survey data, these methods leverage additional 

information, such as spatial or temporal patterns, to generate subnational-specific estimates (Mercer et 

al., 2015). By incorporating a wider range of data and employing advanced statistical modelling 

techniques, these model-based approaches have the potential to improve the precision and reliability of 

estimating the values of variables in small areas for both sampled and unsampled locations (Aheto and 

Dagne, 2021).  

 

1) Overview of Model-based geostatistics using INLA-SPDE model 

approach  

Geostatistics is a field of study that focuses on the analysis of continuous processes in space. Its primary 

objective is to predict values for unobserved areas, a process often referred to as "spatial interpolation." 

A common example of spatial interpolation is the estimation of temperature distribution across an area. 

Since observations of the variable are only available at a limited number of locations, statistical methods 
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are used to estimate the variable for the entire study area. Model-based geostatistics (MBG) is an 

approach that applies general statistical modelling principles to make probabilistic inferences about 

spatially continuous phenomena using data collected at a limited number of georeferenced locations. 

The MBG model is a type of generalized linear mixed model (GLMM) that enhances the flexibility of 

generalized linear regression models by incorporating spatial variability through a multivariate normal 

distribution (Diggle et al., 1998). The MBG model encompasses three categories of parameters: fixed 

effects, random effects, and a simple Gaussian noise term, which are similar to those employed in 

standard nonspatial linear models (Andres et al., 2018, Mayala et al., 2019b, Burgert-Brucker et al., 

2016a). The MBG model can be specified as: 

𝑔(Ε(y))  =  𝑋𝛽 +   𝑢(𝑠) +  𝜀 

 

Where, 𝑔(·) is the link function that links the outcome variable to the expected value, Ε(y), to the linear 

predictors, 𝑋𝛽,  𝑢(𝑠)  and 𝜀.  𝛽  refers to the matrix of coefficient and 𝑋 denotes the matrix of 

covariates  (fixed effects). 𝑢(𝑠)  is a geostatistical random effect (random effects) and 𝜀  is the 

uncorrelated residual error (Noise). These three components are introduced as follows.  

a) Fixed effects  

In the context of the MBG model, unsampled variations can be accounted for by incorporating fixed 

effects. It is crucial to carefully select the appropriate set of fixed effects or covariates in order to 

improve the estimation accuracy of the model. However, it is important to note that there is a distinction 

between producing the "best possible map" and producing a "standardized map" for a specific country, 

as highlighted by the DHS Spatial Interpolation Working Group (Burgert-Brucker et al., 2016b). While 

producing the best possible map can enhance map accuracy, it may hinder direct comparisons between 

countries or over time if the availability of covariate datasets is inconsistent. Therefore, to adopt a 

comparative approach, it is advisable to use covariates that are consistently available across countries 

or over time.  The DHS survey collects various variables from survey clusters that could potentially be 

used as fixed-effect covariates in the model. However, these variables are not available throughout the 

entire study area, rendering them unsuitable for spatial interpolation (Burgert, 2014). As an alternative, 

previous studies have utilized geospatial covariates obtained from publicly available remote sensing 

sources, such as land surface, temperature, and average monthly rainfall, for mapping disease 

prevalence or environmental factors (Giorgi et al., 2021, Huang et al., 2017, Reiner Jr et al., 2020). 

While these covariates can help explain variations in data for certain communicable diseases like 

malaria, they could only account for a small portion of the variation in socially determined health 

outcomes, such as HIV and fertility (Mayala et al., 2020).   

Expected  
outcome 

Fixed 
Effects 

Random 
Effects 

Noise 
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b) Random effects 

Spatial variation that cannot be explained by covariates can be accounted for through the random effects 

component. Geostatistical data are measurements about a spatially continuous phenomenon that is 

collected at a finite set of sampled locations. Suppose Z(𝑠1),….., Z(𝑠𝑛) are observation of a variable Z 

at sampled locations 𝑠1, … , 𝑠𝑛. Therefore, geostatistical data are often assumed to be a partial realisation 

of a random process. 

[Z(s): s ∊ D ⊂ ℝ2]  

where, D is a fixed subset of ℝ2 and the spatial index s varies continuously over D.  Z(s) is observation 

of the variable Z at space s. As Z(s) is often observed at a finite number of locations, we need to make 

inferences about the characteristics of the spatial process underlying the observed data, such as mean 

and variability of the process. These characteristics are useful for the prediction of the process at 

unobserved locations (Moraga, 2019).  

In geostatistics, it is commonly assumed that this random process follows a Gaussian 

distribution, resulting in a spatial Gaussian Process (GP) (Cressie, 2015). In addition, there are two main 

characteristics often assumed for the GP. The first characteristic is stationarity, which implies that the 

covariance between two observations remains constant even when their locations are spatially shifted. 

The second characteristic is isotropy, which means that the spatial correlation between two observations 

is solely determined by the distance between them and not by their specific directions. These two 

characteristics simplify the modelling of the geostatistical process, as the spatial correlation can be 

modelled using an appropriate covariance function (Salvati et al., 2020). Furthermore, a Gaussian 

random field (GRF) is a collection of random variables in a continuous domain, where any finite set of 

random variables has a multivariate normal distribution with a mean of zero and a joint covariance 

structure. It is important to note that a one-dimensional GRF is equivalent to a GP. A commonly used 

and very flexible covariance function in geostatistics is the Matérn covariance function, which is 

described as (Cressie, 2015) 

C𝑜𝑣(𝑍(𝒔𝑖), 𝑍(𝒔𝑗)) =  
𝜎2

𝟐𝑣−1𝛤(𝑣)
(𝑘|| 𝒔𝑖  − 𝒔𝑗||)

𝑣
𝐾𝑣(𝑘|| 𝒔𝑖  − 𝒔𝑗||) 

Here, 𝛤(∙) is the gamma function and ||  𝒔𝑖  − 𝒔𝑗 || ∈ ℝ  denotes the distance between 

locations 𝒔𝑖 and 𝒔𝑗,  𝜎2 denotes the spatial variance.  𝜅 > 0 is a scaling parameter related to the spatial 

range 𝑟 =
√8𝑣

𝑘
 that is the distance at which the spatial correlation becomes almost null and 𝑣  is a 

smoothness parameter. 𝐾𝑣(∙) is the modified Bessel function of the second kind. It is normally difficult 

to learn about the smoothness parameter 𝑣, and therefore it often fixes this parameter. This study follows 

this convention by setting 𝑣 =1 (Wilson and Wakefield, 2020). The Matérn covariance function was 
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used in the recent DHS spatial analysis reports to estimate health indicators at the desired administrative 

level (Burgert-Brucker et al., 2016b, Mayala et al., 2019b). Figure 3.1  illustrates the Matern covariance 

function. 

 

Figure 3.1. Covariance functions of Matern models 

Source: Geospatial Health data: Modeling and Visualization with R-INLA and Shiny (Moraga, 2019) 

To assess spatial correlation of study variables of DHS data, spatial correlation was 

modelled by a variogram, which is a commonly used tool in geostatistics to visualise the spatial 

structure (Diggle and Ribeiro, 2007).  The variogram (semi-variogram) describes the extent to which 

nearby locations exhibit similar values by measuring the semi-variance. In standard statistics, 

correlation can be estimated from a scatterplot when multiple data pairs are available. However, in the 

case of spatial correlation between two observations of a variable 𝑍(𝑠)  at locations 𝑠  and 𝑠 + ℎ , 

where ℎ represents the separating distance (lag), estimation is not possible due to the presence of only 

a single pair of observations. Geostatistics overcomes this limitation by adopting the assumption of 

stationarity, which enables us to assume that the covariance between observations only depends on the 

lag ℎ, regardless of their location. Then the covariance between two observations can be written as 

𝐶𝑜𝑣(𝑍(𝑠), 𝑍(𝑠 + ℎ)). By the assumption of stationarity, a variogram 𝛾(ℎ) can be defined as:  

𝛾(ℎ) =  
1

2𝑛
∑{𝑍(𝑠𝑖

𝑁

𝑖=1

+ ℎ) − 𝑍(𝑠𝑖)}2 

Where 𝑁 represents the number of pair points of PSUs separated by lag distance ℎ used to estimate the 

value of 𝛾(ℎ). This collection of points is commonly referred to as the variogram cloud, illustrating the 

semivariances between all pairs of points. The purpose of this function is to measure the similarity in 

attributes between neighbouring observations at a lag distance ℎ. In the semi-variogram, this implies 

that as the spatial separation between observations grows, the semi-variance is expected to increase 

since nearby observations tend to share more similarities compared to those that are far apart (Figure 

3.2). Some important characteristics of the variogram are as follows: 
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1) Range refers to the critical distance beyond which there is no longer any spatial correlation 

observed in the variogram. 

2) Sill represents the maximum value of the semi-variance, indicating the extent of variability in 

the absence of spatial correlation. 

3) Nugget represents the semi-variance as the separation distance approaches zero. It quantifies 

the variability at a point that cannot be explained by spatial structure. 

 

Figure 3.2. Typical diagram of the geographical semi-variogram  
Source: Geospatial Health data: Modeling and Visualization with R-INLA and Shiny 

The first stage of a geostatistical analysis is to check the evidence of spatial correlation. I first compared 

the empirical semi-variograms to a 95% pointwise envelope based on 1,000 Monte Carlo simulations 

(Diggle and Ribeiro, 2007).  If the empirical semi-variograms lies outside the Monte Carlo envelope, 

there is evidence of spatial correlation. 

 
 

c) Noise 

The remaining variations that are not captured by the fixed and random components are represented by 

a simple Gaussian noise term, which is commonly applied in non-spatial linear models.  

 In this study, the Integrated Nested Laplace approximation (INLA) technique from the R-INLA 

package was used to apply the Model-Based Geostatistics (MBG) model using a Stochastic Partial 

Differential Equations (SPDE) approach (Rue et al., 2009). Integrated Nested Laplace approximation 

(INLA) is a computationally efficient method for performing approximate Bayesian inference in latent 

Gaussian models (Rue et al., 2009). Latent Gaussian models are family of wide and flexible class of 

models ranging from generalized linear (mixed) models (GLMMs) to spatial and spatio-temporal 

models. Spatial and spatio-temporal models can also be estimated, since the spatial model is essentially 

a form of GLMM with random effects of spatial structure. The INLA approach offers fast and reliable 

calculations of the posterior marginal distribution compared to the Markov Chain Monte Carlo (MCMC) 
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algorithm, which involves dense matrices that increase computation time (Mayala et al., 2019b). While 

INLA was originally developed for discrete space, recent developments have connected INLA with the 

Stochastic Partial Differential Equation (SPDE) framework, enabling its use in continuous space 

analysis. This approach involves discretizing the continuous space into a large number of discrete 

spaces using a constrained refined Delaunay triangulation, commonly known as a mesh, over the area 

of interest. I utilized the INLA-SPDE approach for estimating study variables at 981 local areas in 

Ethiopia (Lindgren and Rue, 2015, Blangiardo et al., 2013). The INLA-SPDE approach was 

implemented using the R package R-INLA (http://www.r-inla.org/). 

 

2) Ten Steps to use a Bayesian model-based geostatistics (INLA-SPDE) 

to small areas estimation of study variables with the EDHS data (Huang 

et al., 2017) 

In this thesis, I assumed that the spatial process for the selected study variables follows a continuous 

process represented by a Gaussian Random Field (GRF). To model and predict these variables at 

unobserved locations, I used the Stochastic Partial Differential Equations (SPDE) framework 

implemented in the R-INLA package (Lindgren et al., 2011, Moraga, 2019, Blangiardo and Cameletti, 

2015). The SPDE approach, proposed by Lindgren et al. (2011), provides an approximate solution to 

the SPDE by employing the Finite Element method (Lindgren et al., 2011). This method involves 

creating a triangulated mesh that divides the spatial domain (D) into non-intersecting triangles. Defining 

the SPDE model in the R-INLA package requires several steps, with one crucial step being the creation 

of a mesh over the study region to calculate an approximation to the solution, which represents the 

spatial process. Here, I summarise steps required to fit the SPDE model in the R-INLA package. 

Krainski et al. provide a detailed description of the SPDE model (Krainski et al., 2018). 

 

o Step 1: calculating the mean value of study variables at PSUs 

First, mean values of the study variables were calculated at each Primary Sampling Unit (PSU), taking 

into account survey-specific weights as outlined in the DHS manuals provided by EDHS. It is important 

to note that within PSUs, the sample sizes might be small, potentially leading to extreme values. 

However, the geostatistical approach can mitigate this issue by borrowing information from 

neighbouring areas, resulting in the smoothing or shrinking of extreme values and capturing the level 

of uncertainty  (Gething and Burgert-Brucker, 2017, Burgert‐Brucker et al., 2018, Burgert-Brucker et 

al., 2016b). 

 

 

http://www.r-inla.org/
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o Step 2: Building the mesh 

 The second step involves creating a neighborhood structure, referred to as a mesh, for the continuous 

data. This can be achieved by implementing a constrained Delaunay triangulation, where the starting 

vertices are based on the observation locations (Moraga, 2019). In practice, constructing the mesh 

involves finding a balance between approximation accuracy and computational costs. 

First, I obtained a triangulation using the initial vertices located at the PSU locations 

corresponding to the years 2000, 2005, 2011, and 2016, specifically vertices 533, 526, 569, and 622. 

To ensure the quality of the triangulation, additional vertices were added based on the (1) cutoff, (2) 

offset, and (3) max.edge parameters of the inla.mesh.2d() function in the R-INLA package (Blangiardo 

and Cameletti 2015; Lindgren, Rue, and Lindstrom 2011). In the the R-INLA package, The cutoff 

parameter is used to prevent the creation of excessively small triangles around the PSU locations, while 

the offset parameter determines the size of the inner and outer extensions surrounding the PSU locations. 

The max.edge parameter sets the maximum length for triangle edges in the inner domain and outer 

extension. In order to maintain a finer approximation at a reasonable computation time and cost, I 

limited the number of vertices to approximately 4,000 (Figure 3.2).  

  

Figure 3.3. The Ethiopia triangulation with 3952 vertices for 2000, 3924 vertices for 2005, 3946 vertices for 2011 and 
3930 vertices for 2016. 
Note: The red dots mark location of Primary sampling units (PSUs)  
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o Step 3: Defining the SPDE model in the mesh 

Here the Matérn covariance function was used. 

 

o Step 4: Prior  

The choice of prior in a geostatistical model can be either informative or non-informative. In this study, 

I opted for the default setting of non-informative priors (Poggio et al., 2016). By default in R-INLA 

package, the intercept has a Gaussian prior with mean and precision equal to zero. Coefficients of the 

fixed effects also have a Gaussian prior by default with zero mean and precision equal to 0.001. The 

prior on the precision of the error term is a Gamma distribution with parameters 1 and 0.00005 

(Blangiardo and Cameletti, 2015). I fit the model by calling inla() and using the default priors in R-

INLA. 

o Step 5: Fit the hierarchical model  

I defined the likelihood family for the model response variables based on their nature and characteristics. 

The variables TFR (Total Fertility Rate), median age at first marriage, and ethnolinguistic diversity 

index were treated as continuous variables and assumed to follow a Gaussian (normal) distribution. On 

the other hand, the variables mCP (modern contraceptive prevalence), proportion of women living in 

urban areas, and proportion of women with secondary or higher education were treated as binomial 

variables and assumed to follow a binomial distribution. The binomial distribution is appropriate for 

variables that represent a count or proportion with a fixed number of trials (in this case, the total number 

of women surveyed). These choices of likelihood distributions allow for appropriate modelling of the 

variability and distributional characteristics of the variables under consideration. Table 3.4 provides an 

overview of the likelihood families used for each variable.  

 

 

Table 3.4. Study variables and probability distributions 

Study variables Type 

∎ Total Fertility Rate 

Continuous variable ∎ Median age at first marriage 

∎ Ethnolinguistic diversity  
(Entropy index) 

∎ Modern contraceptive prevalence (mCP) 
           (1= using modern contraceptive method, 0= not using) 

Binary variable 
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∎ % women with secondary or higher education  
           (1= Secondary or higher, 0 = lower than secondary) 

∎ % Urban population 
           (1= living in urban area, 0= living in rural area) 

 

o Step 6: Construct a hierarchical model 

I employ a geostatistical model to estimate values of study variables in unsampled areas of Ethiopia 

under the assumption that fertility and key selected determinants occur continuously in space. In the 

case of fertility, fertility at spatial location i, follows a zero-mean Gaussian process with a Matérn 

covariance function, and the mean is determined by the sum of an intercept and a spatially structured 

random effect (Table 3.5). For continuous variables, such as TFR and median age of first marriage, 

I used a Gaussian spatial model to estimate the values at each spatial location i, after having checked 

normality in the total fertility rate, the median age at first marriage and the ethnolinguistic diversity 

index (Appendix 5). The model assumes a Gaussian distribution for the response variable, with a 

mean determined by spatial covariates and a spatially structured random effect. The variance of the 

response variable is also accounted for in the model. For binary variables, I used a binomial spatial 

model with a logit link function. This model allows for the estimation of the probability of the event 

(e.g., proportion of women with secondary education) at each spatial location i, taking into account 

the spatial structure and covariates. The total number of women sampled at each spatial location, 

denoted as 𝑁𝑖, is incorporated in the model to account for the sample size variation (as shown in 

Table 3.5).  

To improve the predictive accuracy of the model, it is important to select the most 

appropriate set of covariates. In the case of this study, the variables collected from DHS surveys at 

each cluster are not suitable for spatial interpolation because they are not observed throughout the 

entire mapping region (Burgert, 2014). Therefore, alternative geospatial covariates obtained from 

publicly available remote sensing sources can be utilized. These covariates, such as land surface 

temperature, enhanced vegetation index, and average monthly rainfall, have been commonly used 

in studies related to disease prevalence or environmental mapping (Giorgi et al., 2021, Huang et al., 

2017, Reiner Jr et al., 2020). While these covariates may be associated with environmental variables 

and diseases like soil carbon and malaria, their association with fertility and key determinants of 

fertility is less likely. Furthermore, it is important to clarify that the main object ive of this study is 

to explore the spatial variations in fertility rather than investigating the specific changes in the 

estimated study variables at the district level associated with a one-unit increase in covariates. In 

light of this, the intercept term (𝛽0) is treated as a fixed effect in the model, representing its overall 

impact on fertility across the study area. On the other hand, the spatial random effect (𝑢(𝑆𝑖)) is 

included in the model to capture the unexplained spatial variation in fertility (Table 3.5). By 
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considering 𝛽0 as a fixed effect and incorporating 𝑢(𝑆𝑖) as a spatial random effect, this approach 

helps remove variation in the estimates that could potentially influence the exploration of 

associations between the outcome variable (fertility) and the explanatory variables for the study 

objectives (3, 4, and 5). This allows for a more focused analysis on understanding the spatial patterns 

and variations in fertility, without being confounded by the specific effects of the covariates. 

Additionally, it is worth noting that this study employs a cross-sectional analysis, meaning that a 

separate model is fitted for each year (2000, 2005, 2011, and 2016). 

Table 3.5. Bayesian hierarchical models for continuous and binomial variables 

Continuous variable Binary variable 

𝑌𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖 , 𝜎2), i= 1, 2,…,n 

𝜇𝑖=𝛽0 + 𝑢(𝑆𝑖) + 𝜀𝑖 

𝑢(𝑆𝑖) ~ 𝐺𝑃(0, 𝛴) 

𝑌𝑖~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖 , 𝜋𝑖), i= 1, 2,…,n 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖)=𝛽0 + 𝑢(𝑆𝑖) +  𝜀𝑖 

𝑢(𝑆𝑖) ~ 𝐺𝑃(0, 𝛴) 

where; 

- 𝑌𝑖 denotes either continuous or binomial study variables for spatial location t i 

- 𝜇𝑖 is the mean, representing the underlying mean for spatial location i 

- 𝜋𝑖 is the probability, representing the underlying prevalence for spatial location  i 

- 𝛽0 denotes the intercept 

- 𝑢(𝑆𝑖) = is the spatial error accounting for spatial autocorrelation between data points. It is 

modeled as Gaussian Process with a zero mean and the spatially structured covariance 

matrix 𝛴 based on the Matérn covariance function 

- 𝜀𝑖  is an unstructured random error term known as nugget effect. 

 

o Step 7: Estimate the posterior distribution of the parameters  

Here, parameters of the matern function () and the marginal distribution of the intercept were 

estimated using INLA-SPDE.  

o Step 8: Predict the study variables and calculate their posterior marginal distribution   

I predicted values of study variables at 145,978 spatial locations, which is approximately equivalent 

to 3km2 grid in Ethiopia. 

o Step 9: Spatially modelled map surface  

The MBG models produce estimates of the study variables at 145,978 spatial locations, which is 

approximately equivalent to 3km2 grid in Ethiopia. The model provides two separate surface maps. 
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a) Point estimate surface: This map provides the modelled point estimate at 145,978 spatial 

locations based on geo-referenced data from the DHS. This estimate shows the expected 

value of the indicators at 145,978 spatial locations.  

b) Uncertainty surface: A map of uncertainty shows the level of uncertainty related with the 

expected values of the point estimate surface by plotting the 95 % confidence intervals (CI) 

for each spatial location. 

 

o Step 10: Calculate area-average for each district 

Aggregation from the point estimate to polygons or districts is one of the most important ways in 

which modelled surfaces can be manipulated to inform policies and programmes. There are two 

main methods commonly used for this type of aggregation (Burgert-Brucker et al., 2016b):  

a) Simple mean zonal statistics: Values for the polygon are determined by taking the average 

of all point estimates within the polygon.  

b) Population weighted mean statistics: Apply the same method, but consider the population 

of each grid square and how it affects the estimate for the whole study area. 

The simple mean zonal statistics method, as mentioned by Burgert‐Brucker et al. (2018), can be 

used to estimate values at the aggregated polygons (Burgert‐Brucker et al., 2018). This method 

calculates the average of the values within each polygon without considering the population size or 

distribution. n previous studies, researchers have used population-weighted mean statistics by 

incorporating gridded population estimates from projects like WorldPop. However, Burgert-Brucker 

et al. (2016b) emphasized the importance of selecting the appropriate reference population for the 

denominator estimation, considering factors such as gender and age-groups (Burgert-Brucker et al., 

2016b). For this study, the denominator for estimating the aggregated values should be women aged 

15-49 between the years 2000 and 2016. While population density and count estimates for 

individuals are available from the WorldPop project, there is a scarcity of population data 

specifically for women of childbearing age (15-49 years old) during 2000-2016. 

Furthermore, considering the differences in population density between administrative level 

3 (Admin 3) areas, it is expected that the variations within each Admin 3 area would be much smaller 

compared to the variations within Admin 1 and Admin 2 areas. This is illustrated in Figure 4. Based 

on this understanding, I assumed a constant population density for women aged 15-49 within 

districts. This assumption is justified by the fact that districts are smaller and more homogeneous 

areas compared to higher administrative levels. To estimate aggregated values within districts, I 

used the simple zonal statistic method, which calculates the average value within each district 
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without taking population size into account. This approach is appropriate considering the assumption 

of constant population density within districts.  

Additionally, to account for the complex survey design of the Ethiopian Demographic and 

Health Surveys (EDHS), I applied survey weights as outlined in the DHS manuals. These weights 

are used to adjust for the sampling design and ensure that the estimates are representative at the 

national and subnational levels, taking into account stratification, clustering, and the different 

probabilities of selection for each sampled individual or primary sampling units (PSUs).  

 

Figure 3.4. Estimated population density estimates (1 km resolution) in 2000 and 2016. 
Note: Gray lines refer to district boundary. (Data source: The WorldPop Project) 

 

 

Hence, for each district 𝑨𝑗, the average was computed using simple mean: the area is computed using; 

𝒚�̃� =  
∑ 𝑦(𝑠𝑖) 𝑠𝑖∊𝑨𝑗 

𝑠𝑖 ∊ 𝑨𝑗
 

where, 𝑠𝑖 ∊ 𝑨𝑗 denotes the total number of predicted locations inside district 𝐴𝑗 and 𝑦(𝑠𝑖) denotes 

predicted values for y variables at 𝑠𝑖  location. 

Lastly, I compare the geostatistical indicator estimates and directly calculated indicators from 

the EDHS between 2000 and 2016 to examine the goodness of fit between model-based and observed 

estimates at the regional level. Model validation was performed only at the regional level since the 

Ethiopian Demographic and Health Survey (EDHS) was originally sampled to represent the national 

and regional levels. 
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3.2.2. Objective 2: To describe and explore spatial and temporal patterns of 

study variables in 2000, 2005, 2011 and 2016 

 

3.2.2.1. Data and study variables 

I used the modelled fertility and key-indicator estimates at 981 districts between 2000 and 2016 that I 

obtained from the study objective 1.  

 

3.2.2.2. Data Analysis  

I visualised fertility and key-indicator estimates at 981 districts between 2000 and 2016 in Ethiopia’s 

to explore spatial and temporal patterns of study variables.  

Figure 3.4 illustrates the proposed geostatistical modelled prediction process from the 

DHS data inputs to the outputs at the local levels.   
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Estimate of study variables at DHS PSUs  Mesh Construction using the PSU locations 

↓  ↓ 

Model Fit (INLA-SPDE) 

↓ 

   

                               [Point estimates surface]                  [Model uncertainty surface] 

Predicted values of TFRs at 145,978 spatial locations (equivalent to 3km2 grid) 

↓ 

 

Corresponding area averages for districts 

Figure 3.5. Geostatistical modelled prediction process   
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3.3. Paper 2:  What determines geographical variations in 

fertility at the district level? 

In paper 2, I utilise various spatial models to examine the spatial effects of key selected determinants 

on fertility at the district level in Ethiopia, using the district-level data obtained from paper 1. Firstly, I 

compare non-spatial and spatial generalized linear models to determine the existence of spatial 

dependency in fertility in Ethiopia. Next, I investigate the spatial heterogeneity in the relationships 

between Total Fertility Rates (TFRs) and both proximate and distal determinants in Ethiopia from 2000 

to 2016. This research paper addresses study objectives 3, 4, and 5 as outlined in Table 3.1. 

 

3.3.1. Data and study variables 

I use the 2000, 2005, 2011, and 2016 Ethiopian Demographic and Health Surveys (EDHS) to assess 

the spatial autocorrelation of fertility at the primary sampling units (PSUs) across the study periods. 

Subsequently, I utilise the fertility and key-indicator estimates for the 981 districts between 2000 and 

2016, which were obtained from the study objective 1. 

 

3.3.2. Data Analysis 

I employed various spatial models to examine the spatial autocorrelation and heterogeneity of fertility 

at the district level in relation to selected proximate and distal determinants. Since I conducted a cross-

sectional analysis, I fitted separate spatial models for each year instead of using a single model with 

effects for the year. 

 

3.3.2.1. Objective 3: To assess effects of key selected distal and proximate 

determinants on geographical variations in fertility at the district level 

between 2000-2016 with the non-spatial linear model 

To assess the direct effect of indicators on fertility levels within the same region, I employed a non-

spatial regression model. The model is formulated as follows: 

𝑦(𝑇𝐹𝑅)𝑗 =  𝛽0 + ∑ 𝛽𝑚𝑋𝑚𝑗

𝑁

𝑚=1
 +  𝜀𝑗 
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where j denotes the  j th districts, where j = 1 to 981; 𝑦𝑗 is the outcome variable, TFR at district 

j; 𝛽𝑚 is the regression coefficient for explanatory variable . m denotes the selected explanatory variables, 

including mCP, Median age at first marriage, proportion of urban population and women with 

secondary and higher education and ethnolinguistic homogeneity at Zonal areas. 𝑋 represent the value 

of explanatory variable m at district j. 𝜀𝑗 is an error term for the regression equation. However, this non-

spatial regression model does not consider any form of spatial effects between different places.  

To examine spatial autocorrelation of TFR at the primary sampling unit (PSU) level, I 

conducted an analysis of TFR at the PSU level between 2000 and 2016 by using semi-variance analysis. 

Specifically, I present a) TFR at the PSU level and b) the variogram cloud, and c) the semi-variogram 

plots for TFR by using an exponential model. 

 

3.3.2.2. Objective 4: To assess spatial dependency of district-level fertility by using 

the spatial linear model 

As explained earlier, according to the diffusion theory, changes in fertility rates spread from one area 

to another through social interactions and the diffusion of ideas and behaviours. This can cause the 

tendency of similar fertility rates to cluster together in geographic space regardless of socioeconomic 

conditions. In the context of fertility, it means that districts in close distance are likely to have similar 

fertility rates due to the diffusion of fertility behaviours. In spatial statistics, spatial lag regression is 

often used to account for spatial autocorrelation by incorporating neighbouring values into the 

regression model. It allows us to examine the relationship between fertility rate in a district and the 

fertility rates of neighbouring districts, capturing the diffusion process explicitly. A spatial lag 

regression model includes a lagged dependent variable (fertility rate of neighbouring areas) as an 

independent variable in addition to other relevant independent variables. This accounts for the spatial 

autocorrelation of fertility rates and allows us to estimate the effects of neighbouring fertility rates on a 

given district's fertility. Therefore, if the coefficient of the lagged dependent variable is positive and 

statistically significant, it suggests that an area's fertility rate is influenced by the fertility rates of its 

neighbouring areas, supporting the diffusion theory. 

Existing fertility studies have utilised the SLM to model the spatial diffusion of fertility, 

incorporating an autocorrelation coefficient on fertility (Vitali and Billari, 2017, Montgomery and 

Casterline, 1993, Goldstein and Klüsener, 2014). The SLM is particularly suitable for capturing 

spatially diffusive processes in the outcome variable, as diffusion processes tend to spread among 

people over space (Fingleton and Le Gallo, 2008). In order to test the spatial autocorrelation of total 

fertility rate (TFR) at the district level, I employed a spatial linear model and compared the results with 
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a non-spatial linear model. The SLM is advantageous in accounting for the proximity of neighbouring 

spatial units. To explore the spatial dependence of TFR, I employed the following SLM: 

𝑦(𝑇𝐹𝑅)𝑗 = 𝛽0 + 𝜌 ∑ 𝑊𝑗𝑦𝑐𝑛 

𝑁

𝑐𝑛=1
 + ∑ 𝛽𝑚𝑋

𝑚𝑗

𝑁

𝑚=1
 + 𝜀𝑗 

𝜌 is the spatial lag term that reflects the strength of spatial autocorrelation in fertility. cn refers to the 

connected neighbouring districts and 𝑦𝑐𝑛 is the TFR of the neighbouring district. 𝑋 represent the value 

of explanatory variable m at location j. 𝑊𝑗 denotes the spatial weight for a given district j. For spatial 

weights, I employed a first order queen contiguity approach that assigns a binary spatial weight (0,1) to 

any connected neighbouring districts (Anselin and Arribas-Bel, 2013, Anselin and Rey, 1991). For 

example, if a district is connected to three districts, then it will have three links in the weight matrix. 

(Figure 3.5).  I used the contiguity approach, instead of a distance-based approach. This is because the 

different sizes of districts can result in unequal representation of spatial connectivity. 

 

District 1 (D1) District 2 

District 3 (D3) District 4 (D4) District 5 (D5) 

District 6 (D6) District 7 (D7) 

 

  D1 D2 D3 D4 D5 D6 D7  

D1 
  

0 1 1 1 0 0 0 

  

    

D2   1 0 0 1 1 0 0   

D3   1 0 0 1 0 1 0   

D4   1 1 1 0 1 1 1   

D5   0 1 0 1 0 0 1   

D6   0 0 1 1 0 0 1   

D7 
  

0 0 0 1 1 1 0 
  

    

Figure 3.6. Diagram of the first queen contiguity weight matrix 

 

Although some reports use spatial error model (SEM) to test spatial autocorrelation, SEM 

assumes that the spatial autocorrelation arises from unobserved spatially correlated factors. However, 

the primary concern of this thesis is to assess whether the spatial autocorrelation of district-level fertility 

is due to relationship between fertility rate in a district and the fertility rates of neighbouring districts, 

capturing the diffusion process explicitly. Therefore, SEM does not explicitly account for the influence 
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of neighbouring fertility rates, which may be crucial in understanding the diffusion process. Therefore, 

SEM may not adequately capture the spatial autocorrelation of district-level fertility in Ethiopia 

resulting from the spread of fertility behaviours. Hence, I opt for SLM rather than SEM to study the 

diffusion process of fertility decline and address spatial autocorrelation in district-level fertility.  

 

3.3.2.3. Objective 5: To explore spatial heterogeneity in relationships between 

TFRs and both proximate and distal determinants in Ethiopia by using 

geographically weighted regression between 2000 and 2016. 

 

When the spatial dimension plays a significant role in the relationship between study variables, 

geographically weighted regression (GWR) can be employed. The GWR model is increasingly utilized 

in fertility studies as it can identify the factors contributing to fertility fluctuations and capture the 

spatially heterogeneous relationships between location-specific fertility and (Wang and Chi, 2017, 

Haque et al., 2019, Obradovic and Vojkovic, 2021).Unlike global linear regression models such as the 

spatial lag model, the GWR model is a local linear regression approach that can identify specific local 

trends in the spatial distribution of parameters. In order to examine the spatially varying relationships 

between study variables, the GWR model conducts separate regressions at each district, which are 

specified as (Brunsdon et al., 1996, Fotheringham and Oshan, 2016): 

𝑦(𝑇𝐹𝑅)𝑗 =  𝛽0(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗) + ∑ 𝛽𝑚

𝑁

𝑚=1

(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗)𝑥𝑚𝑗 + 𝜀𝑗   

(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗) denotes the longitude and latitude coordinates of woreda j. The locations for each district 

in the GWR analysis is the centroids of each district. The regression coefficients 𝛽m are estimated by a 

geographically weighted matrix of the form: 

�̂�(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗) =  [𝐗𝑇𝐖(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗)𝐗]−1[𝐗𝑇𝐖(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗)𝐘],   

where �̂� is a vector of local estimators of 𝛽; 𝑿 and 𝐘 are vectors of selected explanatory variables and 

TFRs. 𝐖(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗) is the diagonal weighting matrix relative to the location of (𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗), which 

contains 0 in its off-diagonal elements. 

𝐖(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗) =  [

𝑤1(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗) 0 0

0 … 0
0 0 𝑤𝑛(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗)

]   
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     Thus, �̂�(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗) varies with the values of 𝐖(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗).  For spatial weights, I adopted Gaussian 

weights and the bi-square weighting function. The function is as follows: 

𝑊𝑖𝑗 =  {
[1 − (𝑑𝑖𝑗/𝑏)2]2, 𝑑𝑖𝑗 < 𝑑𝑚𝑎𝑥 

             0           , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

where 𝑑𝑖𝑗  is the Euclidean distance between district j for estimation and specific location i for 

observation. b is the bandwidth size that defines how many neighbouring observations should be 

included in the weight matrix (Fotheringham, 1997). There are two options for determining the 

bandwidth: a fixed method and an adaptive method. The fixed method defines a spatial cluster around 

all regression points using a fixed bandwidth, where the kernel range is determined by the distance to a 

specific regression point. The adaptive method utilizes various bandwidths to specify spatial clusters 

surrounding each regression point, as illustrated in Figure 3.6(B). The number of neighbours from a 

specific regression point determines the kernel range. In cases of sparse data, the kernel range has a 

larger bandwidth. In this study, I used the adaptive method to determine the bandwidth size due to the 

uneven distances across Ethiopian districts. 

 

(A)                                                                                                      (B) 

Figure 3.7. Example of (A) fixed and (B) adaptive bandwidth 

Source: (Shabrina et al., 2021) 

 

 

3.4. Closing remarks  

Further details of data and methods are covered in Chapter 4 and Chapter 5. 
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4.1. Overview 
 

In Chapter 4, I applied Bayesian model-based geostatistics (MBG) to generate maps of fertility and 

key selected proximate and distal determinants in 981 districts in Ethiopia between 2000 and 2016. 

These maps have policy implications for the decentralised health service system at the district level in 

Ethiopia. This paper describes and explores the changes in sub-national variations in fertility and key 

proximate and distal determinants between 2000 and 2016. 

 

 

 

4.2. Role of candidate 
 

I conceived of the study design and statistical analysis plan which was agreed by the co-authors. I 

conducted the statistical analysis and wrote the first draft of the manuscript with feedback and inputs 

provided from Christopher I Jarvis, Ian M Timæ us, and Kazuyo Machiyama.   

 

 

 

 

 

4. Chapter 4:  Geographical distribution of fertility in Ethiopia 

between 2000 and 2016: a district-level analysis 

Objective 1 To estimate TFRs and key selected proximate and distal determinants for 981 

districts in 2000, 2005, 2011 and 2016 by using a geostatistical modelling approach.   

Objective 2 To describe and explore spatial and temporal patterns of TFR and key selected 

proximate and distal determinants at the district level in 2000, 2005, 2011 and 2016. 
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4.3. Abstract 
 

Background 

Understanding and acknowledging fertility differences between districts in Ethiopia is important 

because districts, known as woredas, serve as vital administrative units for health policy and planning. 

While previous studies have often examined geographical variations in fertility between urban and rural 

areas or at the regional level, limited information is available regarding geographical variations in 

fertility at the district level due to the scarcity of district-level data in Ethiopia. Therefore, the objective 

of this study is to describe and explore geographical variations in fertility rates and key proximate and 

distal determinants at the district level in Ethiopia between 2000 and 2016. 

Methods 

This cross-sectional study analysed data from the 2000, 2005, 2011, and 2016 Ethiopia Demographic 

and Health Surveys. It employed a Bayesian model-based geostatistical approach using a stochastic 

partial differential equation (SPDE) within the integrated nested Laplace approximation (INLA) 

framework. The study aimed to estimate various indicators, including the total fertility rate (TFR), 

modern contraceptive prevalence (mCP), median age at first marriage, proportion of women living in 

urban areas, proportion of women with secondary or higher education, and ethnolinguistic diversity for 

981 districts between 2000 and 2016. Mapping analysis was conducted to investigate changes in the 

spatial patterns of these variables at the district level in Ethiopia. 

Results 

In 2000 and 2005, geographical variations in fertility at both the regional and district levels in Ethiopia 

were relatively small. However, district-level fertility diverged both between and within regional states 

in 2011 and 2016, resulting in wider variations within the same regions. Notably, distinct spatial patterns 

of fertility have emerged, with lower fertility rates gradually spreading from the capital to the northern 

and western parts of Ethiopia. These spatial patterns of district-level TFR were partly associated with 

the locations of urban areas but primarily driven by changes in the spatial patterns of mCP. 

Conclusion 

Although district-level fertility did not vary much between districts in 2000 and 2005, substantial 

variations in district-level fertility have emerged in recent years, even within the same region, in 

Ethiopia. This result implies that focusing solely on national or regional data provides an inadequate 

description of the geographical variations in contemporary fertility in Ethiopia. This paper contributes 

to our understanding of changes in the spatial pattern of fertility and the key factors determining fertility 

at the district level in Ethiopia. 
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4.4. Introduction   
 

The Sustainable Development Goals (SDGs), specifically target 17.18, aim to ensure that no one is left 

behind by improving access to timely and accurate data disaggregated by geographic location and other 

relevant factors within national contexts by 2030 (UN, 2015). The growing availability of georeferenced 

data in low-income countries, including data collected through the Demographic and Health Survey 

(DHS) programme, has facilitated the use of geostatistics to generate high-resolution maps of health 

and demographic indicators in sub-Saharan Africa (SSA). 

Understanding and acknowledging subnational variations in fertility and its determinants at the 

district level is crucial for effective public health policy planning in SSA countries. Many SSA countries 

have implemented decentralisation of healthcare delivery to enhance the quality of local health services 

(Zon et al., 2017). Recent research has demonstrated the significance of high-resolution spatial 

estimates in mapping demographic and health indicators at the subnational level in SSA countries, 

revealing variations that may be masked by aggregate or national-level indicators (Hosseinpoor et al., 

2018, Dwyer-Lindgren et al., 2019, Burke et al., 2016, Reiner Jr et al., 2020, Bhattacharjee et al., 2019, 

Graetz et al., 2018, Osgood-Zimmerman et al., 2018). While administrative boundaries are commonly 

used for decision-making by national policymakers and program managers, accurate high-resolution 

spatial estimates of health indicators can offer valuable tools for spatially targeted health interventions. 

Hence, estimates that align with administrative boundaries would be more beneficial for national 

policymakers engaged in subnational planning. Although recent studies have explored fertility and 

mortality at the first administrative unit (Admin 1), such as states or provinces, in SSA (Pezzulo et al., 

2021, Li et al., 2019b), there is a need for estimates at even lower administrative levels, such as Admin 

2 or 3, as health program implementation is often decentralized to those levels (Mayala et al., 2019a, 

Janocha et al., 2021).   

In Ethiopia, the district level, known as 'woreda' in Amharic, plays a crucial role as an 

administrative unit for health policy and implementation. The country's health system follows a 

decentralised approach, empowering district administrations with decision-making authority. This is 

exemplified by the National Health Sector Transformation Plan II (HSTP II) agenda, which emphasizes 

"Woreda-Based Health Sector Planning (WBHSP)." The aim of WBHSP is to mainstream the 

Sustainable Development Goals (SDGs) at the district level, ensuring that no one is left behind by 

customizing national health programs to the specific context of each district in Ethiopia (MoH, 2021).  

The adoption of WBHSP initially aimed to address health disparities between districts in response to 

significant geographical variations in fertility and health outcomes in Ethiopia. For instance, in 2016, 

the total fertility rate (TFR) was 1.8 in Addis Ababa and 7.2 in the Somali regional state (MoH, 2015, 

ICF, 2016).  Ethiopia stands as the second most populous nation in sub-Saharan Africa (SSA), with an 
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estimated population of about 115 million in 2021. The country's population is highly diverse, 

encompassing over 90 different ethno-linguistic groups. Ethno-linguistic identity serves as a key 

criterion in determining sub-national administrative boundaries (Abbink, 2011). The eleven regions are 

divided along ethno-linguistic lines, comprising five regional states dominated by a single ethno-

linguistic group (Amhara, Tigray, Afar, Oromia, and Somali regional states), four multi-ethnic regional 

states (Harari, Southern Nation, Nationalities and Peoples (SNNP), Benishangul-Gumuz, Gambella 

regional states), and two multi-ethnic cities (Addis Ababa and Dire-Dawa) (Figure 4.1). Additionally, 

two eastern regional states (Afar and Somali) and two western regional states (Benishangul-Gumuz and 

Gambella) are often categorized as the Developing Regional States (DRS). These regions are primarily 

inhabited by pastoral communities, whose health and socio-economic outcomes often lag behind the 

other regions in Ethiopia (Chekole et al., 2019, Getnet et al., 2017, Alemayehu et al., 2016). 

Ethiopia's geography is therefore often characterized by pervasive ethnolinguistic, health, 

demographic, and socioeconomic heterogeneities. In the realm of demographic theory, geographical 

variations in fertility are often attributed to either different socioeconomic conditions (the adaptationist 

approach) or the spatial diffusion of new information and the social acceptability of fertility control (the 

diffusionist approach). Recent studies on fertility in high- and middle-income countries (HMICs) have 

revealed marked geographic variations in fertility at the district level and assessed how adaption and 

diffusion effects can jointly account for sub-national fertility variations (Campisi et al., 2020, Wang 

and Chi, 2017, Vitali and Billari, 2017, Sabater and Graham, 2019, Haque et al., 2019). Therefore, both 

theoretical arguments and empirical evidence suggest that geographical variations in fertility at the 

district level in Ethiopia matter. However, very little is known about geographical variations in fertility 

at the district level due to the shortage of district-level data in Ethiopia. 

 In this paper, I aim to examine the changes in spatial patterns of fertility at the district level in 

Ethiopia, considering both its proximate and distal determinants. Proximate determinants include 

biological and behavioural factors that directly influence fertility rates, while distal determinants 

encompass socioeconomic and cultural factors that indirectly affect fertility rates through the proximate 

determinants. To achieve this, I estimate fertility rates and the key proximate and distal determinants 

using data from the Ethiopia Demographic and Health Surveys (EDHS) conducted between 2000 and 

2016. Our approach involves utilising Bayesian model-based geostatistics (MBG) to generate maps 

illustrating the geographic distribution of fertility and its determinants at the district level. No prior 

study has specifically explored the dynamics of geographical variations in fertility at the district level 

in Ethiopia. Therefore, the present paper intends to fill this research gap by offering additional insights 

into the geographic variations in district-level fertility across Ethiopia. 
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Figure 4.1. Majority ethnic group in each district of Ethiopia according to the 2007 Census 
Data source:  The 2007 Ethiopia Population and Housing Census 

 

4.5. Methods 
 

4.5.1. Data 

I obtained data from EDHS conducted in 2000, 2005, 2011, 2016 (ICF, 2000, ICF, 2005, ICF, 2011, 

ICF, 2016) and restricted the sample to women aged between 15-49. The EDHS samples are designed 

to provide estimates for a range of demographic and health indicators that are nationally representative, 

as well as representative for the eleven regional states. The sampling strategy of the EDHS involves 

stratification by regional state and urban/rural areas. The samples are selected in two stages. In the first 

stage, primary sampling units (PSUs) are chosen with a probability proportional to their size within 

each stratum. In the second stage, approximately 24-35 households are randomly selected from each 

PSU. The EDHS also provides GPS coordinates for the PSUs, which allows for spatial analysis. To 

ensure respondent confidentiality, these geographical coordinates are displaced by up to 2 km in urban 

areas and up to 5 km in rural regions. In our study, we excluded 6, 9, 27, and 21 PSUs without GPS 

coordinates from the 2000, 2005, 2011, and 2016 EDHS datasets, respectively. As a result, our final 

analysis included 533, 526, 569, and 622 PSUs from the respective survey years (see Appendix 2). To 

map the distribution of the total fertility rate (TFR) and key proximate and distal determinants, I 

obtained corresponding district polygons from UNOCHA Ethiopia (UNOCHA, 2020). These polygons 

cover 11 regional states, 90 zones, and 981 district-level boundaries. Ethical approval for our study was 

obtained from the London School of Hygiene & Tropical Medicine, UK, Ethics Committee (25580). 

4.5.2. Measurement of study variables 

I undertook a subnational analysis of cross-sectional surveys collected from EDHS between 2000 and 

2016 to describe changes in spatial patterns of total fertility and two proximate and three distal 

determinants across 981 districts (Admin 3) in Ethiopia. To calculate the study variables, we aggregated 
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the data at the primary sampling unit (PSU) level, taking into account survey-specific weights as 

specified in the DHS manuals. It is crucial to acknowledge the impact of geographical displacement 

when conducting spatial modelling using DHS surveys, as it affects the precise location of individual 

data points. The EDHS data incorporates buffers of 2 km for urban PSUs and 5 km for rural PSUs 

around the recorded geographical coordinates to address this displacement. 

I measured fertility by means of subnational TFRs calculated using methods described by the 

DHS Guide to Statistics (Croft et al., 2018). In the DHS, the TFR is estimated as the average number 

of livebirths a women would have if she was subject to the age-specific fertility rates estimated from 

the number of live births occurred during the three years preceding the survey through her reproductive 

years (15-49 years).  

Among the four proximate determinants of fertility (contraception, marriage, abortion, 

postpartum infecundability) (Bongaarts, 2015), I restricted our study to include two proximate 

determinants: a) contraception and b) marriage.  We did not consider the other two determinants because 

a recent study found that the differences in the inhibiting effects of contraception and marriage on 

fertility between the eleven regional states in 2011 and 2016 were much larger than those of the other 

two determinants in Ethiopia (Laelago et al., 2019). To measure the use of contraception, we employed 

the modern contraceptive prevalence (mCP), which is defined as the proportion of currently married 

women currently using any modern method of contraception. As an indicator of nuptiality, we used the 

median age at first marriage, which is defined as the median age in years when women first start living 

with their spouse. Childbearing outside of marriage is uncommon in Ethiopia, and the age at first 

marriage is therefore an important proximate determinant influencing regional variations in fertility in 

the country (Gurmu and Etana, 2014). 

Although there is ongoing debate regarding the most important distal determinants of fertility, 

our analysis focused on three specific distal determinants: a) the proportion of women living in urban 

areas, b) the proportion of women with secondary or higher education, and c) ethnolinguistic diversity 

at the zonal level. We selected these determinants because Ethiopia exhibited the largest fertility 

differentials between residential areas (rural and urban) and female education levels (secondary and 

lower than secondary) among all the Sub-Saharan African countries surveyed by the DHS program (see 

Appendix 2). To ensure comparability across different survey periods, we standardized the definition 

of secondary education as nine years of schooling. This adjustment was necessary because the definition 

of secondary education changed from seven years in the 2000 and 2005 EDHS surveys to nine years in 

the 2011 and 2016 EDHS surveys. 

In addition, previous studies have provided evidence that geographical areas sharing common 

culture and language tend to experience fertility decline around the same time, regardless of their 
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socioeconomic status. (Watkins, 1987, Watkins, 1990, Bongaarts and Watkins, 1996). To measure the 

similarity or diversity in ethno-languages between neighbouring districts in Ethiopia, we used the 

standardised index of diversity at the zonal level. This index, commonly known as the 'entropy index,' 

has been widely employed to assess the impact of ethnic or cultural diversity on fertility behaviour 

(Hogan and Biratu, 2004, De Broe and Hinde, 2006). The index of ethnolinguistic diversity, as 

defined by White (1986), is calculated as follows (White, 1986); 

𝐼𝐷𝑧 = − ∑ 𝑑𝑣𝑧𝑔ln (𝑑𝑣𝑧𝑔 )

𝑔=𝐺

𝑔=1

  

Where 𝑧  = 1 to 90  (The number of zonal areas for this study), and 𝑔  refers to the number of 

ethnolinguistic groups. Therefore,  

𝑑𝑣𝑧𝑔 =
𝑁𝑧𝑔 

𝑁𝑧 
 

where 𝑁𝑧𝑔  is the number of persons in the 𝑔𝑡ℎ ethnic group in the 𝑧𝑡ℎ local area, 𝑁𝑧 denotes the total 

population size of the 𝑧𝑡ℎ local area, and 𝐺 refers to the total number of ethnic groups in 𝑧𝑡ℎ local area. 

Lower values of the entropy index (close to zero) indicate a higher degree of similarity in the 

ethnolinguistic composition within the zonal areas, while higher values of the index signify greater 

ethnolinguistic diversity within those areas. 

4.5.3. Bayesian Model based Geostatistics with INLA-SPDE  

 To estimate TFR and key proximate and distal determinants at the district level, we followed a two-

step process. The first step involved estimating the high-resolution spatial distribution of the study 

variables. In the second step, we aggregated the estimates from the model surface to the spatial polygons 

representing the districts. 

 In the first step, I employed Bayesian model-based geostatistics (MBG) using a stochastic 

partial differential equation (SPDE) approach in the integrated nested Laplace approximations (INLA) 

to predict TFRs and key selected proximate and distal determinants at a continuous spatial resolution. 

Detailed information about the theory and implementation of INLA-SPDE can be found elsewhere 

(Lindgren and Rue, 2015).  To put it briefly, using INLA for Bayesian inference offers benefits over 

Markov Chain Monte Carlo techniques, which often face issues with dense covariate matrices that 

increase computation processing times. INLA provides faster and more efficient estimates of the 

posterior marginal distribution. Given that spatial processes are often described by a Gaussian random 

field with Matérn covariance functions, the INLA-SPDE technique is suitable for spatial interpolation 

(Krainski et al., 2018). Moreover, the MBG technique was recommended by the DHS Spatial 

Interpolation Working Group as one of the most suitable methods for producing interpolated surfaces. 

Point estimates such as mean and standard deviation of estimations can be presented as distributions of 
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estimates (or posterior estimates) generated by the Bayesian framework. This approach is useful when 

modelling DHS data at a smaller geographical scale than what the DHS was designed to represent. The 

INLA-SPDE was carried out using the R package R-INLA implemented in the R software. Similar 

modelling frameworks using the Bayesian INLA-SPDE model have been employed in previous 

research using DHS data to provide high-resolution maps of health indicators (Mayala et al., 2019b, 

Fish et al., 2020). For three of the variables, TFR and median age at first marriage, ethnolinguistic 

diversity, conditional on the true mean value 𝜇𝑖 at location i=1…, n, we assumed that the variable (𝑌𝑖) 

follows a Gaussian distribution, 𝑌𝑖  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖, 𝜎2) and 𝜇𝑖=𝛽0 + 𝑢(𝑆𝑖) + 𝑖 . Here, 𝜇𝑖  equal to the 

sum of an intercept, 𝛽0, and a spatially structured random effect 𝑢(𝑆𝑖) which is a zero-mean Gaussian 

process with Matérn covariance function. For the three other variables, mCP, proportion of women 

living in urban areas and proportion of women with secondary or higher education, conditional on the 

true proportion 𝜋𝑖   at location i=1…, n, the number of positive outcomes 𝑌𝑖  out of 𝑁𝑖  people 

sampled follows a binomial distribution, 𝑌𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖 , 𝜋𝑖) and 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖)= 𝛽0 + 𝑢(𝑆𝑖) + 𝜀𝑖. To 

check for the evidence of spatial correlation and justify the introduction of the 𝑢(𝑆𝑖), I compared the 

observed variograms to a 95% pointwise envelope based on 1,000 Monte Carlo simulations (Diggle 

and Ribeiro, 2007).   

Several studies have included geospatial covariates as fixed effects, such as land surface 

temperature and average monthly rainfall for disease prevalence or environmental mapping (Giorgi et 

al., 2021, Huang et al., 2017, Reiner Jr et al., 2020). Although these covariates are likely associated 

with environmental variables and diseases, they are less likely to be associated with fertility and the key 

selected determinants of fertility. Furthermore, the aim of this study is to describe geographical 

variations in fertility rather than investigating, for instance, the changes in the estimation of study 

variables at the district level associated with a one unit increase in the covariates. Therefore, we 

considered  𝛽0 as fixed effect and 𝑢(𝑆𝑖) as spatial random effect in the model. We then predicted values 

of study variables at 145,978 surface pixels, which is approximately equivalent to a 3 km² grid in 

Ethiopia.  These models were fit independently to the data for each year, resulting in modelled outcomes 

in 2000, 2005, 2010, and 2016. To assess uncertainty, we represented it as the width of the 95% credible 

interval, a method frequently employed by the DHS program to measure associated uncertainty in 

modelled surfaces (Janocha et al., 2021, Burgert‐Brucker et al., 2018). I further conducted a comparison 

between the observed estimates from EDHS and the modelled predictions at the regional level to 

evaluate the goodness-of-fit. 

  In the second step, I used a simple mean approach to aggregate the point estimate model surface 

pixels, allowing us to calculate the levels of Total Fertility Rate (TFR) and its key proximate and distal 

determinants for each of the 981 districts in Ethiopia between 2000 and 2016. 
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4.6. Results 

4.6.1. Model fitness at the regional level and variations between 

regional states 

I compared the observed variogram of the geostatistical data of study variables at the EDHS PSU level 

to a 95% pointwise envelope. I found that there is evidence of spatial correlation since the observed 

variogram lies partly outside the 95% pointwise envelope (Appendix 6). Table 4.1 shows the parameter 

estimates (Intercept (𝛽𝑜), variances of the Gaussian process (𝑥
2 ) and the nugget effect (𝑒

2), and 

nominal range) with the 95% credible intervals for the INLA-SPDE model. It also shows that there are 

high spatial correlations of study variables, because the estimate for the variance of the spatially 

structured effect 𝑥
2 is generally higher than the unstructured effect 𝑒

2. Furthermore, for TFR, mCP, 

and the proportions of women living in urban areas and with secondary education, the practical range, 

which indicates the distance at which spatial correlation between observations becomes negligible, 

expanded between 2000 and 2016. This implies that the spatial correlation between these variables 

strengthened over longer distances during the periods. On the other hand, the practical range for median 

age at first marriage decreased and remained relatively stable for the Index of ethnolinguistic diversity. 

Table 4.1. Parameter estimates and corresponding 95% confidence intervals (CI) of the INLA-SPDE model 

 2000 2005 2011 2016 

Total fertility rate               Estimate (95% CI)                 Estimate (95% CI)              Estimate (95% CI)             Estimate (95% CI) 
Intercept (𝛽𝑜) 5.57 (5.37, 5.78) 5.38 (5.13, 5.63) 5.31(5.06, 5.67) 4.91 (4.64, 5.18) 

𝑥
2 3.44 (2.79, 4.24) 3.91 (2.98, 5.13) 4.90 (4.05, 5.93) 3.58 (2.82, 4.54) 

𝑒
2 1.08 (0.51, 2.28) 2.12 (0.91, 4.93) 1.12 (0.62, 2.03) 1.19 (0.97, 3.75) 

Practical range(km) 10.77 (7.56, 15.33) 13.53 (8.67, 21.09) 10.47 (22.71, 43.41) 25.50 (19.08, 41.25) 

Modern contraceptive prevalence  
Intercept (𝛽𝑜) 0.06 (0.05, 0.08) 0.14 (0.12, 0.15) 0.25 (0.15, 0.35) 0.34 (0.25, 0.43) 

𝑥
2 0.01 (0.00, 0.02) 0.03 (0.01, 0.04) 0.04 (0.02, 0.06) 0.09 (0.05, 0.12) 

𝑒
2 0.01 (0.00, 0.02) 0.02 (0.01, 0.04) 0.02 (0.01, 0.03) 0.05 (0.02, 0.08) 

Practical range(km) 12.93 (8.67, 19.23)  6.09 (18.27, 31.50) 89.52 (52.80, 181.77) 216.66 (139.77, 275.88) 

Median age at first marriage 

Intercept (𝛽𝑜) 16.16 (15.24, 17.07) 16.23 (5.30, 17.17) 16.54 (15.84, 17.23) 16.95 (16.62, 17.27) 

𝑥
2 1.78 (0.95, 3.31) 1.48 (0.71, 3.11) 1.32 (0.75, 2.32) 0.89 (0.61, 1.30) 

𝑒
2 1.07 (0.31, 3.81) 1.35 (0.31, 5.94) 1.59 (0.51, 4.99) 1.51 (0.68, 3.38) 

Practical range(km) 367.44 (234.51, 575.49)  410.66 (235.17, 586.15) 304.23 (187.74, 493.08)   194.61 (71.94, 246.12) 

Proportion of women living in urban areas 

Intercept (𝛽𝑜) 0.07 (5.37, 5.78) 0.08 (5.13, 5.63) 0.12 (5.06, 5.67) 0. 17 (4.64, 5.18) 

𝑥
2 0.01 (0.00, 0.02) 0.02 (0.01, 0.04) 0.03 (0.01, 0.04) 0.05 (0.03, 0.08) 

𝑒
2 0.01 (0.00, 0.02) 0.01 (0.00, 0.02) 0.02 (0.01.0.03) 0.04 (0.02.0.06) 

Practical range(km) 16.74 (11.82, 21.69) 19.62 (12.82, 26.58) 24.92 (22.47, 27.39) 36.36 (33.09, 39.63) 

Proportion of women with secondary or higher education 
Intercept (𝛽𝑜) 0.08 (5.37, 5.78) 0.10 (5.13, 5.63) 0.13 (0.05, 0.09) 0.18 (0.10, 0.14) 

𝑥
2 0.01 (0.00, 0.02) 0.01 (0.00, 0.02) 0.03 (0.01, 0.04) 0.06 (0.04, 0.08) 

𝑒
2 0.01 (0.00, 0.02) 0.01 (0.00, 0.02) 0.02 (0.01.0.03) 0.04 (0.02.0.05) 

Practical range(km) 14.94 (11.37, 19.68) 14.19 (10.68, 18.87) 16.59 (11.07, 22.89) 18.93 (13.32, 26.88) 

Index of ethnolinguistic diversity 
Intercept (𝛽𝑜) 0.57 (0.44, 0.70) 0.59 (0.42, 0.75) 0.59 (0.41, 0.70)) 0.52 (0.38, 0.65) 

𝑥
2 0.19(0.15 ,0.26) 0.18 (0.13, 0.25) 0.17(0.13, 0.24) 0.19 (0.14, 0.26) 

𝑒
2 0.01 (0.00,0.02) 0.01 (0.00, 0.03) 0.01(0.00. 0.03) 0.01(0.00. 0.03) 

Practical range(km) 146.76 (126.81, 170.82) 156.08 (120.32, 201.62) 157.32 (124.74, 198.42) 145.02 (115.47, 182.16) 

Note: 𝑥
2  = variance of the Gaussian process,  𝑒

2= Variance of the nugget effect. 
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The modelled estimates generally correspond to the estimates observed from EDHS at the 

regional level, although some small under- and over-estimation was observed, for instance, for TFR in 

Addis Ababa and Somali regional state in 2016 (Figure 4.2). Therefore, we used the predicted values 

for further analysis. 

In 2000 and 2005, the TFRs of the eight regional states, excluding the three urban regional 

states (Addis Ababa, Dire-Dawa, and Harari), were relatively similar, around 5. However, in 2011 and 

2016, the regional-level TFRs diverged. Some regional states, such as Oromia, Somali, and Afar, still 

had TFRs around 5 or even experienced an increase in fertility, while other regional states showed a 

decline in fertility (Figure 4.2A). 

Similarly, the mCPs in the eight regional states, excluding the three urban regional states (Addis 

Ababa, Dire-Dawa, and Harari), were very low and clustered under 20% in 2000 and 2005. However, 

in 2011 and 2016, the regional-level mCPs diverged. The mCPs of Somali and Afar regional states still 

remained under 20%, whereas other regional states, including Addis Ababa, experienced increases in 

mCP in 2011 and 2016 (Figure 4.2B). On the other hand, between 2000 and 2011, the median age at 

first marriage differed between regional states. However, by 2016, the median age at first marriage of 

the eleven regional states converged around 17 years old, as most regional states experienced increases 

in median age at first marriage between 2011 and 2016. Notably, larger increases in the median age at 

first marriage, almost 2 years, were observed in Addis Ababa and Amhara regional state between 2011 

and 2016 compared to other regions (4.2C) 

The three urban regional states (Addis Ababa, Dire-Dawa, and Harari) exhibited higher 

proportions of urban populations and women with secondary or higher education compared to the other 

eight regional states between 2000 and 2016 (Figure 4.2D and 4.2E). Regional proportions of these two 

distal determinants remained relatively similar from 2000 to 2011, but started to diverge by 2016, 

especially in the case of women with secondary or higher education. Ethnolinguistic diversity remained 

consistent throughout the entire period from 2000 to 2016, but the three urban regional states and the 

Gambela and Benisangul-Gumz regions displayed greater ethnolinguistic diversity at the zonal level 

compared to other regions (Figure 4.2F).  

4.6.2. Variations within regional states 

 In addition to regional variations in study variables, sub-regional variations were also observed (Figure 

4.3).  In particular, between 2000 and 2005, the eight regional states other than the three urban regional 

states (Addis Ababa, Dire-Dawa and Harari) exhibited relatively similar median levels of TFRs and 

mCPs, with small variations within the same regional states (Figure 4.3A and 4.3B). However, in 2011 

and 2016, TFRs and mCPs diverged both between and within regional states, implying that variations 

in TFRs and mCPs in districts within the same regional state widened recently. While there were 
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significant sub-regional variations in ethnolinguistic diversity within each regional state, these 

variations remained relatively stable between 2000 and 2016 (Figure 4.3 F). It is worth noting that 

although the SNNP regional state is the most ethnolinguistically diverse region in Ethiopia, comprising 

more than 45 ethnolinguistic groups, the level of ethnolinguistic diversity at the zone level was 

relatively low. Sub-regional variations in the proportions of women living in urban areas within each 

regional state were small in 2000 and 2016, except for the three urban regional states (Addis Ababa, 

Dire-Dawa, and Harari) (Figure 4.3D). While sub-regional variations in the proportions of women with 

secondary or higher education within each regional state were small until 2011, they became more 

pronounced in most regional states by 2016 (Figure 4.3E).  
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Figure 4.2. Observed and predicted regional values of the study variables for 2000-2016 

A: Total fertility rates; B. modern Contraceptive prevalence (mCP); C. Median age at first marriage; D. Proportion 
of women living in urban areas; E. Proportion of women with secondary or higher education; F. Ethnolinguistic 
diversity at the zonal level. Note: The dashed line represents the 1:1 line 
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Figure 4.3. Predicted values of the study variables for each region 
A. Total fertility rates; B. modern Contraceptive prevalence (mCP); C. Median age at first marriage; D. Proportion 
of women living in urban areas; E. Proportion of women with secondary or higher education; F. Ethnolinguistic 
diversity at the zonal level. Note that box plots were constructed with predicted values of study variables at 
districts within each regional state 
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4.6.3. Changes in spatial pattern of total fertility rates and 

proximate determinants 

Spatial patterns of fertility have become more pronounced in recent years (Figure 4.4A). In 2000 and 

2005, fertility levels were relatively uniform across Ethiopia, excluding the capital. However, by 2011, 

lower fertility levels started to emerge in the central and western parts of the country. In 2016, lower 

fertility extended further into the northern and western regions of Ethiopia.  Likewise, spatial patterns 

of mCPs have become more pronounced in recent years (Figure 4.4B). While mCPs were generally low 

in all regional states other than the capital in 2000 and 2005, there has been a substantial increase in 

mCPs in many districts of the SNNP, Amhara, Oromia, and Benshangul-Gumuz regions since then. 

Additionally, the median age at first marriage has noticeably increased in the capital and the Amhara 

regional state between 2000 and 2016 (Figure 4.4C).  

4.6.4.  Changes in spatial pattern of distal determinants  

Spatial patterning of the proportion of women living in urban areas remained low at the national level, 

excluding the multi-ethnic cities (Addis Ababa and Dire-Dawa), between 2000 and 2016 (Figure 4.4D). 

Similar spatial patterns were observed for the entire period in the proportions of women with secondary 

or higher education, where the spatial patterning remained low except in the multi-ethnic cities (Addis 

Ababa and Dire-Dawa) between 2000 and 2011. But the proportions of women with secondary or higher 

education increased in Tigray and Gambela regional states and western parts of Oromia regional states 

by 2016 (Figure 4.4E). Furthermore, spatial patterns of ethnolinguistic diversity at the zonal level 

revealed that zones tend to have a relatively high degree of ethnolinguistic heterogeneity in 

Benishangul-Gumz, Gambela regional states and the multi-ethnic cities (Addis Ababa and Dire-Dawa). 

On the other hand, zones tend toward ethnolinguistic homogeneity in Tigray, Amhara, and Somali 

regional states (Figure 4.4F).  

4.6.5. Model-based Uncertainty   

Our result showed that 95% credible intervals of uncertainty were often higher in Somali and Afar 

regional states and southern parts of Ethiopia (Figure 4.5). MBG credible intervals of uncertainty grow 

where there is heterogeneity in data, such as wide variation in TFR, or when there are no data to support 

prediction (Mayala et al., 2020)  Hence, despite the smaller number of PSUs in 2000 and 2005 EDHS 

than 2011 and 2016 EDHS, lower credible intervals of TFR in 2000 and 2005 were observed, probably, 

due to limited heterogeneity in TFR. On the other hand, despite the larger number of PSUs in 2011 and 

2016 EDHS than 2000 and 2005 EDHS, higher credible intervals of TFR in 2011 and 2016 were 

observed due to greater heterogeneity in TFR (Figure. 4.5A). In contrast, higher credible interval of 

median age at first marriage was observed in 2000 due to both greater heterogeneity in median age at 
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first marriage and the lack of PSUs in Somali regional state. On the other hand, lower credible interval 

of median age at first marriage was observed in 2016 due to both less heterogeneity in median age at 

first marriage and the increased number of PSUs in Somali regional state (Figure. 4.5C). 

 

 

Figure 4.4. District-level changes in spatial and temporal patterns 
A. total fertility rates (TFRs), B. modern contraceptive prevalence (mCP), C. median age at first marriage, D. 
proportion of women living in urban areas; E. proportion of women with secondary or higher education; F. 
ethnolinguistic diversity at the zonal level for 2000 – 2016 periods 
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Figure 4.5. Model-based uncertainty measured by the width of the 95% credible interval 
A. total fertility rates (TFRs), B. modern contraceptive prevanlence (mCPs), C. median age at first marriage, D. 
proportion of women living in urban areas; E.proportion of women with secondary or higher education; 
F.ethnolinguistic diversity at the zonal level for 2000 – 2016 periods. Red points are referred to locations of 
Primary Sampling Units (PSUs) 
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4.7. Discussion  

 

This study shows the growing importance in Ethiopia of exploring the geographical distribution of 

fertility and its key determinants at the district level. Conducting a geographically disaggregated 

analysis can uncover spatial patterns in fertility that may be overlooked in aggregate-level analyses. In 

particular, this study elucidates three crucial spatial aspects of fertility in Ethiopia: a) the emergence of 

geographical variations in fertility between and within regional states, b) the development of distinct 

spatial patterns in the Total Fertility Rate (TFR) that closely mirror changes in spatial patterns of the 

modern contraceptive prevalence (mCP), and c) the combined influence of adaptation and diffusion 

effects on geographic variations in fertility at the district level. 

First, our district-level analysis clearly shows that geographical variations in fertility have 

widened since 2011, both between regional states and, even more significantly, within regional states 

in Ethiopia. This highlights the emerging differentiation of fertility and its key determinants across the 

country. Previous studies have already indicated substantial geographical differentials in fertility 

between rural and urban areas, as well as among regional states in Ethiopia (Tessema et al., 2020, Desta, 

2019). Our study further confirms the importance of sub-regional variations in fertility as a critical 

spatial aspect in recent years. We observed the emergence of geographical variations in district-level 

fertility within regions, particularly evident in the 2011 and 2016 Ethiopian Demographic and Health 

Surveys (EDHS). These findings imply that relying solely on national or regional data is insufficient to 

capture the contemporary geographical variations in fertility in Ethiopia. Previous research has 

highlighted that understanding and addressing such inter-district differentials in fertility is crucial for 

effective local-level planning, specifically in the provision of family planning, education, and healthcare 

services (Evans and Gray, 2018, Haque et al., 2019). Under Ethiopia’s decentralised health care system, 

District health offices are in charge of carrying out national health policies such the provision of 

equitable and high-quality healthcare through Ethiopia's decentralised healthcare system. Although the 

decentralisation of the health sector in Ethiopia aims to increase in equity in healthcare by improving 

responsiveness to needs in districts, it may deteriorate  disparities between districts and within regional 

states in the absence of sufficient local data, clear guidelines, and effective monitoring. (Bergen et al., 

2019).  Therefore, our findings have important policy implications in terms of providing evidence for 

woreda based health sector planning in pursuit of narrowing health disparities between districts.  

Secondly, our analysis reveals that changes in spatial patterns of district-level fertility in 

Ethiopia between 2000 and 2016 were closely aligned with changes in the proximate determinants, 

particularly the modern contraceptive prevalence (mCP), rather than the distal determinants. These 

findings indicate clear shifts in the spatial distribution of fertility across the country during this period. 



99 
 

In 2000 and 2005, lower fertility levels were primarily concentrated in the central part of Ethiopia. 

However, in 2011 and 2016, we observed a gradual spread of lower fertility from the central regions to 

the northern and western parts of the country. In contrast, higher fertility levels persisted consistently 

in the eastern parts, specifically in Afar and Somali regional states, throughout the entire 2000-2016 

period. While higher proportions of women living in urban areas and with secondary education were 

consistently observed around multi-ethnic cities, where total fertility rates (TFRs) were significantly 

lower compared to other regions, the spatial patterns in district-level fertility corresponded more closely 

to the spatial patterns of mCP. Furthermore, these similar spatial patterns of TFR and mCP were 

independent of the spatial patterns of the selected socioeconomic determinants. This suggests that recent 

geographical variations in fertility at the district level in Ethiopia are broadly associated with variations 

in modern contraceptive use across the country. It also implies that mCP is adopted by women with 

diverse educational and residential backgrounds, including those who are less educated or live in rural 

areas. Previous studies have highlighted Ethiopia's successful implementation of a family planning (FP) 

programme through the Health Extension Programme (HEP), which delivers essential health services, 

including family planning, through health extension workers in marginalised and rural areas (Olson and 

Piller, 2013, Halperin, 2014). Our analysis shows substantial changes in the spatial patterns of TFR and 

mCP after 2005, coinciding with the implementation of the HEP since 2004 (Halperin, 2014, May and 

Rotenberg, 2020). It is worth noting that the performance of the HEP varied across regions, with better 

outcomes observed in the Amhara regional state (UNICEF, 2010), while challenges related to 

healthcare access, including the HEP, were encountered in regions such as Afar and Somali due to the 

nomadic lifestyle of pastoralist communities (Getnet et al., 2017). These regional disparities in the HEP 

are also reflected in our results, as Afar and Somali regional states exhibited persistently high TFR and 

low mCP levels from 2000 to 2016. This district-level analysis strongly supports the notion that FP 

programmes can facilitate fertility decline, and further demonstrates that geographic variations in the 

implementation of FP programmes can account for sub-national variations in contemporary fertility 

changes in sub-Saharan Africa. 

Thirdly, our analysis reveals that lower fertility levels were consistently observed in highly 

urban areas such as Addis Ababa and Dire Dawa, suggesting that adaptation effects have played a role 

in encouraging lower fertility in these urban settings. However, the adaptation approach alone cannot 

fully explain the changes in spatial patterns of fertility in Ethiopia observed in 2011 and 2016. The 

diffusionist approach argues that cultural homogeneity, particularly through shared languages, can 

facilitate the diffusion of attitudes and information that support modern reproductive ideas and 

behaviours (Cleland and Wilson, 1987, Watkins, 1987). This phenomenon was notably observed in 

many districts of the Amhara regional state. As discussed earlier, fertility declines in districts within the 

Amhara regional state may have been facilitated by an effective family planning program, even in the 

presence of low proportions of women living in urban areas and with secondary education. In addition 
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to this, the linguistic aspect may have also contributed to the spatial diffusion of behavioural change, 

such as the uptake of modern contraceptive methods and delays in first marriage, which could have 

facilitated fertility decline in the Amhara region. The Amhara regional state, accounting for 

approximately 23% of the total population in Ethiopia, is ethnolinguistically homogeneous, with around 

92% of the population belonging to the Amhara ethnolinguistic group. Until 2020, Amharic was the 

sole working language of the federal government and the primary language of education in Ethiopia, 

among the more than 90 languages spoken in the country. Therefore some argue that the dominance of 

Amharic as the working language may undermine equity in Ethiopian society and create barriers to 

accessing health information in non-Amharic regions (Fufa Dugassa, 2006, Smith, 2008). Paradoxically, 

this suggests that the Amharic-speaking population in the Amhara regional state may have enjoyed the 

advantage of learning in their own language, which could facilitate public health communication and 

contribute to significant progress in increasing modern contraceptive uptake and median age at first 

marriage. Furthermore, the spatial spread of lower fertility rates and higher modern contraceptive 

prevalence around Addis Ababa, in particular, supports the view that cultural diversification in urban 

areas can accelerate the diffusion of fertility changes. Communication networks in urban areas often 

transcend socioeconomic and cultural boundaries, creating an environment conducive to innovative 

reproductive behaviours (Kulu, 2005, Goldstein, 1973, Lee and Farber, 1984, Lerch, 2019, Bongaarts 

and Watkins, 1996, Klüsener et al., 2019). Overall, our results support the view that adaptation and 

diffusion effects jointly influence the geographical variation in fertility at the district level in 

contemporary society, and this is confirmed in the context of Ethiopia as well(Salvati et al., 2020, Vitali 

and Billari, 2017).  

This study has several limitations that should be acknowledged. Firstly, the modelled estimates 

are associated with a certain degree of uncertainty, which is particularly pronounced in the Somali and 

Afar regional states. This uncertainty may be attributed to smaller sample sizes and the exclusion of 

PSU without GPS in these two regions. Therefore, caution should be exercised when interpreting the 

results from these areas. Secondly, the aggregation method used in this study relies on simple mean 

statistics to aggregate the point estimate model surface to districts. While previous studies have utilized 

population-weighted mean statistics using datasets such as the Worldpop for aggregating up to 

administrative areas, this study used simple mean statistics due to the lack of population data 

specifically for women of childbearing age (15-49 years old) between 2000 and 2016. As Ethiopia's 

districts are relatively small in land area, we assumed a constant population density of women aged 15-

49 within districts, which may introduce some limitations in accurately estimating fertility rates at the 

district level.  In addition, as mentioned earlier, we applied survey weights to measure each study 

variable, following the guidelines outlined in the DHS manuals, in order to account for the complex 

survey design of the EDHS. This helps to ensure the representativeness of the findings at the national 

and sub-national levels. 
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Despite these limitations, our study has aimed to shed light on the changes in spatial patterns 

of fertility and the key proximate and distal determinants at the district level in Ethiopia between 2000 

and 2016. While our focus in this study was primarily on describing the geographical distribution of 

fertility, the next chapter will delve deeper into the analysis by exploring the spatial correlation and 

heterogeneity of district-level Total Fertility Rates (TFRs) in relation to both proximate and distal 

determinants. This will be achieved through the use of spatial models, allowing us to examine the 

interplay between various factors and their influence on fertility outcomes across different districts. 

 

4.8. Conclusion 

The use of Bayesian MBG can offer a more nuanced picture of geographical variations in fertility and 

key determinants at the district level in Ethiopia. Our study shows that geographical variations in 

fertility at the district level have noticeably widened in recent years in Ethiopia. This result implies that 

focusing solely on national or regional data provides an inadequate description of geographical 

variations in fertility of contemporary Ethiopia. On the one hand, this is likely to impede the planning 

and monitoring of government programmes, while on the other, it is likely to obstruct efforts to explain 

the factors determining fertility in the country. The spatial pattens of fertility in recent years are related 

with geographical variations in socioeconomic and ethnolinguistic conditions but, primarily, with the 

use of modern contraception. The findings of this study have important policy implications, as they 

enable the visualization of demographic and health indicator changes across 981 districts. This 

information enables more informed decision-making for initiatives such as the Woreda-Based Health 

Sector Planning (WBHSP) and the Health Extension Program (HEP) in Ethiopia 
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5.1. Overview 
 

In previous chapters, it has been highlighted that fertility studies in sub-Saharan African (SSA) 

countries, including Ethiopia, often overlook the spatial dimension when examining sub-national 

variations in fertility, despite theoretical and empirical evidence supporting the presence of spatial 

dependency and heterogeneity of fertility in most populations. Additionally, Chapter 4 demonstrated 

the existence of geographical variations within Ethiopia at the district-level in terms of total fertility 

rate (TFR) and selected proximate and distal determinants. Building upon this, Chapter 5 aims to 

compare non-spatial and spatial regression models to explore the spatial autocorrelation of district-level 

TFR and the spatial heterogeneity in the effects of both proximate and distal determinants of TFR in 

Ethiopia between 2000 and 2016. Furthermore, this chapter delves into the discussion of how the spatial 

location of districts, distances between them, and varying levels of proximate and distal determinants 

collectively contribute to the geographical variations observed in district-level TFRs in Ethiopia.  

 

 

5.2. Role of candidate 

I conceived of study design and the statistical analysis plan which was agreed by the co-authors. I 

conducted the statistical analysis and wrote the first draft of the manuscript with feedback and inputs 

provided from Christopher I Jarvis, Ian M Timæ us and Kazuyo Machiyama.   

 

5. Chapter 5:  Spatial dependence and heterogeneity of 

fertility in Ethiopia between 2000 and 2016: a district level 

analysis   

Objective 3 To assess effects of key selected proximate and distal determinants on geographical 

variations in fertility at the district level between 2000-2016 with a non-spatial 

model. 

Objective 4 To assess spatial autocorrelation of district-level fertility by using a spatial model. 

Objective 5 To explore spatial heterogeneity in relationships between TFRs and both proximate 

and distal determinants in Ethiopia by using geographically weighted regression 

between 2000 and 2016. 
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5.3. Abstract 

Background 

There is growing evidence of spatial autocorrelation and heterogeneity in fertility patterns, influenced 

by various factors, at the district level in high- and middle-income countries. However, spatial 

modelling of geographical variations in district-level fertility in sub-Saharan Africa remains limited. 

From the perspective of demographic theories, geographical variation in fertility is viewed as a response 

to socioeconomic conditions (the adaptationist approach) or the spatial diffusion of social acceptance 

of fertility control (the diffusionist approach). This paper aims to explore spatial autocorrelation and 

heterogeneity in district-level fertility in relation to both proximate and distal determinants in Ethiopia 

between 2000 and 2016. 

Methods 

We used data from the 2000, 2005, 2011, and 2016 Ethiopia Demographic and Health Surveys to 

examine total fertility rates (TFRs) as well as two proximate determinants (modern contraceptive 

prevalence (mCP) and median age at first marriage) and three distal determinants (women living in 

urban areas and with secondary and higher education, ethnolinguistic diversity). We compared a spatial 

explicit regression model, the spatial lag model (SLM), with a non-spatial model to investigate spatial 

autocorrelation of TFRs. Additionally, we employed a geographically weighted regression (GWR) 

model to explore the spatially heterogeneous relationship between TFRs and the selected determinants 

at the district level in Ethiopia. 

Results 

Our results shows that the district-level data in Ethiopia were more consistent with the SLM compared 

to the non-spatial model in 2011 and 2016, suggesting that spatial autocorrelation of district-level TFR 

became stronger in recent years. The GWR model shows the relationships between fertility and 

proximate and distal determinants of fertility are spatially heterogeneous at the district level. Urban-

rural fertility differences in Ethiopia were more closely associated with diverse socioeconomic 

conditions, while the spatial spread of lower fertility from Addis Ababa to the Amhara region was 

influenced by spatially heterogeneous effects of mCP, age at marriage, and ethnolinguistic diversity. 

Conclusion 

Space and place increasingly matter to recent geographical variations in fertility in Ethiopia. 

Socioeconomic and cultural characteristics, even in the same region, differ between districts and fertility 

in a district is affected by the spatial location of the district and the characteristics of nearby districts 

(diffusion effects) as well as by its own characteristics (adaptation effects). This study provides 

additional insights into how geographical location of and distance between districts as well as 

socioeconomic, cultural characteristics and reproductive behaviours in districts can jointly shape 

geographical variations in district-level fertility in Ethiopia.    
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5.4. Introduction 

Among the sub-Saharan African (SSA) countries surveyed by the Demographic and Health Surveys 

(DHS) program, Ethiopia stands out with the largest fertility differences based on urban-rural residence 

and women's educational backgrounds. In 2016, the total fertility rate (TFR) in urban areas was 2.3, 

compared to 5.2 in rural areas. Similarly, women with a secondary education had a TFR of 2.1, while 

those with less than secondary education had a TFR of 5.0 (ICF, 2015). Ethiopia is also the second most 

populous country in sub-Saharan Africa, and it exhibits substantial variations in fertility across regions. 

In 2016, the highest TFR of 7.2 was observed in the Somali region, while the lowest TFR of 1.8 was 

recorded in Addis Ababa (ICF, 2016).   

Demographers contend that comprehensive analysis of factors impacting fertility variation 

requires that a distinction be made between two determinants: proximate and distal determinants 

(Bongaarts, 1978). Distal determinants encompass socioeconomic and cultural factors that indirectly 

influence fertility only through their impact on the proximate determinants. On the other hand, 

proximate determinants refer to biological and behavioural factors that directly affect overall fertility 

rates (Davis and Blake, 1956, Bongaarts and Potter, 1983). 

Ethiopia has witnessed the substantial socioeconomic and cultural differences across eleven 

regional states. The country comprises three urban regions (Addis Ababa, Dire-Dawa, and Harari) 

alongside eight other regions. The three urban regions are characterised by their multi-ethnic 

composition. Among the remaining eight regions, two western regions (Benishangul Gumuz and 

Gambela) and two eastern regions (Afar and Somali) are commonly classified as Developing Regional 

States (DRS). These DRS predominantly consist of pastoral and migratory communities, which often 

experience worse socioeconomic and health outcomes compared to the national average. Of the eight 

regions, five (Tigray, Amhara, Oromia, Afar, and Somali) are ethnolinguistically homogeneous regions. 

The names of these regions correspond to the names of the majority ethnolinguistic groups residing 

within them, such as Tigrayian, Amhara, Oromo, Afar, and Somali ethnolinguistic groups. On the other 

hand, the other three regions (Benishangul-Gumuz, Gambela, and SNNP) are characterized as multi-

ethnic regions where multiple ethnolinguistic groups coexist within the same geographic area. 

Furthermore, there are significant regional disparities in the proximate determinants of fertility. 

Variation in the use of modern contraceptives exists among different regions in the country. For instance, 

the Somali regional state had the lowest modern contraceptive prevalence (1.4%) compared to the 

Amhara regional state (46.9%) in 2016. Additionally, the median age at first marriage plays a crucial 

role in regional fertility variations in Ethiopia, as childbearing outside marriage is uncommon (Gurmu 

and Etana, 2014, Reda and Lindstrom, 2014). Child marriage, defined as women entering marriage 

before the age of 18, is prevalent in Ethiopia and varies across regional states. The prevalence of early 
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marriage before the age of 18 for women in Ethiopia (40%) exceeds the average in Eastern and Southern 

Africa (35%) and is approximately double the global average (21%) (UNICEF, 2018). Notably, the 

Amhara regional state has the highest prevalence of child marriage, with 74% of women married before 

the age of 18, significantly surpassing the national average of 40% in 2014 (Erulkar, 2013, Mekonnen 

et al., 2018) .  

Previous studies have shown that substantial variations in fertility between populations and 

regions in Ethiopia, attributing them to differences in both proximate and distal determinants of fertility 

(Shiferaw et al., 2015, Tessema and Tamirat, 2020, Laelago et al., 2019). However, in addition to 

examining regional variations in fertility, acknowledging geographical variations in fertility at the 

district level is also important for Ethiopia’s health policy planning and implementation. Districts, 

referred to as woredas in the Amharic language, represent the third level of administrative division in 

the country. The Woreda-Based Health Sector Annual Plan (WBHSP) plays a central role in Ethiopia's 

Health Sector Transformation Plan (HSTP) and guides the decentralised health planning at the woreda 

level (MoH, 2021). Each woreda annually prepares a woreda-based health plan through the WBHSP 

based on the relevant national priorities established by the federal Ministry of Health. The WBHSP is, 

then, combined to form an annual national health plan. The Ethiopian government at all levels and all 

other health partners adhere to this operational planning (Teshome and Hoebink, 2018).  

Compared to previous studies conducted at the national or regional level, there has been limited 

research on spatial geographical variations in fertility at the district level in Ethiopia, mainly due to the 

scarcity of district-level data. However, recent studies conducted in high- and middle-income countries 

(These studies also highlight substantial heterogeneities in the association between local-level fertility 

and socioeconomic and cultural factors, both in terms of magnitude and direction, observed in various 

parts of the world) provide growing evidence that district-level fertility patterns are often influenced by 

spatial autocorrelation of fertility and spatially heterogeneous relationships with socioeconomic factors. 

In other words, a decline in fertility in a particular location is often associated with a decline in fertility 

in neighbouring areas  (Salvati et al., 2020, Sabater and Graham, 2019, Singh et al., 2017). These studies 

also highlight substantial heterogeneities in the association between local-level fertility and 

socioeconomic and cultural factors, both in terms of magnitude and direction (Wang and Chi, 2017, 

Campisi et al., 2020, Haque et al., 2019, Evans and Gray, 2018, Goldstein and Klüsener, 2014). 

Therefore, these studies argued that there is no single universal explanation for geographical variations 

in fertility in relation to socioeconomic and cultural factors. Instead, successful policymaking requires 

an understanding of local fertility patterns and the underlying factors that drive these patterns. 

From the perspective of demographic theories, geographical variations in fertility are often 

explained by adaptationist or diffusionist approaches. The adaptationist approach suggests that fertility 

differences across geographic areas stem from adaptations to distinct socioeconomic conditions in each 
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area. On the other hand, the diffusionist approach argues that such variations are a result of the spread 

of information and social acceptability of fertility control, influenced by cultural and geographical 

distances rather than solely by socioeconomic factors (Carlsson, 1966, Bongaarts and Watkins, 1996). 

Increasing evidence suggests that the geographical spread of ideas and norms across local areas may 

not align perfectly with geographical variations in socioeconomic characteristics (Vitali and Billari, 

2017, Costa et al., 2021). For instance, cultural and normative changes, such as the desired number of 

children or modern contraceptive use, may occur at a slower pace compared to rapid socioeconomic 

transformations in some areas, or vice versa. Consequently, areas with similar socioeconomic 

characteristics may exhibit different fertility outcomes due to their distinct local contexts (Staveteig et 

al., 2018). Moreover, recent fertility studies in HMICs, including, Italy (Vitali and Billari, 2017), Spain 

(Sabater and Graham, 2019), Europe (Campisi et al., 2020), China (Wang and Chi, 2017) and 

India(Haque et al., 2019), demonstrated that the adaption and diffusion effects can jointly account for 

sub-national fertility variations. However, these studies often focused on the association between distal 

determinants of fertility, such as socioeconomic and cultural factors, while neglecting the role of 

proximate determinants in explaining geographical variations in local-level fertility. In many SSA 

countries, including Ethiopia, the prevalence of contraceptive use, for example, remains low and 

exhibits geographic variation within the country. Therefore, exploring both proximate and distal 

determinants of fertility can enhance our understanding of geographical variations in fertility in SSA. 

In this study, we examine whether and how geographical variations in district-level fertility are 

associated with spatial autocorrelation and heterogeneity of district-level fertility in relation to key 

selected proximate and distal determinants of fertility using data from the 2000, 2005, 2011, and 2016 

EDHS surveys. To the best of our knowledge, this is the first study to utilize spatial models in examining 

the relationship between district-level fertility and its proximate and distal determinants in sub-Saharan 

Africa (SSA), including Ethiopia. 

 

5.5. Methods 

5.5.1. Data  

 We used Ethiopia Demographic and Health Surveys (EDHS) conducted in 2000, 2005, 2011 and 2016 

(ICF, 2011, ICF, 2016, ICF, 2005, ICF, 2000). The EDHS surveys are nationally representative surveys 

that offer estimates for a variety of demographic and health variables which are comparable over time 

and space. In order to facilitate spatial analysis and protect participant privacy, the EDHS offers global 

positioning system (GPS) coordinates for primary sampling units (PSUs) of aggregated household 

survey data. In urban areas, these coordinates are displaced up to 2 km, and up to 5 km in in rural areas. 
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The outcome of interest for this study is the TFR at the district level. TFR refers to the average 

number of live births a woman would have if she was subject to the current age-specific fertility rates 

throughout her reproductive years (aged 15–49 years). The study includes two proximate determinants, 

proportion of married women currently using any method of contraception (mCP) and median age at 

first marriage. Three distal determinants are also included: the proportion of women with secondary or 

higher education, the proportion of women living in urban areas, and Ethnolinguistic diversity. Table 

5.1 provides variable names with their descriptions. These explanatory variables were chosen as 

previous studies have shown them to be associated with geographical variation in fertility in Ethiopia 

(ICF, 2015, Laelago et al., 2019, Hogan and Biratu, 2004). Notably, Ethiopia has the largest fertility 

differentials in terms of urban-rural residence and women’s education backgrounds among SSA 

countries surveyed by the DHS programme. Moreover, Ethiopia is one of the few SSA countries that 

the government strongly supports for family planning through the Health Extension Programme (HEP) 

since 2004.  This program specifically targets rural communities and aims to increase the adoption of 

modern contraceptive methods (Olson and Piller, 2013). Additionally, as mentioned earlier, Ethiopia 

exhibits geographical variations in ethnolinguistic contexts, and the age at first marriage plays a 

significant role in facilitating recent fertility decline, particularly considering the relatively low 

proportion of births occurring outside marriage compared to other sub-Saharan African countries 

(Rogers and Stephenson, 2018, Sibanda, 2003).  

 

Table 5.1. Explanatory variables used in this study 

Theme Variable name Description 

Outcome 
variable  

Total Fertility Rates Total fertility rate for the three years preceding the 
survey for age group 15-49 expressed per woman 

Proximate 
determinants 

Married women currently using 
any method of modern 
contraception  

Proportion of currently married or in union women 
currently using any method of modern contraception 
(modern contraceptive prevalence (mCP)) 

 Median age at first marriage Median age at first marriage or union in years among 
women age 15-49 

Distal 
determinants 

Women with secondary or 
higher education 

Proportion of women with secondary or higher 
education which is equivalent to 9 or longer years of 
schooling 

 Women living in urban areas Proportion of women living in urban areas 
 Index of ethnolinguistic 

diversity at the zone level 
The index of diversity is known as the ‘entropy index’. 
While lower values of the index (close to zero) indicate 
similarity in ethnolinguistic composition in a zone, larger 
values of the index show ethnolinguistic diversity. 

 

To investigate the relationship between district-level TFR and the key selected proximate and 

distal determinants at the district level, I used estimates of these variables across 981 districts, as 

obtained from Chapter 4.  In Chapter 4, we employed a Bayesian model-based geostatistics (MBG) 

approach, specifically the Integrated Nested Laplace Approximation and Stochastic Partial Differential 
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Equation (INLA-SPDE) method to estimate the levels of study variables at the district level (Rue et al., 

2009). More detailed information on the Bayesian modelling approach using INLA-SPDE can be found 

in Chapters 3 and 4, as well as in other sources (Blangiardo and Cameletti, 2015). In brief, the Bayesian 

MBG with INLA-SPDE approach has been widely employed in previous studies utilizing data from 

Demographic and Health Surveys (DHS) to create high resolution maps of health indicators (Mayala et 

al., 2019b, Fish et al., 2020). Similarly, I adopted a similar modelling framework to estimate the levels 

of the selected study variables at the district level in Ethiopia. This involved two main steps: first, 

estimating the spatial distribution of the study variables at a high resolution, and second, aggregating 

the estimates from the pixel level of the model surface to the district polygons.  

In this Chapter, we employed three different models to investigate the relationships between 

the key proximate and distal determinants and the outcome variable, which is the district-level TFR. 

 

5.5.3. Statistical analysis  

5.5.3.1 Spatial autocorrelation of TFR at Primary Sampling Units 

 

To analyse the spatial autocorrelation of TFR at the DHS PSU level between 2000 and 2016, we 

conducted semi-variogram analysis. The semi-variogram describes the extent to which nearby locations 

exhibit similar values by measuring the semi-variance. Then a variogram 𝛾(ℎ) of TFR, Z, at location 

of PSU, s, defined as;  

𝛾(ℎ) =  
1

2𝑛
∑{𝑍(𝑠𝑖

𝑁

𝑖=1

+ ℎ) − 𝑍(𝑠𝑖)}2 

where 𝑁 represents the number of pair points of PSUs separated by lag distance ℎ used to estimate the 

value of 𝛾(ℎ). This collection of points is commonly referred to as the variogram cloud, illustrating the 

semivariances between all pairs of points. If there is spatial autocorrelation of TFR at the PSU level, 

the semi-variance is expected to be small at relative short distance and tends to increase with distance, 

indicating that observations closer in distance tend to be more similar than those farther apart. We 

employed an exponential model by assuming that the semi-variance of TFR at the PSU level increases 

exponentially as the distance between locations increases due to the spatial autocorrelation of TFR. 

Specifically, we present a) TFR at the PSU level and b) the variogram cloud, and c) the empirical and 

theoretical semi-variogram plots for TFR by using an exponential model under the assumption of spatial 

autocorrelation.  
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5.5.3.2. Spatial autocorrelation and heterogeneity of TFR at the district 

level 

In order to examine spatial autocorrelation and heterogeneity of district-level TFRs, I employed both 

global and local regression models. Global regression models make the assumption that the 

relationships between the outcome variable and explanatory variables do not vary across space, which 

is known as spatial stationarity. However, this assumption may not hold true in reality. On the other 

hand, local regression models take into account the possibility that the relationships between variables 

may vary across different locations, which is referred to as spatial non-stationarity. This means that the 

relationship between the variables may be different in different areas or districts. By utilising both 

global and local regression models, I aimed to capture both the overall spatial patterns and any localized 

variations in the relationship between district-level TFRs and the selected explanatory variables. 

 

1) Global model 

For the global regression model, I compare non-spatial and spatial linear regression models to 

investigate the presence of spatial autocorrelation in district-level TFRs. 

a)  Non-spatial linear regression 

In the non-spatial linear regression model, the relationships between the district-level TFR (outcome 

variable) and a set of explanatory variables are investigated. The model assumes that the observations 

at the district level are independent of each other and do not consider any potential spatial correlation. 

The model is represented by the equation: 

 

𝑦(𝑇𝐹𝑅)𝑗 =  𝛽0 + ∑ 𝛽𝑚𝑋𝑚𝑗

𝑁

𝑚=1
 +  𝜀𝑗 

where j denotes the  i th districts, where i = 1 to 981; 𝑦𝑖  is the outcome variable, TFR; 𝛽𝑚  is the 

regression coefficient for explanatory variable . m denotes the selected explanatory variables, including 

mCP, median age at first marriage, proportion of urban population and women with secondary and 

higher education and ethnolinguistic homogeneity at Zonal areas. 𝑋 represent the value of explanatory 

variable m at district j. 𝜀𝑗 is an error term for the regression equation. The non-spatial linear regression 

model generally optimises regression coefficients (β) by minimising the sum of squared prediction 

errors (Anselin and Arribas-Bel, 2013). In addition, the non-spatial linear regression model assumes 

that observations at the district level are independent of each other and does not account for potential 

spatial correlation. However, previous have demonstrated the presence of spatial autocorrelation in 

fertility (Vitali and Billari, 2017, Costa et al., 2021). These spatial interactions are not accounted for in 
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non-spatial models, leading to a potential mis-specification of the non-spatial linear regression model 

(Anselin and Arribas-Bel, 2013). 

 

b) Spatial linear regression - Spatial Lag model (SLM)  

The spatial lag model (SLM) incorporates spatial autocorrelation into the regression model by including 

a ‘spatially-lagged outcome variable.’ It assumes a spatial relationship between the outcome variable 

and the explanatory variables (Ward and Gleditsch, 2018). The SLM assumes that the outcome variable 

in one district is influenced by the outcome variable of neighboring districts. The SLM is represented 

by the following equation: 

𝑦(𝑇𝐹𝑅)𝑗 = 𝛽0 + 𝜌 ∑ 𝑊𝑗𝑦𝑐𝑛 

𝑁

𝑐𝑛=1
 + ∑ 𝛽𝑚𝑋𝑚𝑗

𝑁

𝑚=1
 +  𝜀𝑗 

𝜌 is the spatial lag term captures the extent of spatial autocorrelation in fertility. A higher value of ρ 

indicates a stronger spatial autocorrelation (Kostov, 2010). cn refers to the connected neighbouring 

districts and 𝑦𝑐𝑛 is the TFR of the neighbouring district. 𝑋 represent the value of explanatory variable 

m at location j. 𝑊𝑗 denotes the spatial weight for a given district j. The weight matrix was generated 

based on first-order Queens' contiguity (Figure 5.2). In the sense of Queen contiguity, it assigns a binary 

spatial weight (0,1) to any connected neighbouring districts. This corresponds to the Queen's movement 

in chess. More detailed information about weight is described in Chapter 3 with Figure 3.2.  

     

     

     

     

     
 

     

     

     

     

     
 

(A) (B) 

Figure 5.1. Queen's case contiguity of (A) first and (B) second order 

5.5.3.3. Local Model - Geographically Weighted Regression (GWR) 

Global regression models assume spatial stationarity, meaning that the relationships between the 

outcome variable and explanatory variables are assumed to be constant across all locations (Brunsdon 

et al., 1998, Brunsdon et al., 1996). In contrast, Geographically Weighted Regression (GWR) allows 

for the estimation of regression parameters specific to each location, enabling the parameters to vary 

spatially (Fotheringham and Oshan, 2016). GWR incorporates the geographic context and considers the 

local spatial variations, providing a more nuanced understanding of the relationships between variables 

compared to global regression models. The GWR is represented by the following equation: 
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𝑦(𝑇𝐹𝑅)𝑗 =  𝛽0(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗) + ∑ 𝛽𝑚

𝑁

𝑚=1

(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗)𝑥𝑚𝑗 + 𝜀𝑗 

where 𝑗 denotes district, 𝑗 = 1, 2,…,981, and  𝑚 denotes the number of selected explanatory variables.  

𝑦𝑗 denotes TFR at district j and (𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗) denotes the longitude and latitude coordinates of district j. 

𝛽𝑚 is a local estimated parameter of an explanatory variable, m. 𝑋𝑚𝑗 denotes the values of the 𝑚𝑡ℎ 

selected explanatory variable and 𝜀𝑗  refers a random error term. The location‐specific parameter 

estimates allow the relationships between explanatory variables and TFRs to vary between districts. 

Parameter estimates for each explanatory variable at each district can be calculated in a matrix form: 

�̂�(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗) =  [𝐗𝑇𝐖(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗)𝐗]−1[𝐗𝑇𝐖(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗)𝐘], 

Thus, �̂�(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗)varies with the values of 𝐖(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗).  For spatial weights, I adopted Gaussian 

weights and the bi-square weighting function. The 𝐖(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗)matrix contains the spatial weights in 

diagonal and 0 in its off-diagonal elements as:  

 

𝐖(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗) =  [

𝑤1(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗) 0 0

0 … 0
0 0 𝑤𝑛(𝑙𝑜𝑛𝑗, 𝑙𝑎𝑡𝑗)

]   

 

By applying specific distance-based weighting functions, the estimation is achieved by using data from 

nearby locations. As a result, data from districts that are closer to the regression point are given bigger 

weights than data from districts that are farther away (Fotheringham et al., 2003). In this study I applied 

the commonly used adaptive bi‐square kernel function as the distance‐based weighting function 

(Brunsdon et al., 1998, Brunsdon et al., 1996):  

𝑊𝑖𝑗 =  {[1 − (
𝑑𝑖𝑗

𝑏
)

2

]

2

, 𝑑𝑖𝑗 < 𝑑𝑚𝑎𝑥 

             0           , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

where 𝑊𝑖𝑗 is the weight between district i and district j, 𝑑𝑖𝑗 is the distance between district i and district 

ju, and the bandwidth size, b, is maximum distance from regression location, i, which defines how many 

neighbouring observations should be included in the matrix. The optimal number of nearest neighbours 

was determined by minimising the corrected Akaike information criterion (Fotheringham et al., 2003). 

The advantage of using the GWR model is that it allows for the investigation of spatial variation in the 

correlation between the outcome variable and explanatory variables. 
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5.6. Results 

5.6.1. Spatial Autocorrelation of total fertility rates at the DHS PSU and the 

district levels. 

I found that there is evidence of spatial autocorrelation of TFR at the EDHS PSU level between 2000 

and 2016 (Figure 5.2A), as it depicts that the empirical semi-variogram against the separation 

distance levels out as the separation distance increases (Figure 5.2B and Figure 5.2C).  Our results 

further show that the spatial linear regression model outperforms the non-spatial linear regression model 

in modelling district-level TFRs in Ethiopia across four EDHS. The SLM reveals strong evidence of 

spatial correlations between district-level fertility and the fertility of neighbouring districts. This is 

evident from the positive spatial lag coefficients (p) in the SLM, ranging from 0.594 to 0.873, and their 

highly significant p-values (p < 0.001) across the four EDHS. Thus, high fertility in one district tends 

to be associated with high fertility in neighbouring districts (Table 5.2). 

 

Figure 5.2. A. Estimated total fertility rate (TFR) at the primary sampling units (PSU) level and B. Variogram 
cloud and C. Empirical and exponential semi-variogram models of PSU-level TFRs, 2000-2016. 

In all four years, the selected key proximate determinants, namely modern contraceptive 

prevalence (mCP) and median age at first marriage, as well as the selected socioeconomic factors, 

proportion of women living in urban areas and proportion of women with secondary and higher 
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education, are consistently and negatively associated with district-level TFR in both the non-spatial and 

spatial linear regression models (p-value < 0.05). This implies that districts with higher mCP and 

median age at first marriage, as well as higher proportions of women living in urban areas and having 

secondary and higher education, tend to have lower district-level fertility. 

Regarding the index of ethnolinguistic diversity, the results show a significant and positive 

association with district-level fertility in 2000, 2005, and 2011, in both the non-spatial and spatial linear 

regression models. This suggests that higher ethnolinguistic diversity is associated with higher district-

level fertility in these three surveys. However, the results from the two models in 2016 are inconsistent. 

The SLM indicates a significant and positive association between the ethnolinguistic diversity index 

and district-level TFR, while the non-spatial regression model shows no significance. This suggests that 

the influence of ethnolinguistic diversity was underestimated by the non-spatial regression model in 

2016. After controlling for the spatial lag of TFRs, the association between the ethnolinguistic diversity 

index and district-level TFR becomes significant at the 0.05 level. 

Furthermore, a comparison of regression residuals between the non-spatial and spatial 

regression models for the four years (Figure 5.4) reveals that in 2000 and 2005, the residuals from both 

models exhibit similar spatially random patterns. However, in 2011 and 2016, spatial clustering of 

residuals is observed in the non-spatial model, while it is less pronounced in the SLM. This suggests 

that the spatial correlation effects of district-level fertility should be considered when investigating 

geographical variations in fertility in Ethiopia, particularly in recent years. 

Although the SLM provides a better fit than the non-spatial linear regression model based on the AICc 

diagnostic criteria for the four EDHS, the global model fails to capture any spatial variations that may 

exist in the relationships between the outcome and explanatory variables across the study area. 

Therefore, a spatially non-stationary local modelling approach, namely the geographically weighted 

regression model, is adopted in the subsequent analysis. 

 

Figure 5.3. Regression residuals from A. non-spatial regression model and B. spatial regression model from 
2000, 2005, 2011, and 2016  
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Table 5.2. Summary statistics of global and local regression models 2000-2016. 

2000 

Global model Local model 

Non-spatial linear model Spatial lag model GWR 

Coefficient (95% CI) P-value   Coefficient (95% CI) P-value 
Coefficient 

Min Median Max 

Explanatory variables   
mCP -0.034 (-0.049 to -0.017) < 0.001   -0.029 (-0.041to -0.018) < 0.001 -0.579 -0.002 0.396 
Age at first marriage -0.051 (-0.072 to -0.029) < 0.001 -0.009 (-0.024 to 0.001) 0.003 -1.529 -0.133 1.220 
% female urban pop -0.011 (-0.019 to -0.004)  0.001 -0.014 (-0.019 to -0.009) < 0.001 -0.281 -0.018 0.207 
% female education -0.042 (-0.059 to -0.025) < 0.001 -0.052 (-0.063 to -0.039)  < 0.001 -0.645 -0.039 0.537 
Ethnic diversity  0.108 (0.011 to 0.207) 0.029 0.160 (0.093 to 0.229) < 0.001 -0.895 -0.100 0.466 
 Spatial lag p    0.600 (0.566 to 0.634) <0.001    
MODEL ASSESSMENT   
 AIC 1029.264 394.415 -822.354 

 

2005  

Global model Local model 

Non-spatial linear model Spatial lag model GWR 

Coefficient (95% CI) P-value   Coefficient (95% CI) P-value 
Coefficient 

Min Median Max 

Explanatory variables   
mCP -0.013 (-0.019 to -0.006) < 0.001 -0.015 (-0.020 to -0.010) < 0.001 -0.259 -0.018 0.248 
Age at first marriage -0.076 (-0.084 to -0.044) < 0.001 -0.049 (-0.066 to -0.032) < 0.001 -1.425 -0.001 0.510 
% female urban pop -0.016 (-0.022 to -0.009) < 0.001 -0.022 (-0.026 to -0.017) < 0.001 -0.402 -0.018 0.301 
% female education -0.045 (-0.061 to -0.029) < 0.001 -0.017 (-0.029 to -0.006)  0.003 -0.302 -0.034 0.424 
Ethnic diversity  0.119 (0.040 to 0.198) 0.003 0.030 (-0.027 to 0.088) 0.303 -0.989 -0.046 0.857 
 Spatial lag p    0.595 (0.556 to 0.633) <0.001    
MODEL ASSESSMENT   
 AIC 881.321 354.486 -556.475 

 

2011  

Global model Local model 

Non-spatial linear model Spatial lag model GWR 

Coefficient (95% CI) P-value Coefficient (95% CI) P-value 
Coefficient 

Min Median Max 

Explanatory variables   
mCP -0.089 (-0.096 to -0.083) < 0.001 -0.013 (-0.016 to -0.010) < 0.001 -0.524 -0.053 0.049 
Age at first marriage -0.099 (-0.159 to -0.018) 0.001 -0.013 (-0.034 to -0.008)  0.036 -1.140 -0.411 0.415 
% female urban pop -0.033 (-0.043 to -0.023) < 0.001 -0.021 (-0.025 to -0.017) < 0.001 -0.609 -0.017 0.054 
% female education -0.022 (-0.055 to -0.010)    0.018 -0.030 (-0.042 to -0.018)  < 0.001 -0.248 -0.045 0.094 
Ethnic diversity  0.775 (0.567 to 0.982) < 0.001 0.233 (0.157 to 0.310) < 0.001 -0.821 -0.119 0.430 
 Spatial lag p    0.874 (0.849 to 0.898) <0.001    
MODEL ASSESSMENT   
 AIC 2568.963 782.787 -549.976 

 

2016  

Global model Local model 

Non-spatial linear model Spatial lag model GWR 

Coefficient (95% CI) P-value Coefficient (95% CI) P-value 
Coefficient 

Min Median Max 

Explanatory variables   
mCP -0.060 (-0.063 to -0.057) < 0.001 -0.016 (-0.018 to -0.013) < 0.001 -0.617 -0.055 0.035 
Age at first marriage -0.156 (-0.205 to -0.107) < 0.001 -0.039 (-0.064 to -0.013)   0.008 -1.158 -0.148 0.168 
% female urban pop -0.005 (-0.009 to -0.001) 0.028 -0.013 (-0.016 to -0.011) < 0.001 -0.107 -0.002 0.095 
% female education -0.038 (-0.051 to -0.025) < 0.001 -0.003 (-0.004 to -0.001)  <0.001 -0.436 -0.037 0.378 
Ethnic diversity  0.065 (-0.202 to 0.048) 0.226 0.130 (0.064 to 0.195) < 0.001 -0.625 -0.025 0.186 
 Spatial lag p    0.781 (0.747 to 0.816) <0.001    
MODEL ASSESSMENT   
 AIC 1794.018 677.950 -500.577 

 

 

 

  



122 
 

 

5.6.3. Spatial heterogeneity of total fertility rates at the district level 

To explore the local spatial variations in the relationships with the district-level TFR, the GWR was 

applied to the same set of explanatory variables used in the global models (Table 5.2). Then, we 

generated maps that represented the spatial distribution of their coefficients between 2000 and 2016 

(Figure 5.5). 

mCP had negative associations with district-level TFRs in most districts, and the negative 

coefficient values remained relatively consistent across the 981 districts in 2011 and 2016. This suggests 

that changes in mCP had similar effects on district-level TFRs in the majority of districts during these 

years. However, it should be noted that some districts in Tigray, Gambella, SNNP, and Somali regions 

showed positive coefficient estimates in the 2000 EDHS, as well as some districts in the Afar region in 

2005 (Figure 5.5A). It is important to consider that mCP was generally very low in most districts in 

2000 and 2005. 

The negative coefficient estimates of median age at first marriage were found in most districts 

from each of the four years (Figure 5.5B). While the GWR coefficient values did not vary significantly 

across the 981 districts in 2000 and 2005, stronger coefficient estimates were observed in specific 

districts in Amhara, western Oromia, Harari, and northern Somali regions in the 2011 and 2016. This 

indicates that a delay of one year in the median age at first marriage was associated with a much lower 

district-level TFR in these districts in 2011 and 2016. 

The coefficient estimates of the proportion of women living in urban areas showed negative 

associations with district-level TFRs, and these associations did not vary significantly across the 981 

districts between 2000 and 2016 (Figure 5.5C). This suggests that changes in district-level TFRs in 

relation to changes in the proportion of women living in urban areas were spatially similar across the 

981 districts between 2000 and 2016. 

The negative coefficient estimates of the proportion of women having secondary and higher 

education were observed in most districts across all four EDHS, indicating that an increase in the 

proportion of women with secondary and higher education is associated with lower district-level TFRs 

in most districts (Figure 5.5D). However, positive coefficient values were observed in some districts in 

southern parts of Ethiopia in the 2000 and 2011. 

The GWR coefficient map for the index of ethnolinguistic diversity reveals variations in 

coefficient estimates across the 981 districts in each of the four EDHS surveys (Figure 5.5E). Positive 

coefficients are frequently observed in some districts within the Amhara, Benishangul-Gumuz, and 

Gambela regions, as well as in the southern parts of Ethiopia across all four surveys. Conversely, 

negative estimates consistently emerge in urban regions, including Addis Ababa, Dire-Dawa, and 
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Harari regions. It is worth noting that the level of ethnolinguistic diversity at the zonal level is higher 

in the Benishangul-Gumuz, Gambela regions, and the three urban regions (Addis Ababa, Dire-Dawa, 

and Harari). This finding suggests that, on the one hand, higher ethnolinguistic diversity in the 

Benishangul-Gumuz and Gambela regions is associated with increased district-level Total Fertility 

Rates (TFRs). On the other hand, ethnolinguistic diversity in urban regions is linked to lower district-

level TFRs. Additionally, within ethnolinguistically homogeneous areas at the zonal level, lower 

district-level TFRs are associated with ethnolinguistic homogeneity in the Amhara region and the 

southern part of Ethiopia. Conversely, higher district-level TFRs are associated with ethnolinguistic 

homogeneity in areas such as Afar, central Oromia, and northern Somali regions. 

 

Figure 5.4. Local regression coefficients 
A. modern contraceptive prevalence (mCP), B. median age at first marriage, C. proportion of women living in 
urban areas; D. Proportion of women with secondary or higher education; E. Index of ethnolinguistic diversity 
at the zonal level for 2000 – 2016 periods. 
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5.7. Discussion  
 

Previous studies have highlighted the association between proximate and distal determinants and 

national or regional fertility levels in Ethiopia. However, these analyses conducted on large spatial 

scales have failed to capture the substantial geographical variations that exist at the district level. In 

Ethiopia, the district serves as a crucial administrative unit where health policies and programs are 

formulated and implemented through the Woreda Based Health Sector Planning (WBHSP). Despite the 

importance of districts, only a limited number of studies have examined how proximate and distal 

determinants are linked to district-level fertility. Furthermore, while there is growing evidence of spatial 

autocorrelation and spatial heterogeneity of fertility and its influencing factors in district-level analysis 

in HMICs, such spatial modelling of geographical variations in district-level fertility remains rare in 

sub-Saharan African countries. Hence, the overarching objective of this research was to investigate the 

spatial autocorrelation and heterogeneity of district-level fertility in relation to key selected proximate 

and distal determinants in Ethiopia.  

The key findings of this study indicate that while different levels of proximate and distal 

determinants are crucial factors in explaining the geographical variations in district-level fertility, the 

fertility patterns at the district level, particularly in recent years, are significantly influenced by the 

spatial autocorrelation of district-level fertility. Moreover, spatial heterogeneity exists in the 

relationship between district-level fertility and both proximate and distal determinants in Ethiopia. 

Firstly, this study shows that the spatial autocorrelation of total fertility rates (TFRs) persisted 

at both the DHS PSU and district levels between 2000 and 2016. The results obtained from semi-

variogram analysis indicated a consistent presence of spatial autocorrelation of TFR at the DHS PSU 

level in all four years (2000, 2005, 2011, and 2016). Furthermore, the spatial autocorrelation 

coefficients derived from the SLM remained consistently positive and statistically significant 

throughout the four-year period, even after accounting for selected proximate and distal determinants 

of fertility. Moreover, the analysis of the spatial distribution of residuals obtained from the non-spatial 

linear model revealed clear evidence of spatial clustering in 2011 and 2016, while no such clustering 

was observed in the SLM. These findings suggest the presence of spatial autocorrelation in district-

level fertility, particularly in recent years. It indicates that the fertility levels in a given district are 

increasingly influenced by the fertility levels of neighbouring districts, as well as the socioeconomic 

characteristics and reproductive behaviours within the district. 

Secondly, geographical variations in district-level fertility across Ethiopia are not solely a result 

of geographical variations in the levels of key selected proximate and distal determinants of fertility. 

They also stem from spatially heterogeneous relationships between district-level fertility and both 

proximate and distal determinants across the 981 districts. 
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The GWR coefficient values of mCP and the two key socioeconomic factors, the proportions 

of women living in urban areas and having secondary or higher education, were consistently negative 

and relatively similar across the 981 districts in both 2011 and 2016. This implies that the geographical 

differences in mCP and the two key socioeconomic factors should be considered as significant 

indicators for explaining the geographical variations in district-level TFR in most districts in recent 

years. In other words, the decline in district-level TFR in most districts in recent years can be attributed 

to the increase in mCP, as well as the proportions of women living in urban areas and having secondary 

education. On one hand, the consistently lower fertility rates observed in urban districts in highly 

urbanized regions (Addis Ababa, Dire-dawa, and Harai regions) as discussed in Chapter 4, can be 

explained by the higher proportions of women living in urban areas and having secondary education. 

On the other hand, the recent fertility declines in rural districts of the Amhara region can be attributed 

particularly to the higher uptake of modern contraceptive use in the region. This suggests that the spread 

of lower fertility rates from Addis Ababa to the Amhara region, as observed in Chapter 4, is reasonable 

since Addis Ababa is the most urbanized area in Ethiopia and the Amhara region has reported a 

significant increase in the use of modern contraceptives due to the presence of family planning (FP) 

organizations and the government's focus on the region through the Health Extension Programme (HEP) 

since 2004 (Olson and Piller, 2013, Tegegne et al., 2020). These findings imply that rural and less 

educated women in the Amhara region are increasingly adopting modern methods of contraception, 

regardless of their socioeconomic conditions. This supports the view that well-designed FP programs 

can effectively reduce unintended births, as there is a significant level of unintended fertility in most 

societies in Sub-Saharan Africa (SSA) (Bongaarts, 1994). Advocates of FP programs further argue that 

intensive public FP campaigns can help reduce fears related to the side effects of modern family 

planning methods and potentially change the ideal number of children (Bongaarts and Bruce, 1995, 

Cleland et al., 2014). Ethiopia stands out as one of the few countries in SSA where the government 

shows a strong commitment to FP (Halperin, 2014, May and Rotenberg, 2020). While this study does 

not explore whether the national FP program in Ethiopia has reduced unintended births or desired family 

size, the results indicate that both the implementation of family planning programs and socioeconomic 

conditions are significant factors in explaining the spatial variations in district-level fertility in recent 

years in Ethiopia. 

Furthermore, spatially heterogeneous relationships between district-level fertility and median 

age at first marriage were observed, particularly in 2011 and 2016. More specifically, stronger negative 

coefficient values were observed in certain districts within the Amhara region and the western parts of 

the Oromia region. This indicates that a one-year delay in first marriage is expected to have a greater 

impact on reducing TFR in these districts compared to other districts. It is worth noting that the Amhara 

region has the lowest median age at first marriage in the country, and there is a strong cultural link 

between marriage and childbearing, as evidenced by the low and nearly identical median ages at first 
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marriage (15.7 years old) and first sexual intercourse (15.5 years old) in 2016 (Gage, 2013, Alem et al., 

2020, Jones et al., 2018) (see appendix 4). To address early marriage in Ethiopia, the government 

revised the Criminal Code of 2005, imposing a maximum prison sentence of three years for marrying a 

girl aged between 13 and 17 years. The government also expressed its commitment to eradicating child 

marriage by 2025 in the National Strategy and Action Plan on Harmful Traditional Practices against 

Women in 2013 (MoWCYA, 2013, Abera et al., 2020). These national measures could have had a 

greater impact on districts within the Amhara regional state. It is known that delaying marriage acts as 

a strong facilitator of fertility decline in societies like the Amhara region, where childbearing outside 

of marriage is rare (Shapiro and Gebreselassie, 2014). Therefore, the stronger effects of delaying first 

marriage in the Amhara region may have partially contributed to the notable reduction in fertility 

observed in the region, as discussed in Chapter 4, in recent years. Moreover, the ethnolinguistic diversity 

had bidirectional effects on district-level fertility across different districts. Positive relationships were 

observed in two multi-ethnic regions (Benishagul-Gumuz and Gambela) and one ethnolinguistically 

homogeneous regional state (Amhara). On the other hand, negative relationships were particularly 

observed in multi-ethnic urban areas around Addis Ababa, Dire Dawa, and Harari regions.  

The evidence of spatial autocorrelation of fertility and spatially heterogeneous relationships 

between fertility and key selected determinants in this study suggests that the spatial location and 

distance between districts increasingly play a role in explaining geographical variations in fertility in 

Ethiopia. Socioeconomic and cultural characteristics of districts in Ethiopia, even within the same 

region, significantly differ, and fertility in a district is influenced by its location, the characteristics of 

nearby districts, as well as its own characteristics. From a demographic theory perspective, both 

adaptationist and diffusionist approaches can jointly explain these spatial aspects of district-level 

fertility in Ethiopia. Firstly, the adaptationist approach argues that socioeconomic conditions are the 

best predictors of geographical variations in fertility. According to this approach, people tend to adapt 

to new socioeconomic conditions, resulting in fertility decline due to urbanization or increasing 

opportunity costs of childbearing. This study demonstrates that the coefficients for the proportions of 

women living in urban areas and having secondary education consistently had negative values in both 

non-spatial and spatial linear models. This evidence suggests that significant urban-rural differentiations 

in fertility in Ethiopia can be partially explained by varying levels of socioeconomic conditions between 

rural and urban districts. Secondly, the diffusionist approach argues that spatial diffusion or common 

cultural and linguistic interaction between neighboring geographic areas, regardless of socioeconomic 

conditions, plays a crucial role in geographical variations in fertility. Chapter 4 illustrated that the recent 

spatial spread of lower fertility from Addis Ababa to the Amhara region between 2011 and 2016 was 

similar to the spatial spread of higher mCP. Therefore, the spread of lower fertility in the Amhara region 

could be attributed to the more intensive family planning programs in the region, as previously 

explained. Additionally, it should be noted that the Amhara region is ethnolinguistically homogeneous, 
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and Amharic, as the only working language of the federal government until 2020, is widely used in 

health policies (Ahmed and Seid, 2020). Consequently, within the diverse linguistic landscape of 

Ethiopia, this suggests that Amharic-speaking individuals in rural areas may have benefited from 

language-based reproductive health communication in the Amhara region, contributing to the adoption 

of modern contraception. Thus, ethnolinguistic diversity may be associated with higher fertility in 

multi-ethnic regional states like Gambela and Benishangul-Gumuz, supporting the idea that cultural or 

linguistic diversity can impede the diffusion of knowledge and attitudes favoring modern reproductive 

behaviors (De Broe and Hinde, 2006, Yüceşahin and Özgür, 2008, Bongaarts and Watkins, 1996). 

However, multi-ethnic urban areas around Addis Ababa, Dire Dawa, and the Harari region yielded 

contradictory results, as the index of ethnolinguistic diversity in these areas exhibited negative 

relationships with district-level fertility. From a diffusionist perspective, this is not a contradictory 

finding, as previous studies have shown that cultural diversification in urban areas often accelerates the 

diffusion of fertility changes, as communication networks in urban areas are more likely to transcend 

socioeconomic and cultural boundaries (Caldwell, 2006, Bongaarts and Watkins, 1996).  

This study acknowledges several limitations that should be taken into account when interpreting 

the results. Firstly, the district-level estimates used in the analysis have associated uncertainty levels, 

which tend to be higher in certain regions due to smaller sample sizes and fewer number of Primary 

Sampling Units (PSUs). Therefore, caution should be exercised when interpreting the results, and the 

imprecise nature of the estimates should be considered when using them for practical purposes in health 

policy and planning at the district level. Although the approach used in this study aligns with DHS 

recommendations for geostatistical modelling and similar approaches have been employed by DHS 

themselves to produce health indicator estimates at smaller administrative boundaries (Mayala et al., 

2019a, Janocha et al., 2021), the precision of the estimates for the 981 districts may still be limited. 

Secondly, the study employed cross-sectional analysis, which may not capture the temporal effects of 

proximate and distal determinants on fertility. Longitudinal data would provide a more comprehensive 

understanding of the dynamic relationships between these determinants and fertility over time. 

Overall, it is important to recognise that geographical variations in district-level fertility in 

Ethiopia should be examined in the context of possible spatial autocorrelation of fertility and spatial 

heterogeneity in the relationships between fertility and both proximate and distal determinants. The 

district level is considered the most appropriate spatial scale in Ethiopia, given its significance in the 

country's national health policy planning and implementation. The findings highlight the spatial 

correlation of district-level TFRs and emphasise the importance of considering not only the local 

context but also the contexts of neighbouring districts when planning at the woreda (district) level. 

Furthermore, the strong association between mCP and geographical variations in district-level fertility, 

regardless of socioeconomic conditions, suggests the need for more district-specific FP programs 
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tailored to the specific needs and characteristics of each district in Ethiopia. Such tailored programs can 

potentially improve the reproductive health status and outcomes in different districts. 

 

5.8. Conclusion 
 

This study reveals the presence of spatial autocorrelation and heterogeneity in fertility patterns 

concerning both proximate and distal determinants at the district level in Ethiopia in recent years. 

Consequently, any models that fail to account for spatial autocorrelations when explaining geographical 

variations in fertility in Ethiopia may yield biased results. Furthermore, the study highlights the 

increasing importance of space and place in understanding the recent geographical variations in fertility 

in Ethiopia. It is observed that socioeconomic and cultural characteristics vary among districts, even 

within the same region, and that fertility in a district is influenced not only by its own characteristics 

(adaptation effects) but also by the spatial location of the district and the characteristics of neighbouring 

districts (diffusion effects). Thus, this study offers additional insights into how the spatial location, 

distance between districts, socioeconomic and cultural characteristics, and reproductive behaviours 

within districts collectively contribute to shaping the geographical variations in district-level fertility in 

Ethiopia. 
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6.1. Overview 
 

In the previous chapters, I have described and explored spatial aspects of geographical variations in 

district-level fertility associated with key selected proximate and distal determinants in Ethiopia. In 

chapter 6, I review and synthesise the key findings of the DrPH research and discuss the strengths and 

limitations of this study. Then, I will also discuss implications in Ethiopia, and possible directions for 

future work beyond the DrPH. 

 

6.2. Summary of findings 

 

The main aim of this thesis was to describe and explore spatial aspects of geographical variations in 

district-level fertility in association with key selected proximate and distal determinants in Ethiopia 

between 2000 and 2016. This aim was addressed by the following objectives: 

1. Objective 1: To estimate TFRs and key selected proximate and distal determinants for 981 

districts in 2000, 2005, 2011 and 2016 by using a geostatistical modelling approach (Chapter 

4).  

2. Objective 2: To describe and explore spatial and temporal patterns of TFR and key selected 

proximate and distal determinants at the district level in 2000, 2005, 2011 and 2016 (Chapter 

4).  

3. Objective 3: To assess effects of key selected proximate and distal determinants on 

geographical variations in fertility at the district level between 2000-2016 with a non-spatial 

model (Chapters 5).  

4. Objective 4: To assess spatial dependency of district-level fertility by using a spatial method 

(Chapters 5). 

5. Objective 5: To explore spatial heterogeneity in relationships between TFRs and both 

proximate and distal determinants in Ethiopia by using geographically weighted regression 

between 2000 and 2016 (Chapters 5). 

In this section, I will summarise the main findings of the DrPH in relation to these five study objectives, 

and discuss how the findings help explain fertility changes at the district-level in Ethiopia. 

6. Chapter 6: Discussion and conclusions 
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6.2.1. Objective 1: To estimate total fertility rates and key selected proximate 

and distal determinants for 981 districts in 2000, 2005, 2011 and 2016 

by using a geostatistical modelling approach. 

The key findings from Objective 1 of the study indicate that there have been increasing differences in 

Total Fertility Rates (TFRs) between regions in recent years. Additionally, district-level TFRs have 

become more distinct from their respective median regional TFRs. Similar trends were observed in 

modern contraceptive prevalence (mCP) (Figure 4.2. & Figure 4.3). 

The three urban regions (Addis Ababa, Dire Dawa, and Harari) consistently exhibited lower 

regional-level fertility compared to the other eight regions. The district-level TFRs in these urban 

regions remained similar to their respective median regional-level TFRs between 2000 and 2016. In 

contrast, in 2000 and 2005, the district-level TFRs within other eight regions aligned with their 

respective median regional-level TFRs, except for the Oromia region. However, in 2011 and 2016, the 

median regional-level TFRs among the eight regions began to diverge, and the district-level TFRs 

within these regions became increasingly different from their respective median regional-level TFRs. 

Specifically, Oromia, Amhara, Tigray, and SNNP regions experienced declines in their 

regional-level TFRs between 2000 and 2016, and the geographical variations in district-level fertility 

within these regions widened in recent years. The four Developing Regional States (DRS) exhibited 

different trends in regional-level fertility but displayed similar patterns of variation in district-level 

fertility. The two eastern and ethnically homogeneous regions (Afar and Somali) had higher or 

increasing regional-level fertility between 2011 and 2016, and district-level TFRs within these regions 

started to vary. The two western and multi-ethnic regions (Gambela and Benishangul-Gumuz) 

experienced gradual declines in regional-level fertility, and the district-level TFRs within these regions 

showed variations, particularly in 2011 and 2016. 

Regarding the selected proximate determinants, similar changes in mCP were observed between 

2000 and 2016. In 2000 and 2005, the eight regional states (excluding the three urban regions) had 

relatively similar levels of mCP with minimal variations within regional states. However, in 2011 and 

2016, mCP levels diverged both between and within regional states. In contrast, age at first marriage 

varied between regional states in 2000 and 2005 but gradually increased, leading to smaller variations 

between districts and regional states by 2016. 

In terms of the selected distal determinants, regional and district-level variations remained 

relatively stable between 2000 and 2016 compared to the proximate determinants. The two 

socioeconomic determinants, the proportion of women living in urban areas and those with secondary 

or higher education, remained low (less than 30% and 20% for urban residency and secondary education, 
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respectively, in 2016) and exhibited similar patterns among the eight regions (excluding the three urban 

regions) between 2000 and 2016. The ethnolinguistic index at the zone level was higher in the three 

urban regions (Addis Ababa, Dire Dawa, Harari) and the two western DRS (Gambela and Benishangul-

Gumuz), and the district-level variations in the ethnolinguistic index remained relatively constant 

between 2000 and 2016.  

While previous studies in Ethiopia have focused on exploring geographical variations in fertility 

and proximate and distal determinants between the country's eleven regions  (Laelago et al., 2019, 

Tessema and Tamirat, 2020), the findings presented in Chapter 4 of this study go beyond these previous 

research efforts. This study examines geographical variations in district-level fertility and proximate 

and distal determinants within the eleven regions of Ethiopia between 2000 and 2016. The decision to 

estimate study variables at the third administrative unit, the districts (Admin 3), was driven by their 

significance in health planning and service delivery within Ethiopia's woreda-based health sector plan. 

To analyse the geographical distribution of TFR and selected proximate and distal determinants, this 

study proposed the application of model-based geostatistics using the INLA-SPDE model approach. 

This approach was utilized to assess the TFR and determinants at 981 districts in Ethiopia between 2000 

and 2016. 

The findings of this study are particularly important as they demonstrate that relying solely on 

national or regional data provides an inadequate description of recent geographical variations in fertility 

in Ethiopia. This inadequacy can pose challenges in planning for and monitoring decentralized national 

health programs at the district level in Ethiopia. Therefore, by focusing on district-level analysis, this 

study sheds light on the need to consider the specific characteristics and variations within districts, 

emphasizing the importance of district-level data in informing effective health planning and 

implementation. 

 

6.2.2.   Objective 2: To describe and explore spatial and temporal patterns 

of study variables in 2000, 2005, 2011 and 2016. 

Two key findings from the study objective 2 are as follows: Firstly, there is a clear spatial spread 

of lower fertility from Addis Ababa to the northern and western parts of Ethiopia between 2000 and 

2016. Secondly, the changes in the spatial distribution of fertility were more consistent with changes in 

the spatial distribution of proximate determinants, rather than distal determinants (Figure 4.4).  

Firstly, in Chapter 4, it was evident that the changes in the spatial patterns of district-level 

fertility were not randomly distributed; they followed certain spatial patterns. While urban and multi-

ethnic regions around Addis Ababa, Dire Dawa, and Harari consistently exhibited lower fertility rates 
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compared to the other eight regions between 2000 and 2016, lower district-level fertility was 

predominantly restricted to these urban regions between 2000 and 2005. However, a notable 

observation was that lower district-level fertility appeared to extend from Addis Ababa to the northern 

and western parts of the country in 2011 and 2016. 

Secondly, the changes in the spatial pattern of district-level fertility resembled the changes in 

the spatial patterns of the two selected proximate determinants, rather than the three selected distal 

determinants. Higher modern contraceptive prevalence (mCP) was particularly observed around the 

three urban and multi-ethnic regions between 2000 and 2005. However, in 2011, a spatial spread of 

higher mCP was observed from Addis Ababa to the western and northern parts of Ethiopia, including 

several rural districts in the Amhara regional state. Furthermore, the median age at first marriage was 

notably lower in the Amhara region compared to other parts of Ethiopia between 2000 and 2005. 

However, an increase in the median age at first marriage was observed, particularly in the Amhara 

region, between 2011 and 2016. In contrast, there were no apparent changes in the spatial distributions 

of the three selected distal determinants between 2000 and 2016.  

As mentioned earlier, districts play a crucial role in health planning and service delivery in 

Ethiopia, as decentralized health services are provided at the district level through the "woreda-based 

annual health sector planning," which is a key strategy in the current Ethiopia Health Sector 

Transformation plan (2019/20-2024/25). However, due to the lack of district-level data, we have limited 

information about the geographical distribution of fertility and the key factors influencing fertility at 

the district level. This thesis clearly demonstrates that a spatial spread of fertility decline has occurred 

from Addis Ababa to the northern and western parts of Ethiopia in recent years, rather than fertility 

declines being evenly observed across the country. This finding is significant because it suggests that 

these observed spatial patterns may influence how the government, international organizations, and 

NGOs implement public health measures at the district level. 

 

6.2.3. Objective 3: To assess effects of key selected distal and proximate 

determinants on geographical variations in fertility at the district level 

between 2000-2016 with a non-spatial model. 

A key finding from the study objective 3 was that modern contraceptive prevalence (mCP), median age 

at first marriage, proportions of women living in urban areas, and those with secondary education were 

negatively associated with district-level fertility, whereas ethnolinguistic diversity had a positive 

influence on district-level fertility in the non-spatial model between 2000 and 2016 (Table 5.2). 
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I found that that mCP and median age at first marriage had generally negative relationships 

with district-level total fertility rates (TFRs) between 2000 and 2016. Previous studies in Ethiopia have 

shown significant spatial variations in mCP and child marriage (Ebrahim et al., 2021, Tegegne et al., 

2020, Alem et al., 2020), and these two factors are important in explaining regional variations in fertility. 

This study further demonstrates that mCP and median age at first marriage are crucial indicators in 

explaining geographical variations in district-level fertility. 

Additionally, the two socioeconomic determinants, the proportions of women living in urban 

areas and having more than secondary education, were also negatively related to district-level fertility. 

This suggests that increases in the proportions of these two factors are associated with lower district-

level TFRs. According to the DHS STATcompiler (ICF, 2015),  this finding aligns with the results from 

the DHS STATcompiler, which showed that Ethiopia had the largest fertility difference by residence 

and female educational level among sub-Saharan African countries surveyed by the DHS program 

(appendix 3). This result implies that geographical variations in socioeconomic conditions are reflected 

in geographical variations in district-level fertility, supporting the adaptationist view that fertility 

variation can be primarily seen as a reaction to socioeconomic conditions (Becker, 1960a, Easterlin, 

1975).  

Furthermore, the non-spatial linear regression showed that ethnolinguistic diversity is positively 

associated with district-level fertility between 2000 and 2016. This suggests that multi-ethnic areas are 

typically associated with higher fertility, while ethnically homogeneous areas are associated with lower 

fertility. This result aligns with the diffusionist approach, which suggests that fertility decline spreads 

across geographically neighboring areas, especially when they share a common language Ethiopia has 

over 90 ethnolinguistic groups, and ethnolinguistic identities are the most important criteria for shaping 

regional boundaries. Chapter 4 of the study presented the geographical distribution of ethnolinguistic 

diversity at the zonal level, which can indicate the extent to which districts are surrounded by similar 

or different ethnolinguistic districts. Apart from the three urban regions, Benishangul-Gumuz and 

Gambela regional states consistently had higher levels of ethnolinguistic diversity at the zone level, 

indicating that districts in these two regions are surrounded by different ethnolinguistic districts. This 

finding suggests that, after controlling for other relevant factors, ethnolinguistic diversity in 

Benishangul-Gumuz and Gambela may hinder the diffusion of new knowledge and attitudes favouring 

reproductive behaviour. On the other hand, common languages in ethnically homogeneous regions, 

such as the Amhara region, can facilitate the diffusion of the idea of smaller families. 

Previous studies have examined the associations between proximate and distal determinants 

and fertility levels in Ethiopia (Laelago et al., 2019, Eyasu, 2015, Mengesha et al., 2018), but these 

studies often focused on national or regional levels. However, it is important to note that, apart from 

the three urban regions, the land areas of the eight regions are very large, with the land area of the 
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Oromia region (353,690 km²) being larger than that of the United Kingdom (243,610 km²). Therefore, 

district-level analysis is important since national- or regional-level analyses likely mask changes in 

district-level TFRs in association with key proximate and distal determinants of fertility. 

6.2.4. Objective 4: To assess spatial autocorrelation of district-level fertility 

by using a spatial model 

A key finding from study objective 4 is that spatial autocorrelation of district-level fertility has been an 

important aspect of geographic variations in district-level fertility in recent years. 

I found that spatial autocorrelation of TFRs at the DHS PSU level were consistently observed 

from semi-variogram analysis between 2000 and 2016 (Figure 5.3). Additionally, the direction of 

correlation between district-level TFRs and key selected proximate and distal determinants in the 

Spatial Lag Model (SLM) was similar to the result from the non-spatial model. However, the spatial 

lag term (p) in the SLM was consistently positive and significant between 2000 and 2016, suggesting 

that district-TFRs are spatially correlated even after controlling for key selected proximate and distal 

determinants (Table 5.2). This thesis further showed that regression residuals from non-spatial and 

spatial linear regression models were relatively similar and not spatially clustered in 2000 and 2005. 

However, the residuals were much smaller, and the spatial cluster of residuals was less obvious in the 

SLM than that of the non-spatial linear regression model in 2011 and 2016 (Figure 5.4). 

A number of recent studies in high and middle-income countries (HMICs) have called for 

attention to the existence of spatial autocorrelation of fertility at the local or district level (Salvati et al., 

2020, Vitali and Billari, 2017, Campisi et al., 2020, Burillo et al., 2020). Although geographically 

referenced data have become increasingly available in sub-Saharan Africa (Pezzulo et al., 2021, 

Tessema et al., 2020, Benza et al., 2017), studies that model spatial autocorrelation in district-level 

fertility are rare in SSA.  

This thesis clearly shows that spatial location and distance between districts are increasingly 

important aspects of fertility changes at the district level in recent years in Ethiopia. This finding 

suggests that TFR in a district can be affected by TFRs of nearby districts. This implies that any models 

that do not consider distance-based spatial autocorrelations in explaining geographical variations in 

fertility in Ethiopia may over- or underestimate the effects of key determinants of fertility on district-

level fertility, especially in recent years.  
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6.2.5. Objective 5: To explore spatial heterogeneity in relationships between 

TFRs and both proximate and distal determinants in Ethiopia by using 

geographically weighted regression between 2000 and 2016. 

 

A key finding from study objective 5 is that spatially heterogeneous relationships between ethno-

linguistic diversity and district-level fertility were observed in terms of direction, whereas there was a 

relatively small degree of spatial heterogeneity in the relationships between district-level fertility and 

mCP, age at first marriage, the proportion of women living in urban areas, and having secondary 

education (Figure 5.5). 

Although non-spatial and spatial regression models generally showed that ethnolinguistic 

diversity is positively related to district-level fertility in general, the Geographically Weighted 

Regression (GWR) showed that the relationships were spatially heterogeneous in terms of direction. 

Specifically, while multi-ethnic urban regions (Addis Ababa, Dire Dawa, and Harari) had a negative 

relationship between ethnolinguistic diversity and district-level fertility, other multi-ethnic regions 

(Benishangul-Gumuz and Gambela) had positive relationships. 

Additionally, mCP, age at first marriage, the proportion of women living in urban areas, and 

having secondary education generally showed negative and spatially similar relationships with district-

level fertility across 981 districts in recent years. This means that the influences of changes in these four 

variables on district-level fertility are relatively similar across 981 districts. In other words, 

geographical variations in the levels of mCP, age at first marriage, and the proportion of women in 

urban areas and having secondary education matter in geographical variations in district-level fertility, 

which supports the view that both socioeconomic conditions and family planning programs are strong 

predictors of geographical variations in fertility (Bongaarts and Bruce, 1995, Cleland et al., 2014). For 

age at first marriage, in particular, the GWR showed that the regression coefficients were spatially 

heterogeneous in terms of magnitude in 2011 and 2016. It shows that districts in the Amhara region had 

stronger negative effects, which means that a delay in first marriage by one year may decrease district-

level fertility more in the Amhara region, which has the lowest median age at first marriage in the 

country. 

Previous studies in high- and middle-income countries (HMICs) have demonstrated that 

spatially varying relationships between district-level fertility and socioeconomic variables do exist, and 

therefore a single, one-size-fits-all model may not easily summarize the spatial dimensions of fertility 

differentials and their underlying correlates (Wang and Chi, 2017, Haque et al., 2019). Such district-

level fertility studies are rare in sub-Saharan Africa (SSA), but they are important in SSA because 
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socioeconomic, linguistic, and cultural contexts substantially vary between districts in many SSA 

countries. This approach is particularly essential in Ethiopia, where geographical boundaries largely 

reflect ethnolinguistic boundaries. Therefore, the geographically weighted regression model was used 

to investigate the spatially varying relationships between district-level fertility and key selected 

proximate and distal determinants in Ethiopia. The spatially varying relationship between 

ethnolinguistic diversity and district-level fertility, found in this thesis, implies that ethnolinguistic 

diversity facilitates fertility decline in some districts but prevents it in other districts. 

6.2.6.  Discussion of findings 

Overall, this DrPH thesis presents three main findings. Firstly, geographical variations in district-level 

fertility have significantly emerged in recent years, and the emerging geographical variations in district-

level fertility follows a certain spatial pattern where lower fertility has spread from Addis Ababa to the 

northern and western parts of the country. Secondly, recent spatial changes in district-level fertility were 

more consistent with changes in the two selected proximate determinants rather than changes in the 

levels of the three selected distal determinants. Thirdly, the geographical variations in district-level 

fertility in Ethiopia were associated with the spatial location of and distance between districts, as well 

as the socioeconomic and cultural characteristics, and reproductive behaviours within the districts. 

 

1) Emergence of geographical variations in district-level fertility 

 First, this thesis showed that geographical variations in district-level fertility in Ethiopia have changed 

and widened in recent years. In 2000 and 2005, lower fertility levels were particularly observed around 

the three small and urban regions (Addis Ababa, Dire-Dawa and Harari). However, lower fertility levels 

were increasingly observed in non-urban districts as well as urban regions in 2011 and 2016, where the 

spatial spread of district-level fertility decline from the capital to northern and western parts of Ethiopia 

were clearly detected. Exploring the spatial spread of fertility decline beyond the simple urban and rural 

division at the district level is not a new concept. Previous studies in HMICs have also revealed the 

existence of spatial variations in fertility across district-level areas within a country, which are 

associated with subnational conditions such as cultural and spatial contexts, as well as urban-rural 

contexts (Wang and Chi, 2017, Vitali and Billari, 2017, Campisi et al., 2020, Haque et al., 2019, Costa 

et al., 2021). However, district-level studies in HMICs have relied on existing data, such as national 

census and vital statistics. One of the key challenges for achieving equity in health service provision in 

many SSA countries is the lack of district-level health and population data, which hampers the 

monitoring and evaluation of health outcomes across districts within a country. Moreover, official 

fertility and health statistics in SSA usually rely on national estimates, potentially masking underlying 
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heterogeneity in fertility and health outcomes within countries. Therefore, the Sustainable Development 

Goals (SDGs) call for disaggregated data by geographic location and other relevant characteristics in 

national contexts to uncover subnational disparities and ensure that no one is left behind in the 

implementation of the SDGs. In Ethiopia, districts (Admin 3) are essential administrative units for 

health planning and service provision, explicitly recognised by Ethiopia's Woreda-Based Annual Health 

Sector Planning (WBHSP). Although previous studies have described the geographical distribution of 

selected health outcomes at the regional (Admin 1) or zone level (Admin 2) (Mayala et al., 2019a, 

Janocha et al., 2021), health policy and services are decentralized and implemented based on district 

boundaries in accordance with the WBHSP. Therefore, a description of geographical variations at the 

Admin 1 or 2 level provides inadequate information about variations in population and health outcomes 

at the district level to monitor national health programs such as the WBHSP. To address this gap, I 

utilised Ethiopia DHS data from 2000 to 2016 to provide geographical descriptions of district-level 

TFRs in Ethiopia using the Bayesian model-based framework, which is the main novelty of this study. 

This approach provides valuable information for other Sub-Saharan African (SSA) countries where 

significant district-level variations in population and health outcomes exist. The lack of district-level 

data hampers the monitoring of geographical differences in health status at the district level in these 

countries. This approach can contribute not only to reducing sub-national health disparities within a 

country but also to meeting the SDGs' call for the development of better disaggregated data by 

geographical areas. 

2) Role of proximate determinants on geographical variations in 

district-level fertility  

This thesis provides clear evidence that the recent changes in spatial variations in district-level fertility 

in Ethiopia were more closely aligned with the spatial changes in the levels of the two selected 

proximate determinants, rather than the spatial changes in the levels of the three selected distal 

determinants. This finding was determined by conducting an investigation of both proximate and distal 

determinants of fertility at the district level, aiming to describe the association between changes in 

geographical variations in district-level fertility and the key determinants of fertility.  

Previous studies on district-level fertility in HMICs often focused primarily on distal 

determinants, such as socioeconomic and cultural variables, while neglecting the role of proximate 

determinants in understanding geographical variations in fertility. Regarding the three distal 

determinants, I observed overall increases in the proportions of women living in urban areas and with 

secondary or higher education across districts between 2000 and 2016. However, these increases were 

relatively small, except for consistently higher proportions in urban regions. Similarly, although there 

were variations in ethnolinguistic diversity at the zone level across eleven regions, I found minimal 
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changes in the geography of ethnolinguistic diversity between 2000 and 2016. Nevertheless, the small 

changes in the spatial distributions of the two socioeconomic variables do not imply that they are no 

longer important factors in explaining the geographic variations in district-level fertility. Districts with 

lower fertility levels in urban areas consistently exhibited higher proportions of women living in urban 

areas and with secondary or higher education. Hence, the levels of these two selected socioeconomic 

variables strongly correlate with urban-rural differences in district-level fertility. This association aligns 

with the adaptationist view, which suggests that socioeconomic changes play a significant role in 

driving geographical variations in fertility (Bryant, 2007, Shapiro and Tenikue, 2017, Behrman, 2015).  

Notably, differences in fertility levels among urban-rural residents and educational levels 

were largest compared to other countries surveyed by the DHS programmes (appendix 3). Furthermore, 

a recent study demonstrated that Addis Ababa had the lowest fertility rates among 932 first 

administrative units (Admin 1) in SSA (Pezzulo et al., 2021).  This implies that residents in Addis 

Ababa are already accustomed to smaller families, and rural-to-urban migrants also tend to adapt their 

fertility behaviour quickly to the new socioeconomic conditions in their urban destinations. 

Alternatively, these migrants may selectively move into urban areas to capitalise on the greater income 

and job opportunities offered by cities (Kulu, 2005). In Ethiopia, approximately 80% of the population 

resides in rural areas, and over 70% of the population is estimated to be employed in the agricultural 

sector (OECD, 2020). Hence, rural-to-urban migration decisions in Ethiopia are likely driven by 

voluntary migration for better job or income opportunities, suggesting that rural-urban migrants are 

more inclined to adapt to new urban lifestyles rather than maintaining the higher fertility levels prevalent 

in their original districts (Gibson and Gurmu, 2012). However, despite the significance of adaptation 

effects, the relatively gradual or small changes in the levels of the two socioeconomic factors between 

2000 and 2016 cannot adequately account for the disproportionate changes in fertility across districts, 

particularly in 2011 and 2016. 

In contrast to the three distal determinants discussed earlier, recent changes in the geography 

of the two selected proximate determinants, namely modern contraception prevalence (mCP) and 

median age at first marriage, align with the changes observed in the spatial patterns of district-level 

fertility. Proximate determinants refer to the biological and behavioral factors through which distal 

determinants influence fertility. Additionally, since proximate determinants are directly linked to 

fertility, variations in one or more of these factors are inherently connected to differences and changes 

in fertility levels and trends over time (Bongaarts, 2015). This thesis demonstrates that both the 

accelerated increases in the two selected proximate determinants and the faster pace of fertility decline 

at the district level were particularly notable in the districts of the Amhara region in 2011 and 2016. 

Previous studies have indicated that effective family planning programs can enhance the utilization of 

modern contraceptives, which, in turn, can reduce unintended births and desired family size through 
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informative messages about the advantages of family planning (Bongaarts, 2014, Casterline and Sinding, 

2000, Cleland et al., 2014). Moreover, the rate of fertility decline can be accelerated through the 

diffusion of modern family planning information among populations sharing a common language or 

culture, regardless of their socioeconomic conditions (Bongaarts and Watkins, 1996).  

The analysis conducted in Chapter 4 reveals that the geography of ethnolinguistic diversity 

remained relatively unchanged between 2000 and 2016, with consistently low levels of ethnolinguistic 

diversity observed in the districts of the Amhara region. It is noteworthy that the Amhara people, the 

second-largest ethnolinguistic group in Ethiopia with an estimated population of 20 million in 2020, 

constitutes approximately 27% of the total national population. Additionally, about 93% of the 

population in the Amhara region identifies as Ethiopian Orthodox Christians. This thesis demonstrates 

that two key proximate determinants, namely modern contraception prevalence (mCP) and age at first 

marriage, exhibited significant increases in the Amhara region, despite minimal changes in the 

proportions of women living in urban areas and with secondary education in the region. Several studies 

have reported the effectiveness of national family planning programs implemented in the Amhara 

region since 2004 (Olson and Piller, 2013, Tegegne et al., 2020, Halperin, 2014). Furthermore, in 

Ethiopia, where the traditional association between marriage and childbearing remains strong compared 

to many other Sub-Saharan African countries, delayed marriage is a prominent driver of fertility decline 

(Rogers and Stephenson, 2018). Median age at first marriage in the Amhara region consistently ranked 

the lowest across the eleven regions in Ethiopia, with values of 14.3 years in 2000 and 15.7 years in 

2016 (appendix 4). Additionally, within the Orthodox culture prevalent in the Amhara region, 

extramarital childbearing is uncommon, and virginity is a religious prerequisite for marriage. Hence, 

the cultural and religious link between marriage and childbearing, coupled with the effective 

implementation of family planning programs and the shared language (Amharic) in the region, likely 

contributed to the accelerated fertility decline observed in the districts of the Amhara region in 2011 

and 2016. 

Overall, the rapid adoption of modern contraceptive methods and the delay in marriage 

observed in the Amhara region in 2011 and 2016 can be attributed to the effective implementation of 

family planning programs and the spatial diffusion effects facilitated by common ethnolinguistic 

contexts. These factors could have directly accelerated the pace of fertility decline in numerous districts 

of the Amhara region, irrespective of their socioeconomic conditions. This finding underscores the 

importance of considering both proximate and distal determinants of fertility when exploring 

geographical variations in district-level fertility in Ethiopia. It supports the notion that changes in 

reproductive behaviour, such as delayed marriage and increased contraceptive use, can be reinforced 

by diffusion effects through cultural and linguistic similarities, regardless of socioeconomic conditions. 
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3) Role of geographical location and distance on geographical variations 

in district-level fertility  

 This thesis highlights the role of geographical location of and distance between districts in describing 

geographical variations in district-level fertility in Ethiopia. The findings of this study revealed that 

even after accounting for the key selected proximate and distal determinants, spatial autocorrelation of 

Total Fertility Rate (TFR) at the district level became more pronounced in recent years. In simpler terms, 

districts that are closer to each other tend to exhibit more similar fertility levels compared to districts 

that are farther apart. 

The diffusionist approach argues that the spread of information about birth control through 

interpersonal communication can be influenced by both geographical and cultural proximity (Bongaarts 

and Watkins, 1996). This implies that the recent variations in district-level fertility in Ethiopia by 2011 

are not solely associated with differences in the key selected proximate and distal determinants, but also 

influenced by the geographical location and distance between districts. Interpersonal communication 

with individuals living nearby becomes particularly important when alternative communication 

channels, such as mobile phones, radio, and TV, are not readily available. According to the 2016 

Ethiopia Demographic and Health Survey (DHS), only 27% of women aged 15-49 owned mobile 

phones, and approximately three out of four women (74%) had limited access to mass media, including 

radio, TV, and newspapers on a weekly basis. Consequently, in many Ethiopian societies, local 

communication serves as a crucial channel, making the location and distance between districts 

significant factors in describing geographical variations. In other words, the fertility level in a district 

may be influenced by the characteristics of neighbouring districts in addition to its own characteristics. 

Therefore, regression models that overlook the role of spatial location and distance can be biased.  

If the spatial location by itself matters in geographical variations in district-level fertility, there 

are possibilities that the process of fertility decline can vary from district to district. Therefore, I 

examined whether the effects of the key selected determinants on fertility are homogeneous or 

heterogeneous across districts by using the local regression analysis (GWR) that uses distance-based 

weighting. The findings indicated that the relationships between district-level TFRs and the two selected 

proximate and two socioeconomic factors generally exhibited negative associations across most 

districts between 2000 and 2016, albeit with varying magnitudes. However, the GWR model revealed 

spatial heterogeneity in the relationship between TFRs and ethnolinguistic diversity, both in terms of 

magnitude and direction, across districts. Positive relationships were observed in the Amhara, 

Benishangul-Gumuz, and Gambela regions, while negative relationships were found in the three urban 

regions and the Afar and Somali regions. From a diffusionist perspective, the positive relationship aligns 

with expectations, as it suggests that ethnolinguistic similarity can reinforce the pace of fertility decline. 
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Therefore, considering that the geography of ethnolinguistic diversity in Ethiopia remained similar 

between 2000 and 2016, the presence of ethnolinguistically homogeneous contexts in the Amhara 

region (characterised by a low diversity index) may facilitate fertility decline (resulting in low fertility 

rates). Conversely, ethnolinguistically diverse contexts in the Benishangul-Gumuz and Gambela 

regions (exhibiting a high diversity index) are associated with higher fertility levels (resulting in high 

fertility rates). 

On the other hand, the negative relationships observed in certain regions could be attributed 

to either higher fertility levels in ethnolinguistically homogeneous regions or lower fertility levels in 

ethnolinguistically diverse regions. For example, the Somali and Afar regions, despite being 

ethnolinguistically homogeneous, consistently exhibited higher fertility levels compared to other 

regions. The mean ideal numbers of children were also notably high in these regions, with 5.6 for Afar 

and 10.6 for Somali regions, surpassing the national average of 4.5 in 2016 (ICF, 2016). Conversely, 

the consistently lower fertility levels observed in multi-ethnic urban areas could be attributed to the 

adaptation to urban lifestyles by both urban residents and rural-to-urban migrants. Unlike rural areas, 

urban areas provide access to multiple communication channels. Take Addis Ababa, the capital and a 

multi-ethnic city, as an example. A significant portion of the population in Addis Ababa can speak the 

official language, Amharic, and there are various communication channels available for exchanging 

information and ideas. The 2016 Ethiopia DHS indicates that 87% of women in Addis Ababa owned 

mobile phones, and only 14% had no access to mass media. Consequently, the lower fertility levels 

observed in urban areas can be attributed to both strong adaptation effects on urban residents and rural-

to-urban migrants and diffusion effects facilitated by multiple communication channels that surpass the 

limitations of interpersonal communication constrained by geographical distance. This finding in urban 

areas supports the view that  the degree to which geographical distance can foster fertility decline are 

negatively correlated with socioeconomic or urban status (Klüsener et al., 2019, Costa et al., 2021). 

Previous research in HMICs has also investigated the role of geographical distance as an 

important moderator in fertility decline. These studies have demonstrated that the fertility level in a 

given place is associated with the fertility level in neighbouring areas (Montgomery and Casterline, 

1993, Goldstein and Klüsener, 2014, Klüsener et al., 2019).  However, spatial analysis of fertility 

change at the district level is still rare in sub-Saharan African (SSA) countries, where significant 

variations in socioeconomic and cultural contexts exist. This implies that fertility in a district can be 

influenced not only by its own characteristics but also by the geographical location and characteristics 

of nearby districts. 
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6.3. Strengths 

In this section, I will discuss the strengths of the thesis. In the section 2.7, I summarised three research 

gaps in the study of the geographical variation in fertility in Ethiopia. The major strength of this thesis 

is to address those research gaps introduced in chapter 2:  

1. Although districts (Admin 3) are essential administrative units for health policy implementation 

and delivery in Ethiopia, very little is known about geographical variations in fertility at the 

district level due to the shortage of district-level data in Ethiopia. 

2. Although theoretical and empirical studies support the presence of spatial dependency and 

heterogeneity of fertility in most populations, fertility studies in SSA countries, including 

Ethiopia, often neglect the spatial effects on sub-national variations in fertility.  

3. Recent spatial analysis of fertility in HMICs have revealed the spatially varying relationship 

between distal determinants and fertility levels at small-scale spatial units. However, these 

studies often exclude the role of proximate determinants, which are crucial factors accounting 

for geographical variations in fertility in SSA countries. 

 

6.3.1. Use of freely available geo-referenced data to explore geographical 

variations in district-level fertility in Ethiopia 

First, I used the Demographic and Health Survey (DHS) data, which can be accessed freely 

upon approval of a data request from the DHS website (https://dhsprogram.com/data/) , to describe 

demographic and health outcomes at the district level in Ethiopia. While the national health strategy in 

Ethiopia acknowledges the existence of geographical variations in fertility and health outcomes at the 

district level, there is a shortage of district-level data in the country to comprehensively depict the spatial 

distribution of district-level fertility. Census data can potentially offer the necessary demographic 

information at the district level. However, in Ethiopia, census data are collected approximately every 

10 years or even longer intervals. The last census was conducted in 2007, and the fourth census, initially 

scheduled for 2017, has been officially postponed four times as of October 2022 due to political, 

financial, and COVID-19-related challenges. Furthermore, census data often focus solely on 

demographic indicators and do not encompass health indicators. 

In order to overcome the lack of district-level data in Ethiopia, this study used data from the 

Ethiopia Demographic and Health Survey (EDHS). This analytical approach can be readily expanded 

and applied to future EDHS surveys as well as other countries surveyed by the DHS programme. While 

https://dhsprogram.com/data/
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previous studies have utilised the EDHS to investigate geographical variations in Ethiopia, they have 

primarily focused on variations between the eleven regions, rural-urban areas, or presented high-

resolution maps of health outcomes at the administrative level 2. To my knowledge, this is the first 

study to go beyond previous studies on geographical variations in fertility in Ethiopia by describing and 

exploring the variations at the level of the 981 districts. 

Examining demographic and health outcomes at the district level is crucial in sub-Saharan 

Africa (SSA), including Ethiopia, as many SSA countries have decentralized healthcare services to the 

district government level. The Woreda-based Health Sector Plan (WBSHP) Ethiopia's national health 

policy explicitly emphasises this decentralization. While the estimates for the 981 woredas based on 

approximately 500-600 sets of fertility data from the DHS may not be highly precise, this thesis offers 

valuable insights into geographical variations in fertility at the district level in SSA. It also sheds light 

on the emergence of health inequalities in high burden settings at the district level in SSA. By focusing 

on the district level, this study contributes to a better understanding of the dynamics of health outcomes 

and highlights the importance of addressing health disparities within specific local contexts. 

6.3.2. Combination of spatial interpolation and spatial regression methods 

for spatial effects 

In this thesis, I have employed various spatial models to investigate the spatial effects on geographical 

variations in district-level fertility in Ethiopia between 2000 and 2016. The inclusion of spatial 

autocorrelation and heterogeneity is crucial in comprehending the geographical patterns of fertility 

within a country, as supported by both theoretical arguments and empirical evidence (Wang and Chi, 

2017, Vitali and Billari, 2017, de Castro, 2007). Previous studies conducted in high- and middle-income 

countries have explored spatial autocorrelation and heterogeneity in local-level fertility using spatial 

regression models  (Haque et al., 2019, Burillo et al., 2020, Obradovic and Vojkovic, 2021). 

However, as discussed earlier, the lack of local-level data in many SSA countries hinders the 

direct application of traditional spatial regression models. In this study, a novel approach was employed 

to overcome this limitation. The study combined model-based geostatistics (MBG) with spatial 

regression models to explore two important spatial effects: spatial autocorrelation of fertility and 

spatially heterogeneous relationships. Specifically, a Bayesian MBG approach was utilised and 

implemented through a stochastic partial differential equations (SPDE) approach with integrated nested 

Laplace approximations (INLA). This approach, which has been recently used in DHS spatial reports, 

allowed for the prediction of district-level total fertility rate (TFR) and key related determinants for the 

981 districts in Ethiopia between 2000 and 2016. The study then compared non-spatial and spatial linear 

regression models to examine the presence of spatial autocorrelation in district-level fertility, even after 



148 
 

controlling for selected proximate and distal determinants. Additionally, a geographically weighted 

regression (GWR) model was employed to uncover the spatially heterogeneous relationships between 

district-level TFR and the proximate and distal determinants. 

By combining these different spatial methods, the study was able to investigate how 

geographical variations in district-level fertility are influenced not only by the socioeconomic and 

cultural characteristics of each district but also by the spatial autocorrelation and heterogeneity of 

fertility in relation to its proximate and distal determinants.  

6.3.3. Spatially varying relationship between district-level fertility and both 

proximate and distal determinants of fertility 

This study aimed to investigate the association between both proximate and distal determinants and the 

geographical variations in district-level fertility, as well as to examine whether these relationships 

exhibit spatial heterogeneity. While previous studies in high- and middle-income countries have utilised 

spatial models to explore the spatially heterogeneous relationships between district-level fertility and 

distal determinants, they have often overlooked the role of proximate determinants. However, in the 

context of sub-Saharan Africa (SSA), proximate determinants remain crucial in understanding 

geographical variations in fertility, as distal determinants can only impact fertility levels through their 

influence on proximate determinants. Moreover, measures such as modern contraceptive prevalence 

(mCP) and age at first birth still exhibit low levels and geographic variations in many SSA countries 

(Finlay et al., 2018, Laelago et al., 2019). To address these gaps, this study examined both key selected 

proximate and distal determinants to explore the potential spatial variability in the relationships between 

fertility and these determinants across districts.  

Methodologically, the geographically weighted regression (GWR) model was employed as the 

primary methodology. The GWR model allows for the estimation of a local regression equation for 

each district in the dataset, thereby evaluating the relationships between variables at the district level. 

This approach involves incorporating the outcome variable (TFR) and explanatory variables from 

neighbouring districts that are in proximity to the target district. A neighbourhood (also known as a 

bandwidth) is the distance band (fixed) or number of neighbours (adaptive) used for each local 

regression equation. I adopted the adaptive method to determine bandwidth size, as the distance between 

districts in Ethiopia is not equal. This ensures that the GWR model captures the spatially heterogeneous 

relationships between fertility and its influencing factors across districts. By conducting a local analysis, 

the study enables the interpretation of these spatially heterogeneous relationships at the district level, 

providing insights from different perspectives of demographic theories. 
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6.4. Limitations  

 Limitations have been described at the end of each chapter. In this section, limitations that should be 

considered for the overall conclusions of this thesis will be presented and discussed. 

 

6.4.1. Limited set of study variables 

This study has limitations in terms of the selected proximate and distal determinants used to explore 

geographical variations in district-level fertility in Ethiopia. The Bongaarts model of proximate 

determinants of fertility identified four factors - contraception, marriage/cohabitation, induced abortion, 

and postpartum infecundability - to quantify their impact on fertility (Bongaarts, 2015). However, this 

study focused only on two proximate determinants, contraception and marriage exposure, excluding 

abortion and postpartum infecundability, because previous research has indicated that the differences 

in inhibiting effects of contraception and marriage on fertility between regional states in Ethiopia are 

larger compared to the other two determinants (Laelago et al., 2019, Alazbih et al., 2017). Nevertheless, 

it is important to acknowledge that postpartum infecundability has been considered an additional 

contributing factor to the recent fertility decline in rural Ethiopia (Lailulo and Sathiya Susuman, 2018, 

Todd and Lerch, 2021). Moreover, although statistics on abortion are frequently unavailable from the 

Ethiopia Demographic and Health Surveys due to its legal status in many low-income countries 

(Westoff, 2008), studies in six Asian countries have shown that induced abortion has a significant 

impact on fertility reduction among poor women (Majumder and Ram, 2015). Despite the increasing 

number of legal abortions in sub-Saharan Africa, a substantial number of abortions still occur illegally 

outside of health facilities (Moore et al., 2016, Singh et al., 2010). Therefore, the inclusion of these two 

excluded proximate determinants could provide additional insights into explaining geographical 

variations in district-level fertility in Ethiopia. 

Furthermore, while other studies investigating geographical variations in fertility have 

examined a broader range of distal determinants, such as various economic indicators, mobile phone 

ownership, and media exposure, this thesis focused on only three distal determinants. This decision was 

based on the fact that, according to the latest reports from the Demographic and Health Surveys, 

Ethiopia had the largest differentials in fertility based on residential areas (rural and urban) and female 

educational levels among all the countries surveyed by the DHS programme (see Appendix 3). However, 

it should be noted that the aim of this DrPH thesis is not to identify the determinants of fertility. Instead, 

the focus is on describing the patterns of selected key determinants and gaining insights into their 

influence on the geographical variations in district-level fertility in Ethiopia. 
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6.4.2. Simple mean zonal statistics for aggregation of point estimate 

interpolated surface to districts  

One primary method of utilising modelled surfaces for decision-making is through the aggregation of 

point estimate model surface pixels to relevant administrative units or policy areas (Janocha et al., 2021). 

In this study, a new map was created at the district level, illustrating the mean estimate value for each 

district. The aggregation process involved averaging the point estimates, which were aggregated to the 

981 districts using simple mean zonal statistics. Recent research has also employed population-

weighted mean zonal statistics, which use similar techniques but account for the estimated population 

in each grid square(Burgert-Brucker et al., 2016b). These studies often utilized population counts raster 

data from sources like the WorldPop to apply population-weighted aggregation when generating 

estimates at the administrative level in Ethiopia (Mayala et al., 2019b, Amoah et al., 2021). However, 

it is crucial to use the correct reference population layer, considering age-group and gender, in order to 

accurately estimate the denominator. 

In this study, the denominator for estimating the fertility rates would ideally be the population 

counts of women aged 15-49 years at small grid squares in Ethiopia between 2000 and 2016. However, 

population data specifically for the female age group during that time period are not available. Given 

the relatively small size of districts in Ethiopia, it was assumed that there is an even distribution of 

populations within each district. Therefore, the simple mean zonal statistics were used for the 

aggregation. However, it should be noted that some districts in Ethiopia may have an uneven 

distribution of populations within their administrative units. The use of population-weighted mean zonal 

statistics, by utilizing the correct reference population layer, could potentially improve the estimation 

at the district level. 

6.4.3. The absence of covariates in model-based geostatistics  

It is acknowledged that including more covariates in the analysis can potentially improve the predictive 

ability of model-based geostatistics (Utazi et al., 2021). However, this study did not incorporate 

geospatial covariates in the model-based geostatistical approach. As discussed in Chapter 3, the goal of 

generating maps in this study was to produce ‘standardised maps’ for Ethiopia rather than aiming for 

the "best possible map." This standardised approach allows for comparisons between maps from 

different countries or different time periods, even when the availability of covariate datasets varies. 

Additionally, excluding geospatial covariates was intentional to focus on exploring associations 

between outcome and explanatory variables. Moreover, several studies in the field of global health 

utilised geospatial covariates obtained from publicly available remote sensing source, including land 

surface temperature, enhanced vegetation index, average monthly rainfall so on, for disease prevalence 
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or environmental mapping (Giorgi et al., 2021, Huang et al., 2017, Reiner Jr et al., 2020). These 

covariates can primarily explain variation in data for certain diseases like malaria, but their contribution 

to explaining complex or socially driven health outcomes like HIV and fertility is relatively limited 

(Mayala et al., 2020). Therefore, geospatial covariates were not used in this study. However, it is 

recognised that incorporating appropriate geospatial covariates could potentially improve the accuracy 

of standardised maps. 

6.4.4. Uncertainty 

The results in Chapter 5 need to be interpreted carefully since they were derived from MBG-based 

estimates of outcome and explanatory variables at the district level in Chapter 4, rather than from raw 

data of EDHS. The stability and precision of the MBG-based estimates in Chapter 4 are affected by two 

elements of uncertainty. The first uncertainty is related to the sampling issues of the EDHS, and the 

second uncertainty is inherent in MBG. 

Firstly, uncertainty can arise from displaced EDHS cluster locations and small sample sizes 

at each primary sampling unit (PSU). The locations of PSUs used in the spatial modelling process 

represent estimated centres of clusters of households. This means that the actual household locations 

are unknown, and the point locations for PSUs represent areas of varying size. In urban areas, these 

point locations are geo-masked within a range of 0-2 km, and in rural areas, the range is 0-5 km, with 

1% of rural locations extending up to 10 km. Therefore, the displaced EDHS cluster locations can lead 

to positional uncertainty in accurately estimating values at a certain location. In addition, small sample 

sizes, consisting of approximately 25-35 women, were collected from each PSU. As a result, estimates 

of study variables at PSUs may be subject to sampling errors, as smaller samples are less likely to 

represent the population. Previous studies have shown that MBG can moderate the impact of small 

samples and DHS point displacement (Gething et al., 2015, Mayala et al., 2020). This is because MBG 

enables the borrowing of information from neighbouring areas and incorporates covariate information, 

resulting in the smoothing or shrinking of extreme or misleading values. However, it should be 

acknowledged that the DHS sampling itself is subject to uncertainty in the estimates at the PSU level. 

In particular, recent studies have developed advanced geostatistical models that account for the 

positional uncertainty of DHS data to improve predictive measures (Fonterre et al., 2018, Wilson and 

Wakefield, 2021). Therefore, such geostatistical approaches should be considered in future studies. 

Secondly, an important element of the MBG-based surface output is the uncertainty estimates. 

I presented uncertainty maps with Bayesians credible intervals for each predicted pixel value. (Figure 

4.5) (Janocha et al., 2021). The map revealed that the level of uncertainty tends to be relatively higher 

in the Afar and Somali regional states, as well as the southern parts of Ethiopia. Bayesians credible 

intervals of uncertainty that grow where there is heterogeneity in data (e.g., wide range of total fertility 
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rate) or when there are no data to support prediction (Mayala et al., 2020). Therefore, the higher 

uncertainty can be attributed to a smaller number of PSUs in those areas and the concentration of 

excluded PSUs without GPS coordinate information in the Afar and Somali regions in 2011 and 2016 

(Appendix 2). In addition, the uncertainty map showed that uncertainty at unsampled locations for TFR 

and mCP increased from 2000 to 2016, which may be due to the widened geographical variations in 

TFR and mCP in recent years. Therefore, although the MBG-based estimates from this study provide 

valuable information on geographical variations in district-level fertility, it is important evaluate the 

stability and precision of estimates at specific locations on the map (Figure 4.4) by examining the 

uncertainty surface (Figure 4.5). Higher uncertainty in a location indicates less accuracy in the model's 

estimation of the indicator value, while lower uncertainty suggests a better estimate for that location. 

Understanding and acknowledging this uncertainty is crucial as it provides information about the 

model's reliability and the variations in uncertainty across the country. Hence, when individuals or 

policy makers want to use the result in Chapter 4 and 5, they should determine an acceptable level of 

uncertainty based on the context, and their tolerance for uncertainty.  

Despite the uncertainty, I also found that the aggregated values at the regional level generally 

fall within the 95% confidence interval of the estimates derived directly from the EDHS survey data 

files (Figure 2.3 and Figure 4.2). Hence, it could be expected that aggregated values at the district level 

may fall within the 95% confidence interval of the true values of district-level TFR, which should be 

further validated with available district-level data. Ideally, to obtain more precise estimates at the district 

level, larger and more comprehensive datasets would be needed, which can be costly and time-

consuming. Alternatively, a potential solution could involve combining multiple data sources, including 

the Ethiopia DHS, Census, and Performance Monitoring for Action (PMA) data, and incorporating 

them within a Bayesian model-based geostatistical (MBG) framework to estimate fertility and its 

determinants at the district level. 

6.4.5.  Lack of temporal analysis  

This study is conducted as a cross-sectional analysis, and therefore, all the analysis methods 

were implemented separately for each EDHS survey. Consequently, the findings from this study cannot 

be used to draw conclusions about the role of spatial patterns and distributions in driving district-level 

fertility changes over time. It is important to recognise that fertility levels not only vary across different 

geographical locations but also differ across different sampling periods. The relationships between 

district-level fertility and the influencing proximate and distal determinants may be influenced by both 

spatial and temporal factors. Hence, studies investigating geographical variations in fertility may require 

both spatial and temporal perspectives. One advantage of using a model-based geostatistical approach 

is its flexibility in analysing the spatio-temporal dynamics of demographic phenomena. Additionally, 
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the geographically weighted regression (GWR) model has been further extended to incorporate 

temporal information into the spatial heterogeneity of health outcomes through the geographically and 

temporally weighted regression (GTWR) model(Chen et al., 2021, Guo et al., 2021). 

However, it is important to note that this DrPH thesis focuses on investigating geographical 

variations in fertility rather than examining the temporal trends of district-level fertility. Nevertheless, 

this study utilised four rounds of the EDHS data and presented the spatial patterns and relationships of 

district-level fertility in relation to proximate and distal determinants for the years 2000, 2005, 2011, 

and 2016. It can be reasonably assumed that the cross-sectional effect of spatial correlation on 

geographical variations in fertility may reflect the influence of spatial correlation on fertility from 

previous years. 

6.5. Implications  
 

6.5.1. Increasing importance of district-level analysis in geographical 

variations in fertility 

This thesis reinforces the significance of district-level analysis in describing geographical variations in 

fertility in Ethiopia in recent years. The presence of such variations is an important characteristic of the 

country, as evidenced by substantial differences in fertility rates between urban and rural areas as well 

as regional states. While previous studies on geographical variations in fertility in Ethiopia have often 

focused on differences between urban and rural areas or regional states, this study explores variations 

at the district level.  

The first question addressed in this thesis is whether there are geographical variations in fertility 

at the district level between 2000 and 2016. Figure 4.4 clearly demonstrates the emergence of 

geographical variations in district-level fertility in recent years. Studies conducted in the early 2000s 

without district-level analysis may have provided a relatively adequate description of geographical 

variations in fertility in Ethiopia at that time. However, without district-level analysis in more recent 

years, such studies would be unable to capture the emerging variations in fertility at the district level. 

From a national health policy perspective, the Health Sectoral Transformation Plan II (HSTP 

II) (2020/21 – 2024/25) in Ethiopia explicitly recognises the high level of variations in health and 

demographic outcomes between districts. The HSTP II aims to achieve universal coverage and equity 

of essential health services across districts in the country. To address the delivery of health services, 

Ethiopia has implemented a decentralised health system, where the district (woreda) serves as a basic 

administrative unit with the authority to manage budgets and allocate resources according to their needs 
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and strategic plans aligned with the national HSTP II. The transformation of each woreda is expected 

to establish an accountable and transparent health system that fosters meaningful community 

participation and data-driven decision-making. 

Despite the importance of a decentralised health system through the woreda-based 

transformation in Ethiopia, challenges remain regarding the availability of complete and timely data for 

evidence-based decision-making at the district level. While the population and housing census provides 

district-level data, the last census in Ethiopia was conducted in 2007, and the next census is still in 

preparation as of July 2022. Moreover, census data does not provide information on health outcomes. 

The health and demographic surveillance system (HDSS) offers demographic and health data for only 

seven districts, which is insufficient to describe geographical variations in fertility across the entire 

country. Although recent DHS spatial reports provide health outcomes at the Admin 2 level, I argue 

that the woreda level is the more essential administrative unit. 

This study reveals that while regional and urban-rural differences are important aspects of 

geographical variations in fertility, there are also substantial variations between districts within the same 

regions, particularly in recent years. This implies that now is the time provide more district-level data 

to bridge the gaps between policy priorities and evidence, thereby enhancing decentralised health 

services in Ethiopia. Otherwise, it could hinder efforts to understand the factors determining fertility in 

the country and impede the planning and monitoring of decentralized health programs at the district 

level. 

6.5.2. Spatial effect on geographical variations in district level-fertility  

This thesis underscores the increasing significance of spatial autocorrelation in fertility as a key 

aspect of geographical variations in Ethiopia, particularly in recent years. It reveals that socioeconomic 

and cultural characteristics vary among districts, even within the same region, and that fertility in a 

district is influenced by both its own characteristics and those of neighbouring districts. In Chapter 2, 

two possible explanations for geographical variations in fertility were introduced: the adaptationist and 

diffusionist approaches. The adaptationist approach suggests that fertility is influenced by 

socioeconomic factors within specific areas. On the other hand, the diffusionist approach posits that 

fertility intentions are influenced by the spread of ideas and practices, especially among individuals 

who share similar ethnolinguistic backgrounds. In the case of Ethiopia, where the geographical 

boundaries of administrative units largely align with the distribution of over 90 different ethnolinguistic 

groups, the diffusionist perspective becomes particularly relevant. Therefore, considering the spatial 

dimension becomes crucial for understanding and analysing geographical variations in fertility in 

Ethiopia. 
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As explained in Chapter 2, ethno-linguistic identity is the primary criterion shaping the 

administrative boundaries of the country (Admin 1). The Ethiopian constitution explicitly states that 

every ethno-linguistic group has the right to establish self-administrative areas starting at the district 

(woreda) level, and at the zonal and regional levels depending on the size of each ethno-linguistic group 

(Ethiopia, 1995). Recently, there have been changes in the ethnolinguistic geography of Ethiopia. New 

ethnolinguistic groups have established their own regions since 2016. Between 1994 and 2020, there 

were only eleven regions (nine regions and two chartered cities) and one official language (Amharic). 

However, this has recently begun to change.  

Firstly, the Sidama and Southwest regions were newly established in June 2020 and November 

2021, respectively, following the successful votes by the Sidama ethnolinguistic group and the 

southwest Ethiopian people to create their own regional states from the Southern Nations, Nationalities, 

and Peoples' (SNNP) region. Additionally, two more regions (Damotic & Omotic region and Northern 

& central region) are ready to become independent from the SNNP region and establish new regions. 

Among these newly established or establishing four regions, the Sidama region is ethnolinguistically 

homogeneous, but the other three regions will be multi-ethnic regions. Consequently, the SNNP region 

will eventually be divided into four regions, resulting in a total of twelve regions and two chartered 

cities in Ethiopia. Secondly, in 2021, the Ethiopian government added four additional official languages 

(Tigray, Oromo, Hara, Somali) to the initial official language (Amharic). Therefore, Ethiopia currently 

has five official languages. 

These recent changes in geography and language in Ethiopia are likely to influence spatial and 

communication interactions, which can in turn affect reproductive health behaviours and fertility 

intentions according to the diffusionist approach. These changes suggest that ethnolinguistic-based 

geography could play a greater role in Ethiopia, highlighting the need for increased attention to the 

spatial aspects of district-level fertility in the country. 

 

6.6. Future work 
 

There are many ways to extend the work presented in this thesis to better understand geographical 

variations in fertility at the district level in SSA.  

 

6.6.1. Onset and pace of fertility decline at district level in SSA using 

spatiotemporal model. 
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The spatial method used in this thesis provides an approach to describe changes in the spatial patterns 

of district-level fertility in Ethiopia between 2000 and 2016. However, employing spatio-temporal 

methods would offer additional benefits as they allow for the examination of persistent patterns and 

identification of atypical patterns across both space and time. By utilising spatio-temporal methods, we 

can not only a) predict district-level fertility but also b) explore the spatially and temporally varying 

relationships between district-level fertility and factors influencing fertility in Ethiopia. 

Firstly, the spatial modelling of geostatistical data used to predict fertility rates for 981 districts 

in this study can be extended to incorporate the time dimension. By including time into the model, 

spatio-temporal modelling can account for variations in the fertility trend across different districts over 

time. Spatio-temporal mapping models are commonly applied in disease surveillance studies, where the 

focus is on predicting disease occurrence in observed and unobserved areas over time. In fertility studies, 

demographers have long studied the onset and pace of fertility decline in Sub-Saharan Africa (SSA). 

Several studies have revealed that fertility decline in Africa has been delayed compared to other regions, 

and the pace of decline has been relatively slow. However, these studies have primarily focused on 

fertility trends at the national level. It would be particularly interesting to examine how the onset and 

pace of fertility decline differ between districts within SSA countries. By analysing fertility patterns at 

the district level, we could gain a more detailed understanding of the variations and nuances in fertility 

behaviours and outcomes. 

Secondly, the geographically weighted regression (GWR) model used to explore spatially 

varying relationships between district-level fertility and determinants in this thesis can be expanded to 

incorporate both spatial and temporal weights through geographically and temporally weighted 

regression (GTWR). As mentioned earlier, the onset and pace of fertility decline may differ at the 

district level, making it important to investigate the variations in district-level fertility in relation to 

proximate and distal determinants over both space and time. While this thesis demonstrates the spatially 

varying relationship between fertility and variables, their relationship can also vary over time. 

Incorporating both time and space will enhance our understanding of how the onset and pace of fertility 

decline at the district level vary spatially and temporally in Ethiopia. 

 

6.6.2. Application of district-level analysis to further DHS data and other 

countries 

This study used freely available DHS data and focused solely on Ethiopia during four specific years 

(2000, 2005, 2011, and 2016). A similar study could be extended in two ways: 1) by using the upcoming 

EDHS to explore fertility patterns within Ethiopia, and 2) by expanding the research to other countries 
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in Sub-Saharan Africa (SSA) to generalise the geographical variations in district-level fertility across 

the region. 

Firstly, the study could be extended within Ethiopia using the subsequent EDHS surveys. Since 

the 2016 EDHS, the interim 2019 EDHS data has become available, and the data collection for the 2022 

EDHS is currently underway. It is worth noting that Ethiopia has experienced significant events 

between 2019 and 2022, including severe civil unrest and the COVID-19 pandemic, which have greatly 

impacted reproductive health services in the country. The political landscape in Ethiopia underwent a 

change in 2019, with the dissolution of the Ethiopia People's Revolutionary Democratic Front (EPRDF) 

and the formation of the Prosperity Party (PP). The Ethiopia People’s Revolutionary Democratic Front 

(EPRDF), which dominated Ethiopia politics from 1991 to 2019 by the political coalition of four ethnic- 

and territorial- based parties (Oromo Democratic Party (ODP), Amhara Democratic Party (ADP), 

Southern Ethiopian People’s Democratic Movement (SEPDM) and Tigray People’s Liberation Front 

(TPLF)) was dissolved in 2019 and the new political party, the Prosperity Party (PP), was formed in 

December 2019. In addition to the previous political coalition, five additional ethnic-territorial based 

parties (The Harari National League (HNL), the Benishangul-Gumuz People’s Democratic Unity Front 

(BGPDUF), the Afar National Democratic Party (ANDP), the Gambela People's Democratic 

Movement (GPDM) and the Ethiopian Somali People's Democratic Party (ESPDP)) joined the PP. 

However, the TPLF, which led the EPRDF between 1991-2019, disagreed on the formation of the new 

party and the tension between the Prosperity Party and the TPLF eventually triggered the current 

northern Ethiopia Crisis since November 2020. The northern Ethiopia crisis has had a devastating effect 

on healthcare delivery, resulting in the displacement of millions of people and the collapse of the health 

information and service delivery systems in the affected regions. Additionally, the COVID-19 pandemic, 

although relatively less severe in SSA compared to other regions, has still caused disruptions to 

reproductive health services due to mobility restrictions and economic insecurity. Therefore, further 

studies should be conducted to monitor and assess the dual impacts of the northern Ethiopia crisis and 

COVID-19 on reproductive health outcomes in specific districts in the Amhara and Tigray regions. 

Secondly, this thesis demonstrates the existence of spatial autocorrelation and changes in 

district-level fertility in Ethiopia. To further explore the spatial correlation of district-level fertility, the 

spatial analysis using DHS data can be extended to include neighboring districts in Ethiopia's 

neighbouring countries. For instance, Ethiopia shares a border with Kenya, and the Kenya Demographic 

and Health Surveys (DHS) have been conducted in various years, including 1989, 1993, 1998, 2003, 

2008-09, 2015, and the ongoing 2022 survey. Previous research has shown that neighbouring districts 

from different countries, particularly at national borders, often exhibit similar fertility behaviours due 

to shared culture, language, and history, regardless of their socioeconomic characteristics (Das et al., 

2020, Campisi et al., 2020). These findings suggest the possibility of cross-border diffusion of fertility 

https://en.wikipedia.org/wiki/Hareri_National_League
https://en.wikipedia.org/wiki/Gambela_People%27s_Democratic_Movement
https://en.wikipedia.org/wiki/Gambela_People%27s_Democratic_Movement
https://en.wikipedia.org/wiki/Ethiopian_Somali_People%27s_Democratic_Party
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practices between countries. Therefore, it would be interesting to investigate whether a spatial 

relationship of district-level fertility can be observed across the Ethiopian-Kenyan border using data 

from both the Ethiopia and Kenya DHS surveys. Particularly, the Moyale district is located between the 

border of Ethiopia and Kenya. In addition, the Moyale district is also located at the border between 

Oromo and Somali regions in Ethiopia. Thus, the name of ‘Moyale’ appears in a map of three regions. 

One (Moyale woreda) in the Dhawa Zone in Somali region and another one (Moyale woreda) in the 

Borena zone in Oromia region of Ethiopia, and another one (Moyale town) located in the Eastern 

province in Kenya. Therefore, it would be interesting to describe and explore the spatial aspects of 

fertility in these districts, which may not be fully captured by national or regional-level studies. 

Thirdly, district-level analysis can be extended to countries that have implemented effective 

national family planning (FP) programs to investigate the association between FP programs and fertility 

at the district level. The desire for large families is commonly cited as a contributing factor to the high 

fertility rates in SSA (Bongaarts, 2020). However, investments in FP programs have often been 

insufficient in many SSA countries, as policymakers tend to perceive FP programs as having minimal 

impact in settings with limited demand for birth limitation (Janocha et al., 2021). Ethiopia, Rwanda, 

and Malawi are frequently mentioned as countries that have successfully implemented effective national 

family planning programs, leading to significant increases in contraceptive use (Cates Jr and Maggwa, 

2014). The DHS has been conducted six times in Rwanda (1992, 2000, 2005, 2010, 2015, 2019) and 

five times in Malawi (1992, 2000, 2004, 2010, 2015). In terms of reproductive health outcomes, 

Ethiopia's fertility rate decreased from 5.7 in 2000 to 4.6 in 2016, accompanied by an increase in modern 

contraceptive prevalence from 6.3% in 2000 to 35.3% in 2016. Similarly, the total fertility rates (TFRs) 

of Rwanda and Malawi were 5.8 and 6.3 in 2000, and decreased to 4.2 and 4.4 in 2015, respectively. 

Moreover, the modern contraceptive prevalence increased from 5.7% and 26.1% in 2000 to 47.5% and 

58.1% in 2015 for Rwanda and Malawi, respectively. Therefore, further studies can compare the spatial 

patterns of fertility and modern contraceptive prevalence at the district level among these three countries 

to investigate the effects of family planning programs on district-level fertility in association with 

socioeconomic and cultural contexts. 

 

6.7. Concluding remarks 
 

This DrPH thesis presents evidence of geographical variations in fertility at the district level in Ethiopia, 

and highlights the widening of these variations in fertility between 2000 and 2016. This DrPH reveals 

that district-level total fertility rates (TFRs) have increasingly diverged from their respective regional 

TFRs in recent years, and this divergence is associated with the spatial spread of fertility decline from 
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Addis Ababa to the northern and western parts of Ethiopia. The key driving factors behind this spatial 

spread are the modern contraceptive prevalence and age of first marriage, which are the two key 

proximate determinants of fertility, rather than the socioeconomic factors of urbanisation and female 

education. Furthermore, this thesis reveals the presence of spatial autocorrelation in district-level 

fertility and uncovers spatial heterogeneity in the relationship between district-level fertility and 

ethnolinguistic diversity within Ethiopia. The findings indicate that lower fertility levels are observed 

in multi-ethnic urban regions and the ethnolinguistically homogeneous Amhara region. These 

observations support both the diffusionist view, which suggests that the transmission of new ideas 

within common linguistic areas can accelerate fertility decline, and the adaptationist view, which 

suggests that the impact of geographical distance on fertility decline can be mitigated by socioeconomic 

or urban status. Notably, socioeconomic and cultural contexts vary significantly between districts in 

many countries in Sub-Saharan Africa (SSA). This thesis emphasises that fertility within a district can 

be influenced not only by its own characteristics but also by the geographical location of the district 

and the characteristics of nearby districts. Therefore, it is crucial to analyse fertility patterns at lower 

geographical levels in SSA, as higher-level analyses may overlook important spatial patterns that can 

inform public health intervention decisions. Overall, this DrPH thesis provides additional insights into 

how spatial factors, along with socioeconomic and cultural characteristics, and reproductive behaviours 

within districts, collectively shape geographical variations in fertility in Ethiopia.  
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Integrating Statement  

 

The DrPH at LSHTM aims to “equip its graduates with the knowledge and experience to deal with the 

particular challenges of understanding and adapting scientific knowledge in order to achieve public 

health gains as well as the analytical and practical skills required by managers and leaders in public 

health.”  I joined the DrPH programme in 2017 after having worked in the field of global health in low- 

and middle-income countries at various government and non-government organisations for a few years. 

 

The DrPH at LSHTM programme is organised into three sequential and compulsory components: 

I. Taught Component: Evidence-Based Public Health Policy & Practice (EBPHP) and 

Understanding Leadership, Management, & Organisation (ULMO) 

II. Research Study I: Organisational & Policy Analysis (OPA) Project 

III. Research Study II: Thesis project 

 

Taught Components 

The taught component consists of two compulsory modules. In the first module, Evidence-Based Public 

Health Policy (EBPHP), I learned how to assess, synthesize, and use research-based information to 

influence public health policy and practice in a range of settings. Most importantly, I learned policy 

theories and research methods useful for understanding and analysing different health sector 

organizations acting within their health policy environments. I also found that the application of theories 

of the health policy process (Agenda setting – Policy formulation – Policy implementation – Policy 

evaluation) was very helpful for better understanding and assessing how and why some health programs 

and policies could be particularly successful and effective. 

In the second module, Understanding Leadership, Management, and Organizations (ULMO), I 

learned how to apply a range of organisational and business theories and tools to develop an 

understanding of the role of leaders, organisational management, and strategic planning for public 

health organizations. I was less experienced about the aspects of strategic planning and organisational 

changes in the field of public and global health. From this module, I particularly learned that the policy 

environment often changes, and it is important for public health organisations and leaders to make 

strategic decisions regarding organisational changes, in order to better position themselves to meet their 

objectives in a policy environment that is constantly changing. 
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Research Study I: Organisational & Policy Analysis (OPA) Project 

The second component of the DrPH programme was the OPA Project, which allows students to observe 

and analyse the workings of a public health organisation in its policy environment and to gain a better 

understanding of how to develop effective public health organisations, influence public policy and 

deliver public health goals. 

Before I joined the DrPH programme, I was involved in family planning and reproductive health 

projects in Ethiopia for several years. From my experiences, I was always interested in why birth rates 

were often high in many Sub-Saharan African (SSA) countries, leading to social and health problems 

such as limited access to education for women and maternal and child mortality, but family planning 

programs were not well implemented in SSA countries. 

Therefore, my four-month fieldwork (July 2018 – November 2019) was conducted at the 

Population and Youth Section of the UN Economic Commission for Africa (UNECA), located in Addis 

Ababa, Ethiopia. My OPA project was entitled ‘Generation of Political Priority of Family Planning in 

the United Nations Economic Commission for Africa (UNECA)’, and this project was awarded a DrPH 

OPA Travelling scholarship. I was placed at the PYS as a research intern for four months, and I was 

involved in daily tasks at the PYS while conducting participant observations, document reviews, and 

key informant interviews for my OPA project. 

I used both policy and organisational theories and tools, which I learned from the two compulsory 

modules from the DrPH programme. For the OPA report, I undertook a thematic analysis based on the 

McKinsey 7S model to examine how UNECA’s organizational elements are aligned with each other 

and the Shiffman and Smith framework to assess the political priority of family planning on the agenda 

for the demographic dividend in UNECA. From my OPA project, I realised that health agendas can be 

politically driven and how UN bureaucracies and leadership could influence their member states and 

key stakeholders to generate political priority for family planning at the international, national, and 

organizational levels. 

 

Research Study II: Thesis project 

When I applied for the DrPH programme at LSHTM in 2017, my research proposal aimed to explore 

geographical variations in district-level fertility in Ethiopia by using Ethiopia’s population and housing 

census data, since the census data is the only available data for districts. According to Ethiopia's 

constitution, the country is required to conduct a census every 10 years, and the last census was in 2007. 

Therefore, the fourth census was officially planned to be conducted in 2017.  
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During my OPA project in Ethiopia, I visited the Central Statistical Agency (CSA) of Ethiopia 

several times to obtain information about the fourth census's schedule. Unfortunately, I was unable to 

receive any updates. Afterwards, the Ethiopian government announced that the fourth census was 

postponed due to political issues in 2018, financial issues in 2019, and the COVID-19 pandemic in 2020. 

As a result, I realised that waiting for census data was not only a good idea for my thesis project, but 

also, the lack of local-data was a real-world and complex problem that could pose barriers to assessing 

and monitoring population and health in SSA countries. 

Therefore, by the time I completed my OPA project, I strongly felt that I should learn Small Area 

Estimation using existing data to deal with the lack of local-data and to answer my research question in 

Ethiopia. The possible technique was to utilise spatial Bayesian models with R-INLA by using the 

Demographic and Health Survey (DHS) data. To hone my statistical and demographic skills, I took 

three relevant taught modules at LSHTM: Population Dynamics & Projection, Spatial Epidemiology in 

Public Health, and Survival Analysis and Bayesian Statistics. I also contacted several academic scholars 

who had used similar models in their published papers to get advice on applying R-INLA to my thesis 

project. Furthermore, my second and third supervisors changed from two reproductive health experts 

to one spatial statistician and one formal demographer.  

Eventually, I could use spatial statistics models to explore the spatial aspects of geographical 

variations in district-level fertility in Ethiopia between 2000 and 2016. In contrast to the taught 

compulsory modules and the OPA project, the thesis project was a more independent work. However, 

thesis supervision at LSHTM could profoundly improve my academic writing and analytical skills and 

my ability to adapt scientific knowledge. 

 

Overall, the DrPH programme gave me an opportunity to widen my views on both organisational 

aspects to assess the role of public health organisations and research aspects to present scientific 

evidence for evidence-informed decision making in health policy and practice. This experience will 

undoubtedly contribute to my future career in global health research and practice. 
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Ethics approval 

 



168 
 

  



169 
 

Appendix 2: Sample sizes of Ethiopia demographic and health 

surveys (EDHS), 2000-2016 
 

Number of primary sampling units (PSUs) and individuals from EDHS 

 

a) 2000 EDHS 

Region 

2000 EDHS 
(A) 

 PSUs without 
GPS 
(B) 

 2000 Study 
(A - B) 

PSU Individual  PSU Individual  PSU Individual 

Tigray 50 1,306  0 0  50 1,306 

Afar 31 858  0 0  31 858 

Amhara 78 1,909  0 0  78 1,909 

Oromia 90 2,578  0 0  90 2,578 

Somali 28 844  1 22  27 822 

Benishangul- gumuz 38 992  0 0  38 992 

SNNP 70 2,028  3 92  67 1,936 

Gambela 35 876  1 24  34 852 

Harari 33 908  0 0  33 908 

Addis Ababa 51 2,015  0 0  51 2,015 

Dire Dawa 35 1,053  1 36  34 1,017 

Total 539 15,367  6 174  533 15,193 

 

 

 

b) 2005 EDHS 

Region 

2005 EDHS 
(A) 

 PSUs without 
GPS 
(B) 

 2005 Study 
(A - B) 

PSU Individual  PSU Individual  PSU Individual 

Tigray 50 1,257  1 21  49 1,236 

Afar 34 789  0 0  34 789 

Amhara 81 1,943  0 0  81 1,943 

Oromia 87 2,230  0 0  87 2,230 

Somali 30 669  3 56  27 613 

Benishangul- gumuz 31 846  1 31  30 815 

SNNP 84 2,087  2 44  82 2,043 

Gambela 29 729  2 57  27 672 

Harari 29 844  0 0  29 844 

Addis Ababa 50 1,869  0 0  50 1,869 

Dire Dawa 30 807  0 0  30 807 

Total 535 14,070  9 209  526 13,861 
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c) 2011 EDHS 

Region 

2011 EDHS 
(A) 

 PSUs without 
GPS 
(B) 

 2011 Study 
(A - B) 

PSU Individual  PSU Individual  PSU Individual 

Tigray 60 1,728  2 57  58 1,671 

Afar 47 1,291  4 109  43 1,182 

Amhara 73 2,087  2 63  71 2,024 

Oromia 80 2,135  3 80  77 2,055 

Somali 33 914  8 218  25 696 

Benishangul- gumuz 49 1,259  2 75  47 1,184 

SNNP 70 2,034  0 0  70 2,034 

Gambela 46 1,130  5 162  41 968 

Harari 42 1,101  0 0  42 1,101 

Addis Ababa 54 1,741  0 0  54 1,741 

Dire Dawa 42 1,095  1 21  41 1,074 

Total 596 16,515  27 785  569 15,730 

 

 

 

 

d) 2016 EDHS 

Region 

2016 EDHS 
(A) 

 PSUs without 
GPS 
(B) 

 2016 Study 
(A - B) 

PSU Individual  PSU Individual  PSU Individual 

Tigray 63 1,682  0 0  63 1,682 

Afar 53 1,128  0 0  53 1,128 

Amhara 71 1,719  0 0  71 1,719 

Oromia 75 1,892  3 74  72 1,818 

Somali 66 1,391  16 314  50 1,077 

Benishangul- gumuz 50 1,126  0 0  50 1,126 

SNNP 71 1,849  0 0  71 1,849 

Gambela 50 1,035  1 24  49 1,011 

Harari 44 906  0 0  44 906 

Addis Ababa 56 1,824  0 0  56 1,824 

Dire Dawa 44 1,131  1 29  43 1,102 

Total 643 15,683  21 441  622 15,242 
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Fertility differentials by residential areas and educational levels from the most recent DHS 

reports 

 

Country Survey Urban 
(A) 

Rural 
(B) 

No education 
or primary 

(C) 

Secondary 
or higher 

(D) 

urban-rural 
differentials 

(B-A) 

educational 
differentials 

(C-D) 

Ethiopia 2016 DHS 2.3 5.2 5 2.1 2.9 2.9 

Cote d'Ivoire 2011-12 
DHS 

3.7 6.3 5.5 2.6 2.6 2.9 

Zambia 2018 DHS 3.4 5.8 5.7 3.6 2.4 2.1 

Mozambique 2018 MIS 3.9 6.2 6.1 3.5 2.3 2.6 

Liberia 2013 DHS 3.8 6.1 5.5 3.4 2.3 2.1 

Senegal 2018 DHS 3.2 5.5 5.1 2.8 2.3 2.3 

Tanzania 2015-16 
DHS 

3.8 6 5.7 3.6 2.2 2.1 

Cameroon 2018 DHS 3.8 6 5.9 3.8 2.2 2.1 

Liberia 2019-20 
DHS 

3.4 5.5 5.1 3.2 2.1 1.9 

Gambia 2019-20 
DHS 

3.9 5.9 5.5 3.4 2 2.1 

Togo 2013-14 
DHS 

3.7 5.7 5.5 3.5 2 2 

Congo 2011-12 
DHS 

4.5 6.5 6.6 4.5 2 2.1 

Sierra Leone 2019 DHS 3.1 5.1 5 3 2 2 

Uganda 2016 DHS 4 5.9 6 4.2 1.9 1.8 

Congo 
Democratic 
Republic 

2013-14 
DHS 

5.4 7.3 7.5 5.6 1.9 1.9 

Mali 2018 DHS 4.9 6.8 6.7 4.5 1.9 2.2 

Burkina 
Faso 

2017-18 
MIS 

3.7 5.6 5.7 3.3 1.9 2.4 

Senegal 2019 DHS 3.8 5.6 5.4 3.6 1.8 1.8 

Haiti 2016-17 
DHS 

2.1 3.9 4.3 2.2 1.8 2.1 

Zimbabwe 2015 DHS 3 4.7 5.1 3.7 1.7 1.4 

Guinea 2018 DHS 3.8 5.5 5.1 3.5 1.7 1.6 

Malawi 2015-16 
DHS 

3 4.7 4.9 3.2 1.7 1.7 

Ghana 2016 MIS 3.4 5.1 5.4 3.6 1.7 1.8 

Burundi 2016-17 
DHS 

4.1 5.7 6.1 4.1 1.6 2 

Lesotho 2014 DHS 2.3 3.9 3.9 2.9 1.6 1 

Madagascar 2016 MIS 2.7 4.3 4.6 3.3 1.6 1.3 

Ghana 2019 MIS 3.1 4.6 4.9 3.3 1.5 1.6 

Nigeria 2018 DHS 4.5 5.9 6.5 4.2 1.4 2.3 

Appendix 3: Fertility differences by residence and education 
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Kenya 2014 DHS 3.1 4.5 4.7 3 1.4 1.7 

Chad 2014-15 
DHS 

5.4 6.8 6.7 4.8 1.4 1.9 

Comoros 2012 DHS 3.5 4.8 5.5 3.1 1.3 2.4 

Guatemala 2014-15 
DHS 

2.5 3.7 3.8 2.2 1.2 1.6 

Timor-Leste 2016 DHS 3.5 4.6 4.7 4 1.1 0.7 

Tajikistan 2017 DHS 3 4 4 3.8 1 0.2 

Pakistan 2017-18 
DHS 

2.9 3.9 4.1 2.9 1 1.2 

Honduras 2011-12 
DHS 

2.5 3.5 3.6 2.4 1 1.2 

Kyrgyz 
Republic 

2012 DHS 3 4 
 

3.6 1 - 

Egypt 2014 DHS 2.9 3.8 3.7 3.5 0.9 0.2 

Nepal 2016 DHS 2 2.9 3.1 1.9 0.9 1.2 

Benin 2017-18 
DHS 

5.2 6.1 6.1 4.2 0.9 1.9 

Colombia 2015 DHS 1.8 2.6 3.1 1.9 0.8 1.2 

Papua New 
Guinea 

2016-18 
DHS 

3.5 4.3 4.4 3.7 0.8 0.7 

Cambodia 2014 DHS 2.1 2.9 3.1 2.3 0.8 0.8 

South Africa 2016 DHS 2.4 3.1 3.4 2.6 0.7 0.8 

Maldives 2016-17 
DHS 

1.8 2.5 2.4 2.2 0.7 0.2 

Rwanda 2014-15 
DHS 

3.6 4.3 4.5 3 0.7 1.5 

India 2015-16 
DHS 

1.8 2.4 2.9 1.9 0.6 1 

Jordan 2012 DHS 3.4 3.9 3.6 3.5 0.5 0.1 

Myanmar 2015-16 
DHS 

1.9 2.4 2.8 1.9 0.5 0.9 

Philippines 2017 DHS 2.4 2.9 4.1 2.5 0.5 1.6 

Indonesia 2012 DHS 2.4 2.8 2.9 2.6 0.4 0.3 

Jordan 2017-18 
DHS 

2.7 3.1 3.3 2.7 0.4 0.6 

Bangladesh 2017-18 
DHS 

2 2.3 2.5 2.2 0.3 0.3 

Dominican 
Republic 

2013 DHS 2.4 2.6 3.3 2.3 0.2 1 

Albania 2017-18 
DHS 

1.7 1.9 2.4 1.7 0.2 0.7 

Armenia 2015-16 
DHS 

1.7 1.8 2.7 1.7 0.1 1 
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Differentials between (a) median age at first marriage and (b) at first sexual intercourse by 

eleven regional states in Ethiopia, 2000-2016 

 

 2000 2005 2011 2016 

(a) (b) (a) (b) (a) (b) (a) (b) 

National 16 16 16.1 16.1 16.5 16.6 17.1 16.6 

Tigray  15.6 15.5 15.6 15.5 16.6 15.7 16.6 16.1 

Afar  15.5 15.5 16.4 16.1 16.5 16.9 16.4 16.2 

Amhara  14.3 14.4 14.2 14.6 14.7 15.1 15.7 15.5 

Oromia 16.4 16.5 16.7 16.9 16.9 17 17.2 16.7 

Somali  17.3 17.4 18 18.4 17.6 17.9 18.1 17.9 

Benishangul Gumuz  15.6 15.6 15.3 15.6 15.7 16 16.8 16.5 

SNNPR 17.7 17.7 17.2 17.3 17.9 17.9 17.7 17.8 

Gambela 16.2 16 15.7 15.7 17.1 16.9 16.9 16.2 

Harari  16.8 16.4 18.6 18.6 17.7 17.9 18.3 17.7 

Addis Ababa 19.3 18.2 21.9 20 21.4 19.5 23.9 20.4 

Dire Dawa 19.4 18.7 17.8 17.5 19 19.3 18.1 17.7 

 

  

Appendix 4: Median age at first marriage and sexual intercourse 
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Shapiro-Wilk Test for total fertility rate, the median age at first marriage and the ethnolinguistic 

diversity index. 

 

 
2000 2005 2011 2016 

W P-value W P-value W P-value W P-value 

Total fertility 
rate 

0.986 0.432 0.974 0.214 0.964 0.132 0.972 0.213 

Median age at 
first marriage 

0.996 0.227 0.995 0.132 0.994 0.094 0.993 0.087 

Ethnolinguistic 
diversity index 

0.955 0.561 0.936 0.345 0.948 0.387 0.952 0.547 

 

  

Appendix 5: Shapiro-Wilk Test for total fertility rate, the median 
age at first marriage and the ethnolinguistic diversity index 
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Primary sampling unit (PSU)-level observations (A) and variograms (B) of six study variables from 
Ethiopia Demographic and health survey (EDHS), 2000-2016: 1) total fertility rate, 2) modern 
contraceptive prevalence, 3) median age at first marriage, 4) proportion of women living in urban area, 
5) proportion of women having secondary education, 6) index of ethnolinguistic diversity. I compared 
the empirical semi-variograms with a Monte Carlo envelope of empirical semi-variograms computed 
from random permutations of the data holding the locations fixed. If the empirical semi-variogram lies 
outside the Monte Carlo envelope, there is evidence of spatial correlation.  

The empirical variograms (B) are represented by dots, where black dots indicates that 
variogram estimates are within the 95% envelope, while red dots reflect variogram estimates outside 
the 95% envelope. The Monte Carlo envelope (gray shading) displays pointwise 95% coverage of 1,000 
permutations. Semi-variograms show that there are evidence of spatial correlation since the observed 
variograms of all study variables lie partly outside the 95% pointwise envelope between 2000 and 
2016.  

1) Total fertility rate 

 
2) Modern Contraceptive Prevalence (mCP) among married women of reproductive age  

 

Appendix 6:   Primary sampling unit level observations and 
variograms of study variables 
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3) Median age at first marriage 

 

4) Proportion of women living in urban areas 
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5) Proportion of women having secondary education 

 

6) Index of ethnolinguistic diversity 

 

 

 


