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Summary

Owing to the advent of sophisticated machine learning methods that excel at prediction modelling tasks,
the field of statistics finds itself at a crossroads. Rather than pure prediction, the goal of statistics is
usually more fundamental: to answer scientifically motivated questions of interest e.g. in the fields of
epidemiology, sociology, psychology and economics. Traditionally, parametric statistical models have been
used to frame and answer such questions, since model parameters often act as convenient and interpretable
summaries of the aspects of the data which are of interest. This has lead to an uneasy tension between
choosing complicated models that more accurately reflect the relationships between the variables of interest
versus choosing simpler models that provide greater scientific interpretability. To overcome this tension,
a so-called ‘roadmap’ was developed in which analysis is centred around target ‘estimands’ rather than
model parameters. In this context, estimands are nonparametrically defined mappings of the true data
generating distribution, which quantitatively answer scientific questions of interest. According to the
roadmap, estimand inference is carried out using machine learning based estimators for requisite statistical
functionals, or else more rarely, under limited semi-parametric assumptions.

These developments are quite revolutionary and have heralded new directions in how data is analysed.
It is my view that for the roadmap to be successful it is necessary to enrich the space of available
estimands, which at present is relatively unexplored. More often than not, estimands are proposed and
interpreted within the framework of causal inference, with the average treatment effect of a binary exposure
on an outcome being a canonical example. Extensions related to treatment effect heterogeneity and
continuous exposures, however, are limited and this thesis makes contributions in both of these settings.
Moreover, when considering potential estimands, it remains unclear the extent to which efficiency and
model extrapolation concerns should be prioritised against scientific relevance of the estimand. This
thesis studies questions of this type e.g. by considering optimal estimands that minimise nonparametric
efficiency bounds, and by considering score based inference approaches that perform well when normality
of the estimator breaks down. I argue that, in many cases, greater scientific insight can be gained by
focussing on estimands that are less ambitious, in the sense that they pose questions about counterfactual
worlds which are more similar to our own. These estimands can often be estimated with greater efficiency
and with a lesser reliance on correct modelling of statistical functionals.





Acknowledgements

I must of course begin by acknowledging my two insightful and patient supervisors, Karla Diaz-Ordaz
and Stijn Vansteelandt. Their continued support has been invaluable to my academic development and,
whether chatting about statistics or nothing in particular, I will miss our regular meetings, which I have
thoroughly enjoyed over the years.

I was also fortunate to have worked with some fantastic collaborators, and in particular I must thank
Yalda Jamshidi and her research group at St. George’s for helping me navigate genetic epidemiology; Mark
van der Laan for supervising my work at the University of California Berkeley; the team at Novo Nordisk
in Copenhagen for insightful conversations on methodological applications; and Maddalena Ardissino at
Imperial College London for an energetic collaboration and for being a dear friend.

I must also acknowledge all those who made the LSHTM, and the Centre for Statistical Methodology
in particular, a fantastic place to work and I would especially like to thank Ruth Keogh, Nick Jewel, Tom
Godec, Schadrac Agbla, Kleio Kipourou, and Darren Scott in this regard. Additionally I must mention
Lara Crawford and Lauren Dalton who worked behind the scenes at the MRC and the LSHTM to make
my project possible.

There are many family and friends who have provided a great deal of support to me over the years.
Though a thoroughly non-exhaustive list, I would especially like to thank my parents James & Sian,
Gareth, Christian, Lily, Ruby, Aisha, Alex & Maddy, Tristan & Ella, Toby & Ophelia, Maddy & Ben,
Elettra & Jack, Elisa, Paul & Fabi, Jow & Family, Fulham Jack, and California Toby.

Finally, I consider myself immensely privileged to have been able to dedicate several years to researching
something that I am passionate about, and I thank the MRC London Inter-Doctoral Training Partnership
for affording me this opportunity.





List of publications

[1] Hines, O., Diaz-Ordaz, K., Vansteelandt, S., & Jamshidi, Y.
Causal graphs for the analysis of genetic cohort data.
Physiological Genomics (2020).

[2] Hines, O., Vansteelandt, S., & Diaz-Ordaz, K.
Robust inference for mediated effects in partially linear models.
Psychometrika (2021).

[3] Ardissino, M., Vincent, M., Hines, O., Amin, R., Eichhorn, C., Tang, A. R., Collins, P.,
Moussa, O., Purkayastha, S.
Long-term cardiovascular outcomes after orlistat therapy in patients with obesity: a nation-
wide, propensity-score matched cohort study.
European Heart Journal - Cardiovascular Pharmacotherapy (2021).

[4] Hines, O., Dukes, O., Diaz-Ordaz, K., & Vansteelandt, S.
Demystifying statistical learning based on efficient influence functions.
The American Statistician (2022).

[5] Hines, O., & Diaz-Ordaz, K.
Oliver Hines and Karla Diaz-Ordaz’s contribution to the discussion of ‘Assumption-lean
inference for generalised linear model parameters’ by Vansteelandt and Dukes.
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
(2022).

[6] Young, W.J., Lahrouchi, N., Isaacs, A. et al.
Genetic analyses of the electrocardiographic QT interval and its components identify additional
loci and pathways.
Nature Communications (2022).

[7] Hines, O., Diaz-Ordaz, K., & Vansteelandt, S.
Parameterising the effect of a continuous exposure using average derivative effects.
arXiv pre-print (2020).

[8] Hines, O., Diaz-Ordaz, K., & Vansteelandt, S.
Variable importance measures for heterogeneous causal effects.
arXiv pre-print (2022).

The work presented in this thesis contains results from the publications [1-2], [4-5] and pre-print articles
[7-8].





List of conference presentations

[1] Causal machine learning workshop.
European Causal Inference Meeting, virtual (May 2021).

[2] Parameterising and inferring the effect of a continuous exposure using average derivative
effects.
European Causal Inference Meeting, virtual (May 2021).

[3] Assumption-lean causal inference for direct and indirect effects.
Joint Statistical Meeting, virtual (August 2021).

[4] Variable importance measures for heterogeneous causal effects.
International Biometric Conference, Riga (July 2022).

[5] Demystifying statistical learning based on efficient influence functions.
CMStatistics, London (December 2022).

The work presented in this thesis contains results from all of these presentations. The “Young Statistician
Prize” at the International Biometric Conference 2022 was awarded for [4].





Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Causality in genetics 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Selection bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Causal graphs for genome wide association studies . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Causal graphs for Mendelian randomisation . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Partially linear mediation 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 The G-estimator for mediation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Nuisance parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Illustrative example: the COPERS trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Influence curve based inference 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Step 1: Defining the estimand of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Step 2: Calculate the estimand’s efficient influence function . . . . . . . . . . . . . . . . . 41

4.4 Step 3: Construct an estimator based on the estimand’s efficient influence function . . . . 48

4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Variable importance estimands 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Applied example: variable importance of treatment effect heterogeneity in HIV . . . . . . 66

5.5 Related work and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Contents xii

6 Nonparametric score testing 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 Score intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4 Complicated estimands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Optimally weighted average derivative effects 95
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3 Contrast functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.4 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.5 Efficiency optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.6 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.7 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.8 Warfarin dose example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.9 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Causal derivative effects for continuous exposures 109
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9 Conclusion and outlook 121
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.2 Derivative approach to mediation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.3 Functional approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 126

A Supplement to causality in genetics 141

B Supplement to partially linear mediation 143

C Supplement to influence curve based inference 151

D Supplement to variable importance estimands 157

E Supplement to nonparametric score testing 167

F Supplement to optimally weighted average derivative effects 173

G Supplement to causal derivative effects for continuous exposures 181

H Supplement to conclusion and outlook 185



Chapter 1

Introduction

1.1 Background

Modern statistical theory is built on a framework of model based inference, where the targets of inference
are the parameters indexing assumed semi-parametric statistical models1. It is difficult to understate
the impact that this theory has had on society (epidemiology, psychology, economics etc.), especially
since the latter half of the 20th century when advances in computational technology have meant that
data is more routinely collected, and the cost of computing increasingly intricate analyses has been
significantly reduced. As human beings, we find parametric models relatively straightforward to reason
about, with model parameters encoding different aspects of the data generating mechanism. For instance,
the model parameters indexing generalised linear models can inform investigators about the main effect of
an exposure on an outcome, modification of this main effect by other variables, or mediation of the main
effect through other variables. Parameter interpretations of this type, however, are inherently “causal” in
nature, but despite this, little regard was given to the causal nature of the statistical model for much of
the development of modern statistics. Instead, causal reasoning was understood to be simply outside of
the remit of statisticians, with deliberately non-causal language used to describe statistical results.

Over recent decades, a theory of causal inference has developed2 whereby a second “causal model” is
specified alongside the statistical model. Formally, the causal model is a mathematical structure which
encodes the assumed conditional independence relationships between the random variables of interest
that is required to interpret model parameters “causally”. Contrary to its name, the methods of “causal
inference” are not able to infer whether one variable causes another or vice-versa, rather one might say
that the goal of causal inference is to interpret the objects of ordinary statistical inference, in view of the
assumed causal model. Indeed the algorithms and statistical machinery used in causal inference analyses
are often identical to those used to make non-causal statements regarding association and correlation.
Moreover, causal modelling relies on untestable causal assumptions, with domain-specific expert knowledge
required to elicit and defend causal assumptions.

Philosophically speaking, the separation of the causal model and the statistical model is appealing since
conditional independence assumptions that are made for the purposes of interpretation (the causal model)
are distinct from those which encode a priori known parametric structure about the data-generating
mechanism (the statistical model). Oftentimes, however, assumptions regarding the statistical model do
not represent a priori known parametric structure, but instead are made either to facilitate inference or
simplify model interpretability3. For example, time-to-event analyses in medical research routinely assume
Cox proportional hazards models for convenience and because hazard ratio parameters are (arguably)
easy to interpret. This results in two main issues which arise when the statistical model is misspecified:

1Likelihood based inference developed in the late 19th and early 20th century with pioneering work by Galton, K. Pearson,
Fisher, E. Pearson, Neyman, Cramer, Rao etc..

2Causal developments are discussed in Chapter 2 with early work by Rubens, Pearl and others see e.g. Pearl (1986);
Rubin (2005); Glymour (2006); Hernán and Robins (2020).

3Criticisms of this type can be found in Breiman (2001b); van der Laan (2015); Vansteelandt and Dukes (2022).
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firstly, different estimators of the same model parameter may converge to different results; and secondly, it
is not so clear how the resulting (estimator dependent) estimates should be interpreted, even in the limit
as sample size grows to infinity. Worse still, these problems persist even when model/variable selection
strategies are used to mitigate the risk of model misspecification, not least because uncertainty due to
model selection is rarely acknowledged.

To address these issues, it has become increasingly common to centre analyses around nonparametrically
defined targets of inference, called ‘estimands’, instead of focussing on statistical model parameters4. Like
statistical model parameters, estimands can often be ascribed a causal interpretation under an assumed
causal model, though the study of estimands remains interesting even in settings where this is not the case.
The advantage of targeting a model-free estimand is that analysts can be more flexible in the modelling
strategies used to estimate requisite statistical functionals, since the interpretation of the estimand does
not rely on any particular form of the statistical model. In effect, this means that statistical models can be
replaced with more flexible “algorithmic machine learning models” (e.g. lasso, neural networks, gradient
boosting, random forests, ensemble learning etc.), which are routinely used for prediction tasks in the
computer sciences.

Moreover, these developments are significant for the machine learning community, since complicated
machine learning models, which may perform well in prediction tasks, are sometimes criticised as being
‘black box’ due to their lack of model interpretability5. The nonparametric theory surrounding estimands
therefore provides a valuable tool for explaining the broad trends which are encoded in machine learning
prediction models.

The current PhD project sits at the intersection of the four aforementioned topics: statistical mod-
elling, causal modelling, estimand based inference, and algorithmic machine learning, and makes several
contributions as outlined below.

1.2 Contributions

This PhD thesis consists of several self-contained chapters, intended to read like a series of thematically
linked journal articles. This structure was chosen principally because this is the way that the field of
statistics usually develops, by considering specific limited problems, with novel results communicated
through standalone articles. Additionally, several of the chapters are in fact published (or pre-print)
journal articles. Where this is the case, the associated publication is referenced according to the list of
publications in the front matter of this thesis.

Chapter 2, which is published in [1], gives an introduction to causal modelling and outlines several
common causal model structures which occur in the field of genetics and genetic epidemiology. The
application area of genetic data is interesting, since it represents a field where parametric statistical
modelling techniques are routinely used e.g. to parameterise the effect of a particular genetic variant on a
physical trait, and to account for genetic cohorts with heterogeneous ancestry. We use causal directed
acyclic graphs (DAGs) as a tool for representing causal assumptions and deriving implied independencies.
Whilst the use of DAGs is common when discussing some genetic applications, such as Mendelian
randomisation, we have not seen elsewhere similar discussions regarding genome wide association studies
and ancestral confounding, with only limited DAG based discussions of selection biases in genetic cohorts.
The main contribution of this chapter is therefore to consolidate these causal model structures and explain
how they may be used to ascribe a causal interpretation to statistical model parameters.

Chapter 3, which is published in [2], focusses on the problem of inferring natural direct and natural
indirect effects, under standard causal assumptions, and assuming certain semi-parametric partially linear
models. Natural direct and indirect effects are nonparametric estimands that arise in mediation analyses
in epidemiology, psychometrics, and economics. They quantify the amount by which a ‘mediating variable’
transmits the main effect of an exposure on an outcome, and under common partially linear statistical

4These ideas are codified in the ‘Roadmap’ by van der Laan and Rose (2011); Petersen and van der Laan (2014) and rely
on results from nonparametric statistics, which we discuss in Chapter 4, see e.g. Pfanzagl and Wefelmeyer (1985); Pfanzagl
(1990); Bickel et al. (1993).

5See e.g. Ribeiro et al. (2016); Lundberg and Lee (2017) for proposals related to interpreting black-box predictions.
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model assumptions, respectively reduce to a single model coefficient and a product of two model coefficients.
The latter product of coefficients makes inference in this context particularly challenging, and we use
a so-called “G-estimation strategy” to address this inference problem in a new way. Our estimators
demonstrate appealing robustness properties when parts of the model are misspecified and we make use
of recent score-type testing results to test null effect hypotheses.

Whilst Chapter 3 evokes semi-parametric statistical models to infer nonparametric estimands, Chapter
4, which is published in [4], demonstrates how estimand inference can be carried out in a model-free way,
so long as the estimand is ‘pathwise differentiable’. Such estimands usually permit efficient estimators
that are amenable to data-adaptive/ machine learning estimation of requisite statistical functionals,
representing a fundamental and revolutionary departure from parametric statistical modelling in terms of
how data is analysed and results are interpreted. One of the main challenges in deriving efficient estimators
is first to derive the estimand’s ‘pathwise derivative’, also called its ‘efficient influence function/curve’.
The goal of Chapter 4 is to demystify estimand inference, with a particular focus on influence curve
derivations, often regarded as somewhat of a dark art. We advocate a ‘point mass contamination’ method
for influence curve derivation and rederive several literature influence curves using this approach. In later
Chapters, we use this same method to derive efficient influence curves for new estimands.

Chapter 5, which is submitted as a pre-print in [8], contains a proposal for a new estimand to
quantify the importance of covariates in explaining heterogeneity in the effect of a binary treatment on an
outcome. The proposed estimands are a novel contribution of the current thesis and relate analogous
‘variable importance estimands’ in nonparametric regression analysis to recent ‘variance of treatment
effect’ estimands, which act as global measures of treatment effect heterogeneity. We assume a canonical
causal model as found in the literature on (conditional) average treatment effects, making the proposed
methods immediately applicable to e.g. both clinical trials data and observational ‘real world’ data.

One common feature of the proposed variable importance estimands, the regression variable importance
estimands, and the variance of treatment effect estimand, is that they are all defined on a bounded support
e.g. [0,∞) or [0, 1]. This makes subsequent inference challenging since the asymptotic normality of the
estimator breaks down in finite samples when the true estimand value is close to the boundary of the
support. This issue is addressed in Chapter 6, which contains a generic proposal for score based inference
of nonparametric estimands, as opposed to the typical Wald type methods described in Chapter 4. Our
proposal builds on ideas from ‘targeted learning’ (TMLE) and the score testing procedures considered in
Chapter 3, and is shown to perform well in simulation studies in terms of confidence interval coverage.

Although the theory of model-free estimand based inference is most often applied to settings where the
estimand is causally interpreted under a causal model, it is not necessary that the estimand is causally
motivated. In Chapter 7 we present results for weighted derivative effect estimands, which have classically
been studied in the econometrics literature in the context of single index models, though they remain
equally applicable to epidemiological problems. These estimands consider how the conditional response
surface of an outcome varies, on average, for small changes in the exposure. Traditional estimators are
based on nonparametric kernel density estimators, however these introduce complicated biases as the
number of the predictors grows. By considering nonparametric efficiency bounds, we derive an optimally
weighted average derivative estimand and connect it to literature on so-called projection estimands in
partially linear models. We propose a class of ‘least squares estimands’ containing the optimal one and
derive efficient estimators under the model-free estimand inference framework, reviewed in Chapter 4. In
Chapter 8, least-squares estimands, and other weighted derivative effect estimands, are ascribed a causal
interpretation in terms of so-called stochastic interventions.
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Chapter 2

Causality in genetics

2.1 Introduction

Genetic cohort data is increasingly used to look for associations between candidate genes or genome regions
and specific outcome measures, or else between modifiable risk factors and disease outcomes. Genome
Wide Association Studies (GWAS), for example, are a popular and effective approach to analysing Single
Nucleotide Polymorphism (SNP) data, which identifies reproducible regions of the genome associated
with common traits. Observed GWAS associations, however, are not necessarily indicative of causal
relationship, unless one is willing to make additional assumptions on the causal structure of the cohort
data.

Mendelian Randomisation (MR) is another popular method, which uses genetic cohort data (or GWAS
summary statistics) to establish causal effects between two phenotypes. MR seeks to exploit random
genotype allocation, which occurs naturally due to Mendelian inheritance. The requisite MR assumptions
are strong, and the causal structure underlying the data must be carefully considered so that biases are
not unwittingly introduced. Since both GWAS and MR rely on genetic cohort data, it is more important
than ever to understand, and communicate the causal structures found in these datasets, so that findings
remain clinically relevant.

Universal frameworks to study causal structures have emerged in the past few decades, based on
potential outcomes modelling (Rubin, 2005) or causal graphs (Pearl, 1986), contributing towards a modern
causal understanding of several existing techniques, such as, randomised controlled trials, instrumental
variable, and observational data techniques (propensity score methods and sample matching). Causal
graphs may inform both the design and analysis of observational studies, and have successfully been
applied to problems in epidemiology (Glymour, 2006; Glymour and Spiegelman, 2017), social science
(Brady, 2013) and economics (Imbens, 2019) to represent causal assumptions, and derive causal quantities
from observed data.

Eliciting and defending causal assumptions requires an expert understanding of the problem at hand.
Here we review methods from genomics and genetic epidemiology, highlighting common causal structures
which can bias observed associations. We advocate the use of causal graphs, firstly as a formal tool for
representing and communicating the causal assumptions regarding data collection and study design, which
underly analytical methods, and secondly, for deriving testable implications based on those assumptions.
Causal graphs have several attractive properties in this regard. As a communication tool they are
inherently diagrammatic and equation-free, aiding interpretability, whilst as a derivation tool one may
apply powerful and rigorous mathematical rules, which link causal relations to statistical associations.
These rules are summarised in Section 2.2.1.

We will initially introduce causal concepts which form the basis of our discussion. These are then
applied to an example of pleiotropy in Section 2.1.2. Section 2.2 discusses causal methods for analysing
selection biases, using, as an example, the analysis of case-control data for secondary trait association.
Here we see the utility of causal graphs in deriving associations between variables which occur under
selection. Section 2.3 then reviews GWAS assumptions, addressing issues related to population structure,
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while Section 2.4 reviews MR causal assumptions, highlighting several ways in which they may be violated.

2.1.1 Introduction to statistical causal inference

There exists rich philosophical debate on what it means for one thing to cause another (Vandenbroucke
et al., 2016), however, in the study of causal inference an interventionalist definition is used (Pearl, 1986;
Glymour, 2006; Hernán and Robins, 2020). In this way, questions of causality are reduced to questions of
the type: what would happen if...?

For example, for two variables A and B, we say that A causes B if the value that B takes would be
different (or different in probability) if we had intervened by setting A to some other value. In this context
we might also say that A causally influences B or that B is causally dependent on A. Two variables
are said to be statistically dependent (or associated) if knowing the value of A in some way provides
some information about the value of B (or vice-versa). Statistical dependence may arise due to a causal
dependence between A and B, but also as a result of a causal dependence of both A and B on a third
variable C, as we will see in the example in Section 2.1.2. Conversely, two variables are statistically
independent if knowing the value of A does not provide any information about the value of B (and
vice-versa).

This notion of causality may also be graphically represented using an arrow (Glymour, 2006; Hernán
and Robins, 2020; Pearl, 1995, 2000), for example, A→ B reads as “A causes B, but B could not possibly
cause A”. This arrow says nothing about the magnitude or direction of the effect that A has on B, just
that if we were to intervene on A, then something would happen to B. Using these arrows one can form
paths, which are any sequence of variables linked by arrows. For example, if A and B shared a common
cause, C, then one may write the path, A← C → B. All possible paths containing three variables are
given in Table 2.1. A path is causal if all the arrows point in the same direction. The path A→ C → B,
for example, is causal since A causes C which causes B, therefore if we were to intervene on A, the value
of B could be different. Depending on the directions of the arrows, we also have additional terminology
for the intermediate variable, also given in the table.

Path Description Terminology
A→ C → B A causes B (through C) Mediator
A← C ← B B causes A (through C) Mediator
A← C → B A and B share a common cause C Confounder
A→ C ← B A and B both cause C Collider

Table 2.1: All possible paths between three variables (A,B,C), with a brief description and additional
terminology for the intermediate variable C

On its own, a single path is of limited use, motivating a network structure to represent several paths at
once. The causal Directed Acyclic Graph (DAG) is such a structure, which for a set of variables, contains
all possible paths between them. Causal graphs are said to be acyclic if there are no causal paths from
one variable back to itself. It may seem obvious to say that any two variables, A and B, on a causal graph
could either be linked by the arrow A → B, the arrow B → A, or no arrow at all. Each configuration
makes different assertions about the impossible causal relationship between A and B. Respectively these
are that B is not a direct cause of A, A is not a direct cause of B, or that A and B could not possibly be
direct causes of each other. In this sense the arrows which are absent, and those which are present are
equally important. Similarly, one must be careful to include common causes of A and B, even if they are
unmeasured, since to not do so is to assert that it is impossible for such variables to exist.

At this stage it is also useful to introduce some terminology, which will become important later on.
Firstly, a collider is any variable on a path which is causally dependent on the two variables adjacent to
it, as in the final example in Table 2.1. Secondly, the ancestors of a variable are those which causally
influence it (i.e. there is a causal path from each ancestor to the variable), and finally the descendants of
a variable are those which are caused by it (i.e. there is a causal path from the variable to its descendants).
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2.1.2 Example using pleiotropy

Our first example is inspired by a recent discussion of pleiotropy of the fat mass and obesity-related gene
(FTO)(Ganeff et al., 2019). Consider a Single Nucleotide Polymorphism (SNP) in the FTO gene, such
as rs1421085, which has been found to be associated with adiposity and brain function (Chuang et al.,
2015). Suppose that a genetic cohort study has been conducted where, for each individual in the study
population, an investigator measures body mass index (BMI), B, cerebral blood flow, C, and genotype
rs1421085 in the FTO gene, denoted by F and coded as 0,1 or 2.

The original authors suggested that reduced cerebral blood flow in the medial prefrontal cortex may
effect impulse control and hence BMI (Ganeff et al., 2019). As an illustration, we will attempt to refute
the null hypothesis, that there is no causal relationship between cerebral blood flow and BMI by (1)
positing the causal relationships that we believe hold amongst the variables involved; (2) representing
these causal relationships using a causal graph; and (3) examining the graph, using formal operations, to
derive testable assumptions.

Since a person’s genome is assigned before their BMI or cerebral blood flow is determined, we argue
that it is safe to assume that B and C could not possibly cause F . This assumption, however, says nothing
about whether F causes B or C. Since it is possible that F causes B and C we must include the arrows
F → B and F → C in our causal graph. For the purposes of illustration, we will additionally make the
strong assumption that no other measured or unmeasured variables causally influence both B and C.

The causal graph in Fig.2.1 represents the causal assumptions posited between F , B and C under
the null hypothesis that there is no causal relationship B and C. These assumptions are unnecessarily
strong for the purpose of illustration, since additional variables might be included such as age or physical
activity level, which are common causes of both B and C. Other violations of our assumption, which
could arise due to population structure, are discussed in Section 2.3. We remark that while the causal
graph in this example is perhaps oversimplified, such assumptions are not uncommon, and by using a
causal graph representation we are required to be transparent about them.

F C B

Figure 2.1: Causal graph representing the causal assumptions between a patients FTO gene variant, F ,
body mass index, B, and cerebral blood flow, C.

In the graph in Fig.2.1, there is no causal path between B and C, but that does not mean that they
are statistically independent. In fact one might expect a negative correlation between BMI and cerebral
blood flow since those who inherit the FTO variant are likely to have a higher BMI and also a lower
cerebral blood flow. This statistical dependency can be read off the graph in the form of the possible
path: B ← F → C. It is a general rule that two variables will be statistically independent if all paths
between them that contain colliders. For this reason, we can refer to paths that do not contain a collider
as open paths and those that do as closed paths.

Using our causal graph, we may derive testable assumptions in an attempt to falsify our null hypothesis.
Imagine, for example, that we are told the value of B for a particular patient, and are asked to predict
their value of C. The value of B may inform our prediction since B and C may be statistically dependent
(due to confounding by F ). If, however, we are subsequently told the patient’s FTO variant then, under
our causal assumptions, a new prediction based on F and B is no better than a prediction based on F
alone, since B only informed our prediction in so much as it may have conferred some information about
F .

This important observation is an example of how one may block open paths, such as B ← F → C, by
conditioning on an intermediate variable (F ). Conditioning on a variable can be done either by stratifying
by that variable or by including it as an independent variable in a regression model for B or C. These
conditional independences are essential as they allow us to falsify our causal assumptions.

In practice, this means that if one were to stratify our imaginary study population by their FTO gene
variant, then, under our causal assumptions, no association between B and C should be observed within
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strata. An association between B and C within strata is, therefore, evidence that our assumptions are
invalid. This could be because our null hypothesis does not hold, and B and C are causally related, or
else because the relationship between them is confounded by some other variables, which we have not
accounted for.

2.2 Selection bias

Due to the considerable cost of obtaining original genetic cohort data, it is common for case-control data to
be repurposed for analysis of a secondary trait, such as human height (Gudbjartsson et al., 2008; Weedon
et al., 2011), obesity (Loos et al., 2008), or plasma lipid concentration (Willer et al., 2008). Methods that
fail to account for the case-control study design, are known to result in inflated error rates when testing
for null association using GWAS (Lin and Zeng, 2009). Indeed it has been argued that epidemiological
data analysis depends as much on study design and background information, as on the data itself (Robins,
2001).

Gene-phenotype associations, induced as a consequence of study design, are problematic in GWAS
analyses because they are indistinguishable from underlying causal associations in GWAS results. Using
causal graphs we may gain some insight into how the non-random selection of individuals to the study
cohort propagates to non-randomness in our variables of interest. We will consider an illustrative example,
inspired by a real study on the effect of Sex Hormone Binding Globulin (SHBG) on Type 2 diabetes in
women (Ding et al., 2009). Consider that the study cohort was recruited on a case-control basis and
consists of women with a recent Type 2 diabetes diagnosis (D = 1) and controls (D = 0), with genotyping
carried out for all women. We shall examine the issues which arise when this cohort is used to conduct a
GWAS analysis, with SHBG as the outcome of interest.

SHBG is a glycoprotein, produced in the liver, and the level of SHBG in an individual’s blood plasma
will be denoted by H. The original authors found that high levels of SHBG were associated with a lower
risk of Type 2 diabetes and for this example we shall assume that diabetes status does not causally
influence SHBG level. Imagine also a specific SNP, G, which does not causally influence SHBG, but does
causally influence diabetes diagnosis by some other mechanism. As with the example in Section 2.1.2 we
shall make the “no unobserved confounding” assumption, i.e. that there are no common causes of H, G,
or D that we have not accounted for.

Due to the case-control design, diabetes status D causally influences selection to cohort, S. By
definition S = 1 for all women in the cohort and S = 0 for all other women in the population as a whole.
Our causal assumptions are represented by the causal graph in Fig.2.2a.

G H

(a)

D

G H

(b)

D S

S

Figure 2.2: (a) Causal graph representing the causal assumptions between a specific gene of interest,
G, Type 2 diabetes status, D, SHBG level, H, and selection to the cohort, S. (b) Causal graph when
considering only individuals in the cohort (S = 1). The selection variable has been conditioned on, indicated
by the box around it. The induced association between G and H is represented by the dashed line.

Under these assumptions, G and H are statistically independent as there are no open paths between
them. One would expect, therefore, to observe no association between G and H for women sampled
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from the population. Our cohort, however, is not randomly sampled from the population, but instead we
observe only those for whom S = 1. This is equivalent to an unavoidable stratification by S, which allows
us to observe only the S = 1 stratum. In this stratum, a “spurious” association between G and H may be
induced, which we demonstrate by first examining the D = 1 and D = 0 strata separately.

In the cases group (D = 1) an association between G and H would be observed, since, if an individual’s
genotype suggests they are unlikely to have diabetes, then their diabetes status is more likely due to a low
level of SHBG, and vice-versa. For women in the control group (D = 0) an association between G and
H would be observed, since women in this group are less likely to carry the genotype associated with
diabetes and are also more likely to have high SHBG.

We see, therefore, that G and H are associated in both the D = 0 and D = 1 strata and that
this association must be induced by the stratification process, since G and H are not associated in the
population. Worse than this, however, is that stratifying by S also induces associations between G and
H because the proportions of each D strata in our cohort are not representative of the population as a
whole. For selection problems such as these we have no choice but to consider only the strata S = 1.

In this simple example we were able to reason that selection bias may influence our results, however,
in other examples it may not be so clear. Causal graphs may go some way to elucidate selection biases.
It is a general rule that conditioning on a collider, or the descendants of a collider, induces statistical
dependencies between the ancestors of the collider. In our case-control example D was a collider on the
path: G→ D ← H and we were forced to condition on S, which is a descendant of D. This conditioning
resulted in a statistical dependency between G and H (the ancestors of D). This induced dependency is
represented by the dashed line on the causal graph in Fig.2.2b.

In Section 2.1.2 we saw how open paths on causal graphs could be blocked by conditioning on
intermediate variables. In this example, however, conditioning has the opposite effect. By unintentionally
conditioning on colliders, we are effectively unblocking a path that was otherwise closed, thereby inducing
associations. Several solutions have been proposed, which allow case-control data to be used for secondary
trait analysis in association studies. Example analysis strategies include analysing the cases and controls
separately, re-weighting the data using additional models, or including case-control status as a covariate
(Tchetgen Tchetgen and Shpitser, 2014; Song et al., 2016).

Biases introduced by conditioning on colliders are generally referred to as collider stratification biases
(Bareinboim et al., 2014). The inclusion of selection variables in causal graphs, like the variable S in
the case-control example, can also be useful for expressing selection and retention assumptions which
suffer from similar collider stratification biases (Munafò et al., 2018). The UK Biobank is an example
of a cross-sectional cohort study (n ≈ 500, 000) self-selected from a population of 9 million individuals
invited to participate. The resultant cohort contains a lower proportion of current smokers (11% in the
UK Biobank, vs approximately 19% in the general population), with a similar discrepancy observed in
educational qualification attainment. For a highly self-selected cohort, such as the UK Biobank, causal
graphs may be useful in exposing subtle biases induced by this self-selection.

2.2.1 D-separation

The rules discussed in Sections 2.1.1 and 2.2 are collectively known as the rules of d-separation (statistical
dependence separation). These rules describe statistical dependencies implied by causal graphs before
and after conditioning on variables. Table 2.2 gives a summary of these rules for all possible paths of
three variables. To consider longer, more complex paths one must ‘chain together’ these triplets, and to
consider the statistical dependence between variables on the whole causal graph, one must consider all
possible paths.

For complex, multivariate causal graphs this could result in a laborious manual analysis. Fortunately,
however, the tool www.dagitty.net may be used to examine statistical dependence on causal graphs
using an online web tool or R package (Holland, 1986).
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Path Before conditioning on C After conditioning on C
A→ C → B open closed
A← C ← B open closed
A← C → B open closed
A→ C ← B closed open

Table 2.2: Summary of the rules of d-separation for all possible paths containing three variables. The two
additional columns describe the statistical dependence of A and B before and after conditioning on the
intermediate variable C.

2.3 Causal graphs for genome wide association studies

GWAS studies are a popular and effective approach to analysing SNP data, which identifies reproducible
regions of the genome associated with common traits. As of February 2020, the GWAS Catalogue contains
4439 publications and 175870 associations(Buniello et al., 2019). Despite their popularity, it is important
to remember that the associations discovered by GWAS are not necessarily causal unless one is willing to
make additional assumptions. In this section, we use causal graphs to make these assumptions explicit.
Genetic relatedness between individuals in the study population poses an additional, well-known challenge
that results in individuals with shared ancestry inheriting similar common variants. Heterogeneous study
populations, therefore, complicate the task of separating the contributions of individual genetic variants
toward phenotypes of interest. We refer to the problem of heterogeneous ancestry as confounding by
ancestry, since this more closely aligns with the language of causal inference. It is also referred to as
population structure or population stratification, when at the population level, and kinship, at the familial
level.

As an illustrative example, we will use Carotid Intima-Media Thickness (CIMT) as a phenotype
of interest Y . In its most basic form, one assumes that the study population is in Hardy-Weinberg
Equilibrium (HWE), that is, for each individual, the value of their value of a particular SNP of interest,
G, is drawn from a binomial distribution with some fixed minor allele frequency for the population.

Common practice is to model a continuous phenotype, Y , using a model which is linear in G, and
other relevant variables, such as age and sex, denoted by the ‘Environmental’ vector, E. When Y is a
binary outcome, generalised linear models such as the logistic model, are often used. The linear model for
a continuous phenotype, Y , may be written as

Y = αG+

p∑
j=1

βjEj + ϵ (2.1)

where ϵ is a noise term, with constant mean given G and E, and β is a vector of parameters associated
with the p environmental variables contained in the vector E. The unknown model parameters, α and β,
may be estimated by Ordinary Least Squares (OLS). Ideally we would like to interpret the α parameter
as a parameter which quantifies the influence that the gene of interest has on the phenotype, however, to
do so is to make a causal assertion, requiring an examination of causal assumptions. We note that for a
discussion of causal assumptions, the exact form of the regression model is not important. Instead, from a
causal perspective, we are concerned with the variables which are and are not included in the regression
model.

One possible causal graph for the basic GWAS analysis, which gives the α parameter the desired causal
interpretation is given in Fig.2.3a. This graph is not unique since it is not strictly required that G and
E are independent. Using the running example, the key features of this graph required to interpret α
causally are

1. CIMT does not influence the gene of interest, but the reverse may be true.

2. CIMT does not influence age or sex, but the reverse may be true.

3. There are no variables (observed or otherwise), which are common causes of CIMT and the gene of
interest, or of CIMT and age or sex.
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The first of these assumptions is justified through the biological understanding that G is assigned before
phenotypes are determined, hence reverse causation is not possible. Likewise, the second assumption is
reasonable from a biological perspective. Assumption 3, however, is where the basic model breaks down.
Under modern theories of Mendelian inheritance, the gene of interest depends on an individual’s parental
genotypes, or more generally on their ancestry. Along with the gene of interest, each individual inherits
many other genetic variants, G∗, each of which could also have a causal influence over Y . The ancestry of
an individual is therefore a confounder as it may be a common cause of both G and Y .

This effect is, however, negated if one assumes that Y is monogenic, so is causally affected by only one
single SNP. Conversely the effect is amplified for polygenic traits, such as CIMT, which are thought to be
affected by multiple genetic variants.

G

YC

E

G∗

G Y E

(a) (b)

Figure 2.3: Causal graphs for GWAS analysis. Graph (a) shows the basic causal GWAS model, where the
phenotype of interest, Y , is dependent on the gene of interest, G, and some other environmental factors, E.
Graph (b) accounts for confounding by the ancestry of the individual, C, which affects the gene of interest,
and the remaining genes, G∗. This modified graph assumes that a polygenic trait, Y , depends on both the
gene of interest, and the remaining genes. By convention, unobserved (or latent) variables, such as the
ancestry variable, C, are circled.

To adequately adjust for confounding by ancestry, the basic GWAS graph Fig.2.3a must be updated
to reflect Mendelian inheritance assumptions. Fig.2.3b shows a causal graph, modified to include an
unmeasured ancestry variable, C, which affects the phenotype of interest through both the gene of interest,
G, and other inherited variants, G∗. In this updated causal graph, we see that there are two open paths
by which the gene of interest is associated with CIMT, specifically the G → Y causal path and the
G← C → G∗ → Y non-causal path. If one were able to block the non-causal path, then, the remaining
association between G and Y must be due to the causal path.

One strategy for blocking the path is to condition on ancestry by stratification. Since C is unmeasured,
one must assume that the population consists of one strata, which is homogeneous in ancestry with a
random mating scheme and no natural selection. Under these assumptions, the HWE model is recovered,
whereby G is drawn from the same distribution for all individuals, hence G and Y are not confounded by
ancestry.

The causal graph in Fig.2.3b made several additional assumptions regarding the ancestry variable, C.
The first is that there is no direct path C → Y . Modern epigenetic theory, however, does permit such
paths through ‘imprinting’ mechanisms, whereby an individual inherits DNA of the same sequence, whose
function is altered by the presence of additional methyl groups.

Furthermore, Fig.2.3b assumes that C and E are independent. This may not be true, however, for
a global study, where individuals from different ethnic groups, may have been brought up in different
geographical locations, and hence, different meteorological and socio-economic conditions. It is reasonable,
therefore, to posit a C → Y path through some unobserved environmental variables. We emphasise again
that the arrows absent from a causal graph are important as they represent causal relationships which are
assumed not to exist, whilst the arrows represent causal relationships which may exist.

2.3.1 Using principal components to adjust for ancestral confounding

Examining the causal graph in Fig.2.3b, we discussed how the non-causal path: G ← C → G∗ → Y
may be blocked by conditioning on C when one assumes the study population is homogeneous. For
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heterogeneous populations, however, stratification by C is not possible because it is unmeasured. Instead,
the non-causal path can be blocked by conditioning on the remaining observed SNPs, G∗. This involves
using G∗ in a regression model for Y , or using G∗ for stratification.

Intuitively, conditioning on G and G∗ removes any dependency between C and Y since, if the full
genotype of an individual is used to predict their phenotype, then knowledge of their ancestral genotypes
provides no new information to improve our prediction. Using the full genotype in a regression model
for Y requires careful consideration, since the number of covariates (SNPs), p, may exceed the number
of individuals in the study, n < p. Such ‘high-dimensional’ problems require alternative models and
estimation techniques.

Due to the high-dimensionality, modifying the linear model in Eq.2.1 to include the remaining genes
as covariates would result in a model which is impossible to fit by OLS. One very common solution is to
drastically reduce the dimensionality of the genetic information, using Principal Components (PCs).

PCs are used in several ways within genomic analysis: (i) PCs can be used to cluster individuals, either
by excluding anomalous individuals from the dataset (Anderson et al., 2010), or else clustering the data
for use in a Structured Association analysis, (ii) some PC values may be included as fixed effects in a
GWAS analysis, thereby accounting for some of the phenotype variation, which can be explained by the
remaining SNPs, and (iii) PCs may be included as random effects in the GWAS analysis, an approach
which is equivalent to using a Linear Mixed Model (LMM) (Hoffman, 2013).

Method (i) may be causally interpreted as stratifying the population into one or more sub-populations,
for which we believe that HWE holds. Analysis of each sub-population may be conducted using a basic
GWAS analysis. Limitations of this method are that confounding by ancestry is not accounted for within
strata and it is not clear how to tune the stratification process.

The linear model for methods (ii) and (iii) may be written as

Y = αG+

p∑
j=1

βjEj +

q∑
j=1

γjPj + ϵ (2.2)

where P is the vector of q principal components, summarising the genetic data of a particular individual,
each component of which has a coefficient given by the γ parameter vector, and where ϵ has constant
mean given G,E and P . In the fixed effect model (method ii), the q-dimensional parameter vector, γ is
treated as a fixed covariate, which may be estimated using conventional methods such as by OLS.

Alternatively, one may treat the parameters γj as random effects (method iii), by assuming a normally
distributed prior for γ, resulting in a LMM. The use of LMMs in genomic data is not restricted to GWAS
analyses. They are frequently applied to phenotype prediction, heritability estimation, and rare-variant
analysis (Lippert et al., 2013). One key feature of LMMs is that the random effect (given by

∑q
j=1 γjPj

above) may be written in terms of a ‘genetic similarity matrix’, which is used to model the covariance
between any pair of individuals in the cohort. A more detailed discussion of LMMs and methods for
measuring genetic similarity can be found in Appendix A.1.

2.4 Causal graphs for Mendelian randomisation

Mendelian Randomisation (MR) studies also make use of genetic SNP data, or GWAS summary statistics,
with the aim of inferring the effect of a genetically modified exposure (e.g. alcohol consumption) on
another phenotype (e.g. cardiovascular disease). GWAS results from multiple cohorts may be used to
conduct Two- Sample MR analysis. MR base which is a database of GWAS statistics for conducting
Two-Sample MR, contained associations from 1673 GWAS, as of May 2018 (Hemani et al., 2018). Another
systematic review estimates a 10-fold increase in published MR studies between 2004 and 2015, with the
majority (51%) in the fields of cardiovascular disease and diabetes (Swerdlow et al., 2016). MR is therefore
increasing in popularity, most likely due to the increasing availability of GWAS summary statistics and
large cohorts with genetic and phenotypic data.

This section provides an overview of the technique, from the statistical causal inference framework.
We refer the interested reader to Didelez and Sheehan (2007); Burgess and Thompson (2015); Sheehan
and Didelez (2018).
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2.4.1 Instrumental variable methods

MR exploits the idea that a particular genotype affects the phenotype of interest only indirectly, through
the exposure of interest, and that this genotype is assigned randomly (given the parents’ genes) at meiosis,
independently of the possible confounding factors. This is essentially using the genotype as a so-called
instrumental variable (IV) for the effect of the exposure on the outcome (Didelez et al., 2010). This is
appealing, as it allows to estimate causal effects event in the presence of exposure-outcome unobserved
confounding. Nevertheless, MR makes a number of causal assumptions, known as IV assumptions, which
are not always carefully stated and evaluated in applications and are separate from any parametric
modelling assumptions, which may also be required.

For illustration, we consider a specific example where the interest is to investigate the causal effect of
the level of C-reactive Protein (CRP) on CIMT by exploiting random assignment of a genetic variant, G,
associated with CRP (Kivimáki et al., 2008). Here CRP is referred to as the exposure, X, CIMT as the
outcome, Y , and G as the instrumental variable (or instrumental gene).

G Y

U

X

G

Y

C U

G∗

X

(a) (b)

Figure 2.4: Causal graphs for MR analysis. Graph (a) shows the traditional IV causal graph, where the
gene, G, acts as an IV for the X → Y relationship of interest, itself confounded by the unmeasured variable,
U . Graph (b) shows modifications to graph (a) which relax assumptions by allowing for confounding by
ancestry, and some pleiotropic effects.

Note that the IV causal graph permits unmeasured variables that may influence both the exposure
CRP and the outcome CIMT, here denoted by U . The IV assumptions encoded by the causal graph in
Fig.2.4a can be written formally as follows

1. CIMT does not influence CRP, but the reverse may be true.

2. Relevance: The instrumental gene is associated with the level of CRP.

3. Exclusion restriction: The instrumental gene may affect CIMT only through its effect on CRP.

4. Unconfoundedness: There is no variable, observed or otherwise, which is a common cause of the
instrumental gene and CIMT.

For assumption 1, domain specific knowledge is generally required to defend the X → Y causal
relationship over the alternative, Y → X. For this example, it is usually assumed that proteins causally
influence disease outcomes, rather than the other way round. Collectively, assumptions 2 to 4 are known
as the IV assumptions as they describe the relationship between the IV and the variables U , X and
Y . In a randomised control trial (RCT), where the IV is the randomly assigned treatment group, these
assumptions are more simple to justify, since the randomisation process is known, and we can engineer
the randomised treatment so that it is (a) associated with the exposure, and (b) does not influence the
outcome except through the exposure, although in some settings justification of the exclusion restriction
remains challenging.

In the MR setting, we justify the relevance condition (assumption 2) by choosing instrumental
genes following a GWAS analysis. In practice, several candidate instrumental genes are often used to
support or discredit the evidence of a single one. The exclusion restriction (assumption 3) is, however,
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more problematic as genetic variants may have independent pleiotropic effects on multiple phenotypes.
Pleiotropic effects violate the exclusion restriction by introducing alternative paths of the type G→ Y .

Recent developments in MR do allow for some limited pleiotropy, such as MR-Egger (Bowden et al.,
2015), which permits a direct path from G→ Y in Two-Sample studies (under specific assumptions), and
the MRGxE method (Spiller et al., 2018), which allows for pleiotropic ‘Gene-by-environment’ interactions
provided they reside on the G→ X path. Selection of instrumental genes in MR is, however, an open
topic of debate, both in terms of statistical and biological considerations (Swerdlow et al., 2016). Recent
statistical work considers variable selection methods, such as the Lasso, to select IVs (Windmeijer et al.,
2018). Whilst the exclusion restriction cannot be proven, it may sometimes be possible to show that they
are inconsistent with prior evidence. Methods for doing so include leveraging prior causal assumptions,
identifying modifying subgroups, or by use of instrument inequality tests (Glymour et al., 2012).

Unconfoundedness (assumption 4) prohibits edges of the type U → G, which is reasonably well justified
on the basis of Mendelian inheritance. As in Section 2.3, however confounding by ancestry violates this
assumption, since unobserved ancestry variables, C, may causally influence the outcome through their
effect on other genetic variants as well as causally influencing the instrumental gene itself. Ancestrally
heterogeneous populations are therefore known to violate the unconfoundedness in MR, and practitioners
are recommended where possible to use homogeneous cohorts, thought to be in HWE.

A modified causal graph, which relaxes the IV assumptions to allow for confounding by ancestry, and
limited pleiotropic effects, can be seen in Fig.2.4b. This graph represents a more general set of causal
assumptions, to emphasise the assumptions of the IV graph. The standard IV graph may be recovered
by removing arrows from the modified causal graph, or in other words, by assuming certain null causal
relationships.

If only the G → Y arrow is removed from the causal graph in Fig.2.4b (i.e. G has no pleiotropic
effect on Y ) then G may be used as a conditional instrumental variable, assuming one collects adequate
data on the other genetic variants G∗. In a conditional instrumental variable analysis, the gene G acts
as an instrumental variable after conditioning on G∗ in the models for X and for Y . This conditioning
has the effect of blocking the open paths: G ← C → G∗ → X and G ← C → G∗ → Y . Once blocked,
unconfoundedness is no longer violated so G again acts as an instrument, allowing for valid MR analysis
with ancestrally heterogeneous cohorts. Conditioning on G∗ may be achieved using the methods in Section
2.3.1.

Violation of any of the IV assumptions would result in invalid causal estimates. We refer the interested
reader to VanderWeele et al. (2014) for a comprehensive discussion of the challenges faced by MR studies
when justifying the IV assumptions and on how to conduct sensitivity analyses.

2.4.2 Survivor bias in Mendelian randomisation

One setting where causal graphs are especially useful for evaluating MR assumptions is in the use of
genetic instruments to asses survival biases. Here we consider the example given in Vansteelandt et al.
(2018), namely where an MR analysis of the effect of vitamin D levels on mortality is performed using a
cohort of ancestrally homogenous, genotyped individuals between the ages of 40 and 71 years old. Using
causal graphs, we show how survivor bias may be introduced because recruitment to the cohort depends
on an individual having survived long enough to be eligible for recruitment.

Selection to the cohort depends on T , the lifetime of an individual, being larger than some index time,
T0. By definition, an index time is actually assigned only to individuals in the cohort (who are indexed at
some point between the ages of 40 and 71), however, we could imagine that individuals outside the cohort
could also be given an index time, for example by sampling from the birth register. As before, we will
denote selection to the cohort by the variable S, with S = 1 for all individuals in the cohort.

Let D be the level of vitamin D at index and assume that it captures the effect on lifetime of an
individual’s entire exposure to vitamin D since birth. This assumption is implicit in all MR studies, since
to not assume it would generally violate the exclusion assumption, in the sense that we could imagine
an additional variable (e.g. adolescent vitamin D level) which causally influences the vitamin D level
recorded at index, as well as the lifetime of the individual directly.
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Finally we shall assume that an appropriate genetic instrument (e.g. filaggrin genotype) has been
recorded, which we shall denote, G, and assume is randomised by Mendelian inheritance, since the cohort
is homogenous. As with the standard MR causal graph, we shall permit unmeasured confounding variables
which might causally influence both vitamin D level and lifetime. Our causal assumptions for this example
are represented by the causal graph in Fig.2.5a. In this example, S, is a variable which we have no choice
but to condition on, hence we must be very careful to consider collider stratification biases, as discussed
in Section2.2.

G D

U

(a)

T S T0

G D

U

(b)

T S T0

Figure 2.5: Causal graphs for MR analysis of a survival outcome. Graph (a) shows the instrumental gene,
G, acts as an IV for the D → T relationship of interest where D is vitamin D level and T is lifetime.
Graph (b), however, shows that conditioning on selection to the cohort, S, which depends on an individual
surviving to index time T0, introduces associations between G and U which violate the IV exclusion
assumption.

We see that S is a descendent of D, due to the D → T → S path, and that D is also a collider on the
path G→ D ← U . Hence, by selecting only individuals who have survived, the ancestors of D (namely G
and U) become associated. This violates the exclusion assumption, since association between G and T
may arise from either the causal path G→ D → T or from the path U → T , where U is associated with
G.

The association induced by conditioning on selection is illustrated by the dashed line in Fig.2.5b.
Recent work proposes various strategies for MR estimation under survivor bias, using a semi-parametric
additive hazard model, similar to the canonical Cox proportional hazards model (Vansteelandt et al.,
2018). This relates to similar work on MR for censored survival outcomes (Tchetgen Tchetgen et al.,
2015).

Interestingly, however, this problem of survivor bias disappears when testing the null hypothesis that
D has no causal influence on T . Under this null hypothesis, there is, by definition, no D → T arrow,
hence G is not an ancestor of T and no association between G and U is induced.

2.5 Conclusion

We have demonstrated, through examples of the most common analytical techniques employed in genetic
studies, that a causal inference framework, and in particular the use of causal graphs, allows the analyst
to (i) to represent their knowledge of the causal relationships involved in the question at hand, and (ii)
use the rules of d-separation, to query the assumptions under which popular genetic analysis methods
lead to causal interpretations.

Causal graphs may also inform intuition regarding the advantages and limitations of different analytical
techniques from the outset and are useful in deciding which variables should (and should not) be conditioned
on to avoid subtle confounding and selection biases, arising from study design or data collection methods.
Recognising these biases is necessary so that unbiased estimates of causal effects may be obtained.

Despite their utility, causal inference methods, and in particular causal graphs, do have limitations.
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Unavoidably, expert knowledge is still required to elicit and defend causal assumptions, and it is recom-
mended that sensitivity analyses be conducted to explore the consequences that departures from causal
assumptions have on estimates of interest. Moreover, even in situation where causal assumptions may be
well justified, correct specification of regression models remains an issue. These regression models may be
required to adequately block open paths. In Section 2.3.1, we saw that specification of regression models
is especially difficult in genomic applications, where dimensionality reduction strategies are required to
condition on high-dimensional genetic information. These strategies come with their own model validity
assumptions, separate from the causal ones we have discussed.

We reiterate that causal graphs are not the only framework for representing causal assumptions and
deriving statistical dependencies, and that this can be done within other causal frameworks, for example
Rubin (2005). We hope this review may, however, contribute to the discourse of GWAS and MR analyses
by allowing causal assumptions to be explicitly acknowledged and communicated in a transparent and
intuitive manner. Finally, since causal graphs are common in the communication and development of
novel analytical methods, we hope to have contributed to a better understanding of them, thus helping
the adoption of new analytical methods in the future.
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Chapter 3

Partially linear mediation

3.1 Introduction

Testing and estimation of mediated effects is important in psychology, sociology, epidemiology, and
econometrics, typically as a secondary analysis to understand the mechanism by which an exposure (X)
effects an outcome (Y ) through a mediating variable (M) (MacKinnon, 2008; Hayes, 2018). When the
exposure is binary, one often considers the natural decomposition of the average treatment effect, into
a natural indirect effect (NIDE), and natural direct effect (NDE) (Robins and Greenland, 1992; Pearl,
2001), which, under standard identifiability assumptions (sequential ignorability and consistency), may
be written as functionals of the observed distribution (Imai et al., 2010a). These assumptions primarily
require observation of a set of variables, (Z), that are sufficient to adjust for confounding of the association
between X and M and between (X,M) and Y .

Assuming fully parametric models, maximum likelihood inference for the NIDE and NDE can be based
on the so-called mediation formula (Pearl, 2001; VanderWeele and Vansteelandt, 2009; Imai et al., 2010a).
Use of this formula gives rise to the popular difference and product-of-coefficient methods (Alwin and
Hauser, 1975; MacKinnon et al., 2002) when simple linear models for the mediator and outcome hold
(VanderWeele and Vansteelandt, 2009), but it readily allows extension to non-linear models (Imai et al.,
2010a). A key concern about this approach is that misspecification of models for the mediator or outcome
can lead to NIDE and NDE estimators with large bias; such misspecification can be difficult to diagnose
when some confounders are strongly associated with either the exposure or the mediator (Vansteelandt,
2012).

In contrast, nonparametric inference gives rise to so-called triple robust estimators (Tchetgen Tchetgen
and Shpitser, 2012) of the NIDE and NDE. These are less model-dependent, though still necessitate some
form of modelling in view of the curse of dimensionality. In particular, these demand correct specification
of an appropriate subset of: (i) the conditional expectation, E(Y |M,X,Z), (ii) the conditional density of
M given X,Z, and (iii) the conditional density of X given Z. These estimators are called triple robust
due to their similarity with ‘double robust’ methods. Double robust methods of the average treatment
effect, for example, are Consistent Asymptotically Normal (CAN) provided that either a mean outcome
model, or propensity score model is correctly specified (Kang and Schafer, 2007). The triple robust
estimator of the marginal NDE and NIDE is CAN provided any pair of (i), (ii), (iii) are correctly specified.
These methods are also efficient (under the nonparametric model) provided that (i), (ii), and (iii) are all
correctly specified. Additionally, Tchetgen Tchetgen and Shpitser (2014) provide CAN estimators for the
parameters indexing a correctly specified parametric model for the conditional NDE given Z, provided
either (i), or (ii) and (iii) are correctly specified.

Considering the common use of continuous measurements of mediator and outcome in psychology,
which lend themselves to linear modelling, we will consider a different approach in the current work. In
particular, we will continue to rely on linear modelling, but in view of the aforementioned concerns about
model misspecification, will consider estimation and inference of the NIDE in a semi-parametric partially
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linear model indexed by (β1, β2) which obeys

E(M |X,Z) = β1X + f(Z) (3.1)

E(Y |M,X,Z) = β2M + g(X,Z) (3.2)

where g(x, z) and f(x) are arbitrary functions. For the NDE, we consider the partially linear model
indexed by (β2, β3) which obeys

E(Y |M,X,Z) = β2M + β3X + g(Z) (3.3)

where g(z) is an arbitrary function. The intersection of these models (i.e. when (3.1) and (3.3) both hold)
is indexed by β = (β1, β2, β3). Early work by Baron and Kenny (1986) on the intersection model defined
indirect and direct effects as the product β1β2 and coefficient β3 respectively, with the total effect given
by the sum of the two effects: β1β2 + β3. When the exposure is binary and the intersection model holds,
then the NIDE, NDE, and average treatment effect reduce to the effect definitions of Baron and Kenny
(1986) (See Section 3.2 for details).

G-estimation is a method of parameter estimation in structural nested models, such as those in
(3.1) and (3.3) developed by James Robins (and collaborators) over a number of years (Robins, 1994;
Vansteelandt and Joffe, 2014; Naimi et al., 2017). In the current work, G-estimators for the NIDE
and NDE are constructed, assuming that the mediator and outcome mean models are partially linear.
Denoting, h(Z) = E(X|Z), we show that our G-estimator for the NIDE is CAN when either

(a) (3.1) and (3.2) hold and a parametric model for f(z) is correctly specified

(b) (3.1) and (3.3) hold and parametric models for both g(z) and h(z) are correctly specified

and for the NDE, our G-estimator is CAN when either

(c) (3.3) holds and a parametric model for g(z) is correctly specified

(d) (3.1) and (3.3) hold and parametric models for both f(z) and h(z) are correctly specified

Compared with the triple robust estimators of Tchetgen Tchetgen and Shpitser (2012); Tchetgen Tchetgen
and Shpitser (2014) (which do not require partial linearity), the proposed G-estimation methods (which
do require some partial linearity) have the advantage that conditional densities for M and X do not need
to specified, and conditional mean models for Y and M are sufficient to estimate the NIDE and NDE
respectively. Extensions to the G-estimation methods where partial linearity is violated are discussed in
Section 3.8.

We also consider testing of the no-mediation hypothesis (H0 : β1β2 = 0) and the no-direct-effect
hypothesis (H1 : β3 = 0). Testing of the no-mediation hypothesis, H0, is problematic since the function
used to constrain the hypothesized parameter space (ψ0(β) = β1β2 = 0) has a Jacobian which is full rank
almost everywhere, except for a singular point at β1 = β2 = 0. This generally gives rise to test statistics
with different asymptotic behaviour at this singular point, and in finite samples, tests for H0 which are
underpowered in its neighbourhood. We refer the interested reader to Dufour et al. (2013); Drton and
Xiao (2016) for further details.

Ordinary Least Squares (OLS) is routinely used for estimation of the target parameter β and nuisance
parameter vector γ = (γm0, γm, γy0, γy) in the intersection model when f(z) and g(z) are parametrically
defined by f(z) = γm0 + γ⊤mz and g(z) = γy0 + γ⊤y z. Here γm0 and γy0 represent scalar intercept terms
and γm and γy are parameter vectors. Classical tests of the no-mediation hypothesis in this setting are

constructed from the squared t-test statistics, T
(OLS)
j = (β̂

(OLS)
j /σ̂

(OLS)
j )2, where for j = 1, 2, 3, β̂j

(OLS)

denotes the OLS estimator, with estimated standard error, σ̂
(OLS)
j .

Using these squared t-statistics, a Wald test for H0, also known as the Sobel test (Sobel, 1982) can be
constructed, based on the test statistic W (OLS). Alternatively, a joint significance test (also known as a
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Likelihood Ratio (LR) test)(MacKinnon et al., 2002; Giersbergen, 2014), has been constructed, based on
the statistic LR(OLS). These test statistics are

W (OLS) =
T1T2
T1 + T2

=
β̂2
1 β̂

2
2

β̂2
1 σ̂

2
2 + β̂2

2 σ̂
2
1

(3.4)

LR(OLS) = min(T1, T2) (3.5)

where, for readability, the superscript (OLS) has been dropped from all terms on the right hand side.
These statistics have received considerable attention, especially due to unexpected properties regarding
the relative power of total, direct, and indirect effect tests under different true parameter values (Wang,
2018; Kenny and Judd, 2014; Fritz et al., 2012).

We propose two alternative tests based on moment conditions of the G-estimator: a Wald type
approach, and an approach analogous to a classical score (or Lagrange Multiplier) test, but derived using
a Generalized Methods of Moments (GMM) hypothesis testing framework (Newey and West, 1987; Dufour
et al., 2017). The relative merits of the new tests against the OLS based tests above are discussed in
Section 3.5.3. From a robustness perspective, tests based on OLS estimating equations require that
(3.1) and (3.3) hold and f(z) and g(z) are correctly specified, whereas those based on the G-estimation
equations inherit the same robustness to model misspecification as the G-estimator itself, provided that
nuisance parameters are estimated orthogonally (in a sense defined in Section 3.4). A simulation study is
carried out in Section 3.6 to assess the behaviour of the new robust tests in finite samples, followed by an
illustration on clinical data in Section 3.7. All methods are made available through an R package, which
can be found at github.com/ohines/plmed.

3.2 Identifiability

Suppose iid data on (Y,M,X,Z) is collected for n individuals. We assume that there exists a potential
outcome variable Y (x,m), which expresses the outcome that would have been observed if the exposure
and mediator had taken the values (x,m). Similarly, we assume a potential outcome, M(x), corresponding
to the mediator if the exposure had taken the value x. We define the expected potential outcome

η(x, x∗, z) = E[Y (x,M(x∗))|Z = z]

for arbitrary (x, x∗) on the support of X. We define the NIDE and NDE, conditional on Z = z, respectively
by

E[Y (x0,M(x1))− Y (x0,M(x0))|Z = z]

E[Y (x1,M(x1))− Y (x0,M(x1))|Z = z]

for two pre-specified levels of the exposure, (x0, x1). For a binary exposure coded 0 or 1, (x0, x1) = (0, 1),
however our definition also permits continuous exposures. Letting P (m|x, z) denote the probability
measure of M conditional on X = x and Z = z, then

η(x, x∗, z) =

∫
E(Y |X = x,M = m,Z = z)dP (m|x∗, z)

under standard identifiability assumptions (Pearl, 2001; Imai et al., 2010a,b; VanderWeele and Vansteelandt,
2009). These assumptions require consistency,

X = x =⇒ M(x) =M almost surely

X = x and M = m =⇒ Y (x,m) = Y almost surely

and sequential ignorability, which states that for all m on the support of M ,

Y (x,m) ⊥⊥M |X = x∗, Z

(Y (x,m),M(x∗)) ⊥⊥ X|Z
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Here A ⊥⊥ B|C denotes independence of A and B conditional on C. Under these identifiability assumptions
and the partial linearity in (3.2), then

η(x, x∗, z) = β2f(x
∗, z) + g(x, z)

where f(X,Z) = E(M |X,Z). We see, therefore, that one obtains the following two expressions for the
conditional NIDE and NDE when (3.1) and (3.3) hold respectively,

η(x0, x1, z)− η(x0, x0, z) = β1β2(x1 − x0)
η(x1, x1, z)− η(x0, x1, z) = β3(x1 − x0)

for all z. It follows that when (3.1) and (3.2) hold then the product of coefficients β1β2, represents the
conditional NIDE per unit change in X, and when (3.3) holds then β3 represents the conditional NDE per
unit change in X. Since these effects are constant then the marginal effects are equal to the conditional
effects. By way of comparison, Tchetgen Tchetgen and Shpitser (2014) consider estimation of a parameter
ψ which indexes parametric models for the NDE conditional on Z = z, when the exposure is binary,

η(1, 1, z)− η(0, 1, z) = δ(z, ψ)

where δ(z, ψ) is a known function. Our methods, in effect, consider the case δ(z, ψ) = ψ, i.e. that the
NDE is constant in subgroups of Z, however, we additionally require that partially linear models hold.
These assumptions are relaxed in Section 3.8.

3.3 The G-estimator for mediation

Our objective is to derive direct and indirect effect estimators which are asymptotically linear and hence
CAN in the sense that they asymptotically follow normal distributions centred at the true value, with
variances of order n−1. We refer readers to Kennedy (2015) for an introduction to asymptotically linear
estimators and influence function theory in causal inference.

We will consider the target parameter, β = (β1, β2, β3) in the intersection model (i.e. when (3.1)
and (3.3) both hold), and begin by introducing parametric working models for h(z), f(z), g(z) which we
denote h(z; γx), f(z; γm), g(z; γy) where h, f, g are known differentiable functions parametrized by the
nuisance parameter vector γ = (γx, γm, γy). This nuisance parameter and the target parameter itself will
be estimated jointly. Specifically, we consider an iterative estimation procedure by which the nuisance
parameter estimate is obtained from a previous target parameter estimate using a CAN estimator γ̂ = γ̂(β̂)
which is consistent in the sense described by assumptions A1 to A3 below. The target parameter estimate
may then be updated using the updated nuisance parameter estimate. We assume that each component of
the nuisance parameter estimator is consistent when the associated part of the model is correctly specified,
that is, denoting the correct parameter values by superscript 0, we assume,

A1. If h(z) is correctly specified then plim γ̂x(β) = γ0x for all β

A2. If f(z) is correctly specified then plim γ̂m(β) = γ0m for all β such that β1 = β0
1

A3. If g(z) is correctly specified then plim γ̂y(β) = γ0y for all β such that (β2, β3) = (β0
2 , β

0
3)

where assumptions A2 and A3 are only well defined when (3.1) and (3.3) hold respectively. For the target
parameter, we propose estimation based on the product of residuals in the intersection model given by
the vector U(β, γ), which we refer to as the G-moment conditions, with components,

U1(β, γ) = {X − h(Z; γx)}{M − β1X − f(Z; γm)} (3.6)

U2(β, γ) = {M − β1X − f(Z; γm)}{Y − β2M − β3X − g(Z; γy)} (3.7)

U3(β, γ) = {X − h(Z; γx)}{Y − β2M − β3X − g(Z; γy)} (3.8)
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When all models are correctly specified, these residual products are zero in expectation, i.e. E{U(β0, γ0)} =
0. The G-estimator for β, denoted by β̂ is the value which sets the sample average of moment conditions
to zero, that is it solves the system of three equations

En[U{β̂, γ̂}] = 0 (3.9)

where En[.] = n−1
∑n
i=1[.]i is the expectation with respect to the empirical distribution of the data. To

examine the behaviour of this estimator under model misspecification, we introduce notation for the
probability limit of this G-estimator, β∗ = plim β̂, with associated nuisance parameter estimator limit,
γ∗ = plim γ̂(β∗). The probability limit of the G-estimator is the solution to

E{U(β∗, γ∗)} = 0

We additionally assume (A4) that the 3 by 3 matrix,

E

(
∂U(β∗, γ∗)

∂β

)
is non-singular. Finally we assume (A5) that β∗ is unique. This assumption can be partly justified by the
linearity of the G-moment conditions, which implies that β∗ is unique when we disregard the dependence
of γ∗ on β∗, treating γ∗ as constant. It is sufficient, therefore, to assume that there is no pathological way
by which the nuisance parameter estimator might introduce extra solutions.

Under assumptions A1 to A5 one can derive the conditions for which the G-estimators of (β1, β2) and
of (β2, β3) are consistent, by examining the conditions under which all three moment conditions are zero
in expectation. These results are given in Lemmas 1 and 2 respectively. For completeness, the intersection
of these two cases, under which (β1, β2, β3) is consistent, is given by Lemma 3. See Appendix B for proofs.

Lemma 1 (Consistency of the G-estimator of (β1, β2)) Provided the models for M and Y are par-
tially linear in X and M respectively, such that (3.1) and (3.2) both hold, and either

(i) The model for f(Z) is correctly specified

(ii) g(X,Z) = β3X + g(Z) and the models for g(Z) and h(Z) are both correctly specified

then β∗ = (β0
1 , β

0
2 , β

∗
3), hence the G-estimator is consistent for (β1, β2).

Lemma 2 (Consistency of the G-estimator of (β2, β3)) Provided the model for Y is partially linear
in (M,X) such that (3.3) holds and either

(i) The model for g(Z) is correctly specified

(ii) f(X,Z) = β1X + f(Z) and the models for f(Z) and h(Z) are both correctly specified

then β∗ = (β∗
1 , β

0
2 , β

0
3), hence the G-estimator is consistent for (β2, β3).

Lemma 3 (Robustness of G moment conditions) Provided that the models for M and Y are par-
tially linear in X and (M,X) respectively, such that (3.1) and (3.3) both hold and any pair of

(i) The model for h(Z)

(ii) The model for f(Z)

(iii) The model for g(Z)

are correctly specified, then β∗ = (β0
1 , β

0
2 , β

0
3), hence the G-estimator is consistent for the full target

parameter. For proof observe that the conditions in Lemmas 1 and 2 are satisfied.

Theorem 1 describes the conditions under which the G-estimator will be asymptotically linear.
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Theorem 1 (Asymptotically linearity of β̂) Let β∗ denote the probability limit of the G-estimator,
as set out in Lemmas 1 to 3, and assume the nuisance parameter estimator, γ̂(β) is CAN and obeys
assumptions A1 to A3 such that

γ̂ − γ∗ = En{ϕ(β∗, γ∗)}+ op

(
n−1/2

)
(3.10)

where op denotes stochastic order notation so that An = op(r
−1
n ) means that Anrn

p→ 0 and
p→ denotes

convergence in probability. Then, subject to regularity conditions, the estimator β̂ is CAN

β̂ − β∗ = En{φ(β∗, γ∗)}+ op

(
n−1/2

)
with influence function φ(.) given by

φ(β∗, γ∗) = E

{
−∂U(β∗, γ∗)

∂β

}−1(
U(β∗, γ∗) + E

{
∂U(β∗, γ∗)

∂γ

}
ϕ(β∗, γ∗)

)
. (3.11)

See Appendix B for proof.

The G-estimator of the NIDE under the model in (3.1)–(3.2) is the product β̂1β̂2 with influence
function,

ω(β∗, γ∗) = β1φ2(β
∗, γ∗) + β2φ1(β

∗, γ∗) (3.12)

where β∗ = (β1, β2, β
∗
3) and for j = 1, 2, 3, φj(β

∗, γ∗) is the jth component of the influence function in
(3.11). Derivation of this influence function can be found in Appendix B. Similarly, the G-estimator of

the NDE under model (3.3) is β̂3 with influence function φ3(β
∗, γ∗) where β∗ = (β∗

1 , β2, β3) and with
consistency guaranteed under the conditions in Lemma 2.

When, in truth, (β1, β2) = (0, 0) then the (first-order) influence function in (3.12) is exactly zero.

In this case the NIDE estimator β̂1β̂2 is asymptotically linear and CAN in the sense that n1/2β̂1β̂2
asymptotically follows a normal distribution with zero variance. Multiplying β̂1β̂2 by higher powers of n
yields more interesting behaviour. When all models are correctly specified, nβ̂1β̂2 asymptotically follows a
‘product normal’ distribution (the distribution of two mean zero normal variables with known variances)
(Aroian, 1947).

3.4 Nuisance parameter estimation

Theoretical results show that the choice of nuisance parameter estimators does not impact the asymptotic
variance of double robust estimators when both working models are correctly specified (Tsiatis, 2006).
Similarly, in our case, it is straightforward to show that, when the models for X,M and Y are correctly
specified then

E

{
∂U(β∗, γ∗)

∂γ

}
= 0 (3.13)

So the influence function in (3.11) does not depend on the nuisance influence function ϕ(β∗, γ∗). This
property is sometimes referred to as (Neyman) orthogonality (Neyman, 1959; Chernozhukov et al., 2017),
with the intuition that the G-moment conditions are locally insensitive to nuisance parameters when all
models are correctly specified. Orthogonal estimators are particularly useful for the construction of score
tests, which we describe in Section 3.5.1. Moreover, they ensure that our asymptotic results continue to
be valid when consistent variable selection procedures (e.g. lasso) are employed for selecting confounders
in each of the three working models.

When (3.13) is not satisfied, as may happen under model misspecification, then the influence function
in (3.11) does depend on the nuisance influence function ϕ(β∗, γ∗). Under model misspecification, (3.11)
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therefore represents a class of G-estimators, indexed by the choice of nuisance parameter estimation
method. Choosing the nuisance parameter estimator under misspecification is non-trivial as it may greatly
affect the asymptotic variance of the estimator. Various proposals have been suggested for conventional
double robust estimators which aim to minimize either the variance under misspecification (Rotnitzky
and Vansteelandt, 2014) or the bias when models are misspecified (Vermeulen and Vansteelandt, 2015;
Avagyan and Vansteelandt, 2017). This second approach, referred to as a bias-reduction strategy, involves
constructing a nuisance parameter estimator, which is pseudo-orthogonal to the target parameter estimator
so that (3.13) is approximately satisfied. In effect, (3.13) is used as a set of moment conditions by which
the nuisance parameters are estimated.

To implement the bias-reduction strategy for our G-estimator, we must first augment the G-moment
functions (3.6)–(3.8), such that each estimating equation has a unique nuisance parameter. In practice,
this means, for example, that different estimators of γx may be used in (3.6) and (3.7), which are both
consistent when h(z) is correctly specified, with the same being true of γm and γy. Denoting the augmented
nuisance parameters with superscript (1) and (2), the augmented moment functions are given by

U1(β, γ) =
{
X − h

(
Z; γ(1)x

)}{
M − β1X − f

(
Z; γ(1)m

)}
(3.14)

U2(β, γ) =
{
M − β1X − f

(
Z; γ(2)m

)}{
Y − β2M − β3X − g

(
Z; γ(1)y

)}
(3.15)

U3(β, γ) =
{
X − h

(
Z; γ(2)x

)}{
Y − β2M − β3X − g

(
Z; γ(2)y

)}
(3.16)

with full nuisance parameter, γ = (γ
(1)
x , γ

(2)
x , γ

(1)
m , γ

(2)
m , γ

(1)
y , γ

(2)
y ). The bias-reduced nuisance parameter

estimator is that which solves

En

{
∂U(β̂, γ̂)

∂γ

}
= 0

This estimator is asymptotically linear and obeys the consistency assumptions A1 to A3. For identifiability,
we require models where Dim(γx) = Dim(γm) = Dim(γy). Such restrictions are not uncommon e.g.
Rotnitzky et al. (2012) and may be satisfied by enlarging the working models. The accompanying plmed

package implements G-estimation methods with bias-reduced parameter estimation in the setting where
f(z, γm) and g(z, γy) are linear predictors and h(z, γx) is modelled by a Generalized Linear Model (GLM).

3.5 Hypothesis testing

We now consider tests of the null hypothesis, Hα : (α − 1)β1β2 + αβ3 = 0, with α ∈ [0, 1] known.
This hypothesis includes the no-mediation hypothesis (α = 0) and the no-direct effect hypothesis
(α = 1) as special cases. We begin by constructing a score test, for general α, based on the G-moment
conditions. Provided the nuisance parameters are orthogonally estimated, the score test is robust to
certain model misspecification. Also, in the specific case where α = 0 and the true parameter takes the
value (β0

1 , β
0
2) = (0, 0), the score test is conservative, in the sense that the Type I error rate is below the

nominal test size.

The score test is compared with Wald tests for the special cases of the no-mediation hypothesis and
the no-direct-effect hypothesis. These Wald tests are constructed using the influence function of the
G-estimator, and inherit the robustness properties of the G-estimator, without requiring orthogonal
nuisance parameter estimation.

Sobel (1982) proposed a Wald test of the no-mediation hypothesis, based on the OLS moment conditions.
Our Wald test for the no-mediation hypothesis is similar enough to Sobel’s work that we shall refer to it
as the Robust Sobel test (or Robust Wald test).
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3.5.1 The Score Test

The score test is based on the observation that, since E{U(β∗, γ∗)} = 0, the classical central limit theorem
implies

n1/2En{U(β∗, γ∗)} d→ N (0, E {U(β∗, γ∗)U(β∗, γ∗)T})

nEn{U(β∗, γ∗)}TE{U(β∗, γ∗)U(β∗, γ∗)T}−1En{U(β∗, γ∗)} d→ χ2
3 (3.17)

where
d→ denotes convergence in distribution (as n → ∞) and N (µ,Σ) and χ2

r respectively denote a
normal distribution with mean µ and covariance Σ, and a chi-squared distribution with r degrees of
freedom. The left hand side of (3.17) is similar in form to a GMM estimator, based on the objective
function

Mn(β, γ, I) = En{U(β, γ)}TI−1En{U(β, γ)} ≥ 0 ∀(β, γ)

where I is a positive semi-definite 3 by 3 matrix. The GMM estimator of β is the minimizer argminβMn(β, γ̂(β), I).
In our case the GMM estimator is said to be exactly specified since Dim(β) = Dim(U(β, γ)). In this
exactly specified setting, minimization of the GMM objective function is equivalent to solving (3.9) and
the estimator is independent of the choice of weighting matrix, I.

The minimization of Mn(β, γ̂(β), I) over a constrained parameter space, however, may be exploited
for hypothesis testing, using results by Newey and West (1987) for the GMM Two-Step estimator, later
extended by Dufour et al. (2017) to the GMM-Continuous Updating Estimator (CUE), both discussed
below.

Work by Hansen (1982) in the over-specified setting, (i.e. when Dim(β) < Dim{U(β, γ)}), showed
that the optimal GMM estimator is constructed using weights proportional to the variance matrix,
I ∝ E{U(β∗, γ∗)U(β∗, γ∗)T}. This is optimal in the sense that the asymptotic covariance matrix of
the resulting estimator is as small as possible (in the positive definite sense) among the class of GMM
estimators.

This optimal choice also lends itself to hypothesis testing, as suggested by (3.17). In this work we
consider minimization of the objective function, Mn, under two proposals. The first (Two-Step) proposal
first estimates nuisance parameters and the variance matrix E{U(β∗, γ∗)U(β∗, γ∗)T}. Then, using these
initial estimates, constrained estimates of β are obtained by a subsequent minimization of the GMM
estimator. The second, (CUE) proposal allows the estimates of nuisance parameters and the variance
matrix I to be updated continuously. Writing,

În(β, γ) = En{U(β, γ)U(β, γ)T}

then the proposed Two-Step and CUE objective functions are respectively given by

S(β) = nMn

(
β, γ̂(β̂), În(β̂, γ̂(β̂))

)
(3.18)

S̃(β) = nMn

(
β, γ̂(β), În(β, γ̂(β))

)
(3.19)

where β̂ is the unconstrained G-estimate of β. Defining the null parameter space as Bα = {β|(α−1)β1β2+
αβ3 = 0}, the Two-step and CUE score type test statistics may be written as

Sα = min
β∈Bα

S(β)

S̃α = min
β∈Bα

S̃(β)

In practice, computation of the Two-Step score statistic may be achieved using the method of Lagrange
Multipliers to construct estimating equations for the constrained minimization problem. These may then
be solved with a Newton-Raphson scheme. Similarly, computation of the CUE score statistic can be
achieved using Lagrange Multipliers to construct estimating equations for β, however the Newton-Raphson
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procedure should additionally include the nuisance parameter estimating equations. When the bias-reduced
nuisance estimation strategy is used, computation by Newton-Raphson requires that f(.), g(.) and h(.)
are twice continuously differentiable.

To derive the asymptotic distributions of Sα and S̃α, we consider the general problem of minimizing
over some hypothesis set Bψ = {β|ψ(β) = 0}, where ψ(.) is a differentiable function. For example, when
ψ(β) = β − β∗ then Bψ represents a single point, and the asymptotic distribution in (3.17) is recovered.
Theorem 2 gives the general result for the asymptotic distribution of the objective functions, which follows
by extending results for the test statistic in Section 5.1 of Dufour et al. (2017), with related work by Newey
and West (1987). Our result accommodates nuisance parameter estimation and relies on the orthogonality
of the nuisance parameter estimator, see Appendix B for details.

Theorem 2 (Constrained GMM) Consider a null hypothesis H0 : ψ(β∗) = 0, where ψ is a vector of
dimension r ∈ {1, 2, 3} and is continuously differentiable in some non-empty, open neighbourhood, N , of
the true limiting value β∗. Provided that for all β ∈ N

Rank

(
∂ψ(β)

∂β

)
= r (3.20)

and γ̂ is estimated orthogonally, in the sense that (3.13) holds, then for Bψ = {β|ψ(β) = 0},

min
β∈Bψ

S(β)
d→ χ2

r

min
β∈Bψ

S̃(β)
d→ χ2

r.

Applying Theorem 2 to the target hypothesis, Hα, we see that the rank condition in (3.20) is not
necessarily satisfied for the no-mediation hypothesis (α = 0). Letting ψα(β) = (α− 1)β1β2 + αβ3 then

Rank

(
∂ψα(β)

∂β

)
= Rank

(α− 1)β2
(α− 1)β1

α

 =

{
0 for α = β1 = β2 = 0

1 otherwise

Therefore for α ̸= 0 one may apply the result in Theorem 2 directly to construct a test which rejects Hα

when Sα > c for some critical value, c. This test size has size 1− Fχ2
1
(c) where Fχ2

1
(x) is the distribution

function of a χ2
1 variable. One can show that this test is also a valid test of the no-mediation hypothesis,

H0. To do so, we define the null parameter space B0 = {β|β1β2 = 0} and let Cj = {β|βj = 0} for j = 1, 2
so that B0 = C1 ∪ C2. Hence

S0 = min

{
min
β∈C1

S(β), min
β∈C2

S(β)

}
S̃0 = min

{
min
β∈C1

S̃(β), min
β∈C2

S̃(β)

}
.

Under H0 we know that either β1 = 0 or β2 = 0 and since the constraint function ψj(β) = βj does satisfy
the rank condition in (3.20), one can show, that under H0,

sup
β∗∈B0

Pβ∗ (S0 > x)→ 1− Fχ2
1
(x) (3.21)

sup
β∗∈B0

Pβ∗

(
S̃0 > x

)
→ 1− Fχ2

1
(x) (3.22)

where Pβ∗ denotes the probability measure with a true limiting parameter value of β∗ and → denotes
convergence as n tends to infinity. See Appendix B for details.
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3.5.2 Wald Tests

Using the asymptotic linearity of β̂1β̂2 in (3.12) and under the conditions of Lemma 1, one can demonstrate

that n1/2β̂1β̂2 asymptotically follows a normal distribution when (β1, β2) ̸= (0, 0). Estimating the variance

of n1/2β̂1β̂2 by En{ω2(β̂, γ̂(β̂))} one arrives at a Wald test statistic, W , for the no-mediation hypothesis:
β1β2 = 0

n1/2(β̂1β̂2 − β1β2)
d→ N

(
0, E{ω2(β0, γ

∗)}
)

W =
nβ̂2

1 β̂
2
2

En{ω2(β̂, γ̂(β̂))}

=
T1T2

T1 + T2 + 2ρ
√
T1T2

=
β̂2
1 β̂

2
2

β̂2
1 σ̂

2
2 + β̂2

2 σ̂
2
1 + 2β̂1β̂2∆

where for j = 1, 2, 3, the squared t-statistic is represented by Tj = β̂2
j /σ̂

2
j , and ρ = ∆/σ̂1σ̂2 with σ̂2

j and ∆

given by n−1En{φ2
j (β̂, γ̂)} and n−1En{φ1(β̂, γ̂)φ2(β̂, γ̂)} respectively.

The distribution of W is problematic since at the true parameter value (β1, β2) = (0, 0), then

var
(
n1/2β̂1β̂2

)
→ 0 as n → ∞. A characterisation of Wald-type statistics for testing polynomial

constraints with singular points is given by Dufour et al. (2013). For the constraint β1β2 = 0, Glonek
(1993) demonstrated that

W
d→

{
1
4χ

2
1 for β1 = β2 = 0

χ2
1 otherwise

This result suggests that one may reject the no-mediation hypothesis when the Wald statistic exceeds
some critical value, c, chosen with reference to the χ2

1 distribution. Such a test will have size 1− Fχ2
1
(c)

when the null is satisfied but one of β1 or β2 is non-zero, and will be conservative when β1 = β2 = 0. The
fact that W behaves differently at a singular point is known to greatly restrict the power of the Wald test
to detect small indirect effects in finite samples (MacKinnon et al., 2002).

Construction of a Wald based test for the NDE is fairly trivial. Under the conditions of Lemma 2, the

squared t-statistic, T3
d→ χ2

1 when β0
3 = 0.

3.5.3 Comparison of methods

Revisiting the classical tests for the no-mediation hypothesis, as given in (3.4) and (3.5) we see that

0 ≤ W (OLS) ≤ LR(OLS) with equality as T
(OLS)
j approaches infinity for either j = 1 or j = 2, which

occurs in the asymptotic limit when βj ̸= 0. In fact, away from the singularity at β0
1 = β0

2 = 0, both
statistics have the same χ2

1 asymptotic distribution and (including the singular point) a test which rejects
when W (OLS) > c has equal size to that which rejects when LR(OLS) > c for some critical value c. Hence,
the test based on LR(OLS) is uniformly more powerful (van Garderen and van Giersbergen, 2019).

We highlight this comparison between the two classical tests because it gives some intuition as to why
the G-estimation score test, which we argue is analogous to LR(OLS), might be more powerful than the
G-estimation Wald test, analogous to W (OLS). The analogy is made clearer by rewriting LR(OLS) as a
minimization over an objective function.

S(OLS)(β) =

2∑
j=1

(
β̂
(OLS)
j − βj
σ̂
(OLS)
j

)2

(3.23)

LR(OLS) = min
{β|β1β2=0}

S(OLS)(β)



27 Chapter 3. Partially linear mediation

This objective function resembles a sum of OLS squared t-statistics, minimization of which (under the

constraint β1β2 = 0), either sets (β1, β2) = (0, β̂
(OLS)
2 ) or (β̂

(OLS)
1 , 0), thus removing the contribution of a

single term from the sum. To demonstrate the analogy between S(OLS)(β) and our G-estimation score
objective functions in (3.18) and (3.19), we consider the case where (3.1) and (3.3) hold and f(z), g(z)
and h(z) are correctly specified.

In this setting, the G-estimating equations are always orthogonal to the nuisance parameter estimates.
For illustration we additionally assume that var (Y |M,X,Z) = var (Y |X,Z), so that the true covariance
matrix, I = E{U(β, γ)U(β, γ)T} is diagonal. Under these assumptions, the squared t-statistics for the
null hypothesis βj = 0, are given by

Tj =
β̂2
j

σ̂2
j

=
nEn{φj(β̂−j , γ̂)}2

En{φ2
j (β̂, γ̂)}

for j = 1,2,3

which reduces to

Tj =
nEn{Uj(β̂−j , γ̂)}2

En{U2
j (β̂, γ̂)}

for j = 1,2

T3 =
nEn{U3(β̂−3, γ̂)}2

En{U2
3 (β̂, γ̂)}+ β̂2

1En{v̂ar (X|Z)}En{v̂ar (M |X,Z)}−1En{U2
2 (β̂, γ̂)}

where β̂−j denotes the G-estimate of β with jth parameter set to zero and v̂ar (.) denotes conditional
variance estimated using the parameter G-estimates. Note that the denominator of T3 contains an
additional term due to the non-zero value of E{∂U3(β, γ)/∂β2}, which happens to be the only non-zero
off-diagonal term of the matrix E{∂U(β, γ)/∂β}.

Since the covariance matrix, I is diagonal in this setting, the two-step and CUE objective functions
may be written as

S(β) =

3∑
j=1

nEn{Uj(β, γ̂)}2

En{U2
j (β̂, γ̂)}

S̃(β) =

3∑
j=1

nEn{Uj(β, γ̂(β))}2

En{U2
j (β, γ̂(β))}

As in (3.23), these score test objective functions resemble sums of squared t-statistics, making the G-
estimation score test analogous to one based on LR(OLS). Theorem 2 may consequently be given the
interpretation that the minimization procedure under the null ‘minimizes out’ independent χ2

1 terms
from this score test objective function, leaving a sum of independent χ2

1 terms equal in number to the
dimensions of the constraint.

3.6 Simulation study

3.6.1 Simulation study for estimation

A simulation study was carried out to examine the bias and variance of NIDE and NDE estimators in finite
samples and under model misspecification. G-estimation methods (using bias-reduced nuisance parameter
estimation) were compared against the triply robust methods of Tchetgen Tchetgen and Shpitser (2012)
(using maximum likelihood methods to fit nuisance parameters). Both the G-estimation methods and
triply robust methods (referred to as TTS methods) are available in the plmed package. The performance
of the proposed score and Wald tests was also compared with classical and TTS derived methods for the
no-mediation hypothesis (H0) and the no-direct effect hypothesis (H1). Datasets of size n were generated
for different (β1, β2, β3) values using several hierarchical data generating processes, the first of which
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(Process A) was given by

Z ∼ N (0, 1)

X ∼ Bernoulli
(
expit(Z + sxZ

2)
)

M ∼ N
(
β1X + Z + smZ

2, 1
)

Y ∼ N
(
β2M + β3X + Z + syZ

2, 1
)

with sx, sm, sy ∈ {0, 1} used to indicate model misspecification and where expit is the inverse-logit function.
Additional data generating processes (B and C) used the same models for Z,X, Y with the mediator
models instead respectively generated by

M = β1X + Z + smZ
2 + ϵ

M ∼ Bernoulli
(
expit(β1X + Z + smZ

2)
)

where ϵ follows a Student’s t-distribution with 5 degrees of freedom. This Student’s t-distribution was
chosen as a scenario where an investigator using the TTS methods might fail to correctly model the fat
tails of the mediator density. For the G-estimation methods, analysis was conducted under the assumed
model

E(X|Z) = expit(γx1Z + γx2)

E(M |X,Z) = β1X + γm1Z + γm2

E(Y |M,X,Z) = β2M + β3X + γy1Z + γy2

whereas, for processes A and B, the TTS methods additionally assumed that the mediator followed a
homoscedastic normal distribution (which is true in the case of process A, but not process B). For process
C, the TTS methods assumed that

M ∼ Bernoulli (expit(β1X + γm1Z + γm2))

It follows that for processes A and B, the models assumed by the G-methods are correctly specified when
the corresponding misspecification indicator (sx, sm, sy) is equal to zero. For process C, however, we see
that (3.1) is satisfied only when β1 = 0, therefore we expect to obtain valid estimation of the NIDE only
when β1 = sx = sy = 0. For the NDE, however, (3.3) is correct, thus we expect the G-estimation methods
to obtain valid inference for the NDE when sy = 0.

To investigate the bias and variance properties of both estimators, two parameter vectors were
simulated, β = (0, 0, 0) and β = (1, 1, 1) with sample sizes n = 100, 500, 1000 and under various levels of
misspecification. 1000 dataset replicates were generated for each simulation, and for each dataset the
NIDE, NDE were estimated by both methods. The variance of the G-estimator was also estimated based
on influence function theory, and also by bootstrap with 1000 resampling iterations. Monte Carlo estimates
for the expectation and variance of each estimator were obtained across the 1000 dataset replicates.

Plots of the bias of each estimator can be seen for each data generating process in Figs. 3.1, 3.2, and
3.3. These figures show that when the conditions for the G-estimator are satisfied, the bias remains close
to zero, even in small samples. For all data generating process, the standard error in the G-estimator is
smaller than that of the TTS methods. This is due to the fact that the G-estimation methods exploit the
assumed partial linearity to gain efficiency, whereas the TTS methods do not.

Interestingly, for process B, the TTS methods perform poorly when the mediator density is misspecified,
whereas the G-estimation methods, which do not assume knowledge of the mediator density, perform
similarly to data generating process A. This is likely due to large erroneous inverse density weights in the
TTS methods. For data generating process C, the G-estimator performs well for the NDE as expected,
however, NIDE estimation is biased when β1 ̸= 0.

In terms of variance estimation, theoretical results and bootstrap estimation performed similarly with
both approximating well the empirical variance of the G-estimator. Full data tables for these simulations
can be found in the online supplement to the original paper (Hines et al., 2021b).
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Figure 3.1: Simulated results to investigate the biases of the NDE and NIDE under data generating process
A using G-estimation and TTS methods. The estimated bias from 103 dataset replicates is plotted on the
x-axis with error bars giving a 95% confidence interval of the Monte Carlo estimate. Plots are arranged in
a grid where each row represents a different sample size and true target parameter value, and the header
of each row lists the correctly specified models (those for which the misspecification indicator is equal to
zero). We draw the reader’s attention to the different scales on the x-axis of these plots



Chapter 3. Partially linear mediation 30

XYM XY XM M Y

N=100
(0,0,0)

N=500
(0,0,0)

N=1000
(0,0,0)

N=100
(1,1,1)

N=500
(1,1,1)

N=1000
(1,1,1)

−
0.10

−
0.05

0.00

0.05

0.10

−
0.06

−
0.04

−
0.02

0.00

0.02

0.04

−
0.2

−
0.1

0.0

0.1

0.2

0 1 −
0.5

0.0

0.5

1.0

1.5

Bias

Estimator

NIDE_TTS

NIDE_G

NDE_TTS

NDE_G

Figure 3.2: Simulated results to investigate the biases of the NDE and NIDE under data generating process
B using G-estimation and TTS methods. The estimated bias from 103 dataset replicates is plotted on the
x-axis with error bars giving a 95% confidence interval of the Monte Carlo estimate. Plots are arranged in
a grid where each row represents a different sample size and true target parameter value, and the header
of each row lists the correctly specified models (those for which the misspecification indicator is equal to
zero). We draw the reader’s attention to the different scales on the x-axis of these plots



31 Chapter 3. Partially linear mediation

XYM XY XM M Y

N=100
(0,0,0)

N=500
(0,0,0)

N=1000
(0,0,0)

N=100
(1,1,1)

N=500
(1,1,1)

N=1000
(1,1,1)

−
0.01

0.00

0.01

0.02

−
0.02

−
0.01

0.00

0.01

0.02

−
0.050

−
0.025

0.000

0.025

0.050

0.00

0.25

0.50

0.75

1.00

0.00

0.04

0.08

0.12

Bias

Estimator

NIDE_TTS

NIDE_G

NDE_TTS

NDE_G

Figure 3.3: Simulated results to investigate the biases of the NDE and NIDE under data generating process
C using G-estimation and TTS methods. The estimated bias from 103 dataset replicates is plotted on the
x-axis with error bars giving a 95% confidence interval of the Monte Carlo estimate. Plots are arranged in
a grid where each row represents a different sample size and true target parameter value, and the header
of each row lists the correctly specified models (those for which the misspecification indicator is equal to
zero). We draw the reader’s attention to the different scales on the x-axis of these plots
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3.6.2 Simulation study for hypothesis testing

To investigate hypothesis testing methods a greater number of resampled datasets (104) was used, since
the computationally intensive bootstrap variance estimation procedure did not need to be carried out. The
proposed tests based on G-estimation were compared with classical (non-robust) methods and Wald tests
based on TTS methods. Replicate datasets were generated for n in the range 50 to 500 with various true
values of β under various levels of misspecification. Figures 3.4 and 3.5 respectively show the proportion
of datasets for which the tests of H0 and H1 were rejected at the 5% level (indicated by a grey line) for
data generating process A. When the null is satisfied this rejection proportion corresponds to the Type
I error rate, and otherwise corresponds to the statistical power (as in the right most column of both
figures). Additional plots for data generating processes B and C can be found in the online supplement
to the original paper (Hines et al., 2021b). Here we consider only data generating process A, as it is
representative of all three processes.

In Fig.3.4 all testing methods fail to achieve the nominal size when the true parameter takes the value
(β1, β2) = (0, 0), as expected by theory. All tests, however, do achieve nominal size when one of β1 or β2
differs from zero, given the requisite misspecification conditions. Under correct specification of all working
models, the G-estimation score tests display similar power to the classical LR test, dominating both the
robust and classical Sobel tests, which also have similar power to each other. This supports the heuristic
argument in Section 3.5.3. G-estimation based methods also perform well against those of TTS which, in
many cases, seem to converge slowly to the nominal level.

Although these results suggest that the Two-step procedure has greater power over the CUE score
test, the Two-step method appears to have an inflated Type I error rate in small samples, which converges
more slowly to the nominal level. This may explain the power discrepancy. This behaviour is reflected
also in Fig.3.5, where the Robust Wald test suffers from a slightly inflated Type I error rate in small
samples. In Fig.3.5 the robust tests perform better than classical test when E(Y |M,X,Z) is misspecified,
as in the central row.

3.7 Illustrative example: the COPERS trial

We now illustrate our G-estimation procedure and hypothesis testing methods, by analysing data from the
COPERS (COping with persistent Pain, Effectiveness Research in Self-management) trial (Taylor et al.,
2016). COPERS was a multi-centre, pragmatic, randomized controlled trial examining the effectiveness of
a novel non-pharmacological intervention on the management of chronic musculoskeletal pain. Participants
in the intervention arm (n = 384) were offered to participate in group therapy sessions, while those in
the control arm (n = 300) received usual care. The group therapy introduced cognitive behavioural
approaches to promote self-efficacy in managing chronic pain. The sessions were delivered over three days
within the first week with a follow-up session two weeks later. The control arm participants had no access
to the active intervention sessions. Participants and group facilitators were not masked to the study arm
they belonged to. The primary outcome, Y , was pain-related disability at 12 months, measured on the
Chronic Pain Grade (CPG) disability sub-scale. This is a continuous measure on a scale from 0 to 100,
with higher scores indicating worse pain-related disability. The original analysis found no evidence that
the COPERS intervention had an effect on improving pain-related disability at 12 months (the average
treatment effect on the CPG scale was −1.0, with a 95% CI of −4.8 to 2.7).

The COPERS researchers were interested in investigating whether those in the intervention arm that
had attended the majority of sessions benefited more from treatment and whether the effect of therapy
was mediated by feelings of self-coping with pain. To this effect, trial participants were also asked to fill
out the Pain Self-Efficacy Questionnaire (PSEQ) at 12 weeks (shortly after receiving the intervention),
which is intended to measure the participant’s confidence to live a normal life despite chronic pain. We
will use the score from this questionnaire as a continuous mediator of interest (M).

Attendance at the 24 group therapy sessions was observed to vary between participants in the
intervention arm, with the original investigators considering those who had attended at least 12 sessions
as receiving treatment (A = 1, n = 260), with the remaining patients considered as non-treated (A =
0, n = 53). Though planned, a mediation analysis was not performed in the primairy publication (Taylor
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Figure 3.4: Simulated results from data generating process A of the proportion of the 104 datasets for
which the no-mediation hypothesis (H0) is rejected at the 5% level testing using the CUE score, Two-step
score, Robust Sobel, Classical Sobel, Classical LR, and TTS methods. Each column represents a different
true β parameter, whilst each row gives the models which are correctly specified (those for which the
misspecification indicator is equal to zero)
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Figure 3.5: Simulated results from data generating process A of the proportion of the 104 datasets for which
the no-direct effect hypothesis (H1) is rejected at the 5% level testing using the CUE score, Two-step score,
Robust Wald, Classical Wald, and TTS methods. Each column represents a different true β parameter,
whilst each row gives the models which are correctly specified (those for which the misspecification indicator
is equal to zero)
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et al., 2016) due to the lack of overall treatment effect. We will examine only the patients randomized to
the treatment arm, and conduct two analyses, one in which the exposure of interest, A is binary (with
treatment received if attended at least half the sessions), and another where the number of sessions
attended defines the continuous exposure (X).

The baseline covariates included in the original primary analysis are treated, in our analysis, as
potential confounders of the three relationships of interest (treatment–mediator, treatment–outcome
and mediator–outcome) and thus make up the confounder vector, Z, (which also contains an intercept
term). These variables are: site of recruitment, employment status, age, gender, Hospital Anxiety and
Depression Scale [HADS], Health Education Impact Questionnaire for social integration subscale, and
pain-related disability at baseline. We note that these variables may be insufficient to completely adjust
for confounding and it is possible that residual unobserved confounding remains. This is an important
caveat for the causal interpretation of the mediated effects, however, we proceed under the assumption
that residual confounding is negligible.

Several patients (n = 10) were excluded from our analysis as they were missing data on several baseline
covariates. Of the remaining patients, some (n = 51) were missing data on the mediator or outcome
variables. It was therefore decided to analyse complete cases (n = 323), weighting each observation by
inverse probability weights derived from a logistic regression model for the missingness probability given
Z. This method is valid assuming missing-at-random given Z. Reported standard errors do not account
for the uncertainty in estimating weights, rendering them conservative (Rotnitzky et al., 2010).

For the binary exposure analysis, a logistic model was assumed for A given Z, whilst linear models for
the mediator and outcome were assumed (given (A,Z) and (A,M,Z) respectively). i.e.

E(A|Z) = expit(γT

xZ)

E(M |A,Z) = β1A+ γT

mZ

E(Y |M,A,Z) = β2M + β3A+ γT

yZ

The continuous exposure was analysed in a similar fashion, however, using a linear model for X given Z,
that is

E(X|Z) = γT

xZ

E(M |X,Z) = β1X + γT

mZ

E(Y |M,X,Z) = β2M + β3X + γT

yZ

Table 3.1 gives mediated effect estimates from the dichotomized exposure analysis by G-estimation,
TTS methods (assuming a normally distributed mediator) and OLS. Table 3.2 gives mediated effect
estimates from the continuous exposure analysis by G-estimation and OLS. Table 3.3 shows p-values for
the no-mediation and no-indirect effect hypotheses from both analyses, obtained using our Robust Sobel
and score tests, along with the classical Sobel and LR methods and (for the dichotomized exposure) the
TTS methods.

Table 3.1: Estimated mediation effects for the COPERS trial, treating the exposure as binary and using
G-estimation, TTS methods and Ordinary Least Squares

Parameter G-estimate(95% CI) TTS(95% CI) OLS(95% CI)
NDE 5.31(-4.00,14.6) -2.96(-15.9,9.97) 4.83(-2.98,12.6)
NIDE -4.60(-7.35,-1.85) -3.52(-7.47,0.43) -4.32(-7.05,-1.60)

β1 6.06(3.42,8.70) - 5.70(2.93,8.47)
β2 -0.76(-1.07,-0.45) - -0.76(-1.06,-0.45)

This mediation analysis sheds some light on the null treatment effect, with significant evidence of an
indirect effect. This evidence suggests that session attendance is associated with an increased perception to
cope with disability, which in turn, is associated decreased pain-related disability. Interpreting these results
causally should be done with caution, due to the possibility of unobserved confounding. Nevertheless,
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Table 3.2: Estimated mediation effects for the COPERS trial, treating the exposure as continuous and
using G-estimation and Ordinary Least Squares

Parameter G-estimate(95% CI) OLS(95% CI)
NDE 0.17(-0.23,0.57) 0.17(-0.18,0.53)
NIDE -0.22(-0.35,-0.09) -0.22(-0.35,-0.09)

β1 0.29(0.17,0.41) 0.29(0.17,0.42)
β2 -0.75(-1.06,-0.44) -0.75(-1.06,-0.45)

Table 3.3: Hypothesis testing results on the COPERS dataset for the null hypotheses Hα (H0 is the
no-mediation hypothesis and H1 is the no-direct-effect hypothesis) for the analyses where the exposure is
treated as binary and continuous

Null α value Test P-Value (binary) P-Value (continuous)
0 Robust Sobel 1.18× 10−3 9.23× 10−4

0 Robust score (CUE) 1.26× 10−5 1.28× 10−5

0 Sobel 1.89× 10−3 8.50× 10−4

0 LR 5.40× 10−5 3.43× 10−6

0 TTS 8.07× 10−2 -
1 Robust Wald 0.264 0.396
1 Robust score (CUE) 0.256 0.397
1 Classical Wald 0.225 0.341
1 TTS 0.654 -

given the possibility of strong mediated effects, researchers interested in cognitive behavioural therapy for
chronic pain may want to design add-on interventions that also change self-coping perceptions.

3.8 Extensions

Suppose that an investigator is not confident of the partially linear model in (3.2), but instead would like
to conduct analysis under the semi-parametric model linear model with exposure-mediator interaction,

E(Y |M,X,Z) = β2M + θXM + g(X,Z) (3.24)

where θ is a model parameter, such that when θ = 0 there is no exposure-mediator interaction and the
model in (3.2) is recovered. Under this model, and assuming consistency and sequential ignorability, the
potential outcome mean η(x, x∗, z) may be written as,

η(x, x∗, z) = (β2 + θx)f(x∗, z) + g(x, z)

As in Section 3.2, one obtains the following two expressions for the conditional NIDE and NDE when
(3.1) holds and when g(x, z) = β3x+ g(z) respectively,

η(x0, x1, z)− η(x0, x0, z) = β1(β2 + θx0)(x1 − x0)
η(x1, x1, z)− η(x0, x1, z) = (β3 + θf(x1, z))(x1 − x0)

The fact that f(x, z) appears in the expression for the NDE gives some indication as to why robust
estimation of mediated effects is generally difficult. The solution proposed by Tchetgen Tchetgen and
Shpitser (2014) in this setting would be to correctly specify a model for the NDE, η(1, 1, z)− η(0, 1, z),
implicitly suggesting a correct working model for the conditional expectation of the mediator. This
assumption gives the impression of allowing for consistent estimation of the conditional NDE when only
the outcome model is correct. The partially linear proposal in the current work is, instead, agnostic to
the mediator model, but assumes that θ = 0, obtaining valid estimation when the conditional expectation
of the outcome is correctly specified (and partially linear in the sense of (3.3)).
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For the NIDE, an estimate may be obtained by estimating (β1, β2, θ), since (x1, x0) are known. One
might use G-estimation methods to estimate these three parameters and hence the NIDE itself. This
might be achieved by estimation of (β1, β2, β3, θ) in the intersection model using the set of G-estimation
moment conditions

U1(β, γ) = {X − h(Z; γx)}{M − β1X − f(Z; γm)}
U2(β, γ) = {M − β1X − f(Z; γm)}{Y − β2M − θXM − β3X − g(Z; γy)}
U3(β, γ) = {X − h(Z; γx)}{Y − β2M − θXM − β3X − g(Z; γy)}
U4(β, γ) = X{M − β1X − f(Z; γm)}{Y − β2M − θXM − β3X − g(Z; γy)}

Hence, no additional working models are required. Using methods similar to those used to show Lemma
1, one can show that these moment conditions have zero expectation (for some β3) when (3.1) and (3.24)
hold and either f(z) is correctly specified, or g(x, z) = β3x+ g(z) and both g(z) and h(z) are correctly
specified. Results concerning estimation and testing could also be extended to account for the fourth
moment conditions.

In a similar way, additional estimating equations could also be included to estimate parameters
associated with counfounder interactions, such as interactions of the form ZjX in the mediator or outcome
model, or of the form ZjM in the outcome model, where j indexes the set of counfounders, Z. Alternatively,
when the confounder variable, Zj , is categorical then the partial linearity assumptions, (3.1), (3.2) and
(3.3), may be satisfied within certain population subgroups, i.e. the target parameters (β1, β2, β3) differ
between subgroups. In this setting, one simple strategy is to estimate mediation effects for each subgroup
and take a weighted average of these effects. In practice this could be achieved by passing indicator
weights to the plmed fitting functions.

Finally, we consider how the proposed G-estimation NIDE estimator (i.e. using moment conditions
moment (3.6)–(3.8)) performs when the true data generating distribution follows (3.1) and (3.24). Lemma
1 considers the special case where θ = 0. In general, however, provided f(z) is correctly specified then,

β∗
1β

∗
2 = β1(β2 + θx̄)

x̄ =
E[Xvar(M |X,Z)]
E[var(M |X,Z)]

See Appendix B for details. For continuous exposures β∗
1β

∗
2 may thus be interpreted as the NIDE per unit

change in X at x0 = x̄. For binary exposures, however, the potential outcome when X = x̄ is not well
defined. For an analogous interpretation, one might consider a conditional indirect effect defined by

Ψ(x) = η(x, 1, z)− η(x, 0, z)
= β1(β2 + θx)

where x is some level of the exposure. For binary exposures, the G-estimator returns a weighted average
of Ψ(x), which retains the interpretation of an indirect effect

β∗
1β

∗
2 =

E[Ψ(X)var(M |X,Z)]
E[var(M |X,Z)]

By comparison, in this setting where the outcome model is misspecified, the TTS methods return Ψ(1),
provided that the exposure is binary and that h(z) and the conditional density of M given X and Z are
both correctly specified.

3.9 Discussion

The main contribution of the current paper is a practical and robust method for carrying out inference
of mediated effects in settings where partial linearity of mediator and outcome conditional expectations
can be assumed and the vector of variables needed to control for confounding is low dimensional. We
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recommend estimation of the NIDE and NDE by G-estimation, in settings where partial linearity may be
assumed, but a mediator density function may be difficult to estimate, as required by the methods of
Tchetgen Tchetgen and Shpitser (2012). This is for instance the case when analysing continuous mediators,
as often encountered in applications in psychology. Compared with OLS, the G-estimators are consistent
for the NIDE and NDE, under misspecification of mediator and outcome models and outcome models
respectively. The variance of these estimators may be estimated by bootstrap or using asymptotic results
with both giving similar results. We also make available the methods in the R package plmed, which
calculates the NDE and NIDE by G-estimation with variances estimated using asymptotic results.

In terms of hypothesis testing we recommend the robust CUE score test over Two-step robust score
methods, due to its faster convergence of the Type I error rate to the nominal size in small samples, and
improved power to detect small NIDEs over Wald based testing methods, as demonstrated in simulation
studies.

In future work one can hope to extend the proposed G-estimation results to the high-dimentional
setting, where the number of parameters indexing nuisance models does not need to be small (compared
with the number of observations). In particular, by exploiting the orthogonality of the G-estimator when
the exposure and outcome models are both correct, one can show that valid inference of the average
treatment effect is obtained even when cross-validated data-adaptive methods (e.g. lasso or machine
learning) are used to estimate the nuisance models (such as f(z), g(z), and h(z) in the current paper),
with the assumption that such methods will converge to the true model at a sufficiently fast rate and an
appropriate sample splitting scheme is applied (Chernozhukov et al., 2017).

Other work by Dukes and Vansteelandt (2019) obtains valid inference of the average treatment effect
using G-estimators when nuisance models are fitted using the bias-reduction strategy with a lasso l1
penalty on the nuisance parameter. This work does not require sample splitting nor does it require
that both the exposure and outcome models converge to the truth. Indeed their methods are valid even
when the number of confounding variables is allowed to grow with sample size, provided certain sparsity
assumptions on the nuisance parameter are satisfied. These methods may be applied directly to the
methods in the current paper, with Theorem 2, holding even when the nuisance estimator is orthogonal
and penalized (provided that it continues to be orthogonal as for instance in Dukes and Vansteelandt
(2019)).
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Chapter 4

Influence curve based inference

4.1 Introduction

The standard statistical approach of building a model, extracting one or more coefficients and reporting
their estimates and associated measures of uncertainty (e.g. confidence intervals) is increasingly being
criticised (see e.g. van der Laan (2015)). This standard practice encourages the use of overly simplistic,
but misspecified models in order to maintain a simple interpretation of the end result (Breiman, 2001b). It
moreover makes the meaning and definition of the reported coefficients dependent upon the selected models.
Inference for such ‘data-dependent’ parameters is not straightforward; ignoring their data-dependent
nature, as is commonly done, induces bias, excess variability that is not acknowledged by default standard
error estimators and, as a result, overly simplistic inferences.

Building on important results on nonparametric estimation of statistical functionals (Pfanzagl and
Wefelmeyer, 1985; Pfanzagl, 1990; Bickel et al., 1993), van der Laan and Rubin (2006), van der Laan
and Rose (2011), Robins et al. (2008) and more recently Chernozhukov et al. (2018), showed how the
aforementioned concerns can be accommodated by centering a statistical analysis around a predefined
nonparametric estimand. This is a model-free functional of the observed data distribution which charac-
terises the quantity one wishes to infer from data (Berk et al., 2021). It follows from the existing literature
that root-n estimators with well understood asymptotic behaviour can often be derived (under feasible
conditions) by making use of the estimand’s so-called efficient influence function or canonical gradient
under the nonparametric model. The resulting strategies are known as ‘targeted learning’ or ’debiased’
machine learning, because they effectively enable the use of data-adaptive estimation strategies to model
the data-generating distribution, such as variable selection procedures and machine learning algorithms,
whilst permitting valid inference of the estimand of interest.

These developments are quite revolutionary in that they are changing the way in which - we believe -
data will be analysed in the future. In particular, they shift the focus from model building and validation
to choosing estimands that are well connected to scientific questions of interest (Petersen and van der
Laan, 2014). This shift enables the analysis to be specified before data is obtained, rather than deciding
which statistical quantities to report once a model has been validated, as is usually the case e.g. following
model/variable selection. Furthermore, model based analyses usually assume the final model was known a
priori, whereas estimand inference based on efficient influence functions tend to be ‘honest’ in the sense of
expressing also the uncertainty around selecting the data-generating model, see e.g. Robins and van der
Vaart (2006) for a precise definition of confidence set ‘honesty’.

The derivation of the efficient influence function is often regarded as somewhat of a ‘dark art’. One
reason is that it is not given much attention in textbooks on the topic and neither is it given much focus
in statistics education. Textbooks that refer to such derivations often rely on a fluency in concepts from
functional analysis (e.g. Hilbert Spaces). A further reason is that the majority of research articles that
derive the efficient influence function of a statistical estimand, rely on manipulating a derivative expression
into a canonical form, as the integral of a product of an efficient influence function and a score function.
These derivations are often complicated, with some steps appearing as if from nowhere to achieve the
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desired form.
In this tutorial paper, we instead advocate an equivalent approach based on Gateaux derivatives,

formalised by Ichimura and Newey (2022), which is much simpler in our opinion. We will explain this
approach and show how to make use of it, while also providing intuitive insight into what an efficient
influence function is. We will moreover explain how root-n converging statistical/machine-learning-based
estimators can be constructed, using the efficient influence function, and what conditions are needed for
these to work well. This tutorial obeys the principles of van der Laan’s ‘roadmap’ (van der Laan and
Rose, 2011). It is aimed to be broadly accessible to students and researchers who would like to derive
efficient influence functions for all sorts of nonparametric estimands, using simple differentiation methods,
such as the chain rule. We use diverse examples first to show the steps in calculating the efficient influence
function (Section 4.3.3), and also to convey the very broad applicability of the theory (Section 4.5).

4.2 Step 1: Defining the estimand of interest

The starting point of most statistical analyses is a (semi)parametric model, which is then often interpreted
as representing how nature has generated the data. For certain applications, such as in the physical
sciences, this model can be the result of a deep theoretical understanding of the data-generating mechanism.
However, oftentimes, especially in the spheres of medicine, psychology and economics, the model is chosen
for its simplicity and convenience. Many ubiquitous models, such as the generalized linear and Cox
proportional hazards models, are commonly used without reference to a mechanistic understanding, rather
because the parameters indexing those models provide useful summaries of associations that are of interest
to the analysis. This is problematic for various reasons. First, nature is rarely as simple as we would like it
to be. This leaves many data analysts torn between reporting a simple model, which is likely misspecified,
versus reporting a complex model, which is difficult to interpret (Breiman, 2001b). It demands choosing
between an analysis result that is likely biased (as a result of model misspecification) versus one that is
likely useless (in view of its complexity). Second, standard statistical theory for (semi)parametric models
was developed for settings where the model is a priori justified by some biological, economic, ... theory (so
that one can assume it to be correct) and where moreover the data analyst commits to using that model.
The truth is that a given model is rarely known to be correct, and that data analysts therefore do not
commit to a single model, by adopting model selection strategies. This invalidates standard statistical
theory. Third, even the common attempt to infer the model from data (for instance, by relying on variable
selection strategies) is overly ambitious as many competing models often fit the data nearly equally well
(Breiman, 2001b). While this is generally well realised, it is also then systematically ‘forgotten’ in how we
report and interpret statistical analysis results.

To accommodate these concerns, we will instead aim to infer so-called nonparametric estimands. These
are functionals of the true observed data distribution P , which are well defined without reference to a
(semi)parametric model, and target the scientific question of interest. With interest in the mean outcome
Y , such estimand is unambiguously defined as

Ψ1(P ) = EP (Y ),

where the subscript P explicates that the expectation EP is calculated w.r.t. the true distribution P of Y .
We will equivalently write this as

Ψ1(P ) = P (Y ) =

∫
ydP (y).

where dP (y) denotes integration w.r.t. to the probability measure P for the random variable Y . When Y
is continuous, dP (y) in this expression can be replaced with f(y)dy to recover the Riemann integral over
the probability density function of Y . For many of the examples in this paper we work with Riemann
integrals, which are likely to be familiar to most readers.

As a second example, suppose we are interested in the effect of a dichotomous exposure X (coded 0 or
1) on an outcome Y in the presence of data on a possibly high-dimensional vector of covariates Z that is
sufficient to adjust for confounding. Then a relevant (statistical) estimand could be defined as

Ψ2(P ) = EP {EP (Y |X = 1, Z)− EP (Y |X = 0, Z)} ,
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where, with a slight abuse of notation, the subscript P now explicates that the expectation EP is calculated
w.r.t. the true distribution P of (Z,X, Y ). This is known in the causal inference literature as the average
causal effect or average treatment effect.

Alternatively, regardless of whether the exposure is dichotomous or not, its effect on Y can also be
expressed using the estimand

Ψ3(P ) =
EP [{X − EP (X|Z)}Y ]

EP

[
{X − EP (X|Z)}2

] ,
which equals the expected conditional covariance between X and Y , given Z, divided by the expected
conditional variance of X, given Z. Where we are happy to assume a partially linear model for EP (Y |X,Z),
such as

EP (Y |X,Z) = βX + ω(Z),

for some function ω(.), Ψ3(P ) reduces to β, but remains well defined outside this model (Robins et al.,
2008; Vansteelandt and Dukes, 2022).

4.3 Step 2: Calculate the estimand’s efficient influence function

4.3.1 Preliminaries

Throughout, we will assume that we have access to i.i.d. observed data Oi ≡ (Zi, Xi, Yi) for subjects
i = 1, ..., n. An estimator of the above estimands is then readily obtained by substituting P by an
estimator P̂n, where the sub-index n denotes the sample size. For instance, choosing P̂n to equal the
empirical distribution, Pn, of the observations Y1, ..., Yn gives rise to the empirical ‘plug-in’ estimator

Ψ1(P̂n) = P̂n(Y ) =
1

n

n∑
i=1

Yi.

For Ψ2(P ), let P̂n be any distribution of (Z,X, Y ) such that the marginal distribution of Z is given
by its empirical distribution, and that the conditional distribution of Y given X = x for x = 0, 1 and
Z = Zi for i = 1, ..., n has conditional mean equal to a given estimator Ê(Y |X = x, Z = Zi), such as the
prediction from some machine learning algorithm. Then

Ψ2(P̂n) =
1

n

n∑
i=1

Ê(Y |X = 1, Z = Zi)− Ê(Y |X = 0, Z = Zi).

Finally, for Ψ3(P ), let P̂n be any distribution of (Z,X, Y ) such that the conditional distribution of X
given Z = Zi for i = 1, ..., n has conditional mean equal to a given estimator Ê(X|Z = Zi), and that the

marginal distribution of X − Ê(X|Z) and
{
X − Ê(X|Z)

}
Y is given by its empirical distribution. Then

Ψ3(P̂n) =

∑n
i=1

{
Xi − Ê(X|Z = Zi)

}
Yi∑n

i=1

{
Xi − Ê(X|Z = Zi)

}2 .

The key question now is whether Ψ(P̂n) is a good proxy for Ψ(P ). To understand this, we will scale their
difference by

√
n. When this scaled difference converges in distribution (to a non-degenerate law), then

we can roughly say that Ψ(P̂n) differs from Ψ(P ) up to a term of the order 1 over root-n. We then say
that Ψ(P̂n) converges to Ψ(P ) at parametric rate, or root-n rate, which is usually the best that we can
hope to achieve.
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For the sample mean Ψ1, we have that P̂n = Pn so that this scaled difference equals

√
n
{
Ψ1(P̂n)−Ψ1(P )

}
=
√
n(P̂n − P )Y

=
√
nP̂n(Y −Ψ1) =

√
nPn(Y −Ψ1)

=
1√
n

n∑
i=1

(Yi − µ)
d→ N

(
0, σ2

)
,

by the classical central limit theorem, where µ and σ2 are the mean and variance of Y , respectively.

We are lucky here that the difference
√
n
{
Ψ1(P̂n)−Ψ1(P )

}
can be written in terms of the operator

√
n(Pn − P ) applied to some Y , but this is not generally the case, for the following reasons. First, the

difference
√
n
{
Ψ(P̂n)−Ψ(P )

}
will in general depend on how much P̂n differs from P . This was easy in

the above example, where P̂n refers to the empirical distribution Pn of Y , whose behaviour is easy to
understand. It is much harder in more general cases where P̂n may involve data-adaptive estimators, such
as predictions Ê(Y |X = x, Z = Zi) or Ê(X|Z = Zi) obtained via machine learning or via parametric
model building procedures. For such predictions, we may at best have access to some overall, marginal
measure of prediction error, but will often have a poor understanding of the bias and imprecision in these

predictions at specific covariate levels Zi. Second, the difference
√
n
{
Ψ(P̂n)−Ψ(P )

}
will in general also

depend on how sensitive the estimand Ψ(.) is to changes in the data-generating distribution. This is also
generally poorly understood given that P indexing Ψ(P ) is an infinite-dimensional parameter (apart from
exceptional cases where the observed data is discrete).

The situation thus looks a bit hopeless at this stage, and indeed, we will not succeed to understand

the difference
√
n
{
Ψ(P̂n)−Ψ(P )

}
for arbitrary estimators P̂n and arbitrary estimands Ψ(P ). However,

we will see that progress can be made for specific estimators P̂n, and for estimands Ψ(P ) that are
sufficiently smooth in the data-generating law P . Before proceeding, we will first formalise the right level
of smoothness that is needed.

4.3.2 Parametric submodels

To understand how sensitive Ψ(.) is to changes in the data-generating distribution, we will first take a
step back. Rather than examining how Ψ(.) changes as we slightly perturb P towards P̂n, we will study

the effect of such perturbation in the direction of a fixed, deterministic distribution, P̃ , which, for the
purpose of this discussion, we shall assume is absolutely continuous with respect to P (i.e. the support of

P̃ is contained in the support of P ). There are many ways in which we may change Ψ(.) to P̃ . Here, we
will focus on perturbations in the direction parameterised via the one-dimensional mixture model

Pt = tP̃ + (1− t)P, (4.1)

indexed by t ∈ [0, 1], which is called a parametric submodel. This is not a parametric model in the usual
sense (given that the true data-generating law P is unknown), but is used here as a convenient tool to

formalise small perturbations away from P in the direction of P̃ . In particular, note that P0 = P and
P1 = P̃ .

The sensitivity of Ψ(.) to changes in the data-generating distribution in the direction of P̃ can now be
formalised in terms of the pathwise or directional derivative,

lim
t↓0

(
Ψ(Pt)−Ψ(P )

t

)
=
dΨ(Pt)

dt

∣∣∣
t=0

,

evaluated at t = 0, and in the direction of P̃ . When this limit exists (i.e., is finite), it is called a Gâteaux
derivative. This generalises the concept of a directional derivative to functional analysis, describing how
to take the derivative of a function with respect to a function. Informally, when this derivative ‘exists’ for
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all regular parametric submodels, then we will say that the estimand is pathwise differentiable. Here, a
‘regular’ parametric submodel is such that its score P̃ (O)/P (O)− 1 has finite variance, a mild restriction
that will be needed to ensure that the derivative dPt/dt|t=0 is (or more precisely, inner products with this
score are) well-defined. In the next paragraph, we will formalise this definition of pathwise differentiability.
This formalisation will be practically useful, as it will provide insight what the so-called efficient influence
function (also referred to as canonical gradient, or influence curve) is, how it can be calculated, and why
it is useful.

As in Fisher and Kennedy (2020), we develop some intuition by first considering the special case of
discrete data O with support {o1, ..., ok}. Then

dΨ(Pt)

dt

∣∣∣
t=0

=

k∑
j=1

dΨ(Pt)

dPt(oj)

∣∣∣
t=0

dPt(oj)

dt

∣∣∣
t=0

.

Here, dΨ(Pt)/dPt(oj) expresses the estimand’s sensitivity to small changes in the observed data law. The
second component expresses how the observed data law changes along the considered path. It is easily
verified to equal

dPt(oj)

dt

∣∣∣
t=0

= P̃ (oj)− P (oj).

The resulting identity

dΨ(Pt)

dt

∣∣∣
t=0

=

k∑
j=1

dΨ(Pt)

dPt(oj)

∣∣∣
t=0

{
P̃ (oj)− P (oj)

}
, (4.2)

is limiting (by being focussed on discrete data) and ignores that the probabilities Pt(o1), ..., Pt(ok) are
not variation-independent (i.e., they sum to 1 and thus cannot be changed in arbitrary ways) (Fisher
and Kennedy, 2020). We therefore appeal to Riesz’s representation theorem, according to which this
derivative, when it exists, can be obtained via integration of a unique ‘representer’ ϕ(O,P ) with finite
variance under P , w.r.t. some measure:

dΨ(Pt)

dt

∣∣∣
t=0

=

∫
ϕ(o, P )

{
dP̃ (o)− dP (o)

}
= (P̃ − P ){ϕ(O,P )}. (4.3)

Contrasting identity (4.3) with (4.2), we learn that the representer ϕ(O,P ) is a functional derivative
which characterises how sensitive the estimand Ψ(P ) is to changes in the data-generating distribution P .
It is referred to as the estimand’s canonical gradient, efficient influence curve or efficient influence function
(under the nonparametric model). The existence of a representer with finite variance such that (4.3) holds,
essentially expresses that the estimand is sufficiently smooth as a functional of the data-generating law
(so that the notion of a ‘derivative’ is well-defined); here, the finite-variance condition expresses that
the ‘derivative’ of the estimand w.r.t. the data-generating distribution is finite. Since identity (4.3) is
insensitive to constant, additive shifts in ϕ(O,P ), we will henceforth limit ourselves to mean zero functions
(under P ) without loss of generality.

We can now more formally define the estimand to be pathwise differentiable when there exists a
mean-zero, finite-variance function ϕ(O,P ) which satisfies (4.3) for all (regular) parametric submodels.
Since the efficient influence function has mean zero, P{ϕ(O,P )} = 0, the derivative of Ψ(Pt) w.r.t. t can

equivalently be represented as the average of the efficient influence function over the distribution P̃ :

dΨ(Pt)

dt

∣∣∣
t=0

= P̃ {ϕ(O,P )} = EP̃ {ϕ(O,P )} . (4.4)

This result forms the basis of how we will calculate the efficient influence function of an estimand.

4.3.3 How to calculate the efficient influence function of an estimand

There are several ways to derive efficient influence functions. We here advocate the “point mass contami-
nation” strategy that we find simplest. In particular, we will perturb the estimand it in the direction



Chapter 4. Influence curve based inference 44

P̃ of a point mass at single observation õ. Identity (4.4) then gives the efficient influence function at
observation o directly as

ϕ(o, P ) =
dΨ(Pt)

dt

∣∣∣
t=0

,

where the right-hand side is a so-called Gâteaux derivative. This has the same properties as ordinary
derivatives, familiar from calculus, such as the chain rule. This will facilitate calculations. The following
examples illustrate this.

Throughout, for convenience, we will implicitly assume that we work with continuous variables, but
the results continue to hold for discrete variables, or a mix of discrete and continuous variables, upon
swapping sums with integrals, indicators with Dirac delta functions, and probability mass functions with
probability density functions, where needed. For our purposes, 1õ(o) denotes the Dirac delta function
w.r.t. õ; i.e., the density of an idealized point mass at õ, which equals zero everywhere except at õ and
which integrates to 1.

Example 1 (population mean). As a first, simple example, consider the mean of Y :

Ψ(P ) = P (Y ) = EP (Y ) =

∫
yf(y)dy,

where f(y) denotes the density function of Y under P (which we assume to be absolutely continuous
w.r.t. the Lebesgue measure, though results hold more generally). Perturbing in the direction of a single
observation ỹ,

ft(y) = t1ỹ(y) + (1− t)f(y),

one obtains,

Ψ(Pt) = t

∫
y1ỹ(y)dy + (1− t)EP (Y ) = tỹ + (1− t)Ψ(P ).

By the chain rule, taking a derivative with respect to t at t = 0, gives

dΨ(Pt)

dt

∣∣∣
t=0

= ỹ −Ψ(P ).

Because this has finite variance, we conclude that E(Y ) is pathwise differentiable with efficient influence
function Y −Ψ(P ). □

Example 2 (density at a point y). Consider next the density at a given value y, Ψ(P ) = f(y). Under
the parametric submodel of Example 1, we readily find that

Ψ(Pt) = t1ỹ(y) + (1− t)f(y).

By the chain rule, taking a derivative with respect to t at t = 0, gives

dΨ(Pt)

dt

∣∣∣
t=0

= 1ỹ(y)−Ψ(P ).

Because the Dirac delta function is unbounded when Y is absolutely continuous w.r.t. Lebesgue measure,
and therefore has infinite variance, we conclude that f(y) is not pathwise differentiable. This lack of
smoothness is the result of insufficient information in the data on the density f(y) at the single point y.
It generally implies that no root-n converging estimators can be constructed. □
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Example 3 (average density). Consider next the average density of Y :

Ψ(P ) = P {f(Y )} = EP {f(Y )} =
∫
f2(y)dy.

Under the parametric submodel of Example 1,

Ψ(Pt) =

∫
f2t (y)dy.

By the chain rule, taking a derivative with respect to t at t = 0, gives

dΨ(Pt)

dt

∣∣∣
t=0

=

∫
2f(y)

d

dt
ft(y)

∣∣∣
t=0

dy

= 2

∫
f(y) {1ỹ(y)− f(y)} dy

= 2 {f(ỹ)−Ψ(P )} .

Here, we use that the Dirac delta function 1y(Y ) has average

P1y(Y ) =

∫
1y(ỹ)f(ỹ)dỹ = f(y),

equal to the density at y under the law P . Since 2 {f(Y )−Ψ(P )} has finite variance, we conclude that
EP {f(Y )} is pathwise differentiable with efficient influence function 2 {f(Y )−Ψ(P )}. □

When perturbing the density f(o) of a vector of observations O in the direction of a point mass at õ,
we have the identity

dft(o)

dt

∣∣∣
t=0

= 1õ(o)− f(o),

which was also used in Example 2. This implies a simple formula for the efficient influence function at õ
of the estimand EP {g(O,P )} for some function g(O,P ) of O and the true distribution:

d

dt
EPt {g(O,Pt)}

∣∣∣
t=0

=
d

dt

{∫
g(o, Pt)ft(o)do

} ∣∣∣
t=0

=

{∫
d

dt
g(o, Pt)ft(o)do+

∫
g(o, Pt)

d

dt
ft(o)do

} ∣∣∣
t=0

= EP

{
d

dt
g(o, Pt)

} ∣∣∣
t=0

+ g(õ, P )− EP {g(O,P )} . (4.5)

We apply this general identity in the following example.

Example 4 (covariance). The covariance

Ψ(P ) = EP [{Y − EP (Y )} {X − EP (X)}] ,

can be written as EP {g(O,P )} for O ≡ (X,Y ) and g(o, P ) = {y − EP (Y )} {x− EP (X)}. Using (4.5),
we thus find that

dΨ(Pt)

dt

∣∣∣
t=0

= EP

[
d

dt
{Y − EPt(Y )} {X − EPt(X)}

∣∣∣
t=0

]
+ {ỹ − EP (Y )} {x̃− EP (X)} −Ψ(P ).

By the chain rule, we further have that

d

dt
{Y − EPt(Y )} {X − EPt(X)}

∣∣∣
t=0

= − d

dt
EPt(Y )

∣∣∣
t=0
{X − EP (X)} − d

dt
EPt(X)

∣∣∣
t=0
{Y − EP (Y )} .
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Further applying (4.5) to EPt(Y ) and EPt(X), we find that

d

dt
{Y − EPt(Y )} {X − EPt(X)}

∣∣∣
t=0

= −{ỹ − EP (Y )} {X − EP (X)} − {x̃− EP (X)} {Y − EP (Y )} ,

which has mean zero. Since {Y − EP (Y )} {X − EP (X)} has finite variance, we conclude that the
covariance Ψ(P ) is pathwise differentiable with efficient influence function

{Y − EP (Y )} {X − EP (X)} −Ψ(P ).

□

Example 5 (potential outcome mean). Let Y x denote the potential outcome under exposure level x,
which expresses what value the outcome of a given individual would have taken had his/her exposure
been set to x by some intervention. Under the usual identifying assumptions, (positivity, consistency, non
interference and conditional exchangeability given Z) (Hernán and Robins, 2006),

Ψ(P ) = EP {EP (Y |X = 1, Z)}

is a statistical estimand of the population mean of Y 1.
Perturbing P in the direction of a point mass at (z̃, x̃, ỹ), we find that

Ψ(Pt) =

∫
yft(y|1, z)ft(z)dydz

=

∫
y
ft(y, 1, z)ft(z)

ft(1, z)
dydz,

where ft(y|x, z) is the conditional density function of Y , given X = x, Z = z, under the parametric
submodel, and ft(y, x, z), ft(x, z), and ft(z) are the joint density functions of (Y,X,Z), (X,Z), and Z,
respectively under the parametric submodel. By the chain rule, we thus have that

dΨ(Pt)

dt

∣∣∣
t=0

=

∫
y

{
f(z)

f(1, z)

d

dt
ft(y, 1, z)

∣∣∣
t=0
− f(y, 1, z)f(z)

f(1, z)2
d

dt
ft(1, z)

∣∣∣
t=0

+
f(y, 1, z)

f(1, z)

d

dt
ft(z)

∣∣∣
t=0

}
dydz

=

∫
y
f(y, 1, z)f(z)

f(1, z)

(
1ỹ,x̃,z̃(y, 1, z)

f(y, 1, z)
− 1x̃,z̃(1, z)

f(1, z)
+
1z̃(z)

f(z)
− 1

)
dydz.

Evaluating the integral gives the canonical gradient of Ψ(P ) at (z̃, x̃, ỹ):

dΨ(Pt)

dt

∣∣∣
t=0

=
1x̃(1)

π(z̃, P )
{ỹ −m1(z̃, P )}+m1(z̃, P )−Ψ(P ),

where m1(z, P ) = EP (Y |X = 1, Z = z) and π(z, P ) = f(1|z) = EP (X|Z = z) is the propensity score. We
conclude that Ψ(P ) is pathwise differentiable with the above efficient influence function.

From this, it readily follows that Ψ2(P ) (the average treatment effect) is pathwise differentiable with
the efficient influence function given by

φ1(O,P )− φ0(O,P )−Ψ2(P )

where φx(O,P ) is the ‘uncentered’ efficient influence curve

φx(O,P ) =
1X(x)

f(x|Z)
{Y −m(x, Z)}+m(x, Z). (4.6)

□
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Example 6 (conditional outcome mean). Before moving on to more elaborate examples, we finally
consider

Ψ(P ) = EP (Y |X = x),

for a given value x, where X may be (absolutely) continuous (w.r.t. Lebesgue measure). Perturbing P in
the direction of a point mass at (x̃, ỹ), we find that

Ψ(Pt) =

∫
y
ft(y, x)

ft(x)
dy,

where ft(y, x) and ft(x) are the joint density functions of (Y,X) and X, respectively under the parametric
submodel. By the chain rule, we thus have that the canonical gradient is

ϕ(õ, P ) =
dΨ(Pt)

dt

∣∣∣
t=0

=

∫
y

{
1

f(x)

d

dt
ft(y, x)

∣∣∣
t=0
− f(y, x)

f(x)2
d

dt
ft(x)

∣∣∣
t=0

}
dy

=

∫ [
y

f(x)
{1ỹ,x̃(y, x)− f(y, x)} −

yf(y, x)

f(x)2
{1x̃(x)− f(x)}

]
dy

=
1x̃(x)

f(x)
{ỹ − EP (Y |X = x)} . (4.7)

An issue, however, emerges when one considers the variance of the influence function.

var {ϕ(O,P )} =
∫ (

1x̃(x)

f(x)

)2

{ỹ − EP (Y |X = x)}2 f(ỹ|x̃)f(x̃)dỹdx̃

=
1x(x)

f(x)

∫
{ỹ − EP (Y |X = x)}2 f(ỹ|x)dỹ

=
1x(x)

f(x)
var(Y |X = x)

Since the Dirac delta function 1x(x) takes an infinitely large value when X is continuous (i.e. when
its probability distribution is absolutely continuous w.r.t. Lebesgue measure), we conclude that the
conditional mean is not pathwise differentiable in that case.

When X is discrete (as in Example 5), however, then we have that the indicator function 1x(x) = 1, so
that the variance of the efficient influence function is finite (so long as var(Y |X = x) <∞ and f(x) > 0).
□

The approach that we have adopted in the above examples follows the calculation in Hampel (1974).
A second, perhaps more common approach, instead uses the following, canonical form

dΨ(Pt)

dt

∣∣∣
t=0

=

∫
ϕ(o, P )

{
dP̃ (o)− dP (o)

}
(4.8)

=

∫
ϕ(o, P )

(
dP̃ (o)

dP (o)
− 1

)
dP (o)

=

∫
ϕ(o, P )S(o)dP (o)

= EP {ϕ(O,P )S(O)} = P {ϕ(O,P )S(O)} . (4.9)

The efficient influence function is then calculated as the unique mean zero function ϕ(O,P ) whose inner
product (i.e., covariance) with the score S(O) under a parametric submodel Pt equals the pathwise
derivative dΨ(Pt)/dt|t=0, for all parametric submodels; see Levy (2019) for a tutorial. This can be quite
laborious, however, since one must manipulate score functions and integral expressions, and moreover
solve a functional equation like (4.9) (Ichimura and Newey, 2022).
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The latter approach nonetheless appears more commonly used because it lends itself easier to semipara-
metric modelling, where the scores S(O) can now be confined to the scores of those parametric submodels
that obey the semiparametric model restrictions. A further reason for the greater popularity of this
approach may be the apparent limitation of the approach advocated in this tutorial, that certain estimands
(e.g., example 3) cannot be evaluated at Pt because of the use of Dirac delta functions. Ichimura and
Newey (2022) note that this does not invalidate the approach, as it can be resolved by substituting the
Dirac delta function in Pt by a probability measure, indexed by a bandwidth h, that approaches a point
mass when the bandwidth converges to 0. This modification justifies the approach that we adopt, but for
simplicity it will be left implicit in the remainder of the work.

4.4 Step 3: Construct an estimator based on the estimand’s efficient
influence function

4.4.1 Plug-in bias and how to remove it

The previous results help us to develop insight into the scaled difference

√
n
{
Ψ(P̃ )−Ψ(P )

}
. (4.10)

In particular, the canonical gradient gave us a way to express the notion of a functional derivative of the
estimand w.r.t. directional changes in the data-generating law. This in turn forms the basis of a functional
analog to the Taylor expansion, the so-called von Mises expansion, which is essentially derived from the
Taylor series expansion of Ψ(Pt) about the point t = 1 in the one-dimensional parametric submodel.

Ψ(P ) = Ψ(P̃ ) +
dΨ(Pt)

dt

∣∣∣
t=1

(0− 1) +R(P, P̃ ),

where R(P, P̃ ) is a remainder term of the expansion. This expansion contains the pathwise derivative
evaluated at t = 1, which may be evaluated using an anologue of the Riesz-representation theorem result
in (4.4),

dΨ(Pt)

dt

∣∣∣
t=1

= −P
{
ϕ(O, P̃ )

}
= −EP

{
ϕ(O, P̃ )

}
, (4.11)

details of which are given in Appendix C. It follows that the scaled difference of interest, equation (4.10),
can be written as

√
n
{
Ψ(P̃ )−Ψ(P )

}
= −

√
nP
{
ϕ(O, P̃ )

}
−
√
nR(P, P̃ ) (4.12)

where we note that this identity is guaranteed to hold, so long as we impose no restrictions on the
remainder term, which we will consider later. Now letting P̃ equal P̂n, we thus see that

√
n
{
Ψ(P̂n)−Ψ(P )

}
= −
√
nP
{
ϕ(O, P̂n)

}
−
√
nR(P, P̂n)

≈ − 1√
n

n∑
i=1

ϕ(Oi, P̂n)−
√
nR(P, P̂n),

Here, the term

− 1√
n

n∑
i=1

ϕ(Oi, P̂n) (4.13)

does not converge to zero (indeed, it would not even converge to zero if P were used in lieu of P̂n) and may
sometimes even diverge. This tends not to cause asymptotic bias in Ψ(P̂n) (because the calculation of bias
requires further scaling by 1/

√
n and, moreover, ϕ(O,P ) has mean zero and Pn is assumed to converge to
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P ). However, it biases the scaled difference
√
n
{
Ψ(P̂n)−Ψ(P )

}
, thereby invalidating näıve confidence

intervals and tests. Understanding the behaviour of (4.13) is difficult as a result of the non-standard
behaviour of statistical/machine learning-based estimators affecting the large sample behaviour of P̂n,
which in turn propagates into the behaviour of Ψ(P̂n). Let us reconsider Example 5 (the potential outcome
mean), for instance, where

Ψ(P ) = EP {EP (Y |X = 1, Z)} .

A plug-in estimator is readily obtained as

Ψ(P̂n) =
1

n

n∑
i=1

m1(Zi, P̂n).

Here, m1(z, P̂n) denotes a data-adaptive estimator of m1(z, P ) = EP (Y |X = 1, Z = z), e.g. obtained
using parametric regression models with variable selection, or via machine learning algorithms. The
plug-in bias term (4.13) then equals1

− 1√
n

n∑
i=1

11(Xi)

π(Zi, P )

{
Yi −m1(Zi, P̂n)

}
+m1(Zi, P̂n)−Ψ(P̂n) = −

1√
n

n∑
i=1

11(Xi)

π(Zi, P )

{
Yi −m1(Zi, P̂n)

}
= − 1√

n

n∑
i=1

11(Xi)

π(Zi, P )
{Yi −m1(Zi, P )}+

1√
n

n∑
i=1

11(Xi)

π(Zi, P )

{
m1(Zi, P )−m1(Zi, P̂n)

}
,

where the second term will often follow a non-standard distribution. For instance, when m1(z, P̂n)
is obtained using parametric regression models with variable selection, it will often follow a mixture
distribution for each z as a result of variation in the selected model across repeated samples.

The extent to which the plug-in bias term (4.13) causes bias is thus generally poorly understood as
it inherits the behaviour of P̂n, which is complex when data-adaptive methods are used. Rather than
attempting to understand its asymptotic behaviour, a much simpler remedy is therefore to adjust the
plug-in estimator in such a way that the this bias is zero. One easy way to do this is by defining a new
estimator

Ψ(P̂n) +
1

n

n∑
i=1

ϕ(Oi, P̂n)

obtained by subtracting an estimate of the plug-in bias from the plug-in estimator. Then, the scaled
difference between this so-called one-step estimator and Ψ(P ) is governed by −

√
nR(P, P̂n), which will

generally be much smaller.
We will see later that there are other ways of modifying the plug-in estimator so that the resulting

estimator has zero plug-in bias.

4.4.2 The von Mises expansion

In the previous section, we have built some intuition into plug-in bias and how it can be removed. In
order to understand the behaviour of the scaled difference between the one-step estimator and Ψ(P ), a
more careful derivation is needed. In particular, because P is unknown, we substituted it by the empirical
distribution function Pn of the observed data, but did not express the error this is adding to the results.
Let us therefore take a step back to identity (4.12). By adding and subtracting

√
n(Pn − P ) {ϕ(O,P )}

and
√
nPn

{
ϕ(O, P̃ )

}
to the righthand side, we obtain

√
n
{
Ψ(P̃ )−Ψ(P )

}
=
√
n(Pn − P ) {ϕ(O,P )} −

√
nPn

{
ϕ(O, P̃ )

}
+
√
n(Pn − P )

{
ϕ(O, P̃ )− ϕ(O,P )

}
−
√
nR(P, P̃ ).

1Note that we have evaluated the plug-in bias term at the true propensity score because the considered plug-in estimator
does not rely on an estimated propensity score. One may alternatively evaluate the plug-in bias term at an estimated
propensity score, which will then only affect the remainder term.
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Setting P̃ to P̂n one can rewrite the plug-in bias in form of the so-called von Mises expansion:

√
n
{
Ψ(P̂n)−Ψ(P )

}
= −

√
nP
{
ϕ(O, P̂n)

}
−
√
nR(P, P̂n)

=
1√
n

n∑
i=1

ϕ(Oi, P )−
1√
n

n∑
i=1

ϕ(Oi, P̂n)

+
√
n(Pn − P )

{
ϕ(O, P̂n)− ϕ(O,P )

}
−
√
nR(P, P̂n). (4.14)

Here, the first term converges to a normal, mean zero variate by the central limit theorem and the
unbiasedness of the canonical gradient. The empirical process term (i.e., the third term in (4.14)) and the
remainder term

√
nR(P, P̂n) can often be shown to converge to zero under conditions that we will come

back to.
Since the asymptotic behaviour of P̂n, and therefore also of the second term, is often poorly understood,

popular approaches are designed to remove this drift term from the expansion. This can be done in
multiple possible ways.

One-step estimator. The first is to rewrite the above expansion as

√
n

{
Ψ(P̂n) +

1

n

n∑
i=1

ϕ(Oi, P̂n)−Ψ(P )

}
=

1√
n

n∑
i=1

ϕ(Oi, P )

+
√
n(Pn − P )

{
ϕ(O, P̂n)− ϕ(O,P )

}
−
√
nR(P, P̂n),

and thus to calculate the estimator of Ψ(P ) as the one-step estimator

Ψ(P̂n) +
1

n

n∑
i=1

ϕ(Oi, P̂n).

In Example 3, this delivers∫
f2(y, P̂n)dy +

2

n

n∑
i=1

{
f(yi, P̂n)−

∫
f2(y, P̂n)dy

}
=

{
2

n

n∑
i=1

f(yi, P̂n)

}
−
∫
f2(y, P̂n)dy.

where f(y, P̂n) is a density estimator. For Example 5 we consider two different cases. When the propensity
score π(Zi, P ) is known, for instance in randomized experiments, then one obtains the estimator,

Ψ(P̂n) +
1

n

n∑
i=1

11(Xi)

π(Zi, P )

{
Yi −m1(Zi, P̂n)

}
+m1(Zi, P̂n)−Ψ(P̂n),

When the propensity score is unknown, as is the case for observational data, it must also be estimated
(e.g. using a data-adaptive estimator π(Zi, P̂n)) and the one-step estimator recovers the augmented IPW
estimator,

1

n

n∑
i=1

11(Xi)

π(Zi, P̂n)

{
Yi −m1(Zi, P̂n)

}
+m1(Zi, P̂n),

This propensity score estimation has consequences for the remainder term; see below.

Estimating equation estimators. The second is to force the drift term to be zero by using it as an
estimating equation; that is, to calculate an estimator for Ψ(P ) as the solution to an estimating equation
given by this drift term:

0 =
1

n

n∑
i=1

ϕ(Oi, P̂n). (4.15)
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This is easy in the above examples, where the efficient influence function is linear in Ψ(P ). In Example 3,
solving the identity

0 =
2

n

n∑
i=1

{
f(yi, P̂n)−Ψ(P̂n)

}
delivers a different estimator than the one-step estimator, namely

Ψ(P̂n) =
1

n

n∑
i=1

f(yi, P̂n),

with the advantage that it is guaranteed to be non-negative. In Example 5, solving the identity

0 =
1

n

n∑
i=1

11(Xi)

π(Zi, P̂n)

{
Yi −m1(Zi, P̂n)

}
+m1(Zi, P̂n)−Ψ(P̂n)

for Ψ(P̂n) delivers the same estimator as the one-step estimator.

Targeted learning. The third works instead by tuning the initial estimator P̂n such that it forces (4.15)
to hold, which is the focus of targeted learning approaches (van der Laan and Rubin, 2006; van der Laan
and Rose, 2011). For instance, tuning the estimator P̂n in Example 5 to a retargeted estimator P̂ ∗

n that
satisfies

0 =
1

n

n∑
i=1

11(Xi)

π(Zi, P̂ ∗
n)

{
Yi −m1(Zi, P̂

∗
n)
}
,

ensures that the one-step estimator reduces to the simple plug-in estimator

1

n

n∑
i=1

m1(Zi, P̂
∗
n),

which then has standard asymptotic behaviour. This tuning can be achieved in many ways; for instance,
one may leave the propensity score model unchanged by defining π(Zi, P̂

∗
n) = π(Zi, P̂n) and tune the

outcome model by defining,

m1(Zi, P̂
∗
n) = m1(Zi, P̂n) + ϵ̂

1

π(Zi, P̂n)
,

where ϵ̂ is chosen to set the plug-in bias to zero, i.e., it is the solution to

0 =
1

n

n∑
i=1

11(Xi)

π(Zi, P̂ ∗
n)

{
Yi −m1(Zi, P̂n)− ϵ̂

1

π(Zi, P̂n)

}
.

Retargeting an initial density estimator in Example 3 is less straightforward because of the difficulty of
ensuring that the retargeted density continues to be a proper density.

Under sufficient conditions that ensure the empirical process and remainder terms to converge to
zero, it follows from the above expansion that all 3 above approaches deliver an estimator Ψ(P̂ ∗

n) whose
asymptotic distribution obeys

√
n
{
Ψ(P̂ ∗

n)−Ψ(P )
}

d→ N
(
0, P

{
ϕ(Y, P )2

})
. (4.16)

This is a powerful result, which means that the asymptotic efficiency bound for a nonparametric estimand
can be derived as the expected square of the efficient influence function. Heuristically, this bound is a
nonparametric analogue of the Cramer-Rao lower bound, and estimators of the type in (4.16) are said to
be asymptotically efficient, in the sense that they are asymptotically equivalent to the estimator obtained
by solving an estimating equation with known rather than estimated influence function:

0 =
1

n

n∑
i=1

ϕ(Oi, P ).
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It thus tells us that the influence function behaves like the score function in parametric estimation
(Wasserman, 2006). It motivates why the variance of Ψ(P̂n) can be estimated as 1 over n times the
sample variance of the efficient influence function (evaluated at P̂n), without needing to account for
the uncertainty in P̂n. Identity (4.16) also motivates why the definition of pathwise differentiability
includes the requirement of an efficient influence function with finite variance. Pathwise differentiability
of an estimand is therefore tantamount to the existence of (regular) root-n consistent estimators of that
estimand.

4.4.3 Controlling the empirical process term

The asymptotic behaviour of the empirical process term

√
n(Pn − P )

{
ϕ(O, P̂n)− ϕ(O,P )

}
is generally difficult to understand when data-adaptive statistical methods are used. However, it becomes
much simpler to understand when the estimator P̂n is trained on an independent dataset, as one can then
reason conditional on that estimator. Reasoning as such, a direct application of Chebyshev’s inequality
shows that the empirical process term converges to zero in probability when the conditional variance of
ϕ(O, P̂n)− ϕ(O,P ), i.e.,

P

[{
ϕ(O, P̂n)− ϕ(O,P )

}2
]

given P̂n, converges to zero in probability. The latter can often be shown to hold when the estimator
P̂n converges to P in probability (or even weaker conditions that certain functionals of P̂n converge
to the corresponding functionals of P in probability) and certain positivity conditions hold (see for
instance Chernozhukov et al. (2017); Vansteelandt and Dukes (2022) for detailed examples). The use of
an independent sample in this way is important for shrinking the empirical process term, but contrary to
what popular wisdom sometimes seems to suggest, does not eliminate the leading plug-in bias terms on
which we have focused.

Because one rarely has independent data available to train P̂n, Zheng and van der Laan (2011) and
Chernozhukov et al. (2018) recommend a cross-fitting procedure, whereby the data is split into K folds. For
each individual i from fold k = 1, ...,K, the efficient influence function for that individual is then evaluated
in an estimator P̂n trained on the data for all individuals, except those in the k-th fold. This usually
results in a better asymptotic approximation, as reflected by more accurate standard error estimators
obtained as 1 over root-n times the sample standard deviation of those influence functions. However, it
may induce some finite-sample bias in the estimator as a result of the data-adaptive estimator P̂n being
trained on a smaller sample of data.

4.4.4 Controlling the remainder term

To understand the remainder term
√
nR(P, P̂n), we return to the von Mises expansion (4.14), from which

it is seen to equal

√
nR(P, P̂n) = −

√
nP
{
ϕ(O, P̂n)

}
−
√
n
{
Ψ(P̂n)−Ψ(P )

}
.

In Example 5, this is

√
nR(P, P̂n) = −

√
nEP

[
11(X)

π(Z,P )

{
Y −m1(Z, P̂n)

}
+m1(Z, P̂n)−Ψ(P̂n)

]
−
√
n
{
Ψ(P̂n)−Ψ(P )

}
= −

√
nEP

[
11(X)

π(Z,P )

{
Y −m1(Z, P̂n)

}
+m1(Z, P̂n)−Ψ(P )

]
= −

√
nEP

[{
π(Z,P )

π(Z,P )
− 1

}{
m1(Z,P )−m1(Z, P̂n)

}]
= 0.
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Hence when the propensity score π(Z,P ) is known, the remainder term is zero. Other estimands are also
known to have a zero remainder, such as the average density (see Example 3).

When substituting π(Z, P̂n) for π(Z,P ), by the Cauchy-Schwarz inequality, the remainder can be
upper bounded by

√
nEP

{ π(Z,P )

π(Z, P̂n)
− 1

}2
1/2

EP

[{
m1(Z,P )−m1(Z, P̂n)

}2
]1/2

.

This converges to zero in probability when π(Z, P̂n) and m1(Z, P̂n) converge to π(Z,P ) and m1(Z,P ),
respectively, at faster than n to the quarter rate (and π(Z, P̂n) is bounded away from zero), which is a
typical requirement in the non/semiparametric literature. In this specific example, the remainder also
shrinks to zero under more general conditions; m1(Z, P̂n) can be allowed to converge at a slow rate, so long
as π(Z, P̂n) is fast converging. This additional flexibility is sometimes known as ‘rate double-robustness’,
and does not apply to remainder terms in general, although it does apply for many common estimands
in causal inference/missing data problems (Rotnitzky et al., 2021). To obtain fast rates of convergence
with flexible methods, we typically rely on strong smoothness/sparsity assumptions (e.g. when Z is high
dimensional, π(Z,P ) and/or m1(Z,P ) should depend on a small number of the covariates), in addition to
well-chosen tuning parameters for the learners.

We refer the reader to Fisher and Kennedy (2020) for a rigorous treatment of the remainder terms of
the von Mises expansion, which are usually analysed on a case-by-case basis (see for instance Chernozhukov
et al. (2017); Vansteelandt and Dukes (2022) for detailed examples).

4.5 Examples

In this section, we illustrate the calculation of the canonical gradient for the expected conditional covariance
and the average derivative effect, deriving the one-step estimators in both cases. Further examples are
provided in Appendix C, which also contains results that readers may find helpful for reference.

4.5.1 General results

For notational convenience we define an operator, ∂t, applied to an arbitrary function, g(t), as

∂tg(t) =
dg(t)

dt

∣∣∣
t=0

.

For instance, let ft(y, x) denote a parametric submodel which disturbs the density f(y, x) of (Y,X) at
(y, x) in the direction of a point mass at (ỹ, x̃). Then from

ft(y|x) =
ft(y, x)

ft(x)

and using the chain rule and the quotient rule for derivatives, we obtain

∂tft(y|x) = ∂t

{
ft(y, x)

ft(x)

}
=
∂tft(y, x)f(x)− f(y, x)∂tft(x)

f2(x)

=
1

f(x)

[
1ỹ,x̃(y, x)− f(y, x)−

f(y, x)

f(x)
{1x̃(x)− f(x)}

]
=
1x̃(x)

f(x)
{1ỹ(y)− f(y|x)} .
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Similarly to (4.5), this expression may be used to derive the following identity for the conditional
expectation of an arbitrary function g(o, P ), where o = (y, x′)′:

∂tEPt {g(O,Pt)|X = x} = ∂t

∫
g(o, Pt)ft(y|x)dy

=
1x̃(x)

f(x)
[g(õ, P )− EP {g(O,P )|X = x}] + EP {∂tg(O,Pt)|X = x} . (4.17)

Such generic expressions are helpful to relate to, as they can be used to speed up derivations. For instance,
for the potential outcome mean, defining m1(Z,P ) = EP (Y |X = 1, Z), it readily follows from (4.5) that

∂tEPt {m1(Z,Pt)} = m1(z̃, P )− EP {m1(Z,P )}+ EP {∂tm1(Z,Pt)} ,

and by (4.17), that

∂tm1(Z,Pt) =
1x̃,z̃(1, z)

f(1, z)
{ỹ −m1(z, P )}+ 0.

Averaging over the distribution of Z then delivers

EP {∂tm1(Z,Pt)} =
1x̃(1)

f(1|z)
{ỹ −m1(z, P )} .

Hence, we recover the same result as before.

Example 7 (expected conditional covariance). Consider the expected conditional covariance,

Ψ(P ) = EP [{Y − EP (Y |Z)} {X − EP (X|Z)}]

which appears in hypothesis testing (Shah and Peters, 2018) and in parameter estimation in generalized
linear models (Vansteelandt and Dukes, 2022). Define

covt(Y,X|Z) = EPt [{Y − EPt(Y |Z)} {X − EPt(X|Z)} |Z] .

Upon noting that Ψ(P ) = EP {cov(Y,X|Z)} is of the form in (4.5), we find that

∂tΨ(Pt) = cov(Y,X|z̃)−Ψ(P ) + EP {∂tcovt(Y,X|Z)} .

The complication is clearly in the final term, which is of the form in (4.17), hence,

∂tcovt(Y,X|z) =
1z̃(z)

f(z)
[{ỹ − EP (Y |z̃)} {x̃− EP (X|z̃)} − cov(Y,X|z)]

+E[∂t {Y − EPt(Y |Z)} {X − EPt(X|Z)} |Z = z].

Similarly to the covariance example previously, the final term above turns out to be zero. It follows,
therefore, that the canonical gradient is

ϕ(O,P ) = ∂tΨ(Pt) = {Y − EP (Y |Z)} {X − EP (X|Z)} −Ψ(P ),

and since this has finite variance, the expected conditional covariance is pathwise differentiable.
Constructing a one-step estimator or estimating equations estimator based on the canonical gradient

of the expected conditional covariance is relatively straightforward and in fact both methods will provide
the same result in this example. The one-step estimator takes an original plug-in estimator Ψ(P̂n) and
adds a correction term

Ψ(P̂n) +
1

n

n∑
i=1

ϕ(Oi, P̂n) =
1

n

n∑
i=1

{Yi − m̂(Zi)} {Xi − π̂(Zi)} .

where m̂(z) = EP̂n(Y |z) and π̂(z) = EP̂n(X|z). Estimation by this strategy therefore requires additional
modelling to obtain the functions m̂(z) and π̂(z). □
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Example 8 (average derivative effect). This example concerns the average derivative effect estimand of
Härdle and Stoker (1989) with canonical gradient given by Newey and Stoker (1993). We let m(x, z, P ) =
EP (Y |X = x, Z = z) be a conditional response surface which is assumed to be differentiable w.r.t. x, with
derivative m′(x, z, P ), and we also introduce a known weight function, w(x, z). The average derivative
effect estimand is written

Ψ(P ) = EP {w(X,Z)m′(X,Z, P )} .

Powell et al. (1989) showed that, for a differentiable function g(x, z), with derivative w.r.t. x, g′(x, z),

EP {w(X,Z)g′(X,Z)} = EP {l(X,Z, P )g(X,Z)}

under regularity conditions, which require that X is a continuous random variable and that w(x, z)f(x, z)
is differentiable w.r.t. x and is zero on the boundary of the support of X, where f(x, z) used to denote
the joint distribution of (X,Z) under P . In the above expression,

l(x, z, P ) ≡ −w′(x, z)− w(x, z)f ′(x, z)/f(x, z),

and, as before, superscript prime denotes the derivative with respect to x. Using (4.5),

∂tΨ(Pt) = w(x̃, z̃)m′(x̃, z̃)−Ψ(P ) + EP {w(X,Z)∂tm′(X,Z, Pt)} .

For the final term, we rely on Powell’s identity:

EP {w(X,Z)∂tm′(X,Z, Pt)} = ∂tEP {w(X,Z)m′(X,Z, Pt)}
= ∂tEP {l(X,Z, P )m(X,Z, Pt)}

= EP

[
l(X,Z, P )

1x̃,z̃(X,Z)

f(X,Z)
{ỹ −m(X,Z, P )}

]
= l(x̃, z̃, P ) {ỹ −m(x̃, z̃, P )} .

Since this has finite variance, the average derivative effect is pathwise differentiable with canonical gradient

ϕ(O,P ) = ∂tΨ(Pt) = l(X,Z, P ) {Y −m(X,Z, P )}+ w(X,Z)m′(X,Z, P )−Ψ(P ).

Using this efficient influence function, an efficient estimator may be easily derived following the one-step
or estimating equation strategy. In this case both will result in the same estimator. Setting the sample
average of ϕ(Oi, P̂n) to zero results in the estimator

Ψ(P̂n) =
1

n

n∑
i=1

l(Xi, Zi, P̂n)
{
Yi −m(Xi, Zi, P̂n)

}
+ w(Xi, Zi)m

′(Xi, Zi, P̂n)

This estimator therefore requires modelling the functions m(x, z, P ),m′(x, z, P ) and l(x, z, P ).
We include some extra examples in Appendix C.

4.6 Implementation

We begin by summarising the steps that need to be followed to go from scientific question to (data-adaptive)
estimation described in the previous sections.

Step 1: Defining the estimand of interest.
The estimand Ψ(P ) is a nonparametrically defined statistical functional which is chosen with reference to
the scientific question of interest. The estimand might be motivated for a variety of reasons, such as with
reference to causal inference (e.g. example 5), independence testing (e.g. example 7), variable importance
(e.g., Williamson et al. (2021a)), etc.
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Step 2: Calculating its efficient influence function (under the nonparametric model). There are several
ways to do this.

1. Point-mass contamination. We compute the Gâteaux/ pathwise derivative of Ψ(P ) at P in direction

of a probability point mass P̃ . We consider a parametric submodel Pt = (1− t)P + tP̃ for t ∈ [0, 1],
which we use to evaluate the efficient influence function,

ϕ(o, P ) =
dΨ(Pt)

dt

∣∣∣
t=0

.

2. The most general method is to work from the definition of pathwise differentiability. Define a rich
class of submodels Pt for t ∈ (−ϵ, ϵ) such that P0 = P and S(O) = d

dt log ft(o)|t=0 is the score
function of t, where ft(o) denotes the density/probability point mass of O under Pt. Next one writes
the derivative of Ψ(Pt), as the integral,

dΨ(Pt)

dt

∣∣∣
t=0

=

∫
ϕ(o, P )S(o)dP (o).

By the Riesz representation theorem, ϕ(o, P ) is the efficient influence function.

3. For many new estimands, we can manipulate expressions so they can be expressed as simpler
components (by applying the chain and product rules) and use known influence functions as building
blocks.

Step 3: Obtaining an estimator based on the efficient influence function (such as one-step or TMLE)
which admits a first-order representation, provided we use sample splitting or cross-fitting.

We recommend cross-fitting in the following way: First the data is partitioned into K folds, i.e. K
smaller data sets of (roughly) equal size. Next, for each fold k, estimate the nuisance functionals (e.g.
via data-adaptive methods) using the rest of all the data, excluding that in fold k. Use these nuisance
functionals to evaluate the efficient influence function for each observations in fold k. After repeating for
each fold, one is left with an estimate of the efficient influence function for all observations in the dataset.
Finally, use these efficient influence function estimates to evaluate the estimator, and the error in the
estimator. See Zheng and van der Laan (2011) and Chernozhukov et al. (2018) for more on cross-fitting.

4.7 Discussion

Statistical education still focuses primarily on parametric statistical models, which are assumed to reflect
how the data is generated. The inferential theory that is taught does not reflect how data is usually
analysed, where models are chosen data-adaptively and different models may fit equally well, especially
nowadays, given the increased popularity of machine learning. We therefore believe that many courses
would be better focused on translating a scientific question into an nonparametric estimand, and basing
inference on its efficient influence function under the nonparametric model.

Courses and textbook treatments on the calculus of influence functions often focus on (semi)parametric
models (Tsiatis, 2006). The resulting derivations can be challenging, as they require one to respect the
restrictions that the model imposes on the observed data distribution. Moreover, they show how one can
use these restrictions in order to make efficiency gains. Extracting information from modelling assumptions
nevertheless comes at the risk of invalid inference when assumptions are violated. By contrast, our focus
is on inference under a nonparametric model. This not only makes the resulting inferences more honest,
but can dramatically simplify calculations. Additional efficiency gains are then reserved for special cases
when restrictions are known to hold by the study design (Zhang et al., 2008), or reflect strong pre-existing
scientific knowledge (Liu et al., 2021).

It is difficult, however, to proceed entirely nonparametrically and avoid regularity conditions all
together. Indeed, without assumptions on distribution tails, inference of the mean, Example 1 in the
current paper, is impossible (Bahadur and Savage, 1956; Bickel and Lehmann, 1975). Likewise, many of



57 Chapter 4. Influence curve based inference

our examples rely on working models for statistical functionals, necessitating certain regularity (Robins
and Ritov, 1997). For instance, the one-step estimator for Example 5 requires estimating m1(Zi, P̂n).
Whilst flexible data-adaptive/ machine learning estimators can be used, these are better thought of as very
highly parametric rather than nonparametric, and make assumptions on the true functional m1(z, P ), e.g.
that it is smooth in z. The crucial difference, however, is that compared with the parametric modelling
approach, estimators based on the nonparametric model do not ‘extract efficiency’ from highly parametric
modelling assumptions.

Because of the crucial role that efficient influence functions play, we focused on their derivation.
Whilst the formal justification of the von Mises expansion relies on concepts from advanced mathematics,
calculating the efficient influence function can often be done using techniques covered in a basic calculus
course. We have illustrated this for several causal and non-causal statistical functionals (estimands); the
method of derivation described can lead to simpler proofs than those in the original research papers.

Influence functions have applications beyond using them to define estimators with zero plug-in bias.
Influence functions capture the stability of estimators to outliers (in fact this is one of their original
purposes), which makes them additionally useful to diagnose outliers (as measurements with large influence
function values). Recently, influence functions have started to be used in the machine learning literature
too. For example, Koh and Liang (2017) used influence functions for interpretability of black-box models,
by characterising the impact a data point has on the black-box’s predictions. Curth et al. (2020) and
Kennedy (2020) use influence functions as the outcome in machine learning procedures of conditional (e.g.
subgroup-specific) estimands.

We hope that our contribution helps demystify the calculation of influence functions and thus encourages
their wider adoption.
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Chapter 5

Variable importance estimands

5.1 Introduction

In the medical and social sciences there has been a longstanding interest in quantifying heterogeneity in
the effects of treatments or interventions between groups of individuals. Understanding such heterogeneity
is essential, for instance, in informing scientific research and optimizing treatment decisions. Suggestions to
exploit this for personalised medicine have been expressed as early as the 1970’s (if not before) (Senn, 2001;
Rosenkranz, 2020), leading up to the domain of pharmacogenetics. Attention focused initially on subgroup
analyses, which identify population subgroups (defined in terms of pre-treatment covariates) which benefit
most/least from treatment, to be evaluated further in potential future studies; see e.g. Rothwell (2005)
for a review, and Slamon et al. (2001) for the first clinical trial in oncology that was restricted to targeted
trial populations. Typical challenges of subgroup analyses are how to select stratification variables in a
systematic way, and how to handle the resulting multiplicity problem. Endeavours to address these were
soon followed by methodological developments on personalised medicine in the causal inference literature,
pioneered by Murphy (2003).

For many years, the primary focus was on policy learning; that is, determining the optimal treatment
policy (which assigns the same treatment to individuals with the same measured covariate values) with
the aim to minimise (some measure of) the population risk that would be seen if that policy were applied,
uniformly in the population (van der Laan and Luedtke, 2014; Kallus, 2020; Athey and Wager, 2021).
More recently, attention has shifted towards (machine-learning based) estimation of conditional average
treatment effects (CATEs) (Abrevaya et al., 2015; Athey and Imbens, 2016; Nie and Wager, 2021; Kallus
et al., 2018; Wager and Athey, 2018; Künzel et al., 2019; Kennedy, 2020; Knaus et al., 2021). Letting Y a

denoting the outcome that would be observed if treatment A were set to the value a ∈ {0, 1}, and X a
vector of pre-treatment covariates, the CATE can be defined as τ(x) ≡ E(Y 1 − Y 0|X = x) (Rubin, 1974).
Estimates of the CATE can also been used for policy learning, for instance, the so-called optimal dynamic
treatment rule (OTR) for an individual with covariate value x, assigns treatment based on the sign of
τ(x). The CATE, however, additionally provides insight into the magnitude of the treatment effect for
these individuals.

These foregoing developments are extremely useful and important, but they leave unanswered a key
question that researchers commonly have when being presented an estimated CATE or OTR: namely,
what are the key drivers of treatment effect heterogeneity? In the context of policy learning, attempts to
find the optimal policy within a restricted class of ‘simple’ policies go some way towards answering this
question, albeit at the risk of targeting a suboptimal policy (Zhang et al., 2015). Indeed, by comparing the
mean outcome under the optimal policy, with the mean outcome under a suboptimal policy, which depends
only on certain covariates, one may quantify the importance of the excluded covariates in determining the
optimal policy (Williamson et al., 2021b).

In this paper, we will address this question by instead quantifying the importance of variable subsets
in determining the CATE. By shifting focus from the OTR to the CATE, we argue that the resulting
variable importance measures are easier to infer as well as more interesting from a scientific perspective,
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since they provide greater insight into effect modifiers. For instance, it may be the case that a particular
treatment is uniformly beneficial, in which case the optimal policy is to always treat, despite extremely
large treatment effect heterogeneity. An understanding of such heterogeneity may, e.g. provide information
about treatment mechanism, suggest future therapies, be used to compare clinical trial populations, and
be used to quantify systematic treatment biases (such as on the basis of race or socio-economic status).

One existing proposal for CATE variable attribution is based on the ‘causal forest’ CATE estimator,
which extends the widely used random forest algorithm to CATE estimation (Athey et al., 2019; Wager
and Athey, 2018; Athey and Imbens, 2016; Breiman, 2001a). The resulting variable importance measures
(VIMs) rely on the ‘tree architecture’ of causal forest models, thus are inherently tied to the CATE
estimation strategy, and have also been criticised as they tend to assign greater importance to continuous
variables, or categorical variables with many categories (Grömping, 2009; Strobl et al., 2007). Generally,
VIMs which depend on a particular modelling strategy (e.g. random forests/ linear regression) are referred
to as ‘algorithmic’ (Williamson and Feng, 2020), with the disadvantage that algorithmic VIMs are well
defined and interpretable only within their particular modelling strategy.

The need to define generic nonparametric VIMs is closely related to the need for methods which explain
the output of ‘black box’ machine learning prediction algorithms, itself an active area of research in the
computer science literature. One popular approach is based on so-called Shapley additive explanation
(SHAP) values (Lundberg and Lee, 2017), which quantify the direction and magnitude of each covariate
in obtaining model predictions. Applications of SHAP to CATE estimation are rare, with Syrgkanis et al.
(2019) being a notable recent example. Debate remains, however, over exactly how SHAP values should
be defined and interpreted causally (Janzing et al., 2020; Chen et al., 2020).

In view of these issues, we propose treatment effect variable importance measures (TE-VIMs), which
are model-free scalar summary statistics intended to measure the importance of subsets of covariates
in predicting the CATE. In particular, our proposed estimands quantify the contribution of covariate
subsets towards the variance var{τ(X)} of the treatment effect (VTE) (Levy et al., 2021); the latter
quantifies treatment effect heterogeneity by capturing the extent to which varying effects of treatment can
be explained by observed covariates. More precisely, we will consider the estimand

Θs ≡ E[var{τ(X)|X−s}] = var{τ(X)} − var{τs(X)}, (5.1)

where X ∈ Rp represents a p-dimensional covariate vector, the symbol u−s denotes the vector of all the
components of u with index not in s ⊆ {1, ..., p}, and τs(x) ≡ E{τ(X)|X−s = x−s} denotes the CATE
conditional on X−s; note that τs(x) only depends on x−s, but we write it as a function of x for simplicity
of notation. We interpret Θs ≥ 0 as a difference in VTEs, quantifying the amount by which the VTE
changes when variables in the set s are excluded from the model. More formally, it expresses the additional
treatment effect heterogeneity explained by Xs, over and above that already explained by X−s, where for
a vector u, we let us denote the vector of all components of u with index in s.

The proposed TE-VIMs rescale Θs by the VTE to express this difference as a proportion,

Ψs ≡
Θs

var{τ(X)}
= 1− var{τs(X)}

var{τ(X)}
. (5.2)

Assuming that the VTE is non-zero, we interpret Ψs ∈ [0, 1] as the proportion of treatment effect
heterogeneity explained by X−s compared with X. This interpretation is analogous to the familiar
coefficient of determination (R2 statistic). The proposed TE-VIMs connect VTE estimands (Levy et al.,
2021) to recently proposed regression-VIMs (Williamson et al., 2021a; Zhang and Janson, 2020), also
referred to as ‘leave out covariates’ (Verdinelli and Wasserman, 2021; Lei et al., 2018), and the more
general VIM framework by Williamson et al. (2021b). In this way, our work represents a step towards
extending VIMs to the analysis of more general statistical functionals, as discussed in Section 5.5.

In Section 5.2 we motivate TE-VIMs, and provide estimators which are efficient under the nonparametric
model. These rely on estimating working models, relating our proposal to the DR-learner of the CATE
through an interpretation based on so-called pseudo-outcomes (Kennedy, 2020; Luedtke and van der Laan,
2016; van der Laan, 2013). Experimental results on simulated data are provided in Section 5.3 and Section
5.4 demonstrates an application to the AIDS Clinical Trials Group Protocol 175 (Hammer et al., 1996).
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5.2 Methodology

5.2.1 Motivating the estimand

Suppose we have n i.i.d. observations (z1, ..., zn) of a random variable Z distributed according to an
unknown distribution P , such that Z consists of (Y,A,X), where Y ∈ R is an ‘outcome’, A ∈ {0, 1}
is an ‘exposure’ or ‘treatment’ and X ∈ Rp is a p-dimensional vector of covariates. Under standard
identification assumptions of consistency (A = a =⇒ Y = Y a), conditional exchangeability (Y a ⊥⊥ A|X
for a = 0, 1), and positivity (0 < π(X) < 1 w.p.1), the CATE is identified by τ(x) ≡ E(Y 1−Y 0|X = x) =
µ(1, x)− µ(0, x), where µ(a, x) ≡ E(Y |A = a,X) and π(x) ≡ E(A|X = x) denotes the ‘propensity score’.

Assume that ||τ || <∞, where ||f || ≡ E{f(X)2}1/2 is the L2(P ) norm. With this choice our estimand
is finite and well defined, since

Θs = E[{τ(X)− τs(X)}2] = ||τ − τs||2 <∞,

Notice that the VTE is Θp, where, with a slight abuse of notation, p denotes the index set {1, ..., p} and
τp is the ATE. We further assume that the VTE is non-zero, i.e. Θp > 0 and since Θp ≥ Θs, it follows
that Ψs = Θs/Θp ∈ [0, 1].

The regression-VIM in Williamson et al. (2021a) is analogous to our proposal, in the sense that the
former replaces τ(x) with µ(x) and τs(x) with µs(x) ≡ E(Y |X−s = x−s). Specifically, they consider,

θs ≡ E[var{µ(X)|X−s}] = E[{µ(X)− µs(X)}2]

which is analogous to Θs. The two proposals, however, differ in how this mean conditional variance is
scaled. Williamson et al. (2021a) consider scaling by the outcome variance, i.e. by defining ψs ≡ θs/var(Y ),
whereas we scale by the VTE, i.e. Ψs = Θs/Θp. We scale by the VTE because the treatment effect
variance, var(Y 1 − Y 0), is generally not identifiable without strong assumptions (Levy et al., 2021; Ding
et al., 2016; Heckman et al., 1997). The VTE, however, is a convenient scaling parameter which bounds
Ψs ∈ [0, 1], aiding interpretability since, when the VTE is non-zero, Ψs behaves like a coefficient of
determination (R2).

In practice, the scaling factor makes little difference to the interpretation of our estimands, since
investigators are likely to compare the relative importance of covariate sets s and s′ by comparing the
magnitudes of Ψs and Ψs′ . This approach is demonstrated in Section 5.4, where the importance of
each covariate is ranked individually using Ψs where s is a set containing a single covariate of interest.
Quantifying variable importance in this way, however, may be problematic when covariates are themselves
highly correlated. An alternative could be to define importance with reference to Ψs where s is the set
of all covariates except the covariate of interest, or else to define variable importance with reference to
so-called Shapley population VIMs, which consider all possible covariate permutations that do not include
the variable of interest (Owen and Prieur, 2017; Williamson and Feng, 2020). To rank all covariates,
the latter are highly computationally intensive, requiring CATE estimates for each of the 2p possible
covariate subsets. Instead, Williamson et al. (2021b) recommend using domain specific knowledge to group
covariates, e.g. one might compare the relative importance of biological factors vs. non-biological factors
in determining the CATE. We remark that decreasing the index set can never increase the TE-VIM, in
the sense that s′ ⊆ s implies that Ψs′ ≤ Ψs, i.e. the covariate set s′ cannot be more important than s.

5.2.2 CATE estimation

Estimation of the proposed TE-VIM will rely on initial CATE estimates, obtained via flexible machine
learning based methods (Knaus et al., 2021), which we review first. CATE estimation is challenging since
common machine learning algorithms (random forests, neural networks, boosting etc.) are instead designed
for mean outcome regression, such as by minimising the mean squared error loss. CATE estimation
strategies therefore either modify existing machine learning methods to target CATEs, e.g. Athey et al.
(2019); Wager and Athey (2018) and Athey and Imbens (2016) modify the random forest algorithm for
CATE estimation. Alternatively, ‘metalearning’ strategies decompose CATE estimation into a sequence
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of sub-regression problems, which can be solved using off-the-shelf machine learning algorithms, see e.g.
Künzel et al. (2019); Nie and Wager (2021); Kennedy (2020).

In the current work we focus on two metalearning algorithms which, following the naming convention
of Künzel et al. (2019), we refer to as the T-learner and the DR-learner. The T-learner is based on
the decomposition τ(x) = µ(1, x) − µ(0, x), and the T-learner estimate of the CATE is τ̂ (T )(x) ≡
µ̂(1, x)− µ̂(0, x), where µ̂(a, x) represents an estimate of µ(a, x) obtained by a regression of Y on (A,X).
The T-learner, however is problematic for two main reasons. Firstly, whilst regularisation methods can be
used to control the smoothness of µ̂(a, x), the same is not true of τ̂ (T )(x) which may be highly erratic. Slow
convergence rates affecting µ̂(a, x) may therefore propagate into the CATE estimator τ̂ (T )(x). Secondly,
µ̂(1, x) is chosen to make an optimal bias-variance trade-off over the covariate distribution of the treated
population. Likewise, µ̂(0, x) is chosen to make an optimal bias-variance trade-off over the covariate
distribution of the untreated population. When there is poor overlap between the treated and untreated
subgroups, then the difference µ̂(1, x)− µ̂(0, x) may fail to deliver an optimal bias-variance trade-off over
the population covariate distribution, making the T-learner potentially poorly targeted towards CATE
estimation.

The DR-learner (Kennedy, 2020; Luedtke and van der Laan, 2016; van der Laan, 2013) is an alternative
metalearning algorithm based on the decomposition τ(x) = E{φ(Z)|X = x} where

φ(z) ≡ {y − µ(a, x)} a− π(x)
π(x){1− π(x)}

+ µ(1, x)− µ(0, x).

is called the ‘pseudo outcome’, or the augmented inverse propensity weighted score (Robins, 1994), which
acts like the causal contrast, Y 1 − Y 0, in expectation. The DR-learning procedure first estimates µ(a, x)
and π(x) to obtain the pseudo-outcome plug-in estimator

φ̂(z) ≡ {y − µ̂(a, x)} a− π̂(x)
π̂(x){1− π̂(x)}

+ µ̂(1, x)− µ̂(0, x),

In a second step, the estimated pseudo-outcome, φ̂(Z) is regressed on covariates X to obtain τ̂ (DR)(x). A
sample splitting scheme is also recommended, whereby the regression steps to obtain µ̂(a, x), π̂(x), and
τ̂ (DR)(x) are performed on three independent samples, see Kennedy (2020) for details.

The DR-learner alleviates the issues related to the T-learner since the complexity of τ̂ (DR)(x) can be
controlled by regularising the regression in the final stage of the procedure, mitigating concerns regarding
the smoothness of the T-learner. With regard to consistency, the square of E{φ̂(Z)|X = x} − τ(x) is
bounded by at most the product of the squared errors of the propensity score and regression estimators
(up to constant scaling). In practice, this means that the final regression step, where φ̂(Z) is regressed on
X, mimics the oracle regression of φ(Z) on X provided that

(A1) The propensity score and outcome estimators are ‘rate double robust’ in the sense that {π(x) −
π̂(x)}{µ(a, x)− µ̂(a, x)} is oP (n−1/2) in L2(P ) norm for a = 0, 1.

This requirement implies that one can trade-off accuracy in the outcome and propensity score estimators,
a property which is known as rate double robustness, hence the name ‘DR-learner’.

Estimation of the CATE τs(x) is complicated by the fact that one cannot assume that Y ⊥⊥ A|X−s
for an arbitrary subset of covariates s, a problem that is sometimes referred to as ‘runtime confounding’
(Coston et al., 2020). The DR-learner readily extends to the setting of runtime confounding through the
decomposition τs(x) = E{φ(Z)|X−s = x−s}. This expression implies that one may estimate τs(x) by
regressing φ̂(Z) on X−s, i.e. by modifying the final regression step of the DR-learner.

In this paper we propose a metalearner for τs(x) based on the decomposition τs(x) = E{τ(X)|X−s =
x−s}. Specifically we propose regressing an initial estimate of the CATE, τ̂(X) on X−s to obtain an
estimate of τs(x). This approach is agnostic the initial CATE estimator used and, like the DR-learner,
one can control the complexity of the resulting CATE estimator τ̂s(x) by regularisation. We advocate this
approach since it generally results in estimates of τs(x), which are compatible with those of τ(x), similar
to Williamson et al. (2021a), who recommend estimating µs(x) by regressing an estimate µ̂(x) of µ(x) on
X−s.
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5.2.3 TE-VIM estimation

Efficient estimators of Θs

Next we consider estimators based on the efficient influence curve (IC) of Θs under the nonparametric
model. Briefly, ICs are model-free, mean zero, functionals that characterise the sensitivity of an estimand
to small changes in the data generating law. As such, ICs are useful for constructing efficient estimators
and determining their asymptotic distribution, see e.g. Hines et al. (2022); Fisher and Kennedy (2020)
for an introduction to these methods. In Appendix D we derive the IC of Θs at a single observation
z = (y, a, x) of Z to be

ϕs(z) = {φ(z)− τs(x)}2 − {φ(z)− τ(x)}2 −Θs. (5.3)

The interpretation of φ(Z) as a pseudo-outcome which plays the role of the unobserved causal contrast
Y 1 − Y 0 holds in the present context. To see why, we compare the IC in (5.3) with that of θs given by
Williamson et al. (2021a),

{y − µs(x)}2 − {y − µ(x)}2 − θs.

The IC of θs has the same form as (5.3), since the latter is recovered by replacing the outcome y with the
pseudo-outcome, φ(z), replacing the conditional mean outcomes with CATEs, i.e. conditional means of
φ(Z), and replacing θs with Θs.

Efficient estimating equations estimators can be derived from ICs by setting the sample mean of (an
estimate of) the IC to zero. In the current setting, this strategy is equivalent to the so-called one-step
correction which we outline in Appendix D. For Θs and θs, we thus obtain the estimators

Θ̂s ≡ n−1
n∑
i=1

{φ̂(zi)− τ̂s(xi)}2 − {φ̂(zi)− τ̂(xi)}2 (5.4)

θ̂s ≡ n−1
n∑
i=1

{yi − µ̂s(xi)}2 − {yi − µ̂(xi)}2,

where τ̂(x) and τ̂s(x) and φ̂(z) are consistent estimators fitted on an independent sample. In practice,
a cross-fitting approach may be used to obtain the fitted models and evaluate Θ̂s from a single sample
(Zheng and van der Laan, 2011; Chernozhukov et al., 2018). Theorem 1 below states the asymptotic
distribution of Θ̂s under (A1) and when,

(A2) The differences τ(x)− τ̂(x) and τs(x)− τ̂s(x) are both oP (n
−1/4) in L2(P ) norm.

The requirement for n1/4 rate convergence in (A2) is standard in the recent VIM framework of Williamson
et al. (2021b), for instance, an assumption similar to (A2) appears in the regression-VIM setting for the
outcome models µ̂(x) and µ̂s(x). In the TE-VIM setting, however, one is also required to estimate the
pseudo-outcomes, with (A1) required to control the error which arises from doing so.

Assumptions (A1) and (A2) suggest that the DR-learner of the CATE may be preferable to the
T-learner due to its robustness properties. In particular, consider that the T-learner of the CATE τ̂ (T )(x)
satisfies the first condition of (A2), provided that µ(a, x) − µ̂(a, x) is oP (n

−δ) in L2(P ) norm, with
δ ≥ 1/4. (A1) then implies that π(x)− π̂(x) must be at least oP (n

−1/2+δ) in L2(P ) norm. In other words,
the propensity score estimator is allowed to converge at a slower rate, provided the outcome estimator
converges at a faster rate, but the converse is not true. This is unsatisfying for example in clinical trial
settings, where the exposure is randomised and the propensity score model is known, since the T-learner
of the CATE would still require n1/4 rate convergence of the outcome model.

Conversely, the DR-learner τ̂ (DR)(x) satisfies the first condition of (A2), provided that (A1) holds and
E{φ̂(Z)|X = x} − τ̂ (DR)(x) is oP (n

−1/4) in L2(P ) norm, i.e. provided the final DR-learning regression
estimator is consistent at n−1/4 rate. Applying the same reasoning as before, we see that (A1) implies that
µ(a, x)− µ̂(a, x) can be oP (n

−δ) in L2(P ) norm, provided that π(x)− π̂(x) is oP (n−1/2+δ) in L2(P ) norm,
for any δ ≥ 0. In other words, the outcome estimator is allowed to converge at a slower rate, provided the
propensity score estimator converges at a faster rate and vice-versa, which marks an improvement over
the T-learner. The asymptotic distribution of Θs under (A1) and (A2) is given Theorem 3 below.
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Theorem 3 Under (A1), (A2) and regularity assumptions given in Appendix D, Θ̂s is asymptotically
linear with IC, ϕs(Z), and hence Θ̂s converges to Θs in probability, and for Θs > 0 then n1/2(Θ̂s −Θs)
converges in distribution to a mean-zero normal random variable with variance E{ϕ2s(Z)}.

Importance testing

As well as being used to derive efficient estimators, the IC characterises the asymptotic distribution of such
estimators, as in Theorem 3. Since Θ̂s and θ̂s are analogous, we expect them to share similar properties.
One such property concerns the behaviour under the zero-importance null hypothesis, H0 : Θs = 0, i.e.
when τ(x) = τs(x). In practice, this hypothesis corresponds to treatment effect homogeneity over Xs given
X−s, thus the IC in (5.3) is exactly zero. The fact that the IC degenerates in this way makes H0 difficult
to test, since Wald-type tests, i.e. those based on the asymptotic distribution of Θ̂s, tend to overestimate
the variance of Θ̂s and are therefore conservative. For this reason, Theorem 3 gives the behaviour of the
estimator only when Θs > 0.

One solution to the IC degeneracy problem under H0, proposed by Williamson et al. (2021b), is to
estimate var{τ(X)} and var{τs(X)} using efficient estimators in separate samples, with each estimand
having a non-zero IC provided that var{τs(X)} > 0, despite the two ICs being identical under H0. With
this condition, both estimators would be independent and asymptotically normal, hence their difference,
which represents an estimator of Θs, would also be asymptotically normal even when Θs = 0. One
therefore obtains a valid Wald-type test for H0, at the expense of using an estimator for Θs, which
is inefficient due to the requirement for sample splitting. Similarly, one could test the zero-VTE null
hypothesis (var{τ(X)} = 0) by estimating E{τ2(X)} and E{τ(X)}2 using efficient estimators in separate
samples and taking their difference. Fundamentally, however, the distribution of Θ̂s under H0 depends on
higher-order pathwise derivatives of the estimand, see e.g. Carone et al. (2018), and remains generally an
open problem.

Targeted maximum likelihood estimation

For the index set s = p, Θ̂p is an estimator of the VTE, which is distinct from the targeted maximum
likelihood estimation (TMLE) VTE estimator proposed by Levy et al. (2021). Both are based on initial
estimates of µ(a, x) and π(x) and are regular asymptotically linear in the sense of ensuring that the
sample mean of the estimated IC is negligible. The TMLE estimator achieves this by replacing the initial
estimates µ̂(a, x), with ‘retargeted’ estimates µ̂∗(a, x). These retargeted estimates are used to estimate the
CATE as τ̂∗(x) ≡ µ̂∗(1, x)− µ̂∗(0, x), with the ATE and VTE obtained respectively as the sample mean
and sample variance of τ̂∗(X). Unlike Θ̂p, the TMLE VTE estimator is a ‘plug-in’ estimator, in the sense
that it maps a probability distribution (implied by the empirical measure of the covariates, the propensity
score estimator π̂(x) and the targeted outcome estimator µ̂∗(a, x)) onto an estimated value using the
definition of Θp. See e.g. Hines et al. (2022) for an introductory comparison of TMLE estimators with
one-step bias correction estimators.

Efficient estimators of Ψs

Our main goal is to consider efficient estimation of the rescaled TE-VIM Ψs = Θs/Θp, which has IC,

Φs(z) = {ϕs(z)−Ψsϕp(z)}/Θp, (5.5)

where ϕp(.) denotes (5.3) for the index set s = p. This IC implies an estimating equations estimator,

Ψ̂s = Θ̂s/Θ̂p. Like ϕs(z), the IC Φs(z) is also degenerate, with Φs(z) = 0 when Ψs = 0 and when Ψs = 1,
corresponding to Θs = 0 and Θs = Θp respectively. For this reason, the asymptotic result in Theorem 4
below, holds only when Ψs ∈ (0, 1), i.e. when the covariate set s accounts for some, but not all, CATE
variability. We make the additional assumption (B1) that the difference τp − τ̂p is oP (n

−1/4).

Theorem 4 Assume that Θp ̸= 0. Under (A1), (A2), (B1) and regularity assumptions given in Appendix

D, Ψ̂s is asymptotically linear with IC, Φs(Z), and hence Ψ̂s converges to Ψs in probability, and for
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Ψs ∈ (0, 1) then n1/2(Ψ̂s − Ψs) converges in distribution to a mean-zero normal random variable with
variance E{Φs(Z)2}.

Proposed algorithms for estimating Ψs

The estimator Θ̂s is indexed by the choice of pseudo-outcome and CATE estimators. Generally, we are
not constrained to any particular learning method. Throughout, we consider a plug-in estimator for φ(.),
where models for µ(a, x) and π(x) are obtained from the same sample, and these are used to construct
φ̂(z). We consider two approaches to learning τ(x) based on the T- and DR-learning strategies, though for
computational simplicity, our ‘DR-learner’ does not use the sample splitting scheme proposed by Kennedy
(2020).

We expect the estimator based on the DR-learning approach to be less biased in finite samples than
that based on the T-learning approach, due to the robustness properties of the DR-learner and since it
explicitly seeks to minimise the term, n−1

∑n
i=1{φ̂(zi)− τ̂(xi)}2, which appears in (5.4). This term can

be problematic in practice, since it may give negative Θ̂s estimates, when τ̂(.) converges slowly to τ(.).

In the regression-VIM work of Williamson et al. (2021a), the authors found that regressing the observed
outcome on X and X−s returns conditional mean models µ̂(x) and µ̂s(x) which do not take into account
that the two conditional means are related, generally resulting in incompatible estimates. Their solution
was to first regress the outcome on X then regress predictions from the resulting conditional mean model
on X−s. We propose a similar approach to learning τ̂s(x), effectively using the ‘runtime confounding’
CATE metalearning strategy described in Section 5.2.2.

The proposed working function estimators are implemented in Algorithms 1 and 2 below. These
algorithms return pseudo-outcome and CATE estimates, {φ̂i}ni=1, {τ̂i}ni=1,, {τ̂s,i}ni=1, and {τ̂p,i}ni=1, which

can be used to obtain Ψ̂s = Θ̂s/Θ̂p, with variance estimated by n−2
∑n
i=1 ϕ̂

2
i , where,

Θ̂s = n−1
n∑
i=1

{φ̂i − τ̂s,i}2 − {φ̂i − τ̂i}2

ϕ̂i =
1

Θ̂p

[
{φ̂i − τ̂s,i}2 − Ψ̂s{φ̂i − τ̂p,i}2 + (Ψ̂s − 1){φ̂i − τ̂i}2

]
and Θ̂p is defined in a similar manner. Algorithm 2 uses a cross-fitting regime to ensure that φ̂i, τ̂i, τ̂s,i,
and τ̂p,i are constructed from estimators which are not fitted using the ith observation. This is useful in
controlling the so-called empirical process term, see e.g. Newey and Robins (2018); Hines et al. (2022).
Both algorithms are also indexed by the choice of CATE learner in steps 2 and 3 of each algorithm
respectively, with the substeps marked (A) and (B) referring to the T- and DR-learning strategies. We
note that where the algorithms require models to be ‘fitted’, any suitable regression method can be used.

Algorithm 1 - Without sample splitting

(1) Fit µ̂(., .) and π̂(.). Use these fitted models to obtain φ̂i ≡ φ̂(zi).

(2) (A) Use the model for µ̂(., .) from Step 1, to obtain τ̂(x) ≡ µ̂(1, x) − µ̂(0, x). Or (B) Fit τ̂(.) by
regressing φ̂(Z) on X. After doing (A) or (B), use the fitted models to obtain τ̂i ≡ τ̂(xi).

(3) Fit τ̂s(.) by regressing τ̂(X) on X−s. Use the fitted model to obtain τ̂s,i ≡ τ̂s(xi).

(4) Repeat Step 3 for the covariate set p and (optionally) any other covariate sets of interest.

Algorithm 2 - With sample splitting

(1) Split the data into K folds.

(2) For each fold k: Fit µ̂(., .) and π̂(.) using the data set excluding fold k. Use these fitted models to
obtain φ̂i ≡ φ̂(zi) for i in fold k.
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(3) (A) Use the model for µ̂(., .) from Step 2, to obtain τ̂(x) ≡ µ̂(1, x) − µ̂(0, x). Or (B) Fit τ̂(.) by
regressing φ̂(Z) on X using the data excluding fold k. After doing (A) or (B), use the fitted models
to obtain τ̂i ≡ τ̂(xi) for i in fold k.

(4) Fit τ̂s(.) by regressing τ̂(X) on X−s using the data excluding fold k. Use the fitted model to obtain
τ̂s,i ≡ τ̂s(xi) for i in fold k.

(5) Repeat Step 4 for the covariate set p and (optionally) any other covariate sets of interest. End for.

5.3 Simulation study

In our simulation study we compared Algorithms 1A, 1B, 2A and 2B on generated data in finite samples,
using K = 5 fold sample splitting. We generated 1000 datasets of size n ∈ {500, 1000, 2000, 3000, 4000}
from the following structural equation model

X1, X2 ∼ Uniform(−1, 1)
A ∼ Bernoulli{expit(−0.4X1 + 0.1X1X2)}
Y ∼ N

(
{X1X2 + 2X2

2 −X1}+Aτ(X), 1
)

where the CATE is given by τ(X) = X2
1 (X1 + 7/5) + 25X2

2/9. Analytically computing the true estimand
values gives that the TE-VIMs are Ψ1 = 0.32 and Ψ2 = 0.68, with the ATE and VTE taking the values
τp = 1.39 and Θp = 1.00 respectively.

For each dataset, Ψ̂s was estimated along with its variance (using the variance estimators above),
standard error (as the square root of the variance), and associated Wald based (95%) confidence intervals
for the index sets, s = {1}, {2}. Two regression algorithms were considered for estimation of µ(a, x), π(x),
τs(x), and in the case of the DR-learner, τ(x). The first regression algorithm used generalised additive
models, as implemented through the mgcv package in R (Wood et al., 2016). These are flexible spline
smoothing models with interaction terms and for the propensity score model a logistic link function was
used. The second regression algorithm used random forest learners available through the ranger package
in R (Wright and Ziegler, 2017).

Figure 5.1 shows empirical estimates of the bias and variance of Ψ̂1 scaled by n1/2 and n respectively,
as well as 95% Wald based confidence-interval coverage probabilities. Similar plots for Ψ̂2 are in Appendix
D. Comparing Algorithms 1 and 2 (i.e. no sample splitting vs sample splitting), we notice a greater
difference in the results when random forest learning is used, with sample splitting generally reducing
bias, increasing variance and improving confidence interval coverage.

Additionally, the DR-learning approach (Algorithm B) outperforms the T-learning approach (Algorithm
A) in the sense of reducing the bias and achieving confidence interval coverage closer to the 95% level
across all sample sizes. This improvement is due to the DR-learner making better use of the propensity
score model to improve estimation of the CATE. On the basis of these results, we recommend Algorithm
2B for TE-VIM learning.

5.4 Applied example: variable importance of treatment effect het-
erogeneity in HIV

We demonstrate our estimators on data from the AIDS Clinical Trials Group Protocol 175 (ACTG175)
(Hammer et al., 1996), which evaluated 2139 patients infected with HIV whose CD4 T-cell count was
in the range 200 to 500 mm−3. Patients were randomised to 4 treatment groups: (i) zidovudine (ZDV)
monotherapy, (ii) ZDV+didanosine (ddI), (iii) ZDV+zalcitabine, and (iv) ddI monotherapy. We compare
treatment groups (iv) and (ii) as in Lu et al. (2013); Cui et al. (2020). These two groups are represented
with the binary indicator, A = 0, 1, with n = 561 and n = 522 patients in each group respectively.

Previous studies have used ACTG175 data to analyse the causal effect of A on a survival time endpoint,
and the data is available through the speff2trial package in R. We consider CD4 count at 20±5 weeks
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Figure 5.1: Bias, variance and coverage for Ψ̂1 using 1000 sampled datasets. Red and blue points indicate
that working models are fitted using generalised additive modelling and random forests respectively. Top row
of plots corresponds to Algorithm 1 (no sample splitting) and the bottom row corresponds to Algorithm 2
(sample splitting). Square and crossed points indicate that the algorithm used the T-learner and DR-learner
respectively for CATE estimation. Similar plots for Ψ̂2 are given in Appendix D.
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as a continuous outcome, Y , and consider 12 baseline covariates, 5 continuous: age, weight, Karnofsky
score, CD4 count, CD8 count; and 7 binary: sex, homosexual activity (y/n), race (white/non-white),
symptomatic status (symptomatic/asymptomatic), history of intravenous drug use (y/n), hemophilia
(y/n), and antiretroviral history (experienced/naive).

TE-VIMs for each covariates were estimated using all algorithms with K = 20 folds (between 10 to 20
folds is typical for cross-fitting procedures). Propensity score estimates were obtained as the mean of the
treatment indicator in the training set. This model is correctly specified since treatment is randomised.
Other fitted models (i.e. those for the outcome and CATEs) were obtained using the Super Learner
(van der Laan et al., 2007), an ensemble learning method, implemented in the SuperLearner package in
R. This used 20 cross validation folds, and a ‘learner library’ containing various routines (glm, glmnet,
gam, xgboost, ranger). Additional results which use the ‘discrete’ Super Learner for model fitting are
presented in Appendix D. The discrete Super Learner selects the regression algorithm in the learner library
which minimises a cross validated estimate of e.g. the mean squared error loss, whereas the Super Learner
minmizes the same loss by taking a convex combination of learners.
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Figure 5.2: TE-VIM estimates from the ACTG175 study using the Super Learner for functional estimation.
Top row: no sample splitting (Algorithm 1). Bottom row: with sample splitting (Algorithm 2). Left col:
T-learner (A). Right col: DR-learner (B). Black lines indicate 95% Confidence intervals. In each plot,
covariates are sorted according to their TE-VIM point estimate. Dashed lines indicate the [0, 1] support of
the TE-VIM.

The cross-fitted augmented inverse propensity weighted estimate of the ATE was 29.4mm−3 (CI: 14.8,
44.1; p<0.01) where all confidence-intervals (CIs) are reported at 95% significance and Wald-type p-values
are reported. CIs for the VTE were constructed using both algorithms, and we report the square root of
these intervals after truncating at zero. Algorithm 2A gave a root-VTE estimate of 6.44mm−3 (CI: 0,55.3;
p=0.79) and Algorithm 2B gave a root-VTE estimate of 28.6mm−3 (CI: 0, 74.2; p=0.21). By comparison,
the CV-TMLE estimator of Levy et al. (2021) gave an ATE estimate of 29.3mm−3 (CI: 14.7, 39.3; p<0.01)
and a root-VTE estimate of 6.39mm−3 (CI: 0,39.3; p=0.70). The results from the CV-TMLE algorithm
are more similar to those of Algorithm 2A than Algorithm 2B, since the CV-TMLE algorithm uses the
T-learner to obtain initial CATE estimates. CV-TMLE is so-called since the initial propensity score and
outcome regression estimates obtained in a ‘cross validated’ way.

These VTE estimates suggest that treatment effect homogeneity is a possible concern for our analysis,
however, large treatment effect heterogeneity (relative to the ATE) cannot be ruled out. In practice,
TE-VIMs are known to lie on the interval [0, 1] therefore, we recommend truncating CIs at these values.
For the purposes of comparing the algorithms, however, we have chosen not do so here. The results (Figure
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5.2) suggest CD4 T-cell count at baseline is the most important variable in determining an individual’s
treatment effect, with weak evidence that any other single factor is a good predictor of CATE variability.
Algorithms 2A and 2B respectively estimated the TE-VIM for CD4 T-cell count to be 3.26 (CI: -18.1,
24.6; p=0.76) and 1.00 (CI: -0.028, 2.03; p=0.057).

On balance, Algorithm B provides more credible TE-VIM estimates in this applied example than
Algorithm A. This is evident in the extremely wide confidence intervals provided by Algorithm 1B in
Figure 5.2. Algorithms A and B both use the same pseudo-outcome estimates, however the former makes
better use of the propensity score model (i.e. the fact that this is a random trial), when estimating the
CATE, whereas the latter estimates the CATE based on outcome regression alone. This distinction means
that we expect the CATE estimates from Algorithm B to be robust to slow convergence of the outcome
model with sample size, whereas those from Algorithm A are not. The cost of this robustness, however, is
that Algorithm B relies on n1/4 rate convergence of the pseudo-outcome regression, i.e. the final regression
step of the DR-learner.

Additionally, Algorithm 2 (with sample splitting) provides more credible confidence intervals than
Algorithm 1 (without sample splitting), effectively by using out-of-sample predictions to control for
overfitting. This is evident from the narrow confidence intervals provided by Algorithms 1A and 1B
in Figure 5.2, which suggest that all covariates account for a substantial amount of treatment effect
heterogeneity. As with the simulation study, we recommend Algorithm 2B for TE-VIM inference.

5.5 Related work and extensions

Optimal treatment rule - VIMs

The proposed TE-VIMs complement VTEs and ATEs as an additional set of scalar summary estimands for
the CATE. Fundamentally, these estimands summarise different aspects of the CATE function which are
of scientific interest. Whilst TE-VIMs capture the importance of variable subsets in explaining the CATE,
we remark that this should not be confused with the importance of those variables in contributing to
optimal treatment decisions. For example, it is possible that a single covariate is important in explaining
the magnitude of the CATE, but unimportant in determining the effect direction.

From the perspective of policy learning, one might instead be interested in the importance of variable
subsets in explaining the optimal dynamic treatment rule (OTR), defined as d(x) ≡ I{τ(x) > 0}, where
I(.) denotes an indicator function and we assume w.l.o.g. that a more positive outcome is preferred. The
current approach might be extended by considering an OTR-VIM estimand,

Γs ≡ E[var{d(X)|X−s}] = E[ds(X){1− ds(X)}]

where ds(x) ≡ E{d(X)|X−s = x−s} = Pr{τ(X) > 0|X−s = x−s}, and we note that d(X) ∈ {0, 1} and
ds(X) ∈ [0, 1]. We argue that Γs ∈ [0, 0.25] is analogous to Θs and θs, with the OTR d(X) used in place
of τ(X) and µ(X) respectively. Alternatively, Williamson et al. (2021b) propose an OTR-VIM based on
the estimand,

Γ∗
s ≡ E{µ(d(X), X)} − E{µ(d∗s(X), X)} = E [τ(X){d(X)− d∗s(X)}]

where d∗s(x) ≡ I{τs(x) > 0} is the optimal treatment rule given covariates X−s, and Γ∗
s ≥ 0. Unlike the

TE-VIM, both Γs and Γ∗
s are not pathwise differentiable, which complicates inference. Estimators for e.g.

Γ∗
s, however, are typically based on efficient estimators derived in the setting where the OTR is a known

function.

Treatment effect cumulative distribution function

Another related proposal considers the treatment effect cumulative distribution function (TE-CDF) (Levy
and van der Laan, 2018), which is a curve β : R 7→ [0, 1], with

β(t) = Pr{τ(X) ≤ t}.
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Motivated by optimal treatments, the value β(0) is of particular interest since it captures the marginal
probability that an individual has a negative CATE, and therefore the proportion of the population which
is not treated under the OTR. We note that β(0) is not the same as Pr(Y 1−Y 0 ≤ 0) which suffers similar
identifiability issues regarding the joint distribution of (Y 1, Y 0) as the quantity var(Y 1 − Y 0) mentioned
previously. Like the OTR-VIMs above, the TE-CDF is generally not pathwise differentiable, hence Levy
and van der Laan (2018) focus instead on a kernel smoothed analogue of β(t). It is mentioned by Levy
et al. (2021) that, provided τp > 0, then Chebyshev’s inequality implies

β(0) ≤ Λ ≡ Θp
τ2p
.

Thus, the VTE is also of scientific interest since it can be used to bound β(0), informing investigators
about the marginal probability of negative CATEs once a positive ATE has been established. Estimation
of Λ could be carried out using estimating equations estimators, as in the current work, or targeted
methods (Levy et al., 2021), using the IC for Λ,

{φ(Z)− τp}2 − {φ(Z)− τ(X)}2 − Λτp{2φ(Z)− τp}
τ2p

.

Such estimators are beyond the scope of the current work, though we refer the interested reader to
Appendix D for a sketch of the details for the former.

Continuous treatments

The idea of treating the CATE as a statistical functional that we would like to summarise enables similar
VIM estimands to be defined in settings where one is interested in other statistical functionals. For
instance, Hines et al. (2021a) propose an analogue of the CATE

λ(x) ≡ cov(A, Y |X = x)

var(A|X = x)
,

which is well defined even when A is a continuous exposure, and which identifies the CATE under standard
causal assumptions (consistency, positivity, exchangeability) when A is binary, i.e. λ(x) = µ(1, x)−µ(0, x).
One might, therefore, extend the ATE, VTE, and TE-VIMs to continuous exposures by defining the
estimands: E{λ(X)}, var{λ(X)}, and

E[var{λ(X)|X−s}]
var{λ(X)}

,

which reduce to their CATE counterparts when A is binary. The ICs for these estimands are obtained by
replacing the pseudo-outcome φ(z) with

[y − µ(x)− λ(x){a− π(x)}] a− π(x)
var(A|X = x)

+ λ(x)

which reduces to φ(z) when A is binary. See Appendix D for details.

5.6 Conclusion

We propose TE-VIMs, which extend the VIM framework of Williamson et al. (2021b) to include the
CATE as a functional of interest. These have immediate applications to the analysis of observational and
clinical trial data, and provide insight into scientific questions related to treatment effect heterogeneity.
Our methods complement VTE analyses, which quantify treatment effect heterogeneity (Levy et al., 2021).
We derive efficient estimating equation estimators which are amenable to data-adaptive estimation of



71 Chapter 5. Variable importance estimands

working models. These are broadly applicable, since they are not tied to a particular model or regression
algorithm, unlike existing proposals based on causal random forests (Athey et al., 2019).

We elucidate links between our estimators and regression-VIM counterparts, by interpreting our
estimators in terms of pseudo-outcomes (Kennedy, 2020). We believe pseudo-outcome based approaches
might generalise to other statistical functionals, where analogous pseudo-outcomes could be derived. For
instance, ‘derivative effect VIMs’ could be derived which are well defined for continuous exposures and
which identify the proposed TE-VIMs when the exposure is binary (Hines et al., 2021a), or VIMs for
policy learning could be developed using double robust scores (Athey and Wager, 2021).

We recommend that TE-VIM inference be incorporated into a more broad treatment effect analysis,
where primary interest is in inferring the ATE and VTE. We believe that VTE inference should form part
of a primary analysis, since the ATE and VTE may be used to bound the marginal probability of adverse
CATEs, and since it is possible that the population ATE is zero, but some (or indeed all) individuals
experience a large CATE. One may then infer TE-VIMs as part of a secondary analysis, when large
treatment effect heterogeneity cannot be ruled out, since TE-VIM estimands are not of scientific interest
when there is little variability in the CATE to account for.
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Chapter 6

Nonparametric score testing

6.1 Introduction

Over recent decades, a theory of nonparametric inference has developed which allows regular asymptotically
linear (RAL) estimators to be constructed for nonparametrically defined estimands, even when data
adaptive/ machine learning methods are used to fit nuisance functionals. Estimation of the average
treatment effect (ATE) of a binary treatment on outcome represents a canonical example in which data
adaptive/ machine learning methods can be used to estimate e.g. the conditional mean outcome or the
propensity score given covariates. Provided that the target estimand is ‘pathwise differentiable’, there are
two prevailing strategies for constructing efficient point estimators: one-step bias correction estimators
(also called ‘double/ debiased machine learning’ estimators) (Chernozhukov et al., 2018) and ‘targeted
learning’ estimators (TMLE) (van der Laan and Rubin, 2006). Both strategies produce point estimators
that are RAL and hence consistent and asymptotically normal with a variance characterised by the efficient
influence curve (IC) of the target estimand (also called the influence function or pathwise derivative).

Asymptotic normality of the estimator usually forms the basis of subsequent inference, with Wald
confidence intervals (CIs) and hypothesis tests constructed using an estimate of the variance of the point
estimator. Like in the parametric setting, nonparametric Wald CIs have several limitations. Firstly, they
are generally not invariant to ‘differentiable reparametrisations’ of the estimand. For example, consider
the variance of treatment effect (VTE) estimand, which has recently been proposed as a (non-negative)
global measure of treatment effect heterogeneity (Levy et al., 2021). In general, the Wald CI obtained
by treating the VTE as the target estimand is different to the CI obtained by squaring the values in a
Wald CI for the square root of the VTE, even though both intervals represent a CI for the VTE. This is
problematic since it can lead to conclusions which depend on the scale on which the target estimand is
defined.

Secondly, Wald CIs require knowledge of the IC up to constants of proportionality that are the same
for all observations. The population quantile of a continuous random variable is a canonical example where
this is the case. It is well documented, for example, that estimation of the variance of the population
quantile estimator requires estimation of the probability density at the quantile of interest (Mosteller,
1946).

Finally, an appealing property of TMLE estimators, compared with one-step bias correction estimators,
is that they deliver ‘plug-in’ point estimates that respect the constraints of the estimand and which are
invariant to differentiable reparameterisations of the target estimand. For instance, a TMLE estimator of
the VTE is guaranteed to be non-negative (Levy et al., 2021), and the square root of this VTE estimator
provides a RAL estimator for the root-VTE. This is not the case for one-step bias correction estimators
of the VTE (Chapter 5). Whilst TMLE point estimators necessarily represent plug-in values, the same
cannot be said of the values contained in the subsequent Wald CIs, even when centred on a TMLE plug-in
estimator. This means that, in finite samples, Wald CIs can include values outside the parameter space
e.g. negative VTE estimates or probability estimates outside [0, 1] etc..

The TMLE strategy is so-called since it treats the IC as if it were the parametric score function in a
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likelihood model. TMLE estimators essentially construct and then maximise a parametric quasi-likelihood
function with the IC as its score. Interpreting the IC as if it were a score function also forms the basis of
our approach, where we formally extend score testing results to nonparametric estimands, and propose a
CI estimation strategy which inverts the proposed nonparametric score tests.

Our approach builds on related hypothesis testing frameworks from the generalised methods of moments
(GMM) literature (Dufour et al., 2017; Newey and Smith, 2004; Hansen et al., 1996; Newey and West,
1987), where a set of moment conditions is used to perform inference. In the parametric model setting,
these moment conditions usually correspond to derivatives of the log-likelihood function (i.e score functions)
and classical parametric Wald, score, and likelihood ratio tests are obtained. In the nonparametric setting,
we propose deriving similar hypothesis tests by treating the IC itself as a moment condition, i.e. a function
of the data distribution which is known to have mean zero. A brief review of the relevant GMM literature
can be found in Appendix E.3.

The remainder of the paper will be structured as follows. In Section 6.2 we review nonparametric
Wald confidence interval estimation. We show how one can obtain requisite point estimators and variance
estimators using so-called one-step bias correction and TMLE. In Section 6.3 we propose a new score test
statistic and demonstrate, through worked examples, how this alleviates concerns regarding the fact that
Wald intervals are not invariant to reparameterisations of the estimand under differentiable mappings.
In Section 6.4 we propose a novel interval estimation procedure, for ‘complicated settings’, i.e. those
where the statistic depends on infinite dimensional parameters (functions) of the unknown data generating
mechanism. Our proposal makes use of parametric submodel results, similar to those found in the TMLE
literature. Finally in Section 6.5 a simulation study is carried out.

6.2 Preliminaries

6.2.1 Wald type confidence sets

Suppose we have n iid observations z1, ..., zn of Z ∼ P0 which follows an unknown distribution P0 ∈M,
whereM denotes the nonparametric model. We consider a d-dimensional estimand Ψ :M 7→ Rd, with
associated IC, ϕ(Z,P0), which is a mean-zero statistical functional, i.e. P0{ϕ(Z,P0)} = 0, where P0{.}
denotes expectation under P0. An estimator Ψ̂ of Ψ(P0) is said to be regular asymptotically linear (RAL)
if

Ψ̂−Ψ(P0) = Un(P0) + rn (6.1)

Un(P ) ≡ n−1
n∑
i=1

ϕ(zi, P )

where rn = oP (n
−1/2) is a remainder term and Un : M 7→ Rd is defined for any P ∈ M. In Section

6.2.2 we describe how RAL estimators can be constructed from an initial distribution estimator P̂n of P0,
though for our discussion of Wald type confidence sets, the exact form of Ψ̂ is not important. Letting
I0 ≡ P0

{
ϕ(Z,P0)ϕ

⊤(Z,P0)
}
, it follows from the central limit theorem that, as n→∞

√
nUn(P0)

d→ N (0, I0)

=⇒
√
n{Ψ̂−Ψ(P0)}

d→ N (0, I0)

where N (µ,Σ) denotes a multivariate normal distribution with mean µ and covariance matrix Σ. When
I0 is non-singular, this result can be expressed through the quadratic form

n{Ψ̂−Ψ(P0)}⊤I−1
0 {Ψ̂−Ψ(P0)}

d→ χ2
d (6.2)

where χ2
d denotes a χ2 distribution with d degrees of freedom. Supposing a consistent non-singular

estimate of the variance În = I0 + oP (1) the left hand side above is estimated by the ‘Wald statistic’

nŴn(Ψ(P0)) ≡ n{Ψ̂−Ψ(P0)}⊤Î−1
n {Ψ̂−Ψ(P0)}

d→ χ2
d.
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This result forms the basis of nonparametric Wald tests for null hypotheses of the form H0 : Ψ(P0) = ψ0.
The Wald test for H0 rejects at significance level α if

nŴn(ψ0) > c2α

where c2α denotes the 1− α quantile of the χ2
d distribution. A Wald confidence set at significance level α

is defined as the set of ψ0 values which do not satisfy the inequality above, i.e. the set of estimand values
which cannot be rejected at level α by the Wald test. For d = 1 this results in the familiar Wald CI

Ψ̂± cα

√
În
n

(6.3)

where a± b denotes the interval (a− b, a+ b).

6.2.2 One-step bias correction and TMLE point estimators

A common strategy for constructing RAL estimators is to consider the so-called plug-in estimator Ψ(P̂n),
where P̂n represents an initial estimate of P0 obtained from the observed data (Hines et al., 2022; Kennedy,
2022). Consider the decomposition

Ψ(P̂n)−Ψ(P0) = Un(P0)−Un(P̂n) + rn (6.4)

which holds in general if we make no assumptions about the remainder term rn. This decomposition
is the so-called Von Mises expansion of the estimand and usually it can be shown that rn = op(n

−1/2)

when certain statistical functionals of P̂n converge (in the large sample limit) to their P0 counterparts
at sufficiently fast rates. Additionally it is often assumed that some statistical functionals of P̂n and P0

are bounded and that ϕ(z, P̂n) forms a Donsker class. Remainder terms of the type in (6.4) are usually
analysed on a case-by-case basis and we will assume that requisite assumptions on P̂n are satisfied such
that rn = op(n

−1/2).

The expansion in (6.4) is very nearly that of the RAL estimator in (6.1), except for the term Un(P̂n),
which we call the ‘plug-in bias’. The plug-in bias is generally non-zero and generally not op(n

−1/2).
Fundamentally there are two popular strategies to account for plug-in bias and hence derive RAL
estimators for Ψ(P0).

The first strategy, known as one-step bias correction or double/ debiased machine learning (Cher-
nozhukov et al., 2018), considers debiasing the plug-in estimator in the estimand space. In particular, (6.4)
implies that the estimator Ψ̂ = Ψ(P̂n) +Un(P̂n) is RAL. Since the IC represents a pathwise derivative,
the one-step estimation strategy can be thought of as performing a single Newton-Raphson update to the
initial plug-in estimator. This strategy is popular due to its simplicity once the IC has been derived, and
once it has been shown that rn = op(n

−1/2).
The second strategy, TMLE (van der Laan and Rubin, 2006) considers debiasing the plug-in estimator

in the distribution spaceM rather than the estimand space. Specifically, the goal of TMLE is to obtain
a new estimate P̂ ∗

n of P0 which is, in some sense, ‘close’ to the initial estimate P̂n and is chosen such
that Un(P̂

∗
n) = 0. Some TMLE estimators actually set Un(P̂

∗
n) = op(n

−1/2), though we will mostly

ignore this detail. In Section 6.4.1 we describe in more detail how P̂ ∗
n is obtained with reference to a

parametric submodel containing P̂n. By (6.4), the resulting TMLE estimator Ψ(P̂ ∗
n) represents a RAL

plug-in estimator.
TMLE estimators immediately provide an estimator In(P̂

∗
n) for the covariance I0 where

In(P ) ≡ n−1
n∑
i=1

ϕ(zi, P )ϕ
⊤(zi, P ). (6.5)

In contrast, the variance estimator associated with one-step estimators must also account for plug-in bias,
e.g. by using the ‘mean corrected’ covariance estimator Ĩn(P̂n) of I0 where

Ĩn(P ) ≡ n−1
n∑
i=1

{ϕ(zi, P )−Un(P )}{ϕ(zi, P )−Un(P )}⊤ (6.6)
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or else by using a non-plug-in estimator for ϕ(z, P0). Note that In(P ) and Ĩn(P ) are positive definite
by construction, provided that none of the components of ϕ(zi, P ) are zero (or for the mean corrected
variance estimator, constant) for all i, or linearly dependant. Additionally, Ĩn(P ) = In(P )−Un(P )U⊤

n (P )
by definition.

6.2.3 Invariance to reparametrization of point estimates

Consider a differentiable function h : Rd 7→ Rq, with q ≤ d, and suppose that our goal is to find a point
estimate for h{Ψ(P0)}. Since the IC is a pathwise derivative, it follows by the chain rule that the IC of
P 7→ h{Ψ(P )} at P0 is

∇h{Ψ(P0)}ϕ(Z,P0)

where ∇h(.) denotes the Jacobian of h(.). Following the strategies in the previous Section, we presume
an initial estimate P̂n of P0 has been obtained, and that the remainder term in (6.4) is op(n

−1/2). The
one-step bias corrected estimate of h{Ψ(P0)} is

h{Ψ(P̂n)}+∇h{Ψ(P̂n)}Un(P̂n) = h{Ψ(P̂n)}+∇h{Ψ(P̂n)}{Ψ̂−Ψ(P̂n)}

where Ψ̂ = Ψ(P̂n) +Un(P̂n) is the one-step bias correction estimate of Ψ(P0). We interpret the right
hand side above as a first-order Taylor approximation of h(Ψ̂), i.e. the estimate of h{Ψ(P0)} obtained by
first estimating Ψ(P0) by Ψ̂ then applying h(.). Unfortunately, evaluating h(Ψ̂) is not always feasible
since there is no general guarantee that Ψ̂ lies in the domain of h(.), for instance if h(u) = log(u) is
the logarithmic function and Ψ̂ is a negative scalar, i.e. Ψ(P̂n) < −Un(P̂n). This non-invariance is
problematic since it generally leads to conclusions that depend on the scale on which the estimand is
defined, though this problem diminishes with sample size.

Conversely, the TMLE estimator is invariant to differentiable reparameterisations of the estimand. To
see why, note that if a targeted distribution P̂ ∗

n has been obtained such that Un(P̂
∗
n) = op(n

−1/2), then

∇h{Ψ(P̂ ∗
n)}Un(P̂ ∗

n) = op(n
−1/2)

and h{Ψ(P̂ ∗
n)} is an RAL estimator of h{Ψ(P0)}. Intuitively, the invariance of the TMLE estimator

arises since the debiasing of the plug-in estimator Ψ(P̂n) occurs in the distribution space rather than
the estimand space, and hence the targeted distribution estimator P̂ ∗

n inadvertently debiases the initial
distribution estimator P̂n for any estimand that has an IC ∝ ϕ(Z,P0). By the linearity of the pathwise
derivative, this class includes estimands of the form h{Ψ(P0)}.

In Appendix E.1 we show how Wald CIs are not invariant to differentiable reparameterisations of the
type h(.) above, even when centred on a TMLE point estimator that is invariant to such reparameterisations.

6.3 Score intervals

6.3.1 Score statistic proposal

Here we propose non-parametric score-type confidence sets, so called because they rely on test statistics
similar to those used in score tests from likelihood based inference. Following the discussion on Wald
intervals in Section 6.2.1, we consider a Wald statistic where the initial estimator Ψ̂ is replaced with the
asymptotically equivalent ’estimator’ Ψ̂∗ ≡ Ψ̂− rn. Whilst the Ψ̂ estimator is RAL in the sense that the
remainder term rn vanishes asymptotically (at faster than 1 over root-n rate), Ψ̂∗ is exactly linear in the
sense that there is no remainder term at all.

It is, however, not possible to evaluate Ψ̂∗ since rn, cannot be estimated without knowing the true
distribution P0. With this caveat, we consider a Wald-type statistic centred on Ψ̂∗

{Ψ̂∗ −Ψ(P0)}⊤Î−1
n {Ψ̂∗ −Ψ(P0)} = U⊤

n (P0)Î
−1
n Un(P0)
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Next we suppose that one could estimate the covariance I0 with the linear estimator În = In(P0). Like
Ψ̂∗ the estimator In(P0) can only be evaluated when P0 is known. This procedure results in a the statistic
nMn(P0), where we define the ‘score statistic’

Mn(P ) ≡ U⊤
n (P )I−1

n (P )Un(P ). (6.7)

with nMn(P0)
d→ χ2

d. We therefore interpret Mn(P0) as a Wald statistic that uses unobtainable linear

estimators for Ψ(P0) and I0. Compared with the Wald statistic Ŵn(Ψ(P0)) previously, the score statistic
Mn(P0) can be function of P0 through any arbitrary statistical functionals, not just the target estimand
Ψ(P0). This makes testing the null hypothesis Ψ(P0) = ψ0, and constructing the implied confidence
for Ψ(P0), generally non-trivial. Instead, we generally propose using the score statistic to construct a
confidence set in distribution space M̂ ⊆M, which implies a confidence set for Ψ(P0) in the estimand
space. In particular, we reject distributions for which the score statistic exceeds the threshold c2α/n,
though in Appendix E.2 we discuss alternative, but asymptotically equivalent, score statistic thresholds.
The validity of this approach is justified by the Theorem 5 below.

Theorem 5 (Confidence Set Mapping) Let M(P ) be a statistic such that Pr{M(P0) ≤ c2α/n} ≥
1− α. Let M̂ ≡

{
P ∈M|M(P ) ≤ c2α/n

}
denote a confidence set overM then,

Pr
[
Ψ(P0) ∈ Ψ[M̂]

]
≥ 1− α

where Ψ[.] denotes the image under Ψ(.).

Proof 1 Letting Ψ−1[A] denote the preimage of A under Ψ(.), i.e. the set of distributions which map to
estimand values in A, then

Pr{Ψ(P0) ∈ Ψ[M̂]} = Pr{P0 ∈ Ψ−1[Ψ[M̂]]}

By definition, M̂ ⊆ Ψ−1[Ψ[M̂]] hence,

Pr{P0 ∈ Ψ−1[Ψ[M̂]]} = Pr(P0 ∈ M̂) + Pr{P0 ∈ Ψ−1[Ψ[M̂]] \ M̂} ≥ 1− α.

where we have used the fact that Pr(P0 ∈ M̂) ≥ 1− α

Theorem 5 is significant as it justifies using the score statistic Mn(P ) to construct confidence sets
in the space of distributions, and that these sets necessarily imply valid confidence sets in the space of
estimand values.

6.3.2 Invariance to reparameterisation of the score statistic

The score statistic Mn(P0) is particularly appealing since it is invariant to smooth reparameterisations
of the estimand. To see why, consider replacing ϕ(Z,P ) with ϕ̃(Z,P ) = Jϕ(Z,P ), where J is a q by d
matrix with Rank(J) = q and q ≤ d. Under this transformation

Ũn(P ) = JUn(P )

Ĩn(P ) = JIn(P )J
⊤

Hence,

M̃n(P ) = Ũ
⊤
n (P )Ĩ−1

n (P )Ũn(P )

= U⊤
n (P )J⊤(JIn(P )J

⊤)−1JUn(P )

= U⊤
n (P )Bn(P )I

−1
n (P )Un(P )
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whereBn(P ) = J⊤(JIn(P )J⊤)−1JIn(P ) is a d by d projection matrix with Rank{Bn(P )} = Trace{Bn(P )} =
q. It follows that M̃n(P0)

d→ χ2
q, and, when q = d then Bn(P )I

−1
n (P ) = I−1

n (P ) and hence M̃n(P ) =
Mn(P ).

This invariance is useful, since it implies that the IC ϕ(Z,P ) must be known only up to constants
of proportionality, and hence Mn(P ) is invariant under differentiable reparameterisations of the type
Ψ̃(P0) = h{Ψ(P0)} where h : Rd 7→ Rd is a known differentiable function with non-singular Jacobian
J(P ) = ∇h{Ψ(P )}. This is the case since the IC of Ψ̃(P0) is J(P0)ϕ(Z,P0) and J(P0) can be treated as
a constant of proportionality.

The following two examples make use of this property to derive CIs for the simple weighted mean
and for the population quantile. For the latter, our proposed CIs do not involve density estimation as is
usually required for estimating the standard error in the quantile.

Example 1: Weighted mean

Consider that Z = (Y,W ) consists of an outcome Y ∈ R and a known weight W ∈ R. Define the target
estimand as the weighted mean Ψ(P0) = P0(WY )/P0(W ), where it is assumed that P0(W ) ̸= 0. This
estimand has IC

ϕ(Z,P0) =
YW −Ψ(P0)W

P0(W )
∝ YW −Ψ(P0)W

In constructing the score statistic we note that P0(W ) is a non-zero constant of proportionality which
could be discarded, however for the purposes of illustration we include it in our analysis here. The IC
above implies

Un(P ) =
θn

P{W}
{ψn −Ψ(P )}

In(P ) =

(
θn

P{W}

)2 [
σ2
n + βn{ψn −Ψ(P )}2 + 2γn{ψn −Ψ(P )}

]
where we define the summary statistics

θn ≡ n−1
n∑
i=1

wi, ψn ≡ θ−1
n n−1

n∑
i=1

yiwi,

σ2
n ≡ θ−2

n n−1
n∑
i=1

(yiwi − ψnwi)2, βn ≡ θ−2
n n−1

n∑
i=1

w2
i ,

γn ≡ θ−2
n n−1

n∑
i=1

(yiwi − ψnwi)wi.

It follows that Mn(P ) ≤ c2α/n becomes

Mn(P ) =
{ψn −Ψ(P )}2

σ2
n + βn{ψn −Ψ(P )}2 + 2γn{ψn −Ψ(P )}

≤ c2α
n

For this simple nonparametric estimand, the statistic Mn(P ) depends on P only through the target
estimand Ψ(P ). It is therefore easy to solve the inequality above to construct a CI for Ψ(P0). Specifically,
the inequality holds for all Ψ(P ) in the interval ψn + an ± bn where

an =
c2αγn

n− c2αβn

bn =

√
c2ασ

2
n

n− c2αβn
+ a2n
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We see that for cα = 0 we obtain the point estimate ψn that would be expected. The term an, however,
acts as an O(n−1) term that shifts the centre of the CI away from ψn. The term bn is of the form

bn =

√
c2ασ

2
n

n
+ oP (n

−1/2)

hence to order oP (n
−1/2) we obtain the standard Wald interval ψn ± cασnn−1/2.

Example 2: Population quantile

Let Z = Y ∈ R be a continuously distributed random variable. Let Ψ(P0) be the τth quantile of Y , which
has IC,

ϕ(Y,Ψ) =
τ − {1−Θ(Y −Ψ(P0))}

p0(Ψ(P0))
∝ τ − {1−Θ(Y −Ψ(P0))}

where we define the step function Θ(u) = 1 for u ≥ 0 and 0 otherwise, and p0(y) is the marginal density
of Y under P0. Constructing Wald CI for Ψ(P0) is difficult since one is required to estimate the density at
the point estimate, p0(Ψ̂). The density, however, appears as a proportionality constant in the IC, hence
can be disregarded in the score statistic. Discarding this factor gives

Un(P ) = τ − Fn(P )
In(P ) = τ2 + (1− 2τ)Fn(P )

where Fn(P ) = n−1
∑n
i=1 1−Θ(yi −Ψ(P )) represents the empirical CDF at Ψ(P ). It follows that

Mn(P ) =
{τ − Fn(P )}2

τ2 + (1− 2τ)Fn(P )
≤ c2α

n

which is an inequality that depends on P only through Ψ(P ). This inequality is satisfied by all Ψ(P ) such
that Fn(P ) is in the interval

Fn(P ) ∈ τ −
c2α
n

(
τ − 1

2

)
± cα√

n

√
τ(1− τ) + c2α

n

(
τ − 1

2

)2

To illustrate this result we consider setting τ = 1/2, in which case Ψ(P0) is the population median and
the interval for Fn(P ) above reduces to

Fn(P ) ∈
1

2
± cα

2
√
n

We argue that this is asymptotically equivalent to the Wald CI for the median since, letting Qn(τ) denote
the τth empirical quantile and p̂(y) denote an estimate of p0(y), we use the hand-waving argument that

Ψ(P ) ∈ Qn
(
1

2
± cα

2
√
n

)
≈ Qn

(
1

2

)
± cα

2
√
n

dQn(τ)

dτ
|τ=1/2

≈ Ψ̂± cα√
n

1

2p̂(Ψ̂)
.

This argument is ‘hand-waving’ since the empirical quantile function is not differentiable. The score based
CIs derived in this example are similar to existing nonparametric quantile CI estimators e.g. (Frey and
Zhang, 2017; Hutson, 1999; Lanke, 1974), in the sense that both methods deliver CIs which are bounded
by a pair of empirical quantiles. Existing methods, however, appeal to a theory of so-called fractional
order statistics (Stigler, 1977) to derive the boundary quantiles of interest, whereas we frame the problem
using score tests.
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6.4 Complicated estimands

Examples 1 and 2 above can be thought of as ‘simple’ nonparametric estimands in the sense that the score
statistics Mn(P ) associated with each of these estimands is a function of P only through the estimand
Ψ(P ). This is typically not the case as we illustrate in the next example, where we construct the score
statistic associated with the ATE.

Example 3: Average treatment effect (ATE)

Let Z = (Y,A,X) consist of an outcome Y ∈ [0, 1], an exposure A ∈ {0, 1}, and a vector of covariates
X ∈ Rp. Generally the ATE is defined in the same way for Y ∈ R, however for the latter we can scale
the outcome to be in [0, 1] via the transformation Y 7→ (Y − a)/(b− a) where a and b are minimum and
maximum outcomes respectively, obtained from the data or known a priori. Letting Ya denote the outcome
that would have been observed if one sets A = a, then the ATE is defined as E(Y1 − Y0). Under standard
causal assumptions of consistency (A = a =⇒ Y = Y a), conditional exchangeability (Y a ⊥⊥ A|X for
a = 0, 1), and positivity (0 < π(X) < 1 w.p.1), the ATE is identified by Ψ(P0) ≡ P0{µ0(1, X)−µ0(0, X)},
where µ0(a, x) ≡ EP0(Y |A = a,X = x). The ATE has IC,

ϕ(Z,P0) = µ0(1, X)− µ0(0, X)−Ψ(P0) + {Y − µ0(A,X)}β0(A,X)

where, letting π0(x) ≡ EP0
(A|X = x), we define,

β0(A,X) ≡ A− π0(X)

π0(X){1− π0(X)}
.

This IC is more complicated than those in Examples 2 and 3 since it depends on P0 through Ψ(P0)
and through the unknown statistical functionals µ0(1, X), µ0(0, X) and π0(X). It follows that for some
distribution P

Un(P ) = ψn(P )−Ψ(P ) + θn(P )

In(P ) = σ2
n(P ) + {ψn(P )−Ψ(P )}2 + 2θn(P ){ψn(P )−Ψ(P )}

where, letting µ(a, x) and β(a, x) denote analogues of µ0(a, x) and β0(a, x) under P , we define

ψn(P ) = n−1
n∑
i=1

µ(1, xi)− µ(0, xi)

θn(P ) = n−1
n∑
i=1

{yi − µ(ai, xi)}β(ai, xi)

σ2
n(P ) = n−1

n∑
i=1

[µ(1, xi)− µ(0, xi)− ψn(P ) + {yi − µ(ai, xi)}β(ai, xi)]2

Hence the score statistic is written

Mn(P ) =
{ψn(P )−Ψ(P ) + θn(P )}2

σ2
n(P ) + {ψn(P )−Ψ(P )}2 + 2θn(P ){ψn(P )−Ψ(P )}

which is a complicated function of P . We will return to this example after a discussion of inference
strategies related to TMLE.

6.4.1 Parametric submodels and TMLE

TMLE point estimators, described in Section 6.2.2, require obtaining a targeted distribution P̂ ∗
n from an

initial distribution P̂n such that Un(P̂
∗
n) = 0. In the last couple of decades, targeting learning methods
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have been developed which address this task (van der Laan and Gruber, 2016). Building on these methods,
we consider a parametric submodel P̂n,ϵ, which is a set of distributions with indexing parameter ϵ ∈ Rd,
that contains the initial distribution estimate at ϵ = 0, i.e. P̂n,0 = P̂n. In the original description of
TMLE and one-step TMLE, ϵ ∈ R is a univariate parameter, however, we consider a vector parameter ϵ,
so that P̂n,ϵ describes a richer submodel.

TMLE point estimators also require specification of a ‘loss-function’ l(z, P ), which implies a sample
loss

Ln(P ) ≡ n−1
n∑
i=1

l(zi, P ).

When l(z, P ) is a negative log-likelihood, the resulting estimator is referred to as a targeted maximum
likelihood estimation estimator. The key insight, which follows from similar results on so-called ‘one-step
TMLE’, is that one can construct the submodel to satisfy the differential equation

∂Ln(P̂n,ϵ)

∂ϵ
= Un(P̂n,ϵ). (6.8)

with the boundary condition P̂n,0 = P̂n. If this equation is satisfied then for P̂ ∗
n ≡ P̂n,ϵ∗ , where

ϵ∗ = argmin
ϵ∈Rd

Ln(P̂n,ϵ),

Un(P̂
∗
n) = 0 and Ψ(P̂ ∗

n) is a RAL estimator of Ψ(P0). This estimator is a ‘minimum loss-based’ in the
sense that the sample loss Ln(P̂n,ϵ) is minimised over the submodel. Variations in this method include
‘local’ TMLE and ‘one-step’ TMLE, where the differential equation (6.8) is respectively replaced with

∂Ln(P̂n,ϵ)

∂ϵ

∣∣∣
ϵ=0

= Un(P̂n) (6.9)

∂Ln(P̂n,ϵ)

∂ϵ
= ||Un(P̂n,ϵ)|| (6.10)

where ||.|| denotes the euclidean norm, and ϵ ∈ R is a univariate parameter. The euclidean norm appears
in (6.10) so that the resulting parametric submodel is indexed by a univariate parameter ϵ, even when the
estimand (and hence plug-in bias) have dimenstion d > 1. Parametric submodels satisfying (6.10), and
the boundary condition P̂n,0 = P̂n are referred to as ‘universally least favourable’ submodels, whereas
those satisfying (6.9), with the same boundary condition, are referred to as ‘locally least favourable’. We
remark that the locally least favourable submodels are not guaranteed to contain distributions for which
the plug-in bias Un(P ) is small.

Example 3 continued: ATE point estimators

Point estimation of the ATE using one-step bias correction estimators and TMLE estimators is now
somewhat of a canonical problem in the literature on inference for nonparametric estimands. It is helpful
to revisit this problem here to inform the discussion on interval estimation in Section 6.4.2. Rather than
estimating a full distribution P̂n of P0, Mn(P0) is a function of P0 only through µ0(a, x), π0(x) and
Ψ(P0). It is sufficient therefore to obtain initial estimates for µ0(a, x) and π0(x), which we denote µ̂(a, x)
and π̂(x), and to define P̂n such that the marginal covariate distribution follows the empirical covariate
distribution. This implies an initial plug-in estimator of the ATE Ψ(P̂n) = ψn(P̂n), where the previous
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summary statistics under P̂n evaluate to

ψn(P̂n) = n−1
n∑
i=1

µ̂(1, xi)− µ̂(0, xi)

θn(P̂n) = n−1
n∑
i=1

{yi − µ̂(ai, xi)}β̂(ai, xi)

σ2
n(P̂n) = n−1

n∑
i=1

[
µ̂(1, xi)− µ̂(0, xi)− ψn(P̂n) + {yi − µ̂(ai, xi)}β̂(ai, xi)

]2
and where β̂(a, x) is obtained by replacing π0(x) with π̂(x) in the expression for β0(a, x). It follows
that Un(P̂n) = θn(P̂n) and In(P̂n) = σ2

n(P̂n), hence the one-step bias correction estimator of the ATE is
Ψ̂ = ψn(P̂n) + θn(P̂n). This estimator is RAL given assumptions on the remainder term, with variance
estimated by

n−1Ĩn(P̂n) = n−2
n∑
i=1

[
µ̂(1, xi)− µ̂(0, xi)− Ψ̂ + {yi − µ̂(ai, xi)}β̂(ai, xi)

]2
The one-step bias correction estimator of the ATE suffers from the invariance problems described in Section
6.2.3. Instead, one may prefer a TMLE estimator which is invariant to differentiable reparameterisations
of the ATE. Consider parametric submodels associated with the logistic loss function

l(zi, P̂n,ϵ) ≡ −yi log{µ̂ϵ(ai, xi)} − (1− yi) log{1− µ̂ϵ(ai, xi)}

where µ̂ϵ(ai, xi) denotes the estimate of µ0(ai, xi) under the parametric submodel P̂n,ϵ, with univariate

parameter ϵ ∈ R such that P̂n,0 = P̂n. In the current setting, the differential equation in (6.8) becomes

∂

∂ϵ

{
n−1

n∑
i=1

l(zi, P̂n,ϵ)

}
= θn(P̂n,ϵ)

=⇒ n−1
n∑
i=1

∂l(zi, P̂n,ϵ)

∂ϵ
− {yi − µ̂ϵ(ai, xi)}β̂ϵ(ai, xi) = 0

where β̂ϵ(ai, xi) denotes β0(a, x) evaluated under P̂n,ϵ. This differential equation is satisfied, along with

the boundary condition P̂n,0 = P̂n, by setting the marginal covariate distribution under P̂n,ϵ equal to the

empirical covariate distribution, setting β̂ϵ(a, x) = β̂(a, x), and defining

Logit{µ̂ϵ(a, x)} = Logit{µ̂(a, x)}+ ϵβ̂(a, x). (6.11)

where Logit represents the logistic function. The targeted distribution estimator, for the logistic loss
function, is then obtained as P̂ ∗

n = P̂n,ϵ∗ where ϵ∗ = argminϵ∈R Ln(P̂n,ϵ). This targeted distribution

implies the TMLE point estimator for the ATE Ψ(P̂ ∗
n) = ψn(P̂

∗
n) with variance estimated by n−1In(P̂

∗
n) =

n−1σ2
n(P̂

∗
n). In the next section, we outline how a score type interval can be constructed using similar

parametric submodels.

6.4.2 Proposal: Detargeted interval estimation

Our proposed score testing procedure, which we call detargeted interval estimation (DIE), is outlined in
Algorithm 1. This algorithm makes use of parametric submodels, of the type described in Section 6.4.1
centred on a targeted distribution estimator P̂ ∗

n rather than an initial estimator P̂n. DIE is so called
since, we imagine moving in distribution space (but within a parametric submodel) away from the TMLE
distribution point estimator P̂ ∗

n , until the resulting ‘detargeted’ distribution estimator can be rejected on
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the basis of a score test at significance level α. This procedure results in a set of non-rejected distributions
(which represent a subset of the parametric submodel), which can be mapped to a set of non-rejected
estimand values, i.e. a confidence set for Ψ(P0) with significance level α.

We consider a d dimensional estimand Ψ :M 7→ Rd, and assume that an initial targeted distribution
P̂ ∗
n , such that Un(P̂

∗
n) = 0, has already been obtained through a previous TMLE estimation procedure.

The DIE procedure is agnostic to exactly how the targeted distribution estimator is obtained, making
the procedure quite generic, i.e. applicable to various initial distribution estimators and TMLE targeting
strategies. Next we define a parametric submodel P̂ ∗

n,ϵ indexed by ϵ ∈ Rd such that P̂ ∗
n,0 = P̂ ∗

n . In the
‘universal’ version of our procedure (universal-DIE), we construct the parametric submodel to satisfy the
differential equation

∂Ln(P̂
∗
n,ϵ)

∂ϵ
= Un(P̂

∗
n,ϵ). (6.12)

which is analogous to (6.8). In the ‘local’ version of our procedure (local-DIE), the parametric submodel
is constructed such that

∂Ln(P̂
∗
n,ϵ)

∂ϵ

∣∣∣
ϵ=0

= Un(P̂
∗
n). (6.13)

which is analogous to the locally least-favourable model in (6.9).

Algorithm 1: Detargeted interval estimation

1. Use a TMLE algorithm to obtain a targeted distribution estimator P̂ ∗
n such that Un(P̂

∗
n) = 0.

2. Define a parametric submodel P̂ ∗
n,ϵ, indexed by ϵ ∈ Rd, such that P̂ ∗

n,ϵ = P̂ ∗
n and either (6.12)

or (6.13) is satisfied (this choice determines which flavour of the DIE procedure is used).

3. Use a numerical search procedure to find the values of ϵ such thatMn(P̂
∗
n,ϵ) ≤ c2α/n. In the case

of a d = 1 scalar estimand, it is sufficient to find the two value of ϵ such that Mn(P̂
∗
n,ϵ) = c2α/n.

4. Return the set of estimand values Ψ(P̂ ∗
n,ϵ) which satisfy the inequality in step 3. In the case

of a d = 1 scalar estimand, this will correspond to the interval bounded by the two ϵ values
described in step 3.

We remark that these parametric submodels, centred on the TMLE distribution estimator P̂ ∗
n , require

specification of a loss-function l(z, P ) to obtain the sample loss Ln(P ). Due to the ‘TMLE agnostic’
nature of our proposal, the DIE loss-function does not need to be the same as the loss-function that was
used to obtain P̂ ∗

n from an initial distribution estimator P̂n, though we will only consider examples for
which this is the case. Examples of the DIE procedure applied to standard causal estimands are provided
after the discussion of theoretical results below.

6.4.3 Theoretical properties

Consider a targeted distribution estimator P̂ ∗
n ∈ M such that Un(P̂

∗
n) = 0. The targeted distribution

estimator implies a targeted point estimator Ψ(P̂ ∗
n) of Ψ(P0), which is RAL when requisite assumptions

hold, e.g. consistency/ boundedness assumptions on P̂ ∗
n , and (e.g. Donsker) assumptions on the IC. Under

such assumptions, the covariance of Ψ(P̂ ∗
n) is estimated as n−1In(P̂

∗
n), implying a Wald confidence set for

Ψ(P0)

Ŵn ≡
{
ψ0 such that W ∗

n(ψ0) ≤
c2α
n

}
(6.14)

where we denote the Wald statistic

W ∗
n(ψ0) ≡ {Ψ(P̂ ∗

n)−ψ0}⊤I−1
n (P̂ ∗

n){Ψ(P̂ ∗
n)−ψ0}
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and c2α represents the 1− α quantile from the χ2
d distribution. Theorem 6 below describes how this Wald

statistic is asymptotically related to the score statistic when evaluated at certain plug-in estimand values.
In particular, the Theorem concerns distribution estimators which are in, some sense, close to the targeted
distribution estimator.

Theorem 6 (Score-Wald Asymptotic Equivalence) Let P̂ ∗
n be a targeted distribution estimator such

that Un(P̂
∗
n) = 0, the plug-in estimator Ψ(P̂ ∗

n) is RAL, and the covariance estimator In(P̂
∗
n) is consistent,

i.e. In(P̂
∗
n)

p→ I0 as n→∞. Further let P̃n be an alternative distribution estimator such that for δ > 0,

||Un(P̃n)|| < δ/
√
n, the covariance estimator In(P̃n)

p→ I0 is consistent, and the one-step bias correction
estimator Ψ(P̃n) +Un(P̃n) is RAL.

Under these conditions, W ∗
n(Ψ(P̃n))−Mn(P̃n) = op(n

−1).

Proof 2 Consider the difference in remainder terms from the von Mises expansion in (6.4), for the
plug-in estimators Ψ(P̃n) and Ψ(P̂ ∗

n)

Rn ≡
{
Ψ(P̃n)−Ψ(P0) +Un(P̃n)−Un(P0)

}
−
{
Ψ(P̂ ∗

n)−Ψ(P0) +Un(P̂
∗
n)−Un(P0)

}
(6.15)

= Ψ(P̂ ∗
n)−Ψ(P̃n)−Un(P̃n)

where, to obtain the second line, we use the fact that Un(P̂
∗
n) = 0. Since Ψ(P̂ ∗

n) and Ψ(P̃n) +Un(P̃n) are
RAL, Rn = op(n

−1/2). By algebraic manipulation

W ∗
n(Ψ(P̃n)) = {Un(P̃n) +Rn}⊤I−1

n (P̂ ∗
n){Un(P̃n) +Rn}

=Mn(P̃n) +U
⊤
n (P̃n){I−1

n (P̂ ∗
n)− I−1

n (P̃n)}Un(P̃n) + 2R⊤
n I

−1
n (P̂ ∗

n)Un(P̃n) +R
⊤
n I

−1
n (P̂ ∗

n)Rn

=Mn(P̃n) + op(n
−1)

which completes the proof. Note for the final equality that consistency of the covariance estimators implies

I−1
n (P̂ ∗

n)− I−1
n (P̃n)

p→ 0.

Corollary 6.1 Define the score set

S̃n ≡
{
Ψ(P̃n) such that Mn(P̃n) ≤

c2α
n

}
where P̃n is a distribution estimator satisfying the requirements of the main Theorem. The Wald set Ŵn

asymptotically contains the score set in the sense that ψ ∈ S̃n =⇒ ψ ∈ Ŵn (almost surely), and if there
exists P̃n such that Ψ(P̃n) = ψ, then ψ ∈ Ŵn =⇒ ψ ∈ S̃n (almost surely).

Theorem 6 and Corollary 6.1 asymptotically link the Wald confidence set Ŵn to the score set S̃n. This
is significant since the score set S̃n is defined independently of the targeted distribution estimator P̂ ∗

n . In
particular, the score set (asymptotically) represents the set of plug-in estimand values which are elements
of a Wald set that is centred on any targeted point estimate.

The ‘alternative’ distribution estimators in Theorem 6 effectively describe a region of distribution
space centred on some targeted distribution P̂ ∗

n . The requirement that the P̃n is ‘close’ to P̂ ∗
n , in the sense

of describing a RAL point estimator with small plug-in bias, suggests that this region might be interpreted
as a ball in estimand space, centred on the targeted distribution estimator, with a ‘radius’ that decreases
with n−1/2. In essence, the DIE procedure considers smooth parametric submodels which parameterise
this region/ ball. Corollary 6.2 describes how Theorem 6 applies to such parametric submodels. We
remark that Corollary 6.2 is agnostic to the exact form of the parametric submodel, as reflected in the
fact that the parametric submodels of Corollary 6.2 have an arbitrary parameter dimension q, which is
not necessarily the same as the dimension of the estimand d.

Corollary 6.2 (Score-Wald Asymptotic Equivalence for parametric submodels) Let P̂ ∗
n,ϵ be a

parametric submodel indexed by a parameter ϵ ∈ Rq such that P̂ ∗
n,0 = P̂ ∗

n and, assume that Un(P̂
∗
n,ϵ) is
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differentiable w.r.t. ϵ in a neighbourhood of ϵ = 0 and In(P̂
∗
n,ϵ) is continuous in the same neighbourhood.

For ϵ such that ||ϵ|| ≤ k/
√
n, where k > 0 is a constant, Mn(P̂

∗
ϵ )−W ∗

n(Ψ(P̂ ∗
ϵ )) = op(n

−1), and Corollary

6.1 applies where P̃n is replaced with P̂ ∗
n,ϵ.

To see why this Corollary is applicable to DIE score-intervals, despite the condition that ||ϵ|| ≤ k/
√
n,

we consider the Taylor-expansion of Mn(P̂
∗
ϵ ) about ϵ = 0

Mn(P̂
∗
ϵ ) = ϵ

⊤V ⊤
n (P̂ ∗

n,0)I
−1
n (P̂ ∗

n,0)Vn(P̂
∗
n,0)ϵ+O(ϵ3) (6.16)

where we define the d by q matrix

Vn(P̂
∗
n,0) =

dUn(P̂
∗
n,ϵ)

dϵ

∣∣∣
ϵ=0

and O(ϵ3) is short hand for higher order terms of the form
∑q
i=1

∑q
j=1

∑q
k=1 aijkϵiϵjϵk for some rank

3 tensor aijk. The Taylor expansion in (6.16) therefore implies that the inequality Mn(P̂
∗
ϵ ) ≤ c2α/n is

satisfied only by parameter values ϵ such that ||ϵ|| ≤ k/
√
n.

The requirement that the plug-in bias is differentiable, i.e. Vn(P̂
∗
n,0) exists, is perhaps more restrictive,

since it requires additional smoothness of the parametric submodel. It may be difficult to construct
such smooth parametric sub-models, for example, when the IC ϕ(Z,P0) is discontinuous, e.g. contains
indicator/ step functions. In the DIE examples, which we describe below, however, smoothness is easily
achieved, and we believe this will be the case for many estimands of interest. We remark that for
parametric submodels where (6.12) holds, the differentiability requirement of Corollary 6.2 is equivalent
to a smooth curvature requirement on the loss function

Vn(P̂
∗
n,0) =

d2Ln(P̂
∗
n,ϵ)

dϵ2

∣∣∣
ϵ=0

.

Given that Corollary 6.2 is agnostic to the parametric form of the submodel, P̂ ∗
n,ϵ, we recommend

that the main criteria for choosing a parametric submodel should be (i) smoothness, and (ii) the extent
to which a large estimand range is covered for small parameter values. The latter property motivates
parametric submodels which maximally change the estimand for small changes in the submodel index
parameter. Such models are described in the one-step TMLE procedure of van der Laan and Gruber
(2016), motivating the parametric submodels in the proposed DIE procedure in Section 6.4.2.

Example 3 continued: DIE for the ATE

Let P̂ ∗
n denote the targeted distribution estimator derived for the ATE above. This distribution is defined

through the functions µ̂∗(a, x) and β̂∗(a, x), which denote µ0(a, x) and β0(a, x) evaluated under P̂ ∗
n .

Additionally, the marginal covariate distribution under P̂ ∗
n is equal to the empirical (observed) covariate

distribution. Consider a parametric submodel P̂ ∗
n,ϵ for ϵ ∈ R such that for all ϵ, β̂∗

ϵ (a, x) = β̂∗(a, x),

Logit{µ̂∗
ϵ (a, x)} = Logit{µ̂∗(a, x)}+ ϵβ̂∗(a, x) (6.17)

and the marginal covariate distribution under P̂ ∗
n,ϵ is equal to the empirical distribution. This parametric

submodel satisfies the boundary condition that P̂ ∗
n,ϵ = P̂ ∗

n and, for the logistic loss function, also satisfies
the requirements for both the universal-DIE and local-DIE submodels in (6.12) and (6.13) respectively.
The fact that the ‘universal’ and ‘local’ submodels coincide is unsurprising, given similar observations for
TMLE point estimators of the ATE (van der Laan and Gruber, 2016).

We remark that the DIE submodel P̂ ∗
n,ϵ is equal to the parametric submodel used for TMLE estimation

of the ATE in (6.11) since,

Logit{µ̂∗
ϵ (a, x)} = Logit{µ̂(a, x)}+ (ϵ∗ + ϵ)β̂(a, x)
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where ϵ∗ is the value obtained during the TMLE estimation algorithm, and we have used the fact that
β̂∗(ai, xi) = β̂(ai, xi).

The next step of the DIE algorithm is to find all ϵ satisfying the inequality

Mn(P̂
∗
n,ϵ) =

θ2n(P̂
∗
n,ϵ)

σ2
n(P̂

∗
n,ϵ)
≤ c2α

n

Since, for small ϵ, Mn(P̂
∗
ϵ ) behaves like O(ϵ2), the inequality above is bounded by two ϵ values which can

be obtained numerically e.g. using Newton-Raphson iteration/ grid search/ bisection method. Letting
ϵ1 and ϵ2 denote the two boundaries of this inequality, then the resulting CI for the ATE Ψ(P0) is
(ψn(P̂

∗
ϵ1), ψn(P̂

∗
ϵ2)), which is asymptotically equivalent to the Wald interval ψn(P̂

∗
0 )± cασn(P̂ ∗

0 )/
√
n.

Example 4: Mean counterfactual outcomes

In this example we consider a d = 2 dimensional estimand, which uses the same setup as in Example 3. In
particular we consider inference for Ψ(P0) = (Ψ1(P0),Ψ2(P0)) with components Ψ1(P0) = P0{µ0(1, X)}
and Ψ2(P0) = P0{µ0(0, X)}. These estimands have ICs ϕ(Z,P0) = (ϕ1(Z,P0), ϕ2(Z,P0)) with

ϕ1(Z,P0) = µ0(1, X)−Ψ1(P0) + {Y − µ0(A,X)}β0(A,X)A

ϕ2(Z,P0) = µ0(0, X)−Ψ2(P0) + {Y − µ0(A,X)}β0(A,X)(A− 1)

Using these ICs one can construct Un(P ) and In(P ) and hence the score statistic for the joint counterfactual
means Mn(P ). As in Example 3, we consider an initial distribution estimator P̂n. In fact this initial
distribution estimator can be the same as the one used in Example 3, since the Mn(P0) is a function of
P0 only through µ0(a, x), π0(x) and the marginal covariate distribution.

As in Example 3, we construct a targeted distribution estimator P̂ ∗
n such that Un(P̂

∗
n) = 0. This can

be achieved, for instance, by minimising the logistic-loss over a parametric submodel P̂n,ϵ, for ϵ ∈ R2,
which is defined such that, for all ϵ, the marginal covariate distribution is equal to the empirical covariate
distribution, β̂ϵ(a, x) = β̂(a, x), and

Logit{µ̂ϵ(a, x)} = Logit{µ̂(a, x)}+ {aϵ1 + (a− 1)ϵ2}β̂(a, x) (6.18)

It is straight forward to verify that this parametric submodel satisfies the boundary condition that
P̂n,0 = P̂n and the differential equations in both (6.10) and (6.9). We remark that the parametric
submodel for the ATE in (6.11) represents a submodel of the (6.18) such that ϵ1 = −ϵ2 is a univariate
parameter. The targeted distribution P̂ ∗

n is obtained as the element of the parametric submodel which
minimises the logistic-loss Ln(P̂n,ϵ) over ϵ.

Using the targeted distribution estimator P̂ ∗
n one can now construct DIE intervals. As with the DIE

intervals for the ATE, our local-DIE and universal-DIE intervals will coincide. Consider a parametric
submodel P̂ ∗

n,ϵ, for ϵ ∈ R2, which is defined such that, for all ϵ, the marginal covariate distribution is

equal to the empirical covariate distribution, β̂∗
ϵ (a, x) = β̂∗(a, x), and

Logit{µ̂∗
ϵ(a, x)} = Logit{µ̂∗(a, x)}+ {aϵ1 + (a− 1)ϵ2}β̂∗(a, x) (6.19)

Again this is very similar to parametric submodel used for TMLE, i.e. (6.18), but centred on the targeted
distribution estimator, rather than the initial distribution estimator. As for the ATE, one can show that
(6.19) and (6.18) are in fact the same parametric submodel, however this not a requirement of the DIE
proposal.

Finally, the DIE confidence set of mean counterfactual outcomes is the set

Ŝn =

{
Ψ(P̂ ∗

n,ϵ) for ϵ ∈ R2 such that Mn(P̂
∗
n,ϵ) ≤

c2α
n

}
.

This could be estimated by numerical methods, or else using a grid search. Since P̂ ∗
n,ϵ is a d = 2 dimensional

estimand, this set will correspond to a region on the plain, which is visualised example of which is provided
in Figure 6.2, which relates to the simulation study in Section 6.5.
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Example 5: Variance of treatment effect (VTE)

Consider the same setup as in Example 3 and define the conditional average treatment effect (CATE) by
E(Y1 − Y0|X = x). Under the same causal assumptions, this is identified by τ0(x) = µ0(1, x)− µ0(0, x).
Suppose that interest is in obtaining a CI for the VTE Ψ(P0) = var{τ0(X)} = P0{τ20 (X)} − P0{τ0(X)}2,
with IC

ϕ(Z,P0) = {τ0(X)−Θ(P0)}2 −Ψ(P0) + 2{Y − µ0(A,X)}{τ0(X)−Θ(P0)}β0(A,X)

where Θ(P0) = P0{τ0(X)} denotes the ATE. Using these ICs one can construct Un(P ) and In(P ) and
hence the score statistic for the VTEMn(P ). We remark that when τ0(X) is constant, i.e. under treatment
effect homogeneity, then ϕ(Z,P0) = 0 and I0 = 0. When this is the case then nMn(P0) does not converge
to a χ2

1 distributed random variable. Inference in such a setting remains generally an open problem that
has motivated the study of higher-order pathwise derivatives of the estimands, e.g. Carone et al. (2018).
For this reason, we consider inference under the assumption that Ψ(P0) > 0.

Consider the same initial distribution estimator P̂n from Examples 3 and 4. We obtain a targeted
distribution estimator from P̂n using a one-step TMLE algorithm, similar to the one described by Levy
et al. (2021), which we outline here. Consider the parametric submodel P̂n,ϵ for ϵ ∈ R such that, for

all ϵ, the marginal covariate distribution under P̂n,ϵ is equal to the empirical covariate distribution,

β̂ϵ(a, x) = β̂(a, x) and τ̂ϵ(x) = µ̂ϵ(1, x)− µ̂ϵ(0, x) where, letting θ̂t = Θ(P̂n,ϵ) denote the plug-in estimator

for the ATE under P̂n,ϵ, the conditional mean µ̂ϵ(a, x) is defined through the differential equation

d

dϵ
Logit{µ̂ϵ(a, x)} = 2β̂(a, x){τ̂ϵ(x)− θ̂ϵ} (6.20)

=⇒ Logit{µ̂ϵ(a, x)} = Logit{µ̂(a, x)}+ 2β̂(a, x)

∫ ϵ

0

{τ̂t(x)− θ̂t}dt (6.21)

To obtain the integral expression above, the boundary condition P̂n,0 = P̂n is applied. One can verify
that this parametric submodel satisfies (6.8) for the logistic loss. The nonlinearity (with respect to ϵ)
of the differential equation in (6.20), however makes this parametric submodel difficult to work with in
practice. Unlike the conditional mean models in (6.11) and (6.18), the implicit expression for µ̂ϵ(a, x) in
(6.21) cannot easily be evaluated for given ϵ. To construct a numerical approximation to µ̂ϵ(a, x), we let
ϵ = (m+ 1)δ where m is an integer and δ represents a small step, and we replace the differential equation
in (6.20) with the finite step approximation

Logit{µ̂(m+1)δ(a, x)} = Logit{µ̂mδ(a, x)}+ 2δβ̂(a, x){τ̂mδ(x)− θ̂mδ}. (6.22)

Hence one may approximate µ̂ϵ(a, x) recursively, starting from the known value µ̂0(a, x) = µ̂(a, x). To
find the parameter value ϵ∗ such that Un(P̂n,ϵ∗) = 0, one could consider search algorithms where Un(P̂n,ϵ)
is approximated for a discrete set of values with a small (possibly dynamically chosen) step size. This
procedure results in a targeted distribution P̂ ∗

n and associated TMLE point estimator

Ψ(P̂ ∗
n) = n−1

n∑
i=1

{
τ̂∗(xi)−Θ(P̂ ∗

n)
}2

Θ(P̂ ∗
n) = n−1

n∑
i=1

τ̂∗(xi)

where τ̂∗(x) = µ̂∗(1, x)− µ̂∗(0, x) denotes the CATE τ0(x) evaluated under P̂ ∗
n .

To construct DIE intervals for the VTE, we start by building a parametric submodel P̂ ∗
n,ϵ around

the targeted distribution P̂ ∗
n , with univariate parameter ϵ. For the local-DIE procedure it is sufficient

to use a submodel where the marginal covariate distribution follows the empirical covariate distribution,
β̂∗
ϵ (a, x) = β̂∗(a, x) and

Logit{µ̂∗
ϵ (a, x)} = Logit{µ̂∗(a, x)}+ 2ϵβ̂∗(a, x){τ̂∗(x)− θ̂∗} (6.23)
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where θ̂∗ = Θ(P̂ ∗
n). This submodel is seen to satisfy the boundary condition that P̂ ∗

n,0 = P̂ ∗
n and (6.13)

for the logistic loss function. For the universal-DIE procedure, a more complicated submodel is required,
which is similar in spirit to (6.21). In particular, consider replacing (6.23) with

Logit{µ̂∗
ϵ (a, x)} = Logit{µ̂∗(a, x)}+ 2β̂∗(a, x)

∫ ϵ

0

{τ̂∗t (x)− θ̂∗t }dt

which satisfies (6.13) for the logistic loss function.

Regardless of which DIE procedure is used, the final step is to find all ϵ satisfying Mn(P̂
∗
n,ϵ) ≤

c2α
n . For

small ϵ, Mn(P̂
∗
ϵ ) behaves like O(ϵ

2), regardless of whether the local-DIE or universal-DIE submodel is
used. Hence, the inequality is bounded by two ϵ values which can be obtained numerically. Letting ϵ1 and
ϵ2 denote the two boundaries of this inequality, the resulting CI for the VTE Ψ(P0) is (Ψ(P̂ ∗

ϵ1),Ψ(P̂ ∗
ϵ2)),

which is asymptotically equivalent to the Wald interval Ψ(P̂ ∗)± cαIn(P̂ ∗)/
√
n. One important difference

between the two methods, however, is that the DIE interval is guaranteed to contain only positive VTE
values.

6.5 Simulation study

6.5.1 Population median

For this simulation study 106 iid datasets of size n ∈ {10, 20, ..., 250} were generated from

Y1 ∼ N (0, 1)

Y2 ∼ Gamma(1, 1)

Y3 ∼ Beta(5, 1)

and the target estimand was the population median of Y for each of Y1, Y2, Y3. 95% CIs for the population
median were estimated using the proposed score based approach in Example 2. In particular, the
boundaries of the interval

Qn

(
1

2
± cα

2
√
n

)
were estimated using linear interpolation of the empirical CDF. This was compared for three different
values of c2α according to the discussion in Appendix E.2. We compared the proposed score CIs against
naive Wald CIs which used linear interpolation of the empirical CDF to obtain a point estimate of the
median, and a kernel density estimator with a gaussian kernel and using ‘Silverman’s rule-of-thumb’ to
estimate the probability density at the median. The results of this simulation study can be seen in Figure
6.1.

These results suggest that the score based inference of the population median gives improved CI
coverage in finite samples compared with Wald based inference. Additionally, we see that the threshold
values c2α = qα,d and c2α = nBα,d,n give similar results, with both demonstrating an improvement over the
value c2α = q̃α,d,n, which is based on the mean-corrected score statistic.

6.5.2 Causal effects

For this simulation study 103 iid datasets of size n ∈ {500, 1000, ...5000} were generated from the structural
equation model

X1, X2, X3 ∼ Uniform(−1, 1)
A ∼ Bernoulli{Expit(−0.4X1 + 0.1X3 + 0.1X1X2)}
Y ∼ Bernoulli

{
Expit

(
−2−X1 +X1X2 + 2X2

2 +A(X2
1 (X1 + 1.4) + 2.8X2

2 )
)}
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Figure 6.1: Coverage for a 95% CI of the population median plotted against sample size. Each plot
represents a different outcome Y = Y1, Y2, Y3 respectively. Green, blue and red points represent score based
intervals respectively using the threshold values qα,d, q̃α,d,n and nBα,d,n as discussed in Appendix E.2, with
d = 1 and α = 0.05. Purple points represent coverage of the corresponding Wald based interval.

where Expit denotes the inverse logistic function. We consider construction of the 95% CI for the ATE, and
VTE, as in Examples 3 and 5, and construction of the 95% confidence set for the vector of mean potential
outcomes as in Example 4. For the latter a visual representation of a d = 2 dimensional confidence set
for a single dataset is provided in Figure 6.2. The true estimand values for the ATE, VTE and mean
potential outcomes were 0.25, 0.035 and (0.49, 0.24) respectively. This VTE value implies a root-VTE of
0.19, which is similar in magnitude to the ATE.

Two different learning methods were considered to obtain initial estimates of µ0(a, x) and π0(x).
The first used generalised additive models (GAMs), implemented in the mgcv package in R, and the
other used gradient boosting trees (GBTs), implemented in the xgboost package in R. Initial machine
learning fits were ‘targeted’ towards the relevant estimands using either one-step TMLE, or one-step cross
validated-TMLE (CV-TMLE) with k = 5 folds. The latter uses a cross-fitting strategy to control biases
related to over-fitting. Typically 10-20 folds is recommended in practice, but 5 folds were chosen for this
illustration to reduce computation time. The cross validation strategy of CV-TMLE is designed to avoid
overfitting of the working models since, e.g. µ0(ai, xi) is estimated by µ̂(−i)(ai, xi) where µ̂(−i)(., .) is
trained on a dataset which does not include the ith observation, with similar for π(−i)(xi).

Figures 6.3 and 6.4 show confidence set coverage against samples size and median CI width against
sample size for the intervals constructed around the TMLE and CV-TMLE targeted estimators respectively.
For the ATE and mean potential outcome vector interval estimators we observe similar results. In particular,
the intervals constructed using GAM learning achieve close to nominal (95%) coverage, with and without
cross validation and regardless of the interval construction method used (score vs. Wald). For the GBT
based learners, the score intervals exceed nominal coverage in the absence of cross validation and are
below nominal coverage when cross validated functional estimators are used, whereas the Wald intervals
display the opposite behaviour with regard to the effect of cross validation.

For the VTE both score interval types (local and universal) perform similarly, with insufficient evidence
to recommend one type over another. For the GAM based intervals, the proposed score methodology
achieves significantly improved CI coverage over Wald type intervals for all sample sizes. For GBT based
intervals, we observe poor CI coverage, though this is slightly improved in small samples when cross
validation is used. The poor coverage of GBT learner based intervals may be caused by the estimator of
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µ0(a, x) failing to converge at n1/4 rate, which is required for the TMLE estimator of the VTE to be RAL.
The improved coverage of the score type CI over the Wald type CI for the VTE could be explained by

the fact that, by construction the VTE has a finite support (VTE ≥ 0) hence normality of the TMLE
(and CV-TMLE) estimators may be hard to achieve in finite samples, despite asymptotic normality being
guaranteed in the asymptotic limit. Conversely, the asymptotic distribution of the score test statistic is
unaffected by the finite support of the estimand.

6.6 Conclusion

We have proposed a new method constructing confidence intervals for nonparametric estimands based
on score testing. Our framework is theoretically appealing since it is based on test statistics that are
invariant to differentiable reparameterisations of the target estimand and do not require estimation of
scaling constants which appear in the IC. In simple cases, such as the weighted mean and the population
quantile in Examples 1 and 2, our statistic is a function of the unknown data generating distribution only
through the estimand of interest. As such, we derive simple confidence intervals which are seen to be
asymptotically equivalent to their Wald counterparts, except with certain small sample size corrections.
Moreover, we present, to our knowledge, a novel confidence interval estimator for population quantiles,
which performs well (in terms of coverage in finite samples) in simulations.

In more complicated settings, such as when the target estimand is the ATE, joint counterfactual mean,
or VTE as in Examples 3, 4, and 5 respectively, our score test statistic also depends on infinite dimensional
parameters (i.e. functions) of the unknown data generating mechanism. In such settings, we demonstrate
that it is sufficient to restrict the space of considered distributions to a parametric submodel centred on a
TMLE point estimator. We call our proposal detarged interval estimation (DIE) since it constructs an
interval by ‘detargeting’ (i.e. making worse) a TMLE point estimator, until a null hypothesis test (based
on our score statistic) is rejected.

In a simulation studies, our DIE interval estimators show improved coverage compared to Wald type
intervals, in settings where the target estimand has a bounded support, e.g. the VTE. We reason that
this behaviour occurs because approximate normality of the point estimator is rarely achieved in finite
samples when the true value of the target estimand is close to the boundary of the support. Our DIE
interval estimators also perform reasonably for the ATE and joint counterfactual mean, where the bounded
support of the estimand is less of a concern. In particular, DIE intervals tend to be narrower than their
Wald counterparts, for a modest decrease in coverage.

We have also identified two future lines of enquiry which could show promise. Firstly, just as TMLE
follows likelihood based inference once a parametric submodel has been constructed, our proposed DIE
interval estimators follow GMM based inference once a parametric submodel has been constructed around a
TMLE distribution estimator. Connecting nonparametric inference and TMLE to the GMM is potentially
significant since it is possible that other GMM techniques could be applied to nonparametric inference
problems, e.g. empirical likelihoods and exponentially tilted GMM estimators (Owen, 1988; Qin and
Lawless, 1994; Kitamura and Stutzer, 1997; Imbens, 1997; Corcoran, 1998; Imbens, 2002; Newey and
Smith, 2004).

Secondly, unlike Wald statistics, it is possible to evaluate the proposed nonparametric score statistics
for a given distribution estimator, without having to additionally provide a targeted distribution estimator.
This opens the possibility for using score statistics to be used to enhance targeting during the distribution
estimation itself, e.g. by comparing (possibly on an independent/ validation sample) two candidate
distribution estimators for the initial distribution and selecting the one which requires the least targeting
(in the sense of having the smaller p-value under a score test).
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Figure 6.2: Graphical representation of d = 2 dimensional confidence set as in Example 4. This example
used one dataset of size n = 2000 and is centred on a CV-TMLE (k = 5) initial targeted fit, with requisite
models obtained using GBTs. The upper plot shows the confidence set over the parameter ϵ = (ϵ1, ϵ2),
where the origin ϵ = (0, 0) represents the CV-TMLE estimate of the mean potential outcome vector
Ψ(P0) ≡ (P0{µ0(1, X)}, P0{µ0(0, X)}). Colours indicate the P-value of the corresponding score statistic
nMn(P̂

∗
ϵ ), according to an asymptotic χ2

2 distribution. The lower plot shows the same confidence set
represented on the estimand scale, i.e Ψ(P̂ ∗

ϵ ), with the true estimand value Ψ(P0) marked by the orange
point.
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Figure 6.3: Coverage (left column) and median CI width (right column) vs. sample size n for 95% score and
Wald based confidence sets for the ATE (top row), VTE (second row), and mean potential outcome vector
(bottom row). For the latter estimand no CI width plot is shown since the width of a d = 2 dimensional
confidence set is not well defined. CI widths have been scaled by n1/2. Blue and red points represent Wald
and score based intervals respectively. In the second row of plots, red and green points represent the score
based interval using a ‘local’ and ‘universal’ parametric submodel respectively. All parametric submodels
are centred on a TMLE initial targeted fit, with requisite models obtained using GAMs (circular points)
and GBTs (triangular points).
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Figure 6.4: Coverage (left column) and median CI width (right column) vs. sample size n for 95% score and
Wald based confidence sets for the ATE (top row), VTE (second row), and mean potential outcome vector
(bottom row). For the latter estimand no CI width plot is shown since the width of a d = 2 dimensional
confidence set is not well defined. CI widths have been scaled by n1/2. Blue and red points represent
Wald and score based intervals respectively. In the second row of plots, red and green points represent
the score based interval using a ‘local’ and ‘universal’ parametric submodel respectively. All parametric
submodels are centred on a CV-TMLE (k = 5) initial targeted fit, with requisite models obtained using
GAMs (circular points) and GBTs (triangular points).
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Chapter 7

Optimally weighted average derivative
effects

7.1 Introduction

Weighted average derivative effects (ADEs), also called average partial effects, were originally motivated
for the estimation of parameters in index models (Härdle and Stoker, 1989; Powell et al., 1989; Newey and
Stoker, 1993), a problem of substantial practical interest in econometrics, with additional uses in assessing
the law of total demand in economics (Härdle et al., 1991) and in policy learning (Athey and Wager,
2021). ADEs are often estimated under a parametric model for the conditional expectation function
µ(x) = E(Y |X = x), where Y is an outcome and X is a covariate vector. Using the parametrised model,
the derivative, dµ(x)/dx, may be easily computed. This forms the basis for several estimators of the
weighted ADE vector, θ = E{w(X)dµ(X)/dX}, where w(X) is a weight function (Wooldridge and Zhu,
2020; Hirshberg and Wager, 2018).

The validity of parametric estimators, however, relies on correct specification of functional forms for
µ(x), which may be hard in practice. For this reason, nonparametric approaches were developed based on
the observation that, under standard assumptions, integration by parts yields, θ = E{l(X)µ(X)} , where

l(x) = −dw(x)
dx

− w(x)

f(x)

df(x)

dx
(7.1)

and f(x) is the joint density of X. This result is well studied in the literature and is used to obtain
plug-in estimators for θ where f(x) is replaced with a kernel density estimate (Härdle and Stoker, 1989;
Powell et al., 1989; Newey and Stoker, 1993; Cattaneo et al., 2010, 2013). The reliance on kernel methods,
however, introduces complicated biases as the dimension of Z increases, due to the curse of dimensionality
(Cattaneo et al., 2013).

Aside from the unitary weight w(x) = 1, which implies l(x) = −{f(x)}−1df(x)/dx, the so-called
density weight w(x) = f(x) is also popular (Powell et al., 1989; Cattaneo et al., 2010). These weights are
designed to avoid inverse density weighting, since, for this choice, l(x) = −2df(x)/dx.

In the current paper we extend the idea of selecting a weight function to facilitate inference. Rather
than focusing on inference of the weighted ADE vector θ, we consider optimal weighting strategies to
infer a single component, θ = θj . This problem is of particular interest since many practical analyses are
interested in the main effect of a single continuous exposure, A = Xj , (e.g. dose, duration, frequency),
whilst accounting for other covariates (i.e. excluding the jth) Z = X−j , which may or may not be
continuous. We illustrate such a setting in Section 7.8, with an applied example...

Our proposal shifts the emphasis away from specifying a weight function w(x), towards specifying a
function l(x) = lj(x) that implies a well-defined weighted ADE under standard conditions. We derive
functions l(x) which are optimally efficient in the sense of delivering an estimand θ with minimal efficiency
bound under the nonparametric model in the class of weighted ADE estimands (Newey and Stoker, 1993).
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Our efficiency arguments build on similar optimal weighting strategies for weighted average treatment
effects (ATEs) (Crump et al., 2006, 2009). Specifically, we show that two such weighted ADE estimands,
which we call ‘least squares estimands’, are,

ψ = E

{
cov(A, Y |Z)

var(A|Z)

}
(7.2)

and

Ψ =
E {cov(A, Y |Z)}
E {var(A|Z)}

, (7.3)

when A is continuous and dµ(X)/dA exists; unlike weighted ADEs, these estimands remain well defined
even when A is discrete or µ(x) is not differentiable. We motivate Ψ as an optimally efficient weighted
ADE, in a sense described in Section 7.5. In Section 7.6, estimators for ψ and Ψ are derived which attain
the efficiency bound under the nonparametric model. These estimators do not require estimation of f(x),
thus alleviating the aforementioned concerns regarding kernel density estimation.

The fact that ψ and Ψ are weighted ADEs is a surprising and novel contribution of our work. Both
estimands have been studied in various other contexts and in Section 7.4 we illustrate their connection to
non-parametric model projections (Chambaz et al., 2012; Buja et al., 2019). Additionally: Ψ appears in
the context of partially-linear model estimators (Vansteelandt and Dukes, 2022; Newey and Robins, 2018);
the numerator of Ψ is the ‘generalised covariance measure’ for conditional independence testing (Shah and
Peters, 2018); ψ has been used to estimate the ADE under conditionally linear modelling assumptions
(Hirshberg and Wager, 2018).

When A ∈ {0, 1} is binary, then ψ and Ψ respectively identify the ATE and the propensity overlap
weighted effect of A on Y when Z is sufficient to adjust for confounding (Crump et al., 2006, 2009; Robins
et al., 2008; Li et al., 2018; Kallus, 2020). Overlap weights (also known as variance weights) are motivated
for their utility in policy learning and for addressing limited overlap between the populations exposed to
A = 1 and A = 0. Inspired by the binary setting, we propose estimators for ψ, based on the R-learner of
the conditional ATE (Nie and Wager, 2021; Robinson, 1988).

7.2 Preliminaries

Suppose we have n iid observations, (o1, ...,on) of a random variable O distributed according to an
unknown distribution P , such that O consists of (Y,A,Z), where Y ∈ R is an outcome, A ∈ R is
a continuous covariate of interest which we call an ‘exposure’ and Z ∈ Rp is a p-dimensional vector
of covariates. Define the weighted ADE, θw = E{w(A,Z)µ′(A,Z)}, where µ(A,Z) ≡ E(Y |A,Z) has
derivative w.r.t. A, denoted µ′(A,Z), and w(A,Z) ≥ 0 is a weight such that k ≡ E{w(A,Z)} is positive
and finite. We say the weight is ‘normalised’ when k = 1.

Define w(Z) ≡ E{w(A,Z)|Z}, which implies the existence of an ‘exposure weight’ w(A|Z) ≥ 0 such
that w(A,Z) = w(A|Z)w(Z) and E{w(A|Z)|Z} = 1. In this way, the contribution of the exposure to
the weight w(A,Z) can be considered separately. Also, by definition, E{w(Z)} = k.

Invoking regularity conditions, Powell et al. (1989) showed that the weighted ADE can be rewritten
using integration by parts (see Appendix F). These conditions require that A is a continuous random
variable and thus has a conditional density function, f(a|z), given Z = z. We also require (C1) that the
derivative of w(a|z)f(a|z) w.r.t. a exists, (C2) that w(a|z)f(a|z) = 0 for a on the boundary of the support
of A, and (C3) that f(a|z) = 0 implies w(a|z) = 0. Under these conditions, θw = E{w(Z)l(A|Z)Y },
where,

l(a|z) = −w′(a|z)− w(a|z)f
′(a|z)
f(a|z)

(7.4)

and superscript prime denotes the derivative w.r.t. a. Just as the exposure weight w(a|z) separates the
contribution of a from the weight w(a, z), the function l(a|z) separates the contribution of a from (7.1),
in the sense that w(z)l(a|z) refers to a single component of (7.1).
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7.3 Contrast functions

A key contribution of the current paper is an inversion of (7.4), providing an expression for the exposure
weight w(a|z) associated with certain functions l(a|z), which we call contrast functions. The implication
of Theorem 7 below is a duality between the contrast function and the exposure weight, allowing new
weighted ADEs to be specified by their contrast functions rather than their weight functions. We define
a contrast function as an arbitrary function l(a|z) such that E{l(A|Z)|Z} = 0 and E{l(A|Z)A|Z} = 1.
The function in (7.4) satisfies these two conditions under assumptions (C1), (C2) and (C3).

Theorem 7 Let l(a|z) be a contrast function and let F (a|z) be the distribution function of A given
Z = z. Assume that f(a|x) > 0 for a on the convex support of A. Define,

w(a|z) = −E{l(A|Z)|A ≤ a,Z = z}F (a|z)
f(a|z)

. (7.5)

For all differentiable functions g(a, z),

E{l(A|Z)g(A,Z)|Z} = E{w(A|Z)g′(A,Z)|Z}

almost surely. Proof in Appendix F.

Corollary 7.1 Let w(Z) ≥ 0 be a weight such that k = E{w(Z)} ∈ (0,∞). The case g(A,Z) = µ(A,Z)
implies,

E{w(Z)l(A|Z)Y } = E{w(A,Z)µ′(A,Z)} (7.6)

where w(a, z) = w(z)w(a|z) with w(a|z) given in Theorem 7.

Corollary 7.1 is particularly significant, since it allows weighted ADEs to be defined by the left hand
side of (7.6), given limited restrictions on the function l(A|Z). The exposure weight implied in (7.5)
however, is not necessarily non-negative for an arbitrary contrast function. This is addressed in Lemma 4
which guarantees non-negativity when the contrast function is constructed from a monotonic function.
Consider that by centring and scaling some function, v(a, z), one may construct the contrast function,

l(a|z) = v(a, z)− E{v(A,Z)|Z = z}
cov{v(A,Z), A|Z = z}

(7.7)

provided that cov{v(A,Z), A|Z} ̸= 0 almost surely. It is easy to verify that this is a contrast function
in the sense that E{l(A|Z)|Z} = 0 and E{l(A|Z)A|Z} = 1. The weighted ADE associated with this
contrast function, according to (7.6), is,

θw = E

{
w(Z)

cov{v(A,Z), Y |Z}
cov{v(A,Z), A|Z}

}
. (7.8)

In Section 7.4 we motivate estimands of this type where v(a, z) = a. Trivially, when v(a, z) is itself a
contrast function then this expression recovers θw = E{w(Z)v(A,Z)Y } as on the left hand side of (7.6).

Lemma 4 (Sufficiency Condition for Weight Non-negativity) Let v(a, z) be a function which is
monotonically increasing or decreasing in a (but is not everywhere constant), for a on the support of A.
Then the contrast function in (7.7) implies a non-negative exposure weight as defined in (7.5). Proof in
Appendix F.

We illustrate the connection between the contrast function and the exposure weight in three examples.
Example 3 makes use of Corollary 7.1 and Lemma 4, to recover ψ and Ψ in (7.2) and (7.3). Both
estimands have interesting connections to existing literature (see Section 7.4), however, here we illustrate
that both estimands are weighted ADEs when A is continuous. This observation is a surprising and novel
contribution of our work.
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Example 1 (Average derivative effect (ADE)) The ADE with w(A|Z) = w(Z) = 1 was originally
proposed by Härdle and Stoker (1989). This results in the ADE, E{µ′(A,Z)} = E{l(A|Z)Y }, where

l(a|z) = −f
′(a|z)
f(a|z)

= −d log f(a|z)
da

(7.9)

is a contrast function. This estimand is normalised since E{w(A,Z)} = 1.

Example 2 (Density weighted ADE) Originally proposed by Powell et al. (1989), the density weighted
ADE sets the weight to the joint density of (A,Z), i.e. w(a, z) = f(a, z). This results in the weight
w(z) = f(z)E{f(A|Z)|Z = z} and exposure weight w(a|z) = f(a|z)/E{f(A|Z)|Z = z}, where f(z)
denotes the density of Z. The density weighted ADE is written E{w(A,Z)µ′(A,Z)} = E{w(Z)l(A|Z)Y },
where

l(a|z) = −2 f ′(a|z)
E{f(A|Z)|Z = z}

is a contrast function. This estimand is normalised to k = E{f(A,Z)}, hence the normalised density
weighted ADE is obtained by rescaling w(a, z) to f(a, z)/E{f(A,Z)} in which case w(z) = f(z)E{f(A|Z)|Z =
z}/E{f(A,Z)} and w(a|z) and l(a|z) are unchanged. This gives the normalised estimand,

E{f(A,Z)µ′(A,Z)}
E{f(A,Z)}

= −2E{f
′(A,Z)Y }

E{f(A,Z)}

Example 3 (Least Squares Estimands) The main effect estimands ψ and Ψ in (7.2) and (7.3) are
both weighted ADEs of the same type, in the sense that they share the same contrast function. We call these
‘least squares estimands’ due to their connection with the least squares problem (Section 7.4). Consider
the construction in (7.8), where v(a, z) = a, implying the contrast function and estimand,

l(a|z) = a− E(A|Z = z)

var(A|Z = z)

θw = E

{
w(Z)

cov(A, Y |Z)

var(A|Z)

}
where w(Z) is a non-negative weight. By Theorem 7, and using the total law of expectation, this contrast
function implies the exposure weight, w(a|z) = 0 if f(a|z) = 0 and

w(a|z) = F (a|z){1− F (a|z)}
f(a|z)var(A|Z = z)

{E(A|A > a,Z = z)− E(A|A ≤ a,Z = z)}

otherwise. This exposure weight is non-negative by Lemma 4. The estimand θw = ψ is recovered by setting
w(z) = 1. Setting w(z) = var(A|Z = z) gives the unnormalised estimand θw = E{cov(A, Y |Z)}, which is
normalised by setting w(z) = var(A|Z = z)/E{var(A|Z)}, i.e. the variance weight (Robins et al., 2008),
which recovers the estimand θw = Ψ.

7.4 Related literature

Here we describe how least squares estimands in Example 3 are connected to least squares projection, and
discuss other related observations. Consider a semi-parametric partially linear model, of the type studied
by Robinson (1988), where the model,Ma is the set of functions of the form ω(z) + βa, indexed by the
infinite dimensional parameter (β, ω), where ω : Rp 7→ R is a function and β ∈ R is a constant.

Our goal is to find the model projection µ̃(a) ∈Ma that is ‘nearest’ to the unknown regression function
µ(a, z) in the sense of minimising the mean squared remainder, E[{µ(A,Z)− µ̃(A,Z)}2], where we assume
that E{µ(A,Z)2} <∞. This notion of model projection is considered by Neugebauer and van der Laan
(2007) and Chambaz et al. (2012), who propose projections on to similar linear working models, and also



99 Chapter 7. Optimally weighted average derivative effects

by Buja et al. (2019) who consider likelihood based projections. Projecting the regression function on to
Ma gives,

µ̃(a)(A,Z) ≡ argmin
g∈Ma

E
[
{µ(A,Z)− g(A,Z)}2

]
= µ(Z) + Ψ{A− π(Z)}

where µ(z) ≡ E(Y |Z = z), and π(z) ≡ E(A|Z = z). Hence we say the estimand Ψ is a ‘least squares
estimand’ as it is the coefficient in a partially linear projection model which minimises the mean squared
remainder. Crucially the modelMa is used to interpret the nonparametrically defined estimand Ψ, but
we do not assume that the model is ‘true’, in the sense that we de not require that µ(a, z) ∈Ma.

The projection view of least squares estimands is further extended by considering the (more flexible)
conditionally linear working modelMb ⊇ Ma, which is the set of functions of the form ω(z) + ν(z)a,
indexed by the infinite dimensional parameter (ν, ω), where ν : Rp 7→ R is a function. Projecting the
regression function on toMb, as above gives,

µ̃(b)(A,Z) ≡ argmin
g∈Mb

E
[
{µ(A,Z)− g(A,Z)}2

]
= µ(Z) + λ(z){A− π(Z)}

λ(z) ≡ cov(A, Y |Z = z)

var(A|Z = z)

Hence the effects described in Example 3 are ‘least squares estimands’ since they represent weighted
averages over the conditional least squares function λ(z), i.e. they are of the form θw = E{w(Z)λ(Z)}.
This function has particular relevance to the setting where A ∈ {0, 1} is a binary treatment indicator,
since, in that setting it is generally true that µ(a, z) ∈ Mb, and λ(z) = µ(1, z) − µ(0, z) identifies the
conditional ATE.

The estimand Ψ also appears in Vansteelandt and Dukes (2022) who consider inference for the constant
term indexing h(µ(a, z)) ∈ Ma where h(.) represents a canonical link function. Rather than consider
model projection explicitly, they set out desirable properites of an estimand under model mispecification,
defining a nonparametric estimand which reduces to Ψ, in the case of an identity link. Similarly Ψ appears
elsewhere in the partially linear model setting without reference to projection (Newey and Robins, 2018;
Robins et al., 2008).

The fact that least squares estimands are weighted ADEs is a novel contribution of this work, however,
relates closely to three observations in the literature. The first, by Banerjee (2007), is that an estimator
of the vector ADE may be constructed by partitioning the support of X into disjoint bins, and applying
a linear regression to each bin. An ADE estimate is obtained by taking the average of these regression
coefficients, weighted by the number of observations in each bin. The second observation, by Buja et al.
(2019) is that the ordinary least squares (OLS) coefficient may be interpreted as a weighted sum of ‘slopes’
between pairs of observations, without invoking differentiability. Thirdly, Hirshberg and Wager (2018)
show that when the response function is conditionally linear, i.e. µ(a, z) ∈Mb, then ψ recovers the ADE.
The key difference between Hirshberg and Wager (2018) and the current work is that our interpretation
does not rely on any functional form for µ(a, z) beyond differentiability, rather we interpret ψ as an ADE
with a certain kind of weighting.

7.5 Efficiency optimisation

In this Section we consider choosing weights w(A,Z) to optimise estimation of θw = E{w(A,Z)µ′(A,Z)}.
We draw heavily on inference methods that are based on efficient influence curves (ICs) under the
nonparametric model, and recommend two recent tutorial papers for an introduction to these ideas (Hines
et al., 2022; Fisher and Kennedy, 2020). In brief, an IC is a model-free, mean zero, functional of the
true data distribution, which characterizes the sensitivity of a ‘pathwise differentiable’ estimand to small
changes in the data distribution. As such, ICs are useful for constructing efficient estimators and for
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understanding their asymptotic efficiency bounds. This efficiency bound is a property of the estimand
itself and is given by the variance of the IC, which is finite.

According to Newey and Stoker (1993), when the weight function, w(a, z) = w(a|z)w(z), is known
and (C1) and (C2) (Section 7.2) are assumed, the IC of θw is

ϕθ,w(o) = w(z)l(a|z){y − µ(a, z)}+ w(a, z)µ′(a, z)− θw (7.10)

where l(a|z) is the contrast function in (7.4) and o = (y, a, z). In Examples 2 and 3 the exposure weight
function is an unknown functional. However, the IC above, where the weight is known, offers some insight
into optimal weight selection. Our approach to efficiency optimisation is analogous to that described in
Crump et al. (2006, 2009) where optimal weights for the ATE are derived, and weights are assumed to be
known. When the outcome is homoscedastic, they show that variance weights are optimal.

We derive a similar result here. Specifically we minimize the efficiency bound of an efficient estimator,
θ̂w, of the sample analogue of θw,

θw,S = n−1
n∑
i=1

w(ai, zi)µ
′(ai, zi)

n1/2(θ̂w − θw,S)
d→ N (0, V )

V = E{w2(Z)l2(A|Z)σ2(A,Z)}

where σ2(A,Z) = var(Y |A,Z). The efficiency bound with respect to θw,S , rather than θw, is chosen so
that the final two terms in (7.10) may be disregarded. Not only does this simplify the subsequent analysis,
but these terms capture the difference between the ADE conditional on the sample distribution and that
of the population as a whole, which depends on the unknown value of θw. I.e.,

n1/2(θ̂w − θw)
d→ N (0, V + U)

U = E[{w(A,Z)µ′(A,Z)− θw}2]

thus selecting weights to minimise V + U is conceptually problematic as θw is itself the target estimand.
Theorem 7, offers constraints on the contrast function under which appropriate weights are obtained. Our
goal, therefore, is to minimise V subject to E{l(A|Z)|Z} = 0, E{l(A|Z)A|Z} = 1, and E{w(Z)} = 1,
with the final constraint ensuring that the resulting estimands are normalised. Unnormalised estimands
can be obtained by multiplying normalised estimands by a positive constant.

The optimal solution is given in general by Theorem 8, however there is no guarantee that the optimal
exposure weight is non-negative. When Y is conditionally homoscedastic, i.e. σ2(a, z) does not depend
on a, then the optimal exposure weight is non-negative, and when Y is homoscedastic, i.e. σ2(a, z) is
constant, then the optimal solution recovers Ψ.

Theorem 8 (Optimally weighted ADE) Minimizing the efficiency bound V = nvar{θ̂w − θw,S}, sub-
ject to the constraints, E{l(A|Z)|Z} = 0, E{l(A|Z)A|Z} = 1, and E{w(Z)} = 1, has the solution

l(a|z) = b1 − b0a
(b21 − b0b2)σ2(a, z)

w(z) = E

(
(b21 − b0b2)2

b21 − 2b0b1c1 + b20c2

)−1
(b21 − b0b2)2

b21 − 2b0b1c1 + b20c2

where bn = bn(z) = E{Anσ−2(A,Z)|Z = z} and cn = cn(z) = E{An|Z = z}. Proof in Appendix F.

Corollary 8.1 (Optimally weighted ADE under conditional homoscedasticity) When Y is ho-
moscedastic conditional on Z, i.e. σ2(a, z) = σ2(z), where σ2(z) = var(Y |Z = z) then the estimand
implied by Theorem 8 is

E{cov(A, Y |Z)/σ2(Z)}
E{var(A|Z)/σ2(Z)}
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For proof, observe that under conditional homoscedasticity, bn = cnσ
−2(z). Furthermore, when Y is

homoscedastic, i.e. σ2(a, z) is constant, then this optimal estimand recovers Ψ.

In practice, an estimate of the main effect of A on Y may be used to refute the null hypothesis that
Y ⊥⊥ A|Z. This hypothesis is hard to test, since any valid test has no power against any alternative (Shah
and Peters, 2018). Under the null, one is in the setting of Corollary 8.1. There is no reason, however, to
prefer a test based on the main effect of A on Y rather than the main effect of Y on A. The ‘Generalized
Covariance Measure’ proposed by Shah and Peters (2018) uses E{cov(A, Y |Z)} as a proxy to test for
independence. This is also the optimal solution we propose when σ2(a, z) is constant and has the appealing
property that it is invariant to swapping the roles of A and Y . The hardness of conditional independence
testing arises since it is possible that A and Y are not independent, but E{cov(A, Y |Z)} = 0. These tests
therefore have no power to test against such alternatives.

7.6 Estimation

7.6.1 Efficient estimators

Here we focus on efficient estimation of ψ and Ψ as in (7.2) and (7.3). Both are derivative effects of the
type described in Example 3 and share the same contrast function. The ICs of ψ and Ψ respectively are,

ϕψ(o) =
{a− π(z)}

β(z)
[y − µ(z)− λ(z){a− π(z)}] + λ(z)− ψ

ϕΨ(o) =
{a− π(z)}
E{β(Z)}

[y − µ(z)−Ψ{a− π(z)}]

where β(z) = var(A|Z = z). These ICs may be used to construct efficient estimating equation estimators
of ψ and Ψ by setting (an estimate of) the sample mean IC to zero. In the current setting, this strategy is
equivalent to the so-called one-step correction which we outline in Appendix F. For ψ and Ψ, we thus
obtain the estimators

ψ̂ = n−1
n∑
i=1

{ai − π̂(zi)}
β̂(zi)

[yi − µ̂(zi)− λ̂(zi){ai − π̂(zi)}] + λ̂(zi)

Ψ̂ =

∑n
i=1{ai − π̂(zi)}{yi − µ̂(zi)}∑n

i=1{ai − π̂(zi)}2
.

where superscript hat denotes fitted models obtained from an independent sample. In practice, a cross-
fitting approach may be used to obtain the fitted models and evaluate the estimators using a single sample
(Chernozhukov et al., 2018; Zheng and van der Laan, 2011). Theorem 9 below demonstrates that ψ̂ is
regular asymptotically linear when

(A1) The propensity score error, ||π − π̂|| is oP (n−1/4−δ) for some δ ≥ 0.

(A2) The outcome error, ||µ− µ̂|| is oP (n−1/4+δ).

(A3) The product of ||λ− λ̂|| and ||β − β̂|| is oP (n−1/2).

where, for some function f(z), we denote the L2(P ) norm ||f || ≡ E{f2(Z)}1/2. Similarly, Theorem 10
demonstrates that Ψ̂ is regular asymptotically linear under (A1) and (A2).

Theorem 9 Under (A1), (A2), (A3), and regularity assumptions given in Appendix F, ψ̂ is regular

asymptotically linear with IC, ϕψ(O), and hence ψ̂ converges to ψ in probability, and n1/2(ψ̂−ψ) converges
in distribution to a mean-zero normal random variable with variance E{ϕ2ψ(O)}.

Theorem 10 Under (A1), (A2), and regularity assumptions given in Appendix F, Ψ̂ is regular asymptot-
ically linear with IC, ϕΨ(O), and hence Ψ̂ converges to Ψ in probability, and n1/2(Ψ̂−Ψ) converges in
distribution to a mean-zero normal random variable with variance E{ϕ2Ψ(O)}.
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We remark that the estimator ψ̂ requires modelling the functions β(.) and λ(.), whereas the estimator
Ψ̂ does not, with Theorem 9 requiring (A3) to control the error in estimating β(.) and λ(.). This distinction
makes Ψ generally more straightforward to efficiently estimate than ψ. Assumption (A3) also demonstrates

that ψ̂ is ‘rate double robust’, in the sense that one may trade-off accuracy in λ̂(.) and β̂(.). In other
words, the λ(.) estimator can converge slowly, as long as the β(.) estimator converges sufficiently quickly,
and vice-versa.

Similar rate double robustness has been demonstrated previously for example in the augmented inverse
probability weighted (AIPW) estimator of the ATE (Robins, 1994), where one can trade-off accuracy
in the propensity score estimator and outcome estimator. With regards to (A1) and (A2), a similar
robustness is observed, since the µ(.) estimator can converge slowly, as long as the π(.) estimator converges
sufficiently quickly. The converse, however, is not true, since (A1) requires that π̂(.) converges to π(.) at
least at n1/4 rate.

In the setting where A ∈ {0, 1} is a binary exposure then ψ̂ reduces to the well-known augmented
inverse probability weighted (AIPW) estimator of the ATE (Robins, 1994), since λ(z) = µ(1, z)− µ(0, z)
is the conditional ATE, β(z) = π(z){1− π(z)}, and µ(z) + λ(z){a− π(z)} = µ(a, z), hence one obtains
the AIPW estimator,

ψ̂ = n−1
n∑
i=1

{ai − π̂(zi)}
π̂(zi){1− π̂(zi)}

{yi − µ̂(ai, zi)}+ µ̂(1, zi)− µ̂(0, zi)

It follows that ψ̂, and its asymptotic distribution in Theorem 9, represent a generalisation of the AIPW
estimator to the setting of continuous exposures. Indeed the estimation approaches which we consider in
Section 7.6.3 estimate the ATE when A is replaced with a binary exposure. The estimator Ψ̂ has been
studied before in the context of the ‘partialling out’ estimator of Robinson (1988) (see e.g. Newey and
Robins (2018); Vansteelandt and Dukes (2022)).

7.6.2 Nuisance function estimators

The estimator Ψ̂ is indexed by the choice of estimator for µ̂(.) and π̂(.), with the estimator ψ̂ additionally

indexed by the choice of estimator for λ̂(.) and β̂(.). Generally, we are not constrained to any particular
learning method, making these estimators amenable to data adaptive/ machine learning estimation of
these working models.

Data adaptive regression algorithms are well developed for the regularised regression of an observed
variable on to a set of explanatory variables, e.g. for the functions µ(.), and π(.) in the present context,
which can be estimated by respectively regressing Y and A on Z. For λ(.) and β(.), however, estimation
methods are less well developed, and we propose so-called meta-learning approaches, which estimate λ(.)
and β(.) by solving a series of regression problems.

In the setting where A ∈ {0, 1} is binary, λ(.) represents the conditional ATE, estimation of which is a
highly active area of research, with an emphasis on flexible machine learning methods (Abrevaya et al.,
2015; Athey and Imbens, 2016; Nie and Wager, 2021; Kallus et al., 2018; Wager and Athey, 2018; Künzel
et al., 2019; Kennedy, 2020). Estimation of the variance function β(.), is also of interest in the literature
with applications in constructing confidence intervals for the mean function π(.) and for estimating signal
to noise ratios (Shen et al., 2020; Wang et al., 2008; Cai et al., 2009; Verzelen and Gassiat, 2018). We
consider two approaches to estimating λ(.) and β(.).

The first approach, which we shall refer to as the direct learning approach, involves decomposing λ(.)
and β(.) into functions of conditional expectations, each of which can be estimated using standard regression

methods, with the estimates combined to produce λ̂(.) and β̂(.). Specifically, letting Ê{Y A|Z = z} and
Ê{A2|Z = z} denote estimates obtained by respectively regressing Y A and A2 on Z, we define nuisance
estimators

λ̂(z) =
Ê{Y A|Z = z} − µ̂(z)π̂(z)
Ê{A2|Z = z} − π̂2(z)

(7.11)

β̂(z) = Ê{A2|Z = z} − π̂2(z) (7.12)
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The issue with this direct approach, however, is that whilst regularization methods can be used to control
the smoothness of each individual regression function, there is no guarantee on the smoothness of λ̂(.)

and β̂(.). In practice these may be erratic functions due to artefacts of the regularization of the individual

regression functions. Additionally, there is no guarantee that β̂(.), which also represents the denominator

of λ̂(.), is greater than zero. This motivates an alternative approach where the complexities of λ̂(.) and

β̂(.) can be controlled directly, and one can ensure that β̂(z) > 0.

The second approach, which we shall refer to as the quasi-oracle learning approach, is a meta-learning
method based on the R-learner of the conditional ATE (Nie and Wager, 2021; Robinson, 1988). In our
description we make use of the following Lemma.

Lemma 5 Let O = (U , V,W ) be a random variable consisting of U ∈ Rd, V ∈ R, and W ∈ R with
W > 0 almost surely. Let F denote the set of functions g : Rd 7→ R. Then

E(V |U = u)

E(W |U = u)
= argmin

g(u)∈F
E

[
W

{
V

W
− g(U)

}2
]

(7.13)

where we say the part in the square brackets is to equal 0 when W = 0 and requisite moments of O are
assumed to be finite. See Appendix F for proof.

This Lemma connects the problem of estimating a ratio of conditional expectations, with minimisation
of a weighted mean squared error. For example, in the setting where W = 1, this Lemma then the right
hand side of (7.13) reduces to the familiar mean squared error. Similarly, the left hand side of (7.13)
recovers λ(z) in the setting where U = Z, W = {A− π(Z)}2 and V = {A− π(Z)}{Y − µ(Z)}.

This suggests that an estimator for λ(.) is obtained by regressing {Y − µ(Z)}/{A − π(Z)} on Z
with weights {A− π(Z)}2. We call this an ‘oracle’ estimator for λ(.), since it is the regression problem
that we would like to solve if these outcomes and weights were known. Instead, the R-learner of the
conditional ATE essentially mimics the oracle learner by first estimating µ(.) and π(.) using an independent
sample, then using these to estimate the unobserved outcomes and weights. This method is referred to as
‘quasi-oracle’ since it the error bound for the λ(.) estimator may decay faster those of the µ(.) and π(.)
estimators (Nie and Wager, 2021).

We propose a similar approach to learning β(.), which appears in our target estimator ψ̂ as an inverse
weight. Such inverse weighting may be problematic when β(zi) is in truth small, since small errors in

β̂(zi) could result in large differences in the value of 1/β̂(zi). This extreme weighting problem is well
documented in the context of inverse probability weighting estimators of the ATE (Kang and Schafer,
2007). Concerns regarding extreme weights, however, could be mitigated by regularizing the function

1/β̂(.) rather than β̂(.) itself. For this reason we consider that the left hand side of (7.13) recovers 1/β(z)
in the setting where U = Z, V = 1 and W = {A− π(Z)}2.

This suggests that an oracle estimator for 1/β(.) is obtained by regressing {A− π(Z)}−2 on Z with
weights {A − π(Z)}2. Like the R-learner, we propose a quasi-oracle learner which mimics this oracle
learner by first estimating π(.) using an independent sample, then estimating the oracle outcomes and
weights.

7.6.3 Proposed algorithms

The proposed working function estimators are implemented in Algorithms 1 and 2 below. The latter uses a
cross fitting regime to ensure that µ̂(zi), π̂(zi), λ̂(zi), and β̂(zi) are obtained using working models which
are constructed from a dataset that does not include the ith observation. This is useful in controlling the
so-called empirical process term (Chernozhukov et al., 2018; Zheng and van der Laan, 2011).

Algorithms 1 and 2 return the estimates {π̂i}ni=1, {µ̂i}ni=1, {λ̂i}ni=1, and {β̂i}ni=1, which can be used to
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obtain

ψ̂ = n−1
n∑
i=1

(ai − π̂i)
β̂i

{yi − µ̂i − λ̂i(ai − π̂i)}+ λ̂i

Ψ̂ =

∑n
i=1(ai − π̂i)(yi − µ̂i)∑n

i=1(ai − π̂i)2
,

with variances respectively estimated by n−2
∑n
i=1 ϕ

2
ψ,i and n

−2
∑n
i=1 ϕ

2
Ψ,i where

ϕψ,i =
(ai − π̂i)

β̂i
{yi − µ̂i − λ̂i(ai − π̂i)}+ λ̂i − ψ̂

ϕΨ,i =
(ai − π̂i)

η̂
{yi − µ̂i − Ψ̂(ai − π̂i)}

and η̂ ≡ n−1
∑n
i=1(ai − π̂i)2 is an estimate of E{β(Z)}. We note that where the algorithms require

regression estimates to be ‘fitted’, any suitable regression/ machine learning method can be used.

Both algorithms are also indexed by the choice of learner for λ̂(.) and β̂(.) in steps 2 and 3 of each
algorithm respectively, with the substeps marked (A) and (B) referring to the direct, and quasi-oracle
approaches. Note that the quasi-oracle methods do not themselves use sample splitting to learn the
unobserved outcomes and weights, due to the impracticality of excessive sample splitting in finite samples.
These steps do not need to be carried out for inference of Ψ̂ only.

For estimators such as Ψ̂, it has been suggested that faster convergence rates may be achieved through
additional sample splitting to ensure that µ̂(zi) and π̂(zi) are obtained from two different and independent
datasets, both of which do not contain the ith observation (Newey and Robins, 2018). We do not consider
such ‘double cross fitting’ here, since extensions, to estimate ψ, would require significant additional sample
splitting to estimate {λ̂i}ni=1 and {β̂i}ni=1, which may be impractical in finite samples.

Algorithm 1 - Without sample splitting

(1) Fit µ̂(z) and π̂(z). Use these fitted models to obtain µ̂i ≡ µ̂(zi) and π̂i ≡ π̂(zi).

(2) (A) Fit Ê{Y A|Z = z} and Ê{A2|Z = z} and use these to construct λ̂(z) and β̂(z) as in (7.11)

and (7.12). Or (B) obtain λ̂(z) and 1/β̂(z) respectively by regressing {Y − µ̂(Z)}/{X − π̂(Z)} and
{X − π̂(Z)}−2 on Z with weights {X − π̂(Z)}2 using all the data. After doing (A) or (B), use the

fitted models to obtain λ̂i ≡ λ̂(zi) and β̂i ≡ β̂(zi).

Algorithm 2 - With sample splitting

(1) Split the data into K folds.

(2) For each fold k: Fit µ̂(z) and π̂(z) using the data set excluding fold k. Use these fitted models to
obtain µ̂i ≡ µ̂(zi) and π̂i ≡ π̂(zi) for i in fold k.

(3) (A) Fit Ê{Y A|Z = z} and Ê{A2|Z = z} using the data set excluding fold k. and use these to

construct λ̂(z) and β̂(z) as in (7.11) and (7.12). Or (B) obtain λ̂(z) and 1/β̂(z) respectively by
regressing {Y − µ̂(Z)}/{X − π̂(Z)} and {X − π̂(Z)}−2 on Z with weights {X − π̂(Z)}2 using the

data set excluding fold k. After doing (A) or (B), use the fitted models to obtain λ̂i ≡ λ̂(zi) and
β̂i ≡ β̂(zi) for i in fold k. End for.

7.7 Simulation study

In our simulation study we compared Algorithms 1 and 2 for estimating Ψ and Algorithms 1A,1B, 2A and
2B for estimating ψ on generated data in finite samples, using K = 5 fold sample splitting. We generated
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1000 datasets of size n ∈ {500, 1000, ..., 4000} from the following structural equation model

Z1, Z2, Z3 ∼ Uniform(−1, 1)
ϵ1, ϵ2 ∼ N (0, 1)

A = Z1 + 0.5Z3
1 − 2Z2

2 + Z2
1Z2 + (1 + Z2

1 )ϵ1

Y = A(1 + Z1 − Z2
1 − 0.5Z2

2 )− Z2
1Z2 + Z2Z3 + ϵ2

with the least squares estimands taking the true values ψ = 0.5 and Ψ = 107/294 ≈ 0.36.

For each dataset, ψ̂ and Ψ̂ were estimated along with their variance and associated Wald based (95%)
confidence intervals. Two regression model approaches were considered, the first used generalised additive
models, as implemented through the mgcv package in R (Wood et al., 2016). These models use flexible
spline smoothing including pairwise interaction terms. The second regression modelling approach used
random forest learners available through the ranger package in R (Wright and Ziegler, 2017).

Figure 7.1 shows empirical estimates of the empirical bias and empirical variance of ψ̂ and Ψ̂ scaled by
n1/2 and n respectively, as well as the empirical coverage probability of a Wald based 95% confidence-
interval. Comparing Algorithms 1 and 2 (i.e. no sample splitting vs sample splitting) for the estimation

of ψ̂, we notice that sample splitting generally improves confidence interval coverage.
Additionally, for estimation of ψ the quasi-oracle approach (Algorithm B) outperforms the direct

approach (Algorithm A) in terms of reduced bias, variance and improved CI coverage. This is achieved

since the quasi-oracle approach controls the smoothess of λ̂(.) and the inverse weights 1/β̂(.), whereas
Algorithm A does not, leading to the possiblity of extreme inverse weighting in the estimator. On the
basis of these results, we recommend Algorithm 2B for estimation of ψ and Algorithm 2 for estimation of
Ψ.

7.8 Warfarin dose example

We illustrate the proposed estimators using the International Warfarin Pharmacogenetics Consortium
(2009) dataset, which has also been reanalysed several times in literature on dynamic treatment rule
estimation (Schulz and Moodie, 2021; Wallace et al., 2018; Chen et al., 2016). The data consists of
n = 1732 patients receiving Warfarin therapy, which is a commonly prescribed anticoagulant used to
treat thrombosis and thromboembolism. We consider least squares estimands for the effect of Warfarin
dose (A) on international normalised ratio (INR) (Y ), which is a measure of blood clotting function,
given 13 other patient characteristics (Z), including genetic data, as described in International Warfarin
Pharmacogenetics Consortium (2009).

Fitted models were obtained using the Super Learner (van der Laan et al., 2007), an ensemble learning
method, implemented in the SuperLearner package in R. This used 20 cross validation folds, and a
‘learner library’ containing various routines (glm, glmnet, gam, xgboost, ranger). Additional results
which use the ‘discrete’ Super Learner for model fitting are presented in Appendix F. The discrete Super
Learner selects the regression algorithm in the learner library which minimises a cross validated estimate
of e.g. the mean squared error loss, whereas the Super Learner minmizes the same loss by taking a convex
combination of learners. For the sample splitting algorithms (Algorithm 2), K = 20 folds were chosen
(between 10 to 20 folds is typical for cross-fitting procedures).

The results, presented in Table 7.1, suggest that increased Warfarin does is associated with an increase
in INR. We see that the estimators for Ψ tend to give results with narrower confidence intervals, and
commensurately smaller Wald based p-values for the estimand null, as expected from the efficiency
arguments presented in Section 7.5. Additionally, the estimators for ψ, which use the R-learner for
conditional effect estimation (Algorithms 1B and 2B) give more credible estimates than those that use the
direct approach (Algorithms 1A and 2A), in the sense that they are of a similar order of magnitude to the
Ψ estimates. Moreover, we see that sample splitting leads to more credible estimates, compared with no
sample splitting, as evident in Algorithms 2A versus 1A. This difference is because sample splitting helps
to control for overfitting of the functional estimators.



Chapter 7. Optimally weighted average derivative effects 106

−0.75

−0.50

−0.25

0.00

0.25

1000 2000 3000 4000
n

ro
ot

_n
_b

ia
s

0

1

2

3

4

1000 2000 3000 4000
n

nE
m

pV
ar

0.7

0.8

0.9

1.0

1000 2000 3000 4000
n

C
ov

er
ag

e
−1.0

−0.5

0.0

1000 2000 3000 4000
n

ro
ot

_n
_b

ia
s

0

1

2

3

4

5

1000 2000 3000 4000
n

nE
m

pV
ar

0.7

0.8

0.9

1.0

1000 2000 3000 4000
n

C
ov

er
ag

e

−1.5e+08

−1.0e+08

−5.0e+07

0.0e+00

5.0e+07

1000 2000 3000 4000
n

ro
ot

_n
_b

ia
s

0e+00

1e+18

2e+18

3e+18

1000 2000 3000 4000
n

nE
m

pV
ar

0.7

0.8

0.9

1.0

1000 2000 3000 4000
n

C
ov

er
ag

e

Figure 7.1: Sample size against Bias, variance and 95% Wald CI coverage for Ψ̂ (top row), ψ̂ using the
quasi-oracle approach (middle row), and ψ̂ using the direct approach (bottom row). Red and blue points
indicate that working models are fitted using generalised additive modelling and random forests respectively.
Circular and triangular points indicate that the estimators were fitted with and without sample splitting
respectively (i.e. Algorithm 2 vs. Algorithm 1). We highlight that the y-axis limits are not the same for
each row of the bias and variance plots.
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Table 7.1: Least squares estimands applied to IWPC data. Values indicate point estimates, given in
INR/(mg/week), with 95% Wald confidence intervals given in parentheses. P-values represent those
obtained from a Wald based test of the null hypothesis that the estimand is 0.

Estimand Algorithm Result
Ψ 1 2.01×10−3 (0.731×10−3,3.28×10−3) p=0.002
Ψ 2 1.91×10−3 (0.70×10−3,3.12×10−3) p=0.002
ψ 1A -6.39 (-19.4,6.65) p=0.33
ψ 2A 0.611 (-0.664,1.89) p=0.35
ψ 1B 1.59×10−3 (-0.0660×10−3,3.25×10−3) p=0.06
ψ 2B 1.55×10−3 (-0.329×10−3,3.42×10−3) p=0.11

7.9 Extensions

We showed that least squares estimands are weighted ADEs with non-negative exposure weights, by
using Theorem 7 to connect contrast functions to exposure weights and using Lemma 4 to demonstrate
non-negativity when the contrast function has certain monotonicity. Here we apply these results again
to propose weighted ADEs that reduce to the ADE (Example 1) when A follows a specific parametric
distribution given Z.

We consider the form of the ADE contrast function (7.9) when A follows a known parametric distribution
conditional on Z = z. Consider the normal, gamma (A > 0) and asymmetric Laplace distributions (Yu
and Zhang, 2005) with the respective density functions

f1(a|µ, σ) =
1√
2πσ

exp

{
− (a− µ)2

2σ2

}
f2(a|α, β) =

β

Γ(α)
aα−1 exp(−βa)

f3(a|p, σ, x0) =
p(1− p)

σ
exp

{
−(a− a0)

Θ(a− a0)− p
σ

}
where a0 is a known value and the parameters µ, σ > 0, α > 0, β > 0, p ∈ (0, 1) are all constant given
Z = z. Also, Γ(.) represents the gamma function and Θ(u) is a step function which takes the value 1 when
u > 0 and 0 otherwise. Plugging these density functions, in turn, into (7.9) gives the contrast functions,

−d log f1(a|µ, σ
2)

da
=
a− µ
σ2

−d log f2(a|α, β)
da

= (1− α)a−1 + β

−d log f3(a|p, σ, x0)
da

=
Θ(a− a0)− p

σ
.

Technically the third equation above describes the derivative for a ̸= a0, since f3(a|p, σ, a0) is not
differentiable at this point. This is not problematic, however, since these expressions are used only to
inspire well defined contrast functions. It is readily seen that all three are of the form of a known function
of a up to centring and scaling by parameters which are constant given z. In particular, they are of
the form in (7.7) where v(a, z) is replaced with the known functions, a, a−1 and Θ(a− a0) respectively.
According to (7.8), therefore, these contrast functions imply the weighted ADEs,

θw,1 = E

{
w(Z)

cov(A, Y |Z)

var(A|Z)

}
θw,2 = E

{
w(Z)

cov(A−1, Y |Z)

cov(A−1, A|Z)

}
θw,3 = E

{
w(Z)

E(Y |A > a0,Z)− E(Y |A ≤ a0,Z)

E(A|A > a0,Z)− E(A|A ≤ a0,Z)

}
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which, for w(Z) = 1, reduce to the ADE when A respectively follows the normal, gamma, and asymmetric
Laplace distribution conditional on Z. The estimand θw,1 is the least squares estimand studied in this
paper, and is thus further motivated by its connection to normally distributed exposures. These estimands,
however, are nonparametrically well defined, even when the exposure does not follow the associated
parametric distribution or indeed when it is not continuous or µ′(a, z) does not exist. This raises the
questions of the extent to which θw,2 and θw,3 are useful and interpretable estimands in their own right, in
what contexts one might use them, how w(Z) should be chosen, and how best they should be estimated.
Such questions are beyond the scope of the current work. We remark, however, that θw,3 with the weight
w(Z) = E(A|A > a0,Z)− E(A|A ≤ a0,Z) reduces to

E {E(Y |A > a0,Z)− E(Y |A ≤ a0,Z)} ,

which identifies the ATE of a dichotomised exposure on outcome.

7.10 Discussion

The current work makes several contributions to the literature on weighted ADEs for a single covariate
(exposure). We decompose the weight into an exposure weight and a subgroup weight, and demonstrate
that the former is equivalently represented by a ‘contrast function’. This is a function l(a|z) such that
E{l(A|Z)|Z} = 0 and E{l(A|Z)A|Z} = 1, which ensures that the quantity E{l(A|Z)Y |Z} quantifies the
effect of A on Y .

We show that least squares estimands, which are estimands connected to partially linear model
projections, are in fact weighted ADEs with a particular choice of contrast function. We further motivate
least squares estimands by considering the weighted ADE that minimises the nonparametric efficiency
bound when the weight (i.e. the exposure distribution) is known and the outcome is homoscedastic. Our
efficiency analysis extends the methods of Crump et al. (2006) to the setting of a continuous exposures.

We further use the ICs of the proposed least squares estimands to derive efficient one-step estimators,
Ψ̂ and ψ̂, the latter of which generalises the AIPW to the setting of a continuous exposure. To estimate
the working models we recommend a quasi-oracle approach based on the R-learner (Nie and Wager, 2021).
Our proposal involves a novel quasi-oracle learner for the inverse variance, 1/var(A|Z), which is designed
to mitigate extreme weighting in the estimator.
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Chapter 8

Causal derivative effects for continuous
exposures

8.1 Introduction

One of the central goals of statistical methods in epidemiology is to establish the main effect of an exposure
A on an outcome Y and to determine its magnitude and direction. When the exposure is continuous (e.g.
dose, duration, frequency), nonparametrically defining main effect estimands is not so straightforward.
Traditional parametric regression methods define main effects through parameters indexing a model for
the conditional mean outcome given exposure and a sufficient collection of confounders, X, an approach
which is problematic for several reasons.

The approach relies entirely on correct specification of the outcome model. However, in practice,
regression models tend to be chosen for their mathematical convenience, rather than because of any a
priori knowledge of the data generating mechanism. This problem persists when data adaptive variable
selection methods are used to choose a working model from a set of candidate models, in which case the
uncertainty in choosing the right model tends to be systematically ignored. Similar concerns apply to
methods which generalise propensity score modelling to the continuous exposure setting, using models for
the exposure density given confounders (Hirano and Imbens, 2005; Imai and Van Dyk, 2004; Galvao and
Wang, 2015). Additionally, when the outcome model itself is complicated, for example when machine
learning methods are used to model interaction terms and non-linearities, it may be difficult to define
parsimonious scalar summary statistics, thereby encouraging researchers to ignore these complexities
(Breiman, 2001b).

When the exposure is binary (coded 0,1), one can draw on a rich literature of causal effects to
nonparametrically define main effect estimands of interest, for example through the average treatment
effect (ATE) (Robins, 1994), E(Y 1 − Y 0), where Y a denotes the outcome that would be observed if
exposure had taken the value A = a. The ATE is motivated by contrasting the mean outcome in two
counterfactual worlds, where all units are assigned the exposure levels 1 and 0 respectively (Rubin, 1974).
Under standard identifiability assumptions, regular asymptotically linear estimators for the ATE (and
weighted variations) may be constructed which permit valid inference even when data adaptive methods
are used to fit working models (Zheng and van der Laan, 2011; Chernozhukov et al., 2018), such as for the
conditional response surface µ(a,x) ≡ E(Y |A = a,X = x), and the propensity score π(x) ≡ E(A|X = x).

The dose-response curve is perhaps the most common generalization of the ATE to continuous exposures.
It imagines a counterfactual world where an intervention assigns the same exposure level for all units
(Robins and Rotnitzky, 2001; Kennedy et al., 2017). The result is a function of the intervention level,
φ(a) ≡ E(Y a). This curve, however, is usually also problematic for the following reasons.

Firstly, interventions that set the exposure to the same level are often unrealistic and therefore
scientifically less interesting. This is even more so in settings where confounders are strong predictors of
exposure (e.g. diet and physical activity level are strong predictors of exposure human body mass index),
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thus assigning the value A = a∗ may represent an unrealistic intervention for treatment units in some
confounder subgroups, even when for others it may be reasonable. We would argue that the dose-response
curve is therefore practically uninformative for answering many scientific questions of interest, not least in
the exploratory stage of an analysis where there may not be a particular intervention in mind.

Secondly, in the setting of poor overlap between confounder subgroups, estimation of φ(a∗), under
standard identifiability assumptions, may also require significant extrapolation, for example to obtain an
estimate of µ(a∗,x0) when there are few observations of A ≈ a∗ for a particular confounder group, x0.
Additional concerns relate to the fact that the dose-response curve is an infinite dimensional parameter
(i.e. a function) rather than a scalar summary statistic. This inherently makes estimation more difficult
and also means there is no clear way to summarize the resulting curve once it has been obtained, see e.g.
Kennedy et al. (2017); Neugebauer and van der Laan (2007) for estimation strategies.

In view of these concerns we make an alternative proposal, which is to imagine a counterfactual world
where the exposure distribution for all treatment units is shifted by an infinitesimal amount. This proposal
has the advantage that for all units we consider only realistic exposure values. It also relates to an existing
literature on ADEs (sometimes called weighted average derivatives or average partial effects), popular
in econometrics (Härdle and Stoker, 1989; Powell et al., 1989; Newey and Stoker, 1993). These were
originally motivated by semi-parametric index models, under which ADEs are proportional to indexing
parameters. In our developments we rely instead on a causal interpretation by considering the ‘counter
factual derivative’

δ(a,x) ≡ lim
ϵ→0

ϵ−1E(Y a+ϵ − Y a|X = x), (8.1)

which we assume exists. One such effect estimand is the average derivative effect (ADE), E{δ(A,X)},
which considers the effect of shifting each individual’s observed exposure and acts as a continuous analogue
of the ATE. We note that the ADE is not the same as the average derivative of the dose-response curve,
which we discuss in Section 8.2.4.

Using the identification result δ(a,x) = µ′(a,x), where µ′(a,x) denotes the derivative of µ(a,x) w.r.t.
a, then the ADE is identifed by E{µ′(A,X)}. Inference for E{µ′(A,X)} usually requires estimation of (a)
the conditional density of exposure given confounders and (b) the derivative of (a) w.r.t. exposure (Härdle
and Stoker, 1989; Newey and Stoker, 1993; Cattaneo et al., 2013). Estimates of (a) and (b) are typically
obtained by nonparametric kernel based methods, however, the reliance on kernel methods introduces
complicated biases as the dimension of X increases, due to the curse of dimensionality (Cattaneo et al.,
2013).

Alternative estimation strategies, whenX is high dimensional, rely on parametric (usually single-index)
models for the conditional mean outcome (Wooldridge and Zhu, 2020; Hirshberg and Wager, 2018). These
assume that the outcome model is known and apriori specified, which is problematic for the reasons
mentioned above. Instead we advocate changing the focus to weighted ADE estimands which are amenable
to data adaptive estimation of µ(a,x). In Chapter 7, it is shown that two such weighted ADE estimands,
are,

ψ = E

{
cov(A, Y |X)

var(A|X)

}
(8.2)

and

Ψ =
E {cov(A, Y |X)}
E {var(A|X)}

, (8.3)

when A is continuous and µ′(a,x) exists, although they remain well defined even when A is discrete or
µ(a,x) is not differentiable. In Chapter 7, we show that Ψ is optimally efficient in the the class of weighted
ADEs, under heteroskedasticity of the outcome. We refer to ψ and Ψ as least squares estimands due
to their connection to to linear model projections Vansteelandt and Dukes (2022); Robins et al. (2008);
Newey and Robins (2018), and note that the numerator of Ψ has been proposed as a nonparametric
estimand in the context of conditional independence testing (Shah and Peters, 2018).
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Moreover, when A is binary, ψ identifies the ATE and Ψ identifies the propensity overlap weighted
effect (Crump et al., 2006), however, in the current paper we focus on the setting where A is a continuous
random variable. In Section 8.2 we ascribe a causal interpretation to ψ and Ψ using the counter factual
derivative, which is the main contribution of the current work. Our interpretation relates least squares
estimands to weighted derivative effects under specific stochastic interventions (Dı́az and van der Laan,
2012; Kennedy, 2019).

In Section 8.3, estimators for ψ and Ψ are discussed which attain the efficiency bound under the
nonparametric model. These estimators do not contain contributions from (a) or (b), thus alleviating the
aforementioned concerns regarding estimation of the ADE.

8.2 Methodology

8.2.1 Causal derivative estimands

Suppose we have n iid observations, (z1, ...,zn) of a random variable Z distributed according to an
unknown distribution P0, such that Z consists of (Y,A,X), where Y ∈ R is an outcome, A ∈ R is a
continuous covariate of interest which we call an ‘exposure’ and X ∈ Rp is a p-dimensional vector of
covariates. Also let f(a|x) denote the density of A given X under P0. Assuming such a limit exists, we
define the counterfactual derivative,

δ(a,x) ≡ lim
ϵ→0

ϵ−1E(Y a+ϵ − Y a|X = x)

which we use to define the conditional ADE,

λ(x) ≡ E{δ(A,X)|X = x}

= lim
ϵ→0

ϵ−1

∫
E(Y a+ϵ − Y a|X = x)f(a|x)da

and the ADE

θ ≡ E{δ(A,X)} = E{λ(X)}

In Section 8.2.4 these definitions are extended by introducing nonnegative weight functions, and in Section
8.2.5 identification assumptions are discussed.

8.2.2 Motivating example

We motivate the counterfactual derivative, conditional ADE, and ADE in the following short example.
Consider that A represents the time in days between the first and second doses of a vaccine, and Y
represents a measurement of the immune response taken some prescribed time (e.g. 60 days) after the
first dose, with X representing observed patient characteristics at baseline, see e.g. Gilbert et al. (2021)
for a similar set up. Suppose we are presented with the ith patient, with covariates xi, and exposure
ai. The value δ(ai,xi) quantitatively answers the causal question, “How would would one expect the
outcome to change under an intervention where the patient receives an exposure which is slightly (i.e.
infinitesimally) shifted away from the one which they actually received?”.

In particular, supposing an exposure time of ai = 29 days for the ith individual, then δ(29,xi)
represents the change in outcome for small shifts in the exposure (in the sense of a derivative) around
the true exposure value for that individual. Whilst this is retrospectively interesting after an exposure
level has been assigned, for the purposes of advising treatment policy we may wish so consider how this
measure might look before the exposure level is assigned.

Consider, for example, that the individual receives their first vaccination dose then is asked to return
to a walk-in clinic to receive a second vaccination dose, 4 to 8 weeks after the first, with walk-in behaviour
strongly predicted by xi. In this instance it may be of interest to pose the causal question: “Given the
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characteristics of the patient, would they benefit from returning to the clinic slightly sooner or later than
they otherwise would?”.

We argue that the answer to this question is scientifically interesting at an early stage of analysis, to
obtain a general understanding of effect direction when no particular treatment intervention is planned.
The conditional ADE answers this question by averaging the causal derivative over realistic exposure
values for the each individual. Specifically, for the ith individual, let ai,j denote one of m draws from
the distribution of A given X = xi. The conditional ADE λ(xi) represents the probability limit of
m−1

∑m
j=1 δ(ai,j ,xi), as the number of draws m→∞.

Finally, the ADE θ = E{λ(X)}, provides an answer to a similar question, asked of the population as a
whole, “Do members of the patient population benefit from returning to the clinic slightly sooner or later
than they otherwise would?”. We argue that this causal question represents the effect of modest realistic
policy interventions that have small effects on patient behaviour, e.g. should the vaccinator generally
emphasise to patients the importance of returning promptly, or should they advise patients that there
is no rush to return. In comparison, the dose-response function φ(a) ≡ E(Y a) seeks to answer a more
ambitious question, “what would be the mean outcome if every patient returned after exactly a days?”.
We illustrate how the two causal questions could suggest different conclusions in the following numerical
illustration.

8.2.3 Numerical Illustration

Consider a single binary confounder X ∈ {0, 1}, with both values equally prevalent in the population,
i.e. P (X = 1) = 0.5. Let E(Y a|X = 0) = −(a− 30)2 + 300 and E(Y a|X = 1) = (a− 30)2 + 100, so that
the dose-response curve takes the value φ(a) ≡ E(Y a) = 200 for all exposure values. The counterfactual
derivative takes the form, δ(a, 0) = 2(30− a) and δ(a, 1) = 2(a− 30).

Assume that A is conditionally normally distributed in each subgroup, i.e. A|X = 0 ∼ N (25, σ) and
A|X = 1 ∼ N (35, σ), where N (µ, σ) represents a normal distribution with mean µ and variance σ2. In
this case one obtains the conditional ADEs, λ(0) = λ(1) = 10, hence the ADE is θ = 10. This set up is
shown in the plots in Figure 8.1 and 8.2.

In this illustration, the fact that the dose-response curve is constant suggests that no exposure value
should be preferred over any other when applied to the population as a whole. The ADE, however, is
positive, which suggests that individuals in the population would, on average, benefit from increasing
their exposure level. Whilst counterintuitive, these two conclusions are not incompatible, and we would
argue that in this instance, the ADE captures the effect of a modest change in the exposure distribution
which is missed by dose-response curve modelling.

8.2.4 Interventional derivative estimands

Here we extend the causal derivative effect definitions in Section 8.2 by considering a stochastic intervention
distribution (Dı́az and van der Laan, 2012; Kennedy, 2019). Let P̃ denote a distribution over A conditional
on X such that P̃ is absolutely continuous w.r.t. P0. Letting f̃(a|x) denote the density of A given X
under P̃ , we define the ‘exposure weight’ w(A|X) ≡ f̃(a|x)/f(a|x). It follows that the exposure weight
is non-negative and normalised such that E{w(A|X)|X} = 1 almost surely. We define the conditional
interventional ADE (IADE) as

λw(x) ≡ E{w(A|X)δ(A,X)|X = x} = EP̃ {δ(A,X)|X = x}

= lim
ϵ→0

ϵ−1

∫
E(Y a+ϵ − Y a|X = x)f̃(a|x)da

which we interpret as the conditional derivative effect in a world where the exposure follows the interven-
tional distribution P̃ given X. We note that setting the intervention distribution to the true distribution
(i.e. P̃ = P0) recovers the conditional ADE λw(x) = λ(x). Next, consider a ‘subgroup weight’ w(X)
which is non-negative and normalised such that E{w(X)} = 1. Using this subgroup weight, we define the
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Figure 8.1: Exposure A plotted against outcome Y for the X = 0 subpopulation (left plot, circular points)
and the X = 1 subpopulation (right plot, triangular points). In each plot, the vertical dashed line represents
the mean exposure value, with dark grey bands denoting the region between the (0.05, 0.95) quantiles
of the exposure distribution. The gradient of the blue line denotes the conditional ADEs λ(0) and λ(1)
respectively.
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Figure 8.2: Exposure A plotted against outcome Y for the X = 0 subpopulation (circular points) and the
X = 1 subpopulation (triangular points). The gradient of the blue line denotes the ADE θ, and the green
line denotes the dose-response function φ(a).
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weighted IADE as

θw ≡ E{w(A,X)δ(A,X)} = E{w(X)λw(X)}

where w(A,X) ≡ w(A|X)w(X) is the product of the exposure and subgroup weights. We interpret
the weighted IADE in the following way. First we imagine a counterfactual world, where we intervene
on the distribution of exposure given confounders, replacing the true distribution with the intervention
distribution, P̃ . Next we imagine a second counterfactual world where the exposure is distributed
according to the intervention distribution, but with an infinitesimal perturbation for all treatment units.
The proposed weighted IADE estimand is the difference in (subgroup weighted) mean outcome between
these two worlds, rescaled by the perturbation size in the sense of the derivative.

We now demonstrate two examples of weighted IADEs. To highlight the difference between the ADE
and dose-response curve modelling, we compare the ADE (Example 4) with the average derivative of the
dose-response curve (Example 5), which is an IADE. The latter quantifies the ADE in a counterfactual
world where, for all individuals in the population, the exposure is distributed according to the true
marginal exposure distribution.

Example 4 (Average derivative effect) Setting the intervention distribution to the true distribution
(P̃ = P0), i.e. f̃(a|x) = f(a|x), implies a unitary exposure weight, w(A|X) = 1. Letting the subgroup
weight w(X) = 1 results in the conditional and marginal derivative effects

λ(x) = E{δ(A,X)|X = x}
θ = E {δ(A,X)} ,

as in Section 8.2.1.

Example 5 (Average dose-response derivative) Consider the dose-response curve, φ(a) = E(Y a).
The mean derivative of this curve, θw = E{φ′(A)} is an IADE with subgroup weight w(X) = 1 and
intervention distribution P̃ that has density f̃(a|x) = f(a), where f(a) is the marginal density of A under
P0. This distribution implies the exposure weight w(A|X) = f(A)/f(A|X), where we make a positivity
assumption such that f(a) ̸= 0 =⇒ f(a|x) ̸= 0 for all x. This intervention distribution implies the
conditional and weighted IADEs

λw(x) = E

{[
f(A)

f(A|X)

]
δ(A,X)|X = x

}
= E {δ(A,x)}

θw = E

{[
f(A)

f(A|X)

]
δ(A,X)

}
= E{λw(X)} = E{φ′(A)}.

To reiterate, we interpret the IADE above in the same way as the ADE, except in a counterfactual world
where the exposure distribution is the same for all individuals, and equal to the true marginal exposure
distribution. Intuitively, the value for the average dose-response derivative could be very different from
that of the ADE when the conditional and marginal exposure distributions differ significantly, i.e. when X
is a strong predictor of A.

8.2.5 Identifiability

Under standard assumptions of consistency (A = a =⇒ Y = Y a) and ignorability (Y a ⊥⊥ A|X for all a),
one obtains the identification result,

E(Y a|X = x) = E(Y a|A = a,X = x) = E(Y |A = a,X = x) = µ(a,x).

Hence, under these assumptions we write the dose-response curve as

φ(a) = E(Y a) = E{E(Y a|X)} = E{µ(a,X)}
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and the counterfactual derivative as

δ(a,x) = lim
ϵ→0

ϵ−1E(Y a+ϵ − Y a|X = x)

= lim
ϵ→0

ϵ−1
{
E(Y a+ϵ|X = x)− E(Y a|X = x)

}
= lim
ϵ→0

ϵ−1 {µ(a+ ϵ,x)− µ(a,x)} ≡ µ′(a,x)

It follows that the conditional IADE and weighted IADE are respectively identified by

λw(x) = E{w(A|X)µ′(A,X)|X = x} (8.4)

θw = E{w(A,X)µ′(A,X)} (8.5)

The latter expression is exactly the expression for the weighted ADE, popular in econometrics literature
(Härdle and Stoker, 1989; Powell et al., 1989; Newey and Stoker, 1993). The weighted ADE is conventionally
defined through a nonnegative weight function w(A,X), rather than through an intervention distribution P̃
and an exposure weight w(X), as in the current work. The two definitions, however are seen to be equivalent,
since, for a given weight function w(A,X), one can define a subgroup weight as w(X) = E{w(A,X)|X},
which implies the existance of a nonnegative exposure weight w(A,X) = w(A|X)w(X) such that
E{w(A|X)|X} = 1 almost surely. We argue that by introducing an intervention distribution P̃ , weighted
ADE estimands can be interpreted in terms of the causal IADE estimands proposed in the current paper.

8.2.6 Contrast representation

It is a standard result that weighted ADEs can be rewritten using integration by parts under limited
additional assumptions (Powell et al., 1989) (Chapter 7). Here we restate this result in terms of intervention
distributions, and illustrate how least squares estimands are weighted IADEs based on specific intervention
distributions.

Assume that (A1) f̃(a|x) has a derivative w.r.t. a that we denote f̃ ′(a|x), assume (A2) f̃(a|x) = 0
for a on the boundary of the support of A, and (A3) f(a|x) = 0 implies f̃(a|x) = 0, i.e. P̃ is absolutely
continuous w.r.t. P0. Under (A1), (A2) and (A3) it follows from integration by parts that (8.4) and (8.5)
can be written as

λw(x) = E{l(A|X)Y |X = x} (8.6)

θw = E{w(X)l(A|X)Y } (8.7)

where

l(a|x) = − f̃
′(a|x)
f(a|x)

(8.8)

We refer to the expressions in (8.6) and (8.7) as ‘the contrast representation’ of the weighted ADE.
In Chapter 7, we showed that weighted ADEs of the form in (8.5) are equivalent expressed in as

E

{
w(X)

cov{v(A,X), Y |X}
cov{v(A,X), A|X}

}
. (8.9)

where v(a,x) is an almost arbitrary function such that cov{v(A,X), A|X} ̸= 0. For example, setting
v(a,x) = l(a|x) recovers (8.7), since E{l(A|X)|X} = 0 and E{l(A|X)A|X} = 1.

In Theorem 11 below, we restate the main result of Chapter 7 in terms of a function f̃(a|x). This
function is a probability density function, provided that f̃(a|x) is non-negative. Lemma 6 shows that
monotonicity of v(a,x) is sufficient to guarantees non-negativity of f̃(a|x).

Theorem 11 Let v(a,x) be function such that cov{v(A,X), A|X} ≠ 0. Let F (a|x) be the distribution
function of A given X = x under P0 and assume that f(a|x) > 0 for a on the convex support of A. Define

f̃(a|x) = F (a|x){1− F (a|x)} [E{v(A,X)|A > a,X = x} − E{v(A,X)|A ≤ a,X = x}]
cov{v(A,X), A|X = x}

. (8.10)
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Then f̃(a|x) satisfies (A1), (A2), (A3), ∫
f̃(a|x)da = 1,

and for the weight function w(a|x) = f̃(a|x)/f(a|x),
cov{v(A,X), Y |X}
cov{v(A,X), A|X}

= E{w(A|X)µ′(A,X)|X} a.s.

E

{
w(X)

cov{v(A,X), Y |X}
cov{v(A,X), A|X}

}
= E{w(A,X)µ′(A,X)} (8.11)

where w(a,x) = w(x)w(a|x) for some exposure weight w(x).Proof in Appendix F.

Lemma 6 Let v(a,x) be a function which is monotonically increasing or decreasing in a (but is not
everywhere constant), for a on the support of A. Then f̃(a|x) in (8.10) is a probability density function.
Proof in Appendix F.

The significance of Theorem 11 and Lemma 6 is that together they imply that any estimand of the
type in (8.9) can be interpreted as a weighted ADE. Moreover, provided that v(a,x) is monotonic, then
(8.9) identifies an IADE with the intervention distribution P̃ given by the density function in (8.10).

We focus in particular on the so-called least squares estimand, which corresponds to the choice
v(a,x) = a.

E

{
w(X)

cov{A, Y |X}
var{A|X}

}
(8.12)

with ψ and Ψ, introduced in (8.2) and (8.3) arising as special cases for the exposure weights w(X) = 1
and w(X) = var(A|X)/E{var(A|X)} respectively. These least squares estimands are well-motivated by
considering projection coefficients in linear models, with Ψ additionally representing an optimally efficient
weighted ADE, and ψ representing the ADE θ when the exposure A is normally distributed given X
(Chapter 7).

In view of Theorem 11 and Lemma 6, we argue that the least squares estimands, ψ and Ψ, identify
weighted IADEs corresponding to a specific intervention distribution P̃ and in the next Section, we
examine exactly how this intervention distribution relates to the true distribution P0. To reiterate, in this
work we interpret these least squares estimands as the (weighted) mean difference in outcome between two
counterfactual worlds, one where the exposure is distributed according to an intervention density, and one
where the exposure is distributed according to the same intervention density, but with an infinitesimal
shift in exposure.

We remark that one could choose alternative functions v(a,x) to construct interesting estimands. In
particular, if we let a0 be a known value and let v(a,x) = 1 for a > a0, with v(a,x) = 0 otherwise, then
one recovers the estimand

E

{
w(X)

E(Y |A > a0,X)− E(Y |A ≤ a0,X)

E(A|A > a0,X)− E(A|A ≤ a0,X)

}
.

which, like the least squares estimands, identifies a weighted IADE for a specific intervention distribution.
This estimand is noteworthy because, under standard assumptions, it identifies the weighted ATE of a
dichotomised exposure on outcome, i.e. the treatment effect of the binary variable which is constructed
by dichotomising A at a0. In the interest of brevity we will not examine the intervention distribution of
this dichotomisation estimand, and refer to Chapter 4 for some additional discussion.

8.2.7 Least squares intervention distribution

Here we examine the intervention distribution associated with the least squares estimand in (8.12), i.e.
the distribution obtained from (8.10) with v(a,x) = a. This distribution has the density

f̃(a|x) = F (a|x){1− F (a|x)}
var(A|X = x)

{E(A|A > a,X = x)− E(A|A ≤ a,X = x)} (8.13)
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which we call the least squares intervention distribution.
It is informative to consider that the cumulant function of this distribution, K̃(t|x) = logEP̃ (e

tA|X =
x), in terms of the cumulant function of the true distribution, K(t|x) = logE(etA|X = x), and its
derivative w.r.t. t, K ′(t|x), is

K̃(t|x) = K(t|x) + log

(
K ′(t|x)− π(x)

tβ(x)

)
(8.14)

where π(x) = E(A|X = x) = K ′(0|x) and β(x) = var(A|X = x) = K ′′(0|x), see Appendix G for details.
The least squares intervention distribution is therefore that of a shifted exposure, Ã = A+ δ, where δ is
a random variable, which is conditionally independent of A given X, with cumulant function given by
the second term on the right hand side of (8.14). Setting this second term equal to zero, and using the
boundary condition that K(0|x) = 0 gives

K(t|x) = π(x)t+ β(x)
t2

2

This is exactly the cumulant function of a normally distributed variable, with mean π(x) and variance β(x).
Thus, if A is normally distributed (conditional on X), then the least squares intervention distribution is
the true distribution, and this is the only exposure distribution for which this is the case. It follows that,
under conditional normality of the exposure, the least squares estimand with subgroup weight w(X) = 1
identifies the ADE θ = E{δ(A,X)}.

To consider other exposure distributions, we imagine a transformation, F , which transforms a
probability density f(a|x) to its associated least squares intervention distribution, f̃(a|x), according to
(8.13), i.e. F{f(.|x)}(a) = f̃(a|x). This transformation preserves the symmetry of the density function,
as formalized in Theorem 12. We apply this transformation to some well-known distributions to obtain
the results in Table 8.1, illustrative plots of which are shown in Fig. 8.3. The fact that the distribution
families in Table 8.1 are closed under this transformation is, we believe, somewhat surprising.

Theorem 12 Let f(x) be a distribution, with finite mean µ, and finite variance.

f(µ+ x) = f(µ− x) =⇒ F{f(.)}(µ+ x) = F{f(.)}(µ− x)

Proof in Appendix G.

Table 8.1: Least squares intervention distribution associated with some common distributions. For each
result, f(x|.) denotes the density function of the given distribution. See Appendix G for details.

Distribution Parameters Result
Normal mean µ, variance σ2 F{f(.|µ, σ)}(x) = f(x|µ, σ)
Gamma shape α, rate β F{f(.|α, β)}(x) = f(x|α+ 1, β)
Chi-Squared degrees of freedom k F{f(.|k)}(x) = f(x|k + 2)
Beta shape α and β F{f(.|α, β)}(x) = f(x|α+ 1, β + 1)
Beta Prime shape α and β > 2 F{f(.|α, β)}(x) = f(x|α+ 1, β − 2)

8.3 Inference

Here we sketch an inference procedure for the estimands

ψv = E

{
cov(v(A), Y |X)

cov(v(A), A|X)

}
(8.15)

Ψv =
E {cov(v(A), Y |X)}
E {cov(v(A), A|X)}

, (8.16)
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Figure 8.3: Density functions of the least squares intervention distribution (red) corresponding to various
true exposure distributions (blue) with the median of the true distribution marked with a dashed line. For
the top row of plots, the exposure is in truth gamma distributed with β = 1 and α = 1, 2.5, 5. For the
second row, the exposure is in truth beta distributed with (α, β) = (1, 1), (2, 3), (1, 2). For the third row
the exposure is beta prime distributed with (α, β) = (1, 3), (2, 5), (2, 3)
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which are both indexed by a known function v(a), and which represent special cases of the (8.9) for the
exposure weights w(X) = 1 and w(X) ∝ cov(v(A), A|X). The latter exposure weight is non-negative
when v(a) is monotone, which happens to be one of the conditions of Corollary 6. We remark that for the
choice v(a) = a, the estimands ψv and Ψv respectively recover the least squares estimands ψ and Ψ in
(8.2) and (8.3).

For the least squares estimands, an inference procedure is described in Chapter 7, which uses the
nonparametric inference framework based on efficient influence curves, described in Chapter 4. Estimators
for the least squares estimands can be generalised by considering the efficient influence curves for ψv and
Ψv

ϕψv (z) =
v(a)− ρ(x)

β(x)
{y − µ(x)− λ(x)(a− π(x))}+ λ(x)− ψv

ϕΨv (z) =
{v(a)− ρ(x)}{y − µ(x)−Ψv(a− π(x))}

E{β(X)}

where, for convenience we let µ(x) = E(Y |X = x) ρ(x) = E{v(A)|X = x}, π(x) = E{A|X = x},
β(x) = cov(v(A), A|X = x), and λ(x) = cov(v(A), Y |X = x)/β(x).

Using these efficient influence functions, one-step bias correction estimators can be derived, which rely
on (possibly data-adaptive/ machine learning) estimators for µ(.), ρ(.), π(.), and for Ψv, also β(.) and λ(.).

ψ̂v = n−1
n∑
i=1

v(ai)− ρ̂(xi)
β̂(xi)

{yi − µ̂(xi)− λ̂(xi)(ai − π̂(xi))}+ λ̂(xi)

Ψ̂v =

∑n
i=1{v(ai)− ρ̂(xi)}{yi − µ̂(xi)}∑n
i=1{v(ai)− ρ̂(xi)}{ai − π̂(xi)}

where superscript hat denotes an estimator that has been trained using data excluding the ith observation.
Though we do not formally derive asymptotic results for these estimators, we expect that they will be
very similar to those of the the least squares estimands in Chapter 7, since the estimands in that Chapter
represent a special case of those above.

Like the least squares estimands, and unlike estimators for e.g. the ADE, the ψ̂v and Ψ̂v estimators do
not require estimating unknown conditional density functions, thus alleviating concerns regarding unstable
density weights in ADE estimators. This comparison is particularly interesting since, under limited causal
assumptions, ψv and Ψv represent ADEs in certain counterfactual worlds, as described in Section 8.2.

8.4 Discussion

The main contribution of the current chapter is to outline a causal interpretation of weighted derivative
effects in terms of stochastic interventions. In particular, we connect least squares estimands to the change
in mean outcome under small perturbations in a stochastic exposure intervention. The appeal of these
estimands is firstly that they focus attention towards modest shifts in exposure around realistic values
for each treatment unit. This is advantageous in settings where confounders are strong predictors of
exposure, thus the dose-response curve may be both uninformative in answering scientific questions of
interest, and too ambitious to estimate due to extrapolation concerns. Derivative effects, however, capture
the magnitude and direction of the main effect, which is especially useful in an exploratory analysis, where
no specific intervention is planned. They moreover provide a generic effect measure that can be used
without needing to choose between many possible shift interventions that could be considered, see e.g.
(Rothenhäusler and Yu, 2019).

Additionally, least squares estimands are amenable to data-adaptive estimation of requisite statistical
functionals, more so than average derivative effect estimation or dose-response curve modelling. This
permits modern inference methods, analogous to those used for average treatment effect inference, to
be applied to the setting of continuous exposures. This analogy is unsurprising since the proposed least
squares estimands identify the ATE when the exposure is binary, therefore representing a generalisation
of the ATE to continuous exposures.





Chapter 9

Conclusion and outlook

9.1 Conclusion

The standard approach to data analysis based on statistical modelling is increasingly being challenged.
Despite its undeniable utility over the last century, criticisms have centred around the use of implausible
modelling assumptions and, more recently, around the failure of statistical models to outperform algorithmic
machine learning models in some prediction tasks. It has been the goal of a growing community within
statistics to overcome these limitations and, in the last few decades, a framework based on nonparametric
estimands has emerged as an appealing compromise between the interpretability of statistical modelling
and the flexibility of algorithmic machine learning. This framework also reduces the burden on the analyst
to consider typical statistical modelling questions, which are usually ancillary to the intended investigation,
such as whether higher-order terms/ interaction terms/ covariates should be included in the statistical
model.

The transition from statistical model based analysis to estimand based analysis arguably represents a
paradigm shift toward nonparametric rather than parametric reasoning. This paradigm shift is evidenced
by the growing taxonomy of nonparametric estimands (and related statistical/ computational tooling)
available to quantitative researchers, with a number of recent proposals related to survival analysis,
longitudinal treatments, transportability, etc.1, as well as those related to mediation, treatment effect
heterogeneity, and continuous exposures, which are considered in the current thesis. Mediation estimands
in particular exemplify the shift to nonparametric reasoning, where early methods (Sobel, 1982; Baron and
Kenny, 1986), which relied heavily on linear models for the outcome and the mediator, have largely been
superseded (in the setting of binary treatment at least) by causally defined natural mediation estimands,
e.g. those connected to the so-called mediation formula of Pearl (2001).

The initial focus for this thesis project was to investigate applying mediation analysis methods
to answer causal questions in the fields of genetics and genetic epidemiology. Genetic cohort data
represents an interesting challenge for causal inference and nonparametric estimation, due to (i) the
inherently high-dimensional covariate space which SNP measurement data represents, (ii) the natural
causal structure implied by accepted rules of genetic inheritance, and (iii) the difficulty in measuring/
modelling environmental variables, which vary during the course of an individual’s lifetime. Due to
these challenges, existing methods, such as genome wide association studies (GWAS) and Mendelian
randomisation (MR) studies rely heavily on both statistical model and causal model assumptions2, with
efforts to apply flexible machine learning estimators to genetic data tending to focus on obtaining ‘clinically
relevant’ genetic risk score estimates, rather than estimating causal effects.

With the underlying goal of applying mediation methods to genetic data, Chapter 3 considers modern
‘natural’ mediation estimands under semi-parametric models similar to those seen in GWAS and MR,

1Assumption-lean Cox regression (Vansteelandt et al., 2022), Longitudinal TMLE (van der Laan and Gruber, 2012),
transportability of causal effects (Hernán and VanderWeele, 2011).

2GWAS and MR methods are usually based on linear mixed models, with MR requiring causal instrumental variable
assumptions, often including e.g. ancestral homogeneity and non-existance of pleiotropic effects.
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and close to the original work of Baron and Kenny (1986), which remains widely used, especially in
applications to psychological data. Compared with the fully nonparametric theory, we show that ‘partially
linear’ modelling assumptions circumvent the need for ‘inverse density weighting’, a common source of
instability in the efficient estimator of mediation estimands under the nonparametric model. The approach
taken in Chapter 3, therefore, represents a compromise between parametric and non-parametric reasoning,
where the target of inference is a nonparametrically defined estimand, but semi-parametric models are
assumed in order to facilitate inference, and ensure that the proposed robust/ assumption-lean methods
are familiar to researchers in a range of fields.

The semi-parametric work presented in Chapter 3, also highlights that causal inference methods are
equally applicable to parametric models as they are to nonparametric estimands. It is easy to lose sight of
this fact, given that several of the most well known non-parametric estimands arise in the context of causal
inference. The key difference between causal inference and nonparametric inference is that the latter
solves a purely statistical problem, using methods that are agnostic to the estimand’s causal interpretation.
In this thesis we contribute to the pedagogy of both fields through the articles on causal methods for
genetic data and on efficient influence curve based estimators, which are reproduced in Chapters 2 and
4. Aside from covering different topics, these two articles are also written for two distinct audiences:
domain-specific data analysts, and statistical methodologists, both crucial to the adoption of statistical
methodology.

In particular, Chapter 4 aims to demystify the technical nuances of deriving efficient estimators for
nonparametric estimands. The first step for constructing such estimators, is to obtain the estimand’s
so-called efficient influence function, and we illustrate how this can be derived using the method of point
mass contamination. Moreover, we build on familiar intuition from basic calculus and probability theory,
and rederive several known efficient influence functions as examples. By focussing on the setting of
nonparametric rather than semi-parametric modelling, we do not need to account for additional efficiency
that is gained through the semi-parametric model assumptions, usually resulting in simpler derivations,
which do not require manipulation of integral expressions.

One example where the nonparametric inference framework is readily applicable is to the novel
treatment effect variable importance measures (TE-VIMs) described in Chapter 5. TE-VIMs are causally
motivated estimands, which we propose for answering scientific questions regarding treatment effect
heterogeneity. Like mediation analyses, treatment effect heterogeneity analyses provide insight into the
the mechanism by which treatment affects outcome. Rather than analysing post-treatment variables, as in
mediation analysis, however, the proposed TE-VIM esimands help identify covariates which are important
in predicting the treatment effect, thereby helping to identify population strata which benefit most/ least
from treatment.

An interesting feature of TE-VIM estimands is that, by definition, they lie on the bounded interval [0, 1].
For such estimands, approximate normality of the point estimator is rarely observed in finite samples when
the true estimand value is close to one of the boundaries. This problem motivates the study of confidence
interval construction methods, which do not rely on asymptomatic normality of the point estimator, unlike
standard Wald intervals. Chapter 6 sets out a ‘score based’ proposal that builds on the generalised method
of moments hypothesis testing framework, used in the semi-parametric mediation setting of Chapter
3. For nonparametric estimands that depend on unknown infinite dimensional parameters (functions),
such as the average treatment effect, our proposal aligns closely with the principles of targeted learning.
Compared with Wald based intervals, score based intervals also have appealing invariance properties, and
require knowledge of the target efficient influence curve only up to constants of proportionality.

Returning to the contrast between causal inference and nonparametric inference methods, it is, I
believe, often under appreciated that causal inference represents just one possible framework for motivating,
deriving, and interpreting nonparametric estimands of scientific interest. This is evident in the work
on derivative effect estimands presented in Chapter 7, though these estimands can also be ascribed a
causal interpretation, as described in Chapter 8. The so-called least squares estimands, which we set
out, are motivated with reference to ‘least squares’ projection, and through derivative effect efficiency
arguments, rather than the potential outcomes etc. of causal inference. Our proposal also contributes to
the longstanding problem of generalising to continuous exposures, treatment effect estimands which are
now canonical in the setting of binary exposure.
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I would like to conclude my thesis by sketching two ideas for future work, which may one day lead to
a deeper understanding of ‘nonparametric reasoning’. The first vignette builds on the derivative ideas in
Chapters 7 and 8, connecting derivative estimands to mediation estimands through a kind of product-rule
decomposition. In fact, my interest in derivative effect estimands for continuous exposures originally arose
from considering how mediation estimands handle the ‘effect’ of a continuous mediator on outcome. The
second vignette builds on the observation that Taylor expansions are commonly used to derive low-order
polynomial approximations of nonlinear functions in the natural sciences. By considering a generalised
version of Taylor’s expansion, we hope to derive similar polynomial approximations for unknown statistical
functionals, and hence derive/ motivate nonparametric estimands.

9.2 Derivative approach to mediation

Consider a random variable Z = (Y,M,A,X) where A ∈ R is a continuous treatment, and M ∈ R is a
continuous mediator, and Y ∈ R is an outcome. Letting f(m|a, x) denote the mediator density conditional
on (A,X), and µ(m, a, x) ≡ E(Y |M = m,A = a,X = x) then it follows by the product rule that

d

da
E(Y |A = a,X = x) =

d

da

∫
µ(m, a, x)f(m|a, x)dm

=

∫ {
dµ(m, a, x)

da

}
f(m|a, x)dm︸ ︷︷ ︸

≈ direct effect

+

∫
µ(m, a, x)

{
df(m|a, x)

da

}
dm︸ ︷︷ ︸

≈ indirect effect

(9.1)

The two terms which result from this decomposition have the feel of a direct and indirect effect respectively,
since the former can be interpreted like the derivative change in the conditional mean outcome, when the
mediator density is held fixed, and the latter like the conditional mean outcome when a derivative change
is applied to the mediator density. The fact that the problem of mediation has the feel of a derivative
decomposition has been noted elsewhere (Stolzenberg, 1980; Hayes and Preacher, 2010; Huber et al.,
2020), albeit without mention of the decomposition in (9.1). Moreover, the additive nature of (9.1) is
reminiscent of mediation proposals by Baron and Kenny (1986) and Pearl (2001), where mediation ‘effects’
sum to a ‘total effect’.

To further connect product rule decompositions to natural mediation estimands, consider replacing
the derivative operation above with a finite difference. Let ∆ denote a finite difference operator, such that
for an arbitrary function f(u), we define ∆f(.) = f(1)− f(0). Unlike the derivative operator, the finite
difference operator does not have a unique product rule

∆f(.)g(.) = f(1)g(1)− f(0)g(0)
= {∆f(.)}g(1) + f(0){∆g(.)}
= {∆f(.)}g(0) + f(1){∆g(.)}

with the final two expressions both representing equally valid product-rules. To reconcile this ambiguity,
consider taking a linear combination of both rules with weights p ∈ [0, 1] and 1− p. Doing so gives a set
of product rules indexed by p

∆f(.)g(.) = {∆f(.)}{pg(1) + (1− p)g(0)}+ {pf(0) + (1− p)f(1)}{∆g(.)}

In the setting of binary treatment, A ∈ {0, 1}, applying this product rule decomposition to E(Y |A =
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., X = x) gives

∆E(Y |A = ., X = x) = ∆

∫
µ(m, ., x)f(m|., x)dm

=

∫
{∆µ(m, ., x)} {pf(m|1, x) + (1− p)f(m|0, x)}dm︸ ︷︷ ︸

≈ direct effect

+

∫
{pµ(m, 0, x) + (1− p)µ(m, 1, x)} {∆f(m|., x)} dm︸ ︷︷ ︸

≈ indirect effect

Finally, since this decompositions is valid for all p ∈ [0, 1], one could define p through a weight functions
that plays an analogous role to the ‘exposure weights’ in Chapter 7. Taking the expectation of the
decomposition above, and carefully choosing p, gives a generalised version of the mediation formula of
Pearl (2001)

E{∆E(Y |A = ., X = x)}︸ ︷︷ ︸
ATE

=

∫
{∆µ(m, ., x)}w(a|x)dP (m, a, x)︸ ︷︷ ︸

direct effect

+

∫
µ(m, 1− a, x)

{
∆f(m|., x)
f(m|a, x)

}
w(a|x)dP (m, a, x)︸ ︷︷ ︸

indirect effect

(9.2)

where w(a|x) is a non-negative weight that is normalised such that E{w(A|X)|X} = 1 and dP (m, a, x)
represents the joint probability measure over (M,A,X). For example, the weight w(a|x) = a/E(A|X = x)
recovers the mediation formula. We remark that, unlike the mediation formula, the identity in (9.2)
is nonparametrically defined and makes no causal independence assumptions on the distribution of
Z = (Y,M,A,X).

9.3 Functional approximations

Consider that an analytic function f(x) can be written as

f(x) =

∞∑
i=0

aiki(x) (9.3)

where, for now, kn(x) is an undefined sequence of order n polynomials, and an represents a sequence of
real numbers. Next, imagine that one constructs the polynomials sequence such that k0(x) = 1 and for
n > 0,

d

dx
kn(x) = nkn−1(x) (9.4)

E{kn(X)} = 0

where X ∈ R is a random variable with finite moment generating function MX(t) = E(etX). Given these
properties, differentiating (9.3) n times and taking the expectation of the resulting expression at x = X,
gives an = E{f (n)(X)}/n! where f (n)(x) denotes the nth derivative of f(x). Hence, the special case
f(x) = etx immediately gives a generating function for kn(x),

∞∑
n=0

tn

n!
kn(x) =

etx

MX(t)
(9.5)
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Polynomial sequences with generating functions of this form are known as Appell sequences, as defined
by Appell (1880). We refer to Avram and Taqqu (1987); Ta (2015) and Appendix H.3 for properties of
these polynomials in a probabilistic setting. The first few terms in the polynomial sequence, kn(x) are,
k0(x) = 1

k1(x) = x− κ1
k2(x) = (x− κ1)2 − κ2
k3(x) = (x− κ1)3 − 3(x− κ1)κ2 − κ3
k4(x) = (x− κ1)4 − 6(x− κ1)2κ2 − 4(x− κ1)κ3 + 3κ22 − κ4

where κn denotes the nth cumulant of X and we note that κ1 and κ2 respectively denote the mean
and variance of X. Aside from the sequence (x − x∗)n, which appears in the conventional Taylor
series, some well-known Appell sequences are the Hermite, Euler and Bernoulli polynomials with moment
generating functions that coincide with those of the standard normal, Bernoulli(p = 1/2), and Uniform(0, 1)
distributions respectively. To progress beyond analytic functions, we consider truncating the sum in
(9.3) to obtain functional approximations. The properties of the remainder under such a truncation are
provided in Theorem 13 below.

Theorem 13 Let X be a random variable with moment generating function MX(t). Then for all
measurable functions, f(x), which are n ≥ 1 times differentiable on the support of X, there exists a
function Rn(x) such that

f(x) =

n∑
j=0

E{f (j)(X)}
j!

kj(x) +Rn(x) (9.6)

and

lim
δ→0

E{Rn(X + δ)}
δn

= 0

where kn(x) is defined by (9.5). Proof in Appendix H.1.

Theorem 13 has been studied before in the context of operational calculus, e.g. Roman and Gian-Carlo
(1978) and Theorem 2 of Bourbaki (2004), however, to our knowledge, it has not yet been described in
a probabilistic setting. We view this Theorem as a generalisation of Taylor’s Theorem, since the latter
represents a special case where X ∼ P is a probability point mass, i.e. when P (X = x∗) = 1, then
the polynomials in (9.5) reduce to kn(x) = (x − x∗)n and E{f (n)(X)} = f (n)(x∗). The significance of
Theorem 13 is that it tells us that the remainder, after truncating (9.3) at the nth term, is of the order
δn in expectation when evaluated at the shifted random variable, X + δ. In this way we view (9.6) as a
Taylor expansion about a random distribution of points X, whereas the conventional Taylor’s theorem
considers an expansion about a single point, x∗.

For a measurable function f(x), with derivative f ′(x), the linear approximation from the proposed
expansion is

f(x) ≈ E{f(X)}+ E{f ′(X)}{x− E(X)}.

This linear approximation may be used, for instance, to understand the derivative effect estimands of
Chapters 7 and 8. In particular, consider replacing f(.) above with the conditional response function
µ(x, z) = E(Y |X = x, Z = z), where (Y,X,Z) ∼ P0 with Y,X ∈ R, and Z ∈ Rd is a vector of covatiates.
Letting MX(t, z) = E(etX |Z = z) be a moment function indexed by z, the linear expansion of the
conditional response function is

µ(x, z) ≈ E{µ(X,Z)|Z = z}+ E{µ′(X,Z)|Z = z}︸ ︷︷ ︸
CADE

{x− E(X|Z = z)} (9.7)
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where we recognise the conditional average derivative effect (CADE) on the right-hand side. Consequently
we interpret the linear expansion in (9.7) as a formal first-order approximation to the condition response
function, with a remainder which is ‘small’ in the sense described by Theorem 13. Such Taylor-like
functional approximations might be extended in future work e.g. to consider other statistical functionals,
higher order terms, or expansions about other random variables (such as the stochastic distributions
presented in Chapter 8).
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Appendix A

Supplement to causality in genetics

A.1 Linear Mixed Models

Consider again the linear model in Eq.2.2. When the model parameters are estimated by OLS, one
effectively makes no prior assumptions about the parameter values, other than that they are fixed to
some true unknown value. Considering P as a random effect, however, we impose, in a Bayesian sense,
a normally distributed prior for γ ∼ Np

(
0, σ2

gIp
)
, where Ip is a p by p identity matrix, σ2

g is a hyper
parameter and Np (µ,Σ) is a p-multivariate normal distribution with mean µ and variance Σ.

By making this prior assumption we arrive at a LMM, which may be written as a model for the full
n-dimensional observed phenotype vector, Y . Here bold notation is used to refer to vector (or matrix)
quantities with n entries (or rows), each representing a single individual in the cohort. Again In is the n
by n identity matrix,

Y ∼ Nn
(
αG+Eβ, σ2

gK + σ2
eIn

)
(A.1)

where K = PP⊤ and P is an n by q matrix where each row represents the vector of PCs for a particular
individual. The n by n matrix, K is referred to as the genetic similarity matrix, since the entry Kij is a
measure of the genetic similarity between the ith and jth individuals in the cohort, obtained by comparing
their PCs. In general one is not restricted to using PCs to define the genetic similarity matrix. In fact
several different methods can be expressed by the LMM equation above, using different measures of genetic
similarity Hoffman (2013).

Measures of Genetic Similarity

Methods for measuring genetic similarity may be broadly separated into two categories: Those related
to the Principal Component Analysis (Principal Components like), and those where some biologically
motivated measure of genetic similarity is made. We will refer to methods of the latter type as Identity
By Descent like, since they often measure similarity by finding genetic regions which are thought to be
identical by descent in two individuals. A brief overview of these approaches is provided below.

Principal Component like

In a conventional PC analysis, the variables from which PCs are constructed (in this case the SNP values)
are standardised. Variations exist, however, in how the SNPs are selected, how they are weighted in the
standardisation step, and how the resultant PCs are selected. These include:

1. Selection of which SNPs to use for PC analysis: It is possible to include all available SNPs, however,
it has been suggested that only variants thought to be causally related to the phenotype of interest
should be included Vilhjálmsson and Nordborg (2013); Lippert et al. (2013), since these are the
ones which lie on the causal pathway between C and Y . The process of selecting SNPs is known as
pruning or thinning.
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2. The choice of SNP dependent scaling constant before constructing PCs: The intuition behind
scaling the SNP value is that sharing a rare variant is greater evidence of common ancestry than
sharing a common variant. Scaling values are often estimates of the SNP standard deviation. This
may be estimated by the sample standard deviation or using the standard deviation under the
Hardy-Weinberg equilibrium model.

It has also been suggested that, rather than pruning SNPs, SNPs should be weighted according to
their degree of LD, to account for replication of causal information by neighbouring, imputed, SNPs
in LD Speed et al. (2012). Their proposal uses weights, chosen such that SNPs with high LD are
down-weighted. This is implemented in their LDAK software package.

3. The number of PC dimensions chosen for inclusion in the linear model: This is often determined
using heuristic measures. Each successive PC accounts for a smaller amount of genetic variation in
the chosen SNPs. Most methods use estimates for the proportion of variance explained by each PC,
for example selecting PCs to exceed some threshold of the total proportion of variance explained, or
else choosing an arbitrary number of PCs.

In the LMM, it is possible to include all PCs. This is the choice made in the GEMMA software
package Zhou and Stephens (2014). This approach is equivalent to measuring the covariance between
two individuals based on all chosen SNPs.

Identity By Descent like

Traditional measures for relatedness pre-date modern genomic study, and were originally used to study
trait inheritance within pedigrees. Using known pedigree information one can construct the probabilities
that genomic regions of two individuals are identical-by-descent (IBD) from a recent common ancestor
(‘recent’ in so far as it is assumed that there is no intermediate mutation or recombination event).

Pedigree based relatedness measures are broadly obsolete in modern genomic analysis for several
reasons Speed and Balding (2014): (i) When studying natural populations pedigree information is often
unavailable or insufficient to account for population structure. (ii) Even when pedigree information is
available, it is usually unrealistic to assume that pedigree founders have zero genetic similarity. (iii) The
relatedness of any two individuals tends towards one, as the size of the pedigree is increased.

Rather than using pedigree information to estimate IBD probabilities, modern theories instead measure
IBD by appealing to SNP data itself. These methods generally examine the length and frequencies of
similar genomic regions in two individuals, and are based on biochemical theories regarding the process
by which gametes divide and recombine from two parents. Examples include: FastIBD Browning and
Browning (2011), which estimates the frequencies of shared haplotype distributions; and shared segment
detection in PLINK Anderson et al. (2010). Reviewing these methods is beyond the scope of this review.
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Supplement to partially linear mediation

B.1 Proofs

B.1.1 Proof of Lemma 1

In Step 1 the following expressions for each component of E{U(β∗, γ∗)} are derived for β∗ = (β1, β2, β
∗
3).

In Step 2 we consider the behaviour of these expressions in each of the two misspecification cases.

E{U1(β
∗, γ∗)} = E [{h(Z)− h(Z; γ∗x)} {f(Z)− f(Z; γ∗m)}] (B.1)

E{U2(β
∗, γ∗)} = E

[
{f(Z)− f(Z; γ∗m)}

{
g(X,Z)− β∗

3X − g(Z; γ∗y)
}]

(B.2)

E{U3(β
∗, γ∗)} = E

[
{X − h(Z; γ∗x)}

{
g(X,Z)− β∗

3X − g(Z; γ∗y)
}]

(B.3)

Step 1: For the first component we use the partial linearity to obtain

E{U1(β
∗, γ∗)|X,Z} =

{
X − h(Z; γ∗x)

}{
E(M − β1X|X,Z)− f(Z; γ∗m)

}
=
{
X − h(Z; γ∗x)

}{
f(Z)− f(Z; γ∗m)

}
E{U1(β

∗, γ∗)|Z} =
{
h(Z)− h(Z; γ∗x)

}{
f(Z)− f(Z; γ∗m)

}
Similarly for the second component,

E{U2(β
∗, γ∗)|M,X,Z} =

{
M − β1X − f(Z; γ∗m)

}{
E(Y − β2M |M,X,Z)− β∗

3X − g(Z; γ∗y)
}

E{U2(β
∗, γ∗)|X,Z} =

{
E(M − β1X|X,Z)− f(Z; γ∗m)

}{
g(X,Z)− β∗

3X − g(Z; γ∗y)
}

=
{
f(Z)− f(Z; γ∗m)

}{
g(X,Z)− β∗

3X − g(Z; γ∗y)
}

Finally for the third component,

E{U3(β
∗, γ∗)|M,X,Z} =

{
X − h(Z; γ∗x)

}{
E(Y − β2M |M,X,Z)− β∗

3X − g(Z; γ∗y)
}

E{U3(β
∗, γ∗)|X,Z} =

{
X − h(Z; γ∗x)

}{
g(X,Z)− β∗

3X − g(Z; γ∗y)
}

Step 2: We shall consider the cases (i) and (ii) separately. In case (i) the conditions for assumption
A2 are met, hence f(Z) = f(Z; γ∗m) and so (B.1) and (B.2) are exactly zero. The proof for case (i) is
completed by letting β∗

3 be the value which solves (B.3) equal to zero.
For case (ii) the conditions of A1 are met, hence h(Z) = h(Z; γ∗x) so (B.1) is exactly zero. Also

there exists β3 such that g(X,Z) = β3X + g(Z) and for β∗
3 = β3 then the conditions in A3 are met so

g(Z) = g(Z; γ∗y) and hence (B.2) and (B.3) are exactly zero, which completes the proof for case (ii).
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B.1.2 Proof of Lemma 2

In Step 1 the following expressions for each component of E{U(β∗, γ∗)} are derived for β∗ = (β∗
1 , β2, β3).

In Step 2 we consider the behaviour of these expressions in each of the two misspecification cases.

E{U1(β
∗, γ∗)} = E

[{
X − h(Z; γ∗x)

}{
f(X,Z)− β∗

1X − f(Z; γ∗m)
}]

(B.4)

E{U2(β
∗, γ∗)} = E

[{
f(X,Z)− β∗

1X − f(Z; γ∗m)
}{

g(Z)− g(Z; γ∗y)
}]

(B.5)

E{U3(β
∗, γ∗)} = E

[{
h(Z)− h(Z; γ∗x)

}{
g(Z)− g(Z; γ∗y)

}]
(B.6)

Step 1. For the first component,

E{U1(β
∗, γ∗)|X,Z} =

{
X − h(Z; γ∗x)

}{
f(X,Z)− β∗

1X − f(Z; γ∗m)
}

For the second component we use the partial linearity to obtain

E{U2(β
∗, γ∗)|M,X,Z} =

{
M − β∗

1X − f(Z; γ∗m)
}{

E(Y − β2M − β3X|M,X,Z)− g(Z; γ∗y)
}

=
{
M − β∗

1X − f(Z; γ∗m)
}{

g(Z)− g(Z; γ∗y)
}

E{U2(β
∗, γ∗)|X,Z} =

{
f(X,Z)− β∗

1X − f(Z; γ∗m)
}{

g(Z)− g(Z; γ∗y)
}

Similarly for the third component,

E{U3(β
∗, γ∗)|M,X,Z} =

{
X − h(Z; γ∗x)

}{
E(Y − β2M − β3X|M,X,Z)− g(Z; γ∗y)

}
=
{
X − h(Z; γ∗x)

}{
g(Z)− g(Z; γ∗y)

}
E{U3(β

∗, γ∗)|Z} =
{
h(Z)− h(Z; γ∗x)

}{
g(Z)− g(Z; γ∗y)

}
Step 2. We shall consider the cases (i) and (ii) separately. In case (i) the conditions for assumption A3

are met, hence g(Z) = g(Z; γ∗y) so (B.5) and (B.6) are exactly zero. Letting β∗
1 be the value which solves

(B.4) equal to zero completes the proof for case (i).

For case (ii) the conditions of A1 are met, so h(Z) = h(Z; γ∗x) and so (B.6) is zero. Also there exists β1
such that f(X,Z) = β1X + f(Z) and for β∗

1 = β1 then the conditions in A2 are met so f(Z) = f(Z; γ∗y)
and hence (B.4) and (B.5) are exactly zero, which completes the proof for case (ii).

B.1.3 Proof of Theorem 1

Here we provide a sketch of the proof. Consider the Taylor Expansion

En{U(β̂, γ̂)} = En{U(β∗, γ∗)}+En
{
∂U(β∗, γ∗)

∂β

}
(β̂ − β∗)

+En

{
∂U(β∗, γ∗)

∂γ

}
(γ̂ − γ∗) + op

(
n−1/2

)
Since En{U(β̂, γ̂)} = 0 then

β̂ − β∗ = En

{
−∂U(β∗, γ∗)

∂β

}−1 [
En{U(β∗, γ∗)}+ En

{
∂U(β∗, γ∗)

∂γ

}
(γ̂ − γ∗)

]
+ op

(
n−1/2

)
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Using the estimator in (3.10) and rearranging gives

β̂ − β∗ = En

(
En

{
−∂U(β∗, γ∗)

∂β

}−1 [
U(β∗, γ∗) + En

{
∂U(β∗, γ∗)

∂γ

}
ϕ(β∗, γ∗)

])
+ op

(
n−1/2

)
Applying the weak law of large numbers to the partial derivative terms gives the form of the influence
function φ(.) in (3.11). We must further show that E{φ(β∗, γ∗)} = 0

E{φ(β∗, γ∗)} = E

{
−∂U(β∗, γ∗)

∂β

}−1 [
E{U(β∗, γ∗)}+ E

{
∂U(β∗, γ∗)

∂γ

}
E{ϕ(β∗, γ∗)}

]
Since ϕ(.) is an influence function, E{ϕ(β∗, γ∗)} = 0. Therefore provided E{U(β∗, γ∗)} = 0 then
E{φ(β∗, γ∗)} = 0 as required.

B.1.4 Derivation of Equation (3.12)

By Theorem 1,

β̂1 = β1 + En{φ1(β
∗, γ∗)}+ op

(
n−1/2

)
β̂2 = β2 + En{φ2(β

∗, γ∗)}+ op

(
n−1/2

)
Therefore, letting A = En{φ1(β

∗, γ∗)} and B = En{φ2(β
∗, γ∗)},

β̂1β̂2 − β1β2 = En{ω(β∗, γ∗)}+AB + op

(
n−1/2

)
and the desired result follows provided that AB = op

(
n−1/2

)
. Using Markov’s inequality,

P (|n1/2AB| ≥ ϵ) = P (n(AB)2 ≥ ϵ2) ≤ nE{(AB)2}
ϵ2

Examining the expectation term, we find a sum over four indices

E{(AB)2} = n−4
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E{φ(i)
1 (β∗, γ∗)φ

(j)
1 (β∗, γ∗)φ

(k)
2 (β∗, γ∗)φ

(l)
2 (β∗, γ∗)}

where the superscript (i) denotes that the influence function is evaluated on the ith observation. Since
the observations are iid and the influence function has mean zero, the terms of this quadruple sum can
only be non-zero when their indices are paired, i.e when (i = j and k = l) or (i = k and j = l) or (i = l
and j = k). The number of non-zero terms in the sum is therefore of order n2, and hence

P (|n1/2AB| ≥ ϵ) ≤ O
(
n−1

)
where O denotes conventional big-O notation, i.e. for sufficiently large n there exists some constant k
such that |O

(
n−1

)
| ≤ kn−1

B.1.5 Proof of Theorem 2

Here we adapt the proof from Section 5.1 of Dufour et al. (2017) to allow for orthogonal nuisance parameter
estimation. We prove the results for the CUE estimator, however they are equally applicable to the
two-step estimator. Our extension to the original results relies on three orthogonality-like derivative
results for the test statistic of interest. These are derived assuming that the nuisance parameter estimator
is orthogonal to the moment conditions in the sense that (3.13) holds. This may either be because all
models are correctly specified or because a bias-reduced strategy is used to estimate nuisance parameters,
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as described below. We begin by defining the CUE objective function, which we denote by Mn as in the
original notation of Dufour et al. (2017),

Mn(β, γ) = D⊤
n (β, γ)I

−1
n (β, γ)Dn(β, γ)

where, for a target parameter moment function U(β, γ),

Dn(β, γ) = En[U(β, γ)]

Cn(β, γ) = En

[
∂U(β, γ)

∂γ

]
=
∂Dn(β, γ)

∂γ

In(β, γ) = En[U(β, γ)U(β, γ)⊤]

Theorem 2 in the text considers the exactly specified setting, i.e. Dim(β) = Dim(U(β, γ)). For the
current proof, however, we consider the over-specified setting, i.e. Dim(β) ≤ Dim(U(β, γ)). Also define
the probability limits, β∗, γ∗ as the (assumed to be) unique values such that

∂Mn(β
∗, γ∗)

∂β

p→ 0

Cn(β
∗, γ∗)

p→ 0

The first of these is equivalent to Dn(β
∗, γ∗)

p→ 0 in the exactly specified setting. By the central limit
theorem,

√
nDn(β

∗, γ∗)
d→ N (0, I0)

In(β
∗, γ∗)

p→ I0 = E[U(β∗, γ∗)U(β∗, γ∗)⊤]

The unconstrained estimated values β̂, γ̂ are those which solve

∂Mn(β̂, γ̂)

∂β
= 0 (B.7)

Cn(β̂, γ̂) = 0

Again, the first of these is equivalent to Dn(β̂, γ̂) = 0 in the exactly specified setting. The constrained

estimated values β̂ψ, γ̂ψ are those which solve

∂Mn(β̂ψ, γ̂ψ)

∂β
− ∂ψ(β̂ψ)

∂β
λ = 0 (B.8)

Cn(β̂ψ, γ̂ψ) = 0

ψ(β̂ψ) = 0 (B.9)

for a constraint function ψ and where λ is a Lagrange multiplier. The statement that we intend to prove
is that

n[Mn(β̂ψ, γ̂ψ)−Mn(β̂, γ̂)]
d→ χ2

r (B.10)

where r is the rank of ∂ψ(β)/∂β in a neighbourhood of β∗. In the exactly specified setting, Mn(β̂, γ̂) = 0.
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Three necessary derivative results

In this subsection we show that, since Cn(β
∗, γ∗) = op(1), Dn(β

∗, γ∗) = op(1), and
√
nDn(β

∗, γ∗) = Op(1)
then

√
n
∂Mn(β

∗, γ∗)

∂γ
= op(1) (B.11)

∂2Mn(β
∗, γ∗)

∂γ∂β
= op(1) (B.12)

∂2Mn(β
∗, γ∗)

∂γ∂γ
= op(1) (B.13)

To do so it is easier to work in an index notation where Di is the ith component of Dn(β, γ), and I
−1
ij

is the i, jth component of I−1
n (β, γ) and all quantities are evaluated at (β, γ) = (β∗, γ∗). For example,

letting q = Dim(U(β, γ)), then

Mn(β
∗, γ∗) =

q∑
i=1

q∑
j=1

DiI
−1
ij Dj

For the first derivative term of interest,

√
n
∂Mn(β

∗, γ∗)

∂γ
=

q∑
i=1

q∑
j=1

{(
2
∂Di

∂γ
I−1
ij +Di

∂I−1
ij

∂γ

)
√
nDj

}

and for the second derivative term of interest,

∂2Mn(β
∗, γ∗)

∂γ∂β
=

q∑
i=1

q∑
j=1

{
2
∂Di

∂β
I−1
ij

∂Dj

∂γ
+

(
2
∂2Di

∂γ∂β
I−1
ij + 2

∂Di

∂β

∂I−1
ij

∂γ
+ 2

∂Di

∂γ

∂I−1
ij

∂β
+Di

∂2I−1
ij

∂γ∂β

)
Dj

}

For the third,

∂2Mn(β
∗, γ∗)

∂γ∂γ
=

q∑
i=1

q∑
j=1

{
2
∂Di

∂γ
I−1
ij

∂Dj

∂γ
+

(
2
∂2Di

∂γ∂γ
I−1
ij + 2

∂Di

∂β

∂I−1
ij

∂γ
+ 2

∂Di

∂γ

∂I−1
ij

∂γ
+Di

∂2I−1
ij

∂γ∂γ

)
Dj

}

By the orthogonality of the nuisance parameter estimator, ∂Dj/∂γ = op(1), and since Dj = op(1), and√
nDj = Op(1) then the results follow.

Applying the derivative results

Consider the test statistic

ξ =Mn(β̂ψ, γ̂ψ)−Mn(β̂, γ̂)
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Under standard regularity conditions, and the rank condition in (3.20) (see Dufour et al. (2017) for details),

γ̂, γ̂ψ, β̂ and β̂ψ are CAN, hence expanding this test statistics to second order gives

nξ =
√
n
∂Mn(β

∗, γ∗)

∂β⊤

{√
n(β̂ψ − β∗)−

√
n(β̂ − β∗)

}
+
√
n
∂Mn(β

∗, γ∗)

∂γ⊤
{√

n(γ̂ψ − γ∗)−
√
n(γ̂ − γ∗)

}
+

1

2

{√
n(β̂ψ − β∗)⊤

∂2Mn(β
∗, γ∗)

∂β∂β⊤
√
n(β̂ψ − β∗)⊤ −

√
n(β̂ − β∗)⊤

∂2Mn(β
∗, γ∗)

∂β∂β⊤
√
n(β̂ − β∗)⊤

}
+

1

2

{√
n(γ̂ψ − γ∗)⊤

∂2Mn(β
∗, γ∗)

∂γ∂γ⊤
√
n(γ̂ψ − γ∗)⊤ −

√
n(γ̂ − γ∗)⊤ ∂

2Mn(β
∗, γ∗)

∂γ∂γ⊤
√
n(γ̂ − γ∗)⊤

}
+

{√
n(γ̂ψ − γ∗)⊤

∂2Mn(β
∗, γ∗)

∂γ∂β⊤
√
n(β̂ψ − β∗)⊤ −

√
n(γ̂ − γ∗)⊤ ∂

2Mn(β
∗, γ∗)

∂γ∂β⊤
√
n(β̂ − β∗)⊤

}
+ op(1)

Using the derivative results (B.11) to (B.13) our expansion reduces to

nξ =
√
n
∂Mn(β

∗, γ∗)

∂β⊤

{√
n(β̂ψ − β∗)−

√
n(β̂ − β∗)

}
+

1

2

{√
n(β̂ψ − β∗)⊤

∂2Mn(β
∗, γ∗)

∂β∂β⊤
√
n(β̂ψ − β∗)⊤ −

√
n(β̂ − β∗)⊤

∂2Mn(β
∗, γ∗)

∂β∂β⊤
√
n(β̂ − β∗)⊤

}
+ op(1)

Next we consider the first order Taylor expansions of the estimating equations (B.7) to (B.9), taken

about the probability limit values. Again, since γ̂, γ̂ψ, β̂ and β̂ψ are CAN,

0 =
∂Mn(β

∗, γ∗)

∂β
+
∂2Mn(β

∗, γ∗)

∂β∂β
(β̂ − β∗) +

∂2Mn(β
∗, γ∗)

∂γ∂β
(γ̂ − γ∗) + op(n

−1/2)

0 =
∂Mn(β

∗, γ∗)

∂β
+
∂2Mn(β

∗, γ∗)

∂β∂β
(β̂ψ − β∗) +

∂2Mn(β
∗, γ∗)

∂γ∂β
(γ̂ψ − γ∗)−

∂ψ(β̂ψ)

∂β
λ+ op(n

−1/2)

0 = ψ(β∗) +
∂ψ(β∗)

∂β
(β̂ψ − β∗) + op(n

−1/2)

Under the null, ψ(β∗) = 0, application of (B.12) gives

0 = Xn + V0(β̂ − β∗) + op(n
−1/2)

0 = Xn + V0(β̂ψ − β∗)− P0λ+ op(n
−1/2)

0 = P0(β̂ψ − β∗) + op(n
−1/2)

where,

∂ψ(β∗)

∂β
= P0

∂Mn(β
∗, γ∗)

∂β
= Xn

∂2Mn(β
∗, γ∗)

∂β∂β

p→ V0

It follows immediately from the original proof in Dufour et al. (2017) that

ξ =
1

2
X⊤
n V

−1
0 P⊤

0 (P0V
−1
0 P⊤

0 )−1P0V
−1
0 Xn + op(n

−1)

The final result follows when
√
nXn

d→ N (0, 2V0). This can be shown using the same derivative methods
as used to show (B.11) to (B.13).
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B.1.6 Proof of Equations (3.21) and (3.22)

We will prove (3.21) with the result for (3.22) proceeding in a similar fashion.
Consider Theorem 2 under the null hypothesis ψ(0)(β∗) = β1β2 = 0. With the null parameter space

given by B0 = {β|ψ(0)(β) = 0}, with

Rank

(
∂ψ(0)(β)

∂β

)
=

{
0 for β1 = β2 = 0

1 otherwise

One may decompose the supremum in (3.21) as

sup
β∗∈B0

Pβ∗ (S0 > x) = max

{
sup

β∗∈B0\A
Pβ∗ (S0 > x) , sup

β∗∈A
Pβ∗ (S0 > x)

}
(B.14)

where A = {β|β1 = β2 = 0}. For the first term in the max bracket above, the rank condition of Theorem
2 holds, so for all β∗ ∈ B0 \A

Pβ∗ (S0 > x)→ 1− Fχ2
1
(x)

Considering the second term, one may decompose the test statistic as

Pβ∗ (S0 > x) = Pβ∗ (S1 > x, S2 > x) ≤ Pβ∗ (S1 > x)

where (for j = 1, 2) Sj = minβ∈Cj S(β) and Cj = {β|βj = 0}. By Theorem 2, for all β∗ in A,

Pβ∗ (S1 > x)→ 1− Fχ2
1
(x)

Hence Pβ∗ (S0 > x) is asymptotically bounded from above by 1− Fχ2
1
(x) for all β∗ in B0, so (3.21) holds.

B.1.7 G-estimation when outcome model has exposure-mediator interaction

In the following we reason about the NIDE obtained by G-estimation using moment conditions (3.6) –
(3.8), when one has erroneously excluded an interaction term from the outcome model, but the mediator
model, E(M |X,Z) is correctly specified and partially linear, i.e. in truth, (3.1) and (3.24) both hold. We
define the probability limit as β∗ = (β∗

1 , β
∗
2 , β

∗
3) which solves E{U(β∗, γ∗)} = 0 and use assumption A2 as

before. Let,

δj = βj − β∗
j

ϵx = X − E(X|Z)
ϵm =M − E(M |X,Z)

β3 =
E(ϵxg(X,Z))

E(ϵxX)

∆f = f(Z)− f(Z; γ∗m)

∆g = g(X,Z)− β3X − g(Z; γ∗m)

∆h = h(Z)− h(Z; γ∗m)

for j = 1, 2, 3. Here β3 is the least squares coefficient of a regression of g(X,Z) on X. It follows that the
expected moment conditions can be written

E[U1(β
∗, γ∗)] = E{(ϵx +∆h)(δ1X +∆f )}

E[U2(β
∗, γ∗)] = E{(ϵm + δ1X +∆f )(δ2M + θMX + δ3X +∆g)}

E[U3(β
∗, γ∗)] = E{(ϵx +∆h)(δ2M + θMX + δ3X +∆g)}



Appendix B. Supplement to partially linear mediation 150

For the first equation, since E(ϵx∆f ) = 0, then

E[U1(β
∗, γ∗)] = δ1E[(ϵx +∆h)X] + E(∆h∆f )

We assume that f(z) is modelled correctly and when δ1 = 0 then assumption A2 is satisfied and ∆f = 0.
Using this fact, the second equation becomes

E[U2(β
∗, γ∗)] = δ2E(ϵmM) + θE(ϵmMX)

where we have used the fact that E(ϵmX) = E(ϵm∆g) = 0. Hence,

δ2 = −θE(ϵmMX)

E(ϵmM)

which, since δ1 = 0, gives the result

β∗
1β

∗
2 = β1 (β2 + θx̄)

where

x̄ =
E(ϵmMX)

E(ϵmM)
=
E[Xvar(M |X,Z)]
E[var(M |X,Z)]

(B.15)

can be thought of as a weighted average of X, or as a population least squares regression coefficient from
regressing MX on M .
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C.1 Riesz Representation Theorem

Suppose P and P̃ are both absolutely continuous w.r.t. some measure ν and denote the density functions
f(o) = dP (o)/dν(o) and f̃(o) = dP̃ (o)/dν(o). The density of Pt w.r.t. ν is also well defined

ft(o) =
dPt(o)

dν(o)
= f(o) + t

{
f̃(o)− f(o)

}
.

The score function St(o) is the derivative of the log density w.r.t. t

St(o) =
d log{ft(o)}

dt
=
f̃(o)− f(o)

ft(o)
.

It follows that

St(o)dPt(o) = St(o)ft(o)dν(o)

= dP̃ (o)− dP (o).

Hence Pt{St(O)} = 0. Now we consider the L2 Hilbert space defined using the measure Pt. This is the set
of functions h(O) such that Pt{h(O)} = 0, Pt{h(O)2} <∞ and, letting g(O) be another member of this
space we define the inner product Pt{h(O)g(O)}. We refer the interested reader to Levy (2019) for an
introduction to these Hilbert spaces. Now, assuming that dΨ(Pt)/dt is a continuous linear functional of
St(O), which is assumed to be a member of the Hilbert space, we use the Riesz Representation Theorem
to obtain

dΨ(Pt)

dt
= Pt {ϕ(O,Pt)St(O)}

=

∫
ϕ(o, Pt)St(o)dPt(o)

=

∫
ϕ(o, Pt){dP̃ (o)− dP (o)}

= (P̃ − P ) {ϕ(O,Pt)}

It follows that this expansion holds for all t. Also note that Pt {ϕ(O,Pt)} = 0. In the special cases t = 0
and t = 1 this allows us to write

dΨ(Pt)

dt

∣∣∣
t=0

= P̃ {ϕ(O,P )}

dΨ(Pt)

dt

∣∣∣
t=1

= −P
{
ϕ(O, P̃ )

}
.
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C.2 Additional results

In this Appendix we derive the following results, which readers might find helpful for reference. Here,
F−1(τ) is the quantile function of Y for known τ ∈ [0, 1], and F (y|x) is the cumulative distribution
function of Y given X = x. Also Θ(u) is a step function which takes the value 1 when u ≥ 0 and 0
otherwise.

∂tFt(y|x) =
1x̃(x)

f(x)
{Θ(y − ỹ)− F (y|x̃)}

∂tEPt(Y |Y ≤ y) =
Θ(y − ỹ)
F (y)

{ỹ − EP (Y |Y ≤ y)}

∂tF
−1
t (τ) =

Θ
{
ỹ − F−1(τ)

}
+ τ − 1

f {F−1(τ)}
.

We also illustrate the steps described in the main paper through two further examples: the interventional
direct effect, and the incremental propensity score intervention.

Conditional cumulative distribution function. Here we consider the conditional cumulative distribution
function, F (y|x) where, y and x are known,

F (y|x) = EP {Θ(Y − y)|X = x}

It is fairly straightforward to recycle the result in (4.7), with Y replaced with Θ(Y − y) to recover the
desired form.

Tail conditional expectation. Here we consider the tail conditional expectation, EP (Y |Y ≤ y), where y
is known:

EP (Y |Y ≤ y) =
EP {Θ(y − Y )Y }

F (y)
.

Now perturbing in the direction of the parametric submodel, and applying the quotient rule,

∂tEPt(Y |Y ≤ y) =
∂tEPt{Θ(y − Y )Y }F (y)− EP {Θ(y − Y )Y }∂tFt(y)

F (y)2

=
[Θ(y − ỹ)ỹ − EP {Θ(y − Y )Y }]F (y)− EP {Θ(y − Y )Y }{Θ(y − ỹ)− F (y)}

F (y)2

=
Θ(y − ỹ)
F (y)

{ỹ − EP (Y |Y ≤ y)}.

We notice that the resultant efficient influence function is zero for observations where ỹ > y. This coheres
with our intuition that the distribution of Y outside the region Y ≤ y does not contribute to the asymptotic
efficiency bound of E(Y |Y ≤ y).

Quantile function. Here we consider the quantile function, F−1
t (τ), of a continuous random variable Y ,

where τ ∈ [0, 1] is known. An alternative derivation of the influence curve can be found in van der Vaart
(1998b). We define the estimand Ψ = Ψτ (P ) = F−1(τ). The distribution quantile is implicitly defined by∫ Ψτ (P )

a

f(y)dy = τ,

where a denotes the lower boundary of the support of Y and f(y) is the density function of Y . Under the
parametric submodel, ∫ Ψτ (Pt)

a

ft(y)dy = τ.
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Differentiating both sides with respect to t, the Leibniz integral rule gives us that

ft {Ψτ (Pt)}
dΨτ (Pt)

dt
+

∫ Ψτ (Pt)

a

dft(y)

dt
dy = 0.

Hence,

∂tΨτ (Pt) =
−1

f {Ψ(P )}

∫ Ψ(P )

a

{1ỹ(y)− f(y)} dy

=
1

f {Ψ(P )}

{∫ Ψ(P )

a

f(y)dy −
∫ Ψ(P )

a

1ỹdy

}

=
τ − [1−Θ {ỹ −Ψ(P )}]

f {Ψ(P )}
.

The resulting efficient influence function can be rewritten by defining the function ρ′τ (u) = Θ(u) + τ − 1,
which is the derivative (almost everywhere) of the standard quantile regression loss function, ρτ (u) =
u[Θ(u) + τ − 1]. Doing so results in

ϕ(y, P ) = ρ′τ {y −Ψ(P )} /f {Ψ(P )}.

Interestingly, and as an aside, one might wonder how this estimand behaves for different distributions.
Let’s consider the median when Y follows a univariate normal distribution with mean µ and standard
deviation σ. For the normal distribution the mean is equal to the median, so Ψ(P ) = µ. And hence

ϕ(y, P ) = σ
√
2πρ′1/2(y − µ)

ϕ(y, P )2 =
π

2
σ2.

The standard error in the median estimator is therefore E
{
ϕ(Y, P )2/n

}1/2 ≈ 1.253 σ√
n
. This is 25% larger

than the standard error in the sample mean, which (under the assumption of normality) estimates the
same quantity, but achieves the Cramer-Rao lower bound.

Example 9 (interventional direct effect). In this example we will derive (one half of) the efficient
influence function for the interventional direct effect for mediation, first defined by Vansteelandt and
Daniel (2017), with an efficient influence function given in Benkeser (2020). This estimand is derived
using a causal framework and is used to evaluate the effect of a binary outcome, X, on an outcome, Y ,
through a set of mediating variables, M , given a set of confounder variables, Z. Under standard causal
assumptions the estimand may be written as a functional of the observed data. We shall not detail these
assumptions here, since, once a functional of the data generating distribution is obtained, the causal
assumptions are no longer required to derive estimators and efficiency results for it. For our purposes, it
is sufficient to define the estimand over the set of variables, O = (Y,M,X,Z), with conditional response
surface, b(m,x, z) = E(Y |M = m,X = x, Z = z),

Ψ(P ) =

∫
b(m,x1, z)f(m|x0, z)f(z)dmdz, (C.1)

where x1 and x0 are known values. Under the parametric submodel,

Ψ(Pt) =

∫
bt(m,x

1, z)ft(m|x0, z)ft(z)dmdz. (C.2)



Appendix C. Supplement to influence curve based inference 154

Applying the derivative operator gives

∂tΨ(Pt) =

∫ [
∂tbt(m,x

1, z)f(m|x0, z)f(z)

+ b(m,x1, z)∂tft(m|x0, z)f(z)

+ b(m,x1, z)f(m|x0, z)∂tft(z)

]
dmdz.

Evaluating these derivatives gives

∂tΨ(Pt) =

∫ [
1õ(m,x

1, z)

f(m,x1, z)

{
ỹ − b(m,x1, z)

}
f(m|x0, z)f(z)

+ b(m,x1, z)
1õ(x

0, z)

f(x0, z)

{
1m̃(m)− f(m|x0, z)

}
f(z)

+ b(m,x1, z)f(m|x0, z) {1z̃(z)− f(z)}

]
dmdz

and evaluating the integral results in the efficient influence function

1x1(X)f(M |x0, Z)
f(M,x1|Z)

{
Y − b(M,x1, Z)

}
+

1x0(X)

f(x0|Z)
{b(M,x1, Z)− a(x1, x0, Z)}+ a(x1, x0, Z)−Ψ(P),

where we define

a(x1, x0, z) =

∫
b(m,x1, z)f(m|x0, z)dm.

Example 10 (incremental propensity score intervention). The incremental propensity score intervention
estimand is motivated by, and derived in the work of Kennedy (2019). It is an interesting example,
since it uses a stochastic intervention which is a function of the true data generating distribution. We
define the estimand over the set of variables O = (Y,X,Z), where X is binary with propensity score
π(z) = EP (X|Z = z), and conditional response surface, m(x, z) = E(Y |X = x, Z = z),

Ψ(P ) =

1∑
x=0

∫
m(x, z)gP (x|z)f(z)dz,

where gP (x|z) is a probability mass function, which is dependent on the true data generating distribution.
Kennedy (2019) propose the ‘propensity score intervention’ indexed by a known value ϵ,

gP (x|z) =
xϵπ(z) + (1− x) {1− π(z)}

ϵπ(z) + 1− π(z)
.

This propensity score intervention is motivated by a multiplication on the odds ratio scale,

gP (1|z)
gP (0|z)

= ϵ
π(z)

1− π(z)

although for the purposes of influence function derivation, we are not too concerned with interpretation of
the estimand. Under the parametric submodel,

Ψ(Pt) =

1∑
x=0

∫
mt(x, z)gPt(x|z)ft(z)dz.
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Applying the ∂t operator gives

∂tΨ(Pt) =

1∑
x=0

∫ [
1õ(x, z)

f(x, z)
{ỹ −m(x, z)} gP (x|z)f(z) +m(x, z)

dgP (x|z)
dπ

1z̃(z)

f(z)
{x̃− π(z)} f(z)

+m(x, z)gP (x|z) {1z̃(z)− f(z)}

]
dz,

where

dgP (x|z)
dπ

=
(2x− 1)ϵ

(ϵπ(z) + 1− π(z))2

=
gP (1|z)gP (0|z)
π(z)(1− π(z))

{11(x)− 10(x)} .

Now, integrating over z, becomes

∂tΨ(Pt) =

1∑
x=0

[
1x̃(x)

f(x|z̃)
{ỹ −m(x̃, z̃)} gP (x|z̃)

+m(x, z̃)
gP (1|z̃)gP (0|z̃)
π(z̃) {1− π(z̃)}

{11(x)− 10(x)} {x̃− π(z̃)}+m(x, z̃)gP (x|z̃)

]
−Ψ(P ).

Performing the summation over x, the efficient influence function becomes

gP (1|Z)φ1(O,P ) + gP (0|Z)φ0(O,P ) +
gP (1|Z)gP (0|Z)
π(Z) {1− π(Z)}

{X − π(Z)} {m(1, Z)−m(0, Z)} −Ψ(P ),

where φx(O,P ) is the ‘uncentered’ AIPW influence function as in (4.6).
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D.1 Derivation of Efficient Influence Curve

To derive the ICs in (5.3) and (5.5) we adopt the formalism given in Hines et al. (2022). Specifically we
let P denote the true distribution of (Y,A,X) and let P̃ denote a point mass at (ỹ, ã, x̃). We further
denote the parametric submodel Pt = tP̃ + (1− t)P where t ∈ [0, 1] is a scalar parameter, and we let ∂t
denote an operator such that for some function of f(t), ∂tf(t) ≡ df(t)

dt |t=0.
We make use of the following lemma, which we demonstrate later in the proof. Letting gP (X) denote

some functional of P , then

∂tEPt{gPt(X)|X−s = x−s} =
f̃(x−s)

f(x−s)
[gP (x̃)− EP {gP (X)|X−s = x−s}] + EP {∂tgPt(X)|X−s = x−s}

(D.1)

where f̃(.) and f(.) denote the marginal ‘densities’ of X−s under P̃ and P respectively, which are both
assumed to be absolutely continuous w.r.t. to a dominating measure. In practice this expression means
that for discrete X−s then f(.) is a probability mass function and f̃(.) is an indicator function. Similarly
for continuous X−s then f(.) is a probability density function and f̃(.) is a dirac delta function. In both
cases f̃(x−s) is a probability point mass, which is zero when x̃−s ̸= x−s.

It follows immediately from (D.1) that,

∂tEPt{gPt(X)} = gP (x̃)− EP {gP (X)}+ EP {∂tgPt(X)} (D.2)

By considering that

varP {gP (X)|X−s = x−s} = EP {g2P (X)|X−s = x−s} − EP {gP (X)|X−s = x−s}2

We can use (D.1) to show that that

∂tvarPt{gPt(X)|X−s = x−s} =
f̃(x−s)

f(x−s)

[
{gP (x̃)− EP (gP (X)|X−s = x−s)}2 − varP {gP (X)|X−s = x−s}

]
(D.3)

+ 2covP {gP (X), ∂tgPt(X)|X−s = x−s}

where cov(A,B|C) ≡ E({A−E(A|C)}B|C) denotes the conditional covariance. Using the results in (D.2)
and (D.3), we obtain

∂tEPt [varPt{gPt(X)|X−s}] = {gP (x̃)− EP (gP (X)|X−s = x̃−s)}2 − EP [varP {gP (X)|X−s}]
+ 2EP {covP {gP (X), ∂tgPt(X)|X−s}} (D.4)
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Setting gP (X) = τ(X), we use (D.1) and the fact that τ(x) = µ(1, x)− µ(0, x) to show that,

∂tgPt(x) =
f̃(x)

f(x)
{ỹ − µ(ã, x)} ã− π(x)

π(x){1− π(x)}

Hence, (D.4) implies the IC,

ϕs(z̃) = {τ(x̃)− τs(x̃)}2 −Θs + 2{τ(x̃)− τs(x̃)}{ỹ − µ(ã, x̃)}
ã− π(x̃)

π(x̃){1− π(x̃)}
= {τ(x̃)− τs(x̃)}2 −Θs + 2{τ(x̃)− τs(x̃)}{φ(z̃)− τ(x̃)}

Completing the square of the expression above gives the result in (5.3). In replicating this proof, it is
useful to note that for an arbitrary function h(x)

EP

{
f̃(X)

f(X)
h(X)

}
= h(x̃)

Proof of Lemma in (D.1)

To demonstrate (D.1) we write the lefthand side as

∂t

∫
gPt(x

∗)dPt,Xs|x−s(x
∗
s) =

∫
gP (x

∗)∂tdPt,Xs|x−s(x
∗
s) +

∫
{∂tgPt(x∗)}dPXs|x−s(x

∗
s)

where dPt,Xs|x−s(.) is the conditional distribution of Xs given X−s = x−s under the parametric submodel
and x∗−s = x−s. The second integral on the righthand side recovers the final term in (D.1). Hence the
lemma follows once we show that

∂tdPt,Xs|x−s(x
∗
s) =

f̃(x−s)

f(x−s)
{dP̃Xs(x∗s)− dPXs|x−s(x

∗
s)}

To do so, let µ denote a dominating measure and write

dPt,Xs|x−s(x
∗
s) = ft,Xs|x−s(x

∗
s)dµ(x

∗
s)

=
ft,X(x∗)

ft,X−s(x−s)
dµ(x∗s)

where ft,X(.) and ft,X−s(.) denote the marginal densities of X and X−s under the parametric submodel,
Pt, i.e. they are the Radon-Nikodym derivatives w.r.t. µ. Applying the quotient rule, we obtain

∂tdPt,Xs|x−s(x
∗
s) =

1

fX−s(x−s)

[
∂tft,X(x∗)− fX(x∗)

fX−s(x−s)
∂tft,X−s(x−s)

]
dµ(x∗s)

We now evaluate the derivative parts. Since ∂tPt = P̃ − P , the marginal density derivatives will have a
similar structure, as shown in the first expression below, where fX(.) and f̃X(.) denote marginal densities
of X under P̃ and P , with likewise for X−s

∂tdPt,Xs|x−s(x
∗) =

1

fX−s(x−s)

[
{f̃X(x∗)− fX(x∗)} − fX(x∗)

fX−s(x−s)
{f̃X−s(x−s)− fX−s(x−s)}

]
dµ(x∗s)

Since P̃ is a point mass, f̃X(x∗) = f̃Xs(x
∗
s)f̃X−s(x

∗
−s). Also x∗−s = x−s hence,

∂tdPt,Xs|x−s(x
∗) =

f̃X−s(x−s)

fX−s(x−s)

[
f̃Xs(x

∗
s)−

fX(x∗)

fX−s(x−s)

]
dµ(x∗s)

=
f̃X−s(x−s)

fX−s(x−s)

[
f̃Xs(x

∗
s)− fXs|x−s(x

∗
s)
]
dµ(x∗s)

Thus, the result follows.
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Corollary

An immediate consequence of these IC derivations is that the IC of var{τs(X)} = Θp −Θs is,

ϕp(Z)− ϕs(Z) = {φ(Z)− τp}2 − {φ(Z)− τs(X)}2 − var{τs(X)}

This result is interesting since it holds even when Y is not independent of A given X−s.

D.2 Estimator Asymptotic Distributions

D.2.1 Proof of Theorem 3

We demonstrate asymptotic regularity for the estimator Θ̂s, with the result for Θ̂p following from the
case s = p. Asymptotic regularity of Ψs follows using the ratio argument above.

Throughout we use superscript hat to denote functional estimators obtained from an independent
sample, and we define,

φ̂(z) = {y − µ̂(a, x)} a− π̂(x)
π̂(x){1− π̂(x)}

+ µ̂(1, x)− µ̂(0, x)

ϕ̂s(z) = {φ̂(z)− τ̂s(x)}2 − {φ̂(z)− τ̂(x)}2 − Θ̂0
s

where Θ̂0
s is an initial plug-in estimate of Θs. We make the following assumptions about these functional

estimators,

(A1) The propensity score and outcome estimators are ‘double robust’ in the sense that {π(x) −
π̂(x)}{µ(a, x)− µ̂(a, x)} is oP (n−1/2) in L2(P ) norm for a = 0, 1.

(A2) The differences τ(x)− τ̂(x) and τs(x)− τ̂s(x) are both oP (n
−1/4) in L2(P ) norm.

(A3) The CATE difference estimates are bounded as {τ̂(x)− τ̂s(x)}2 ≤ δ for some δ <∞ with probability
1.

(A4) The propensity score estimates are bounded as ϵ ≤ π̂(x) ≤ 1− ϵ for some ϵ > 0 with probability 1.

(A5) There exists a P -Donsker class G0 such that P (ϕ̂s(.) ∈ G0)→ 1.

(A6) There exists a constant K > 0 such that each of τ(x), τ̂(x), τ̂s(x) and var(φ(Z)|X = x) has range
uniformly contained in (−K,K) with probability one as n→∞.

(A7) There exists a constant K > 0 such that var(Y |X = x) and µ̂(a, x) have range uniformly contained
in (−K,K) with probability one as n→∞.

Under these assumptions we show that the remainder term, R, in the expansion below is oP (n
−1/2)

Θ̂0
s −Θs = −E{ϕ̂s(Z)}+R

where we highlight that the expectation is conditional on the functional estimators, i.e. φ̂(z) is treated as
a fixed function. We then show that

−E{ϕ̂s(Z)} = n−1
n∑
i=1

ϕs(zi) +Hn − n−1
n∑
i=1

ϕ̂s(zi) (D.5)

where Hn is an empirical process term, which is oP (n
−1/2) under our assumptions. It follows therefore

that for

Θ̂s = Θ̂0
s + n−1

n∑
i=1

ϕ̂s(zi)

Θ̂s −Θs = n−1
n∑
i=1

ϕs(zi) + oP (n
−1/2).
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Formally Θ̂s is one-step plug-in bias correction estimator, but it is seen to be equivalent to the estimating
equations estimator in the main text.

The remainder term

To simplify notation, in this subsection we largely omit function arguments, for example τ = τ(X) with

similar for τ̂ , τs, τ̂s, π, π̂, φ̂. Evaluating the remainder R ≡ E{ϕ̂s(Z) + Θ̂0
s −Θs} gives

R = E
[
{φ̂− τ̂s}2 − {φ̂− τ̂}2 − {τ − τs}2

]
where we have used the fact that Θs = E[{τ − τs}2]. By algebraic manipulation, we write

R = E
[
{τ̂ − τ̂s}2 − {τ − τs}2 + 2{τ̂ − τ̂s}{φ̂− τ̂}

]
We then use the identity,

E
[
{τ̂ − τ̂s}2 − {τ − τs}2

]
= E

[
{τs − τ̂s}2 − {τ − τ̂}2 + 2{τ̂ − τ̂s}{τ̂ − τ}

]
to rewrite the remainder term as the sum of two error terms,

R = E
[
{τ̂ − τ̂s}2 − {τ − τs}2 + 2{τ̂ − τ̂s}{φ̂− τ̂}

]
= E

[
{τs − τ̂s}2 − {τ − τ̂}2 + 2{τ̂ − τ̂s}{τ̂ − τ}+ 2{τ̂ − τ̂s}{φ̂− τ̂}

]
= E

[
{τs − τ̂s}2 − {τ − τ̂}2 + 2{τ̂ − τ̂s}{φ̂− τ}

]
= E

[
{τs − τ̂s}2 − {τ − τ̂}2

]︸ ︷︷ ︸
CATE error

+ 2E [{τ̂ − τ̂s}r]︸ ︷︷ ︸
Pseudo-outcome error

where r = r(X) is defined by

r(x) ≡ E [φ̂|X = x]− τ(x)

This represents a pseudo-outcome error in the sense that r(x) = E [φ̂− φ|X = x]. Splitting the remainder
in to two error terms allows us to consider that the CATE error is oP (n

−1/2) when (A2) holds. For the
pseudo-outcome error we use the Cauchy-Schwarz inequality to show that

E [{τ̂ − τ̂s}r]2 ≤ E
[
{τ̂ − τ̂s}2

]
E
[
r2
]
≤ δE

[
r2
]

with the second inequality following from (A3). Hence the pseudo-outcome error term is oP (n
−1/2) if r is

oP (n
−1/2). By iterated expectation

r(x) =

{
π(x)

π̂(x)
− 1

}
{µ(1, x)− µ̂(1, x)} −

{
1− π(x)
1− π̂(x)

− 1

}
{µ(0, x)− µ̂(0, x)}

Using the inequality (a+ b)2 ≤ 2(a2 + b2) then

r2(x) ≤ 2

{
π(x)

π̂(x)
− 1

}2

{µ(1, x)− µ̂(1, x)}2 + 2

{
1− π(x)
1− π̂(x)

− 1

}2

{µ(0, x)− µ̂(0, x)}2

≤
(

2

ϵ2

)
{π(x)− π̂(x)}2

[
{µ(1, x)− µ̂(1, x)}2 + {µ(0, x)− µ̂(0, x)}2

]
with the second inequality following from (A4). The final expression above is oP (n

−1) under (A1), which
completes the proof that R itself is oP (n

−1/2).
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The empirical process term

In this subsection we use a common empirical processes notation, where we define linear operators P and
Pn such that for some function h(Z), P{h(Z)} ≡ E{h(Z)} and Pn{h(Z)} ≡ n−1

∑n
i=1 h(zi). Hence we

write −E{ϕ̂s(Z)} as

(Pn − P ){ϕs(Z)}+ (Pn − P ){ϕ̂s(Z)− ϕs(Z)} − Pn{ϕ̂s(Z)}

which follows from adding and subtracting (Pn − P ){ϕs(Z)} and Pn{ϕ̂s(Z)} to −P{ϕ̂s(Z)}. This
expression recovers (D.5) since the IC is mean zero, in the sense that P{ϕs(Z)} = 0, and we define the
empirical process term

Hn ≡ (Pn − P ){ϕ̂s(Z)− ϕs(Z)}

By e.g. Lemma 19.24 of van der Vaart (1998a),Hn is oP (n
−1/2) under (A5) provided that P

[{
ϕ̂s(Z)− ϕs(Z)

}2
]

converges to zero in probability.
Start by writing,

ϕ̂s − ϕs =2(φ̂− φ)(τ̂ − τ̂s)
+ 2(φ− τs)(τs − τ̂s) + (τs − τ̂s)2

− 2(φ− τ)(τ − τ̂)− (τ − τ̂)2

− (Θ̂0
s −Θs)

Using the inequality (a+ b)2 ≤ 2(a2 + b2),

P

[{
ϕ̂s(Z)− ϕs(Z)

}2
]
≤ 8P

{
(φ̂− φ)2(τ̂ − τ̂s)2

]
+ 2P

[{
2(φ− τs)(τs − τ̂s) + (τs − τ̂s)2

− 2(φ− τ)(τ − τ̂)− (τ − τ̂)2

− (Θ̂0
s −Θs)

}2]
Letting Θ̂0

s = Pn{(τ̂ − τ̂s)2} then, in view of Theorem 1 of Williamson et al. (2021a), the second term
converges to zero under (A2) and (A6). For the first of terms, we note that (A3) implies

P
{
(φ̂− φ)2(τ̂ − τ̂s)2

]
≤ δP

{
(φ̂− φ)2

]
.

Similar terms to P
{
(φ̂− φ)2

]
appear in the ATE empirical process literature. In view of Theorem 5.1

of Chernozhukov et al. (2018), this term is also converges to zero under (A1), (A4) and (A7).
Thus Hn = oP (n

−1/2) which completes the proof.

D.2.2 Proof of Theorem 4

Under (A1)-(A7) and

(B1) The difference τp − τ̂p is oP (n
−1/4).

(B2) The CATE difference estimates are bounded as {τ̂(x)− τ̂p}2 ≤ δ for some δ <∞ with probability 1.

(B3) There exists a P -Donsker class G0 such that P (ϕ̂p(.) ∈ G0)→ 1.

(B4) There exists a constant K > 0 such that τ̂p ∈ (−K,K).
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Then we have regular asymptotically linear estimators such that,

Θ̂s −Θs = n−1
n∑
i=1

ϕs(zi) + op(n
−1/2)

Θ̂p −Θp = n−1
n∑
i=1

ϕp(zi) + op(n
−1/2)

It follows by algebraic manipulations that,

√
n(Ψ̂s −Ψs) =

Θp

Θ̂p

[
n−1/2

n∑
i=1

Φs(zi) + op(1)

]

where Φs(z) = {ϕs(z)−Ψsϕp(z)}/Θp is the IC of Ψs. Next we use Slutsky’s Theorem and the fact that

Θ̂p/Θp converges to 1 in probability, to write,

lim
n→∞

√
n(Ψ̂s −Ψs) = lim

n→∞
n−1/2

n∑
i=1

Φs(zi)

which gives the desired result due to the central limit theorem. We note that this set up is quite general
when one considers estimands which are written as the ratio of two other estimands, such as Ψs in the
present context.

D.3 Additional Plots

D.3.1 Simulation plots

Figure D.1 shows the performance of the estimator Ψ̂2, of the TE-VIM Ψ2, as described in the simulation
study in Section 5.3.

D.3.2 Applied example

Figure D.2 gives TE-VIM estimates from the ACTG175 where the discrete Super Learner (20 cross
validation folds) is used for functional estimation. The plots for Algorithms 1A and 2A, i.e. the T-learner
without and with sample splitting, appear highly uninformative. For Algorithm 1A this is due to the point
estimate of the VTE being very close to zero -3.80×10−9mm−6 (CI: -1.7×10−3,1.7×10−3). For Algorithm
2A, the VTE estimate is also negative -107 mm−6 (CI:-159,-57), and does not overlap with zero. Since
both point estimates are negative, the null hypothesis that the VTE≤ 0 has p-value exactly equal to 1.

For Algorithm 2A, all of the TE-VIM point estimates are negative, meaning that all of the corresponding
Θs estimates are positive. The negative VTE, therefore has the effect of reversing the order of importance,
with CD4 count at baseline appearing at the bottom of the plot for Algorithm 2A in Figure D.2.
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Figure D.1: Bias, variance and coverage for Ψ̂2 using 1000 sampled datasets. Red and blue points indicate
that working models are fitted using generalised additive modelling and random forests respectively. Top row
of plots corresponds to Algorithm 1 (no sample splitting) and the bottom row corresponds to Algorithm 2
(sample splitting). Square and crossed points indicate that the algorithm used the T-learner and DR-learner
respectively for CATE estimation.
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Figure D.2: TE-VIM estimates from the ACTG175 study using the discrete Super Learner for functional
estimation. Top row: no sample splitting (Algorithm 1). Bottom row: with sample splitting (Algorithm
2). Left col: T-learner (A). Right col: DR-learner (B). Black lines indicate 95% Confidence intervals.
Confidence intervals in the bottom left plot are so small that they are not visible. In each plot, covariates
are sorted according to their TE-VIM point estimate. Dashed lines indicate the [0, 1] support of the
TE-VIM.

D.4 TE-CDF bounds

First note Chebyshev’s inequality: For a variable V with mean µ and variance σ2, for k > 0

Pr(|V − µ| ≥ kσ) ≤ k−2

=⇒ Pr(V ≥ µ+ kσ) + Pr(V ≤ µ− kσ) ≤ k−2

which implies the weaker inequality,

Pr(V ≤ µ− kσ) ≤ k−2

Let τ(X) be the CATE with ATE τp and VTE Θp then,

β(0) = Pr {τ(X) ≤ 0} = Pr

{
τ(X) ≤ τp −

(
τp√
Θp

)√
Θp

}
≤ Θp
τ2p

Where the inequality applies only when τp > 0. It follows that, when the ATE is positive, the quantity on
the RHS bounds β(0) from above. The quotient rule gives that the IC (pathwise derivative) is,

ϕβ(Z) =
1

τ2p
ϕp(Z)− 2

(
Θp
τ3p

)
{φ(Z)− τp}

=
{φ(Z)− τp}2 − {φ(Z)− τ(X)}2 −

(
Θp
τ2
p

)
τp{2φ(Z)− τp}

τ2p

where {φ(Z)− τp} is the IC of τp. An estimating equations estimator is that which solves

n−1
n∑
i=1

ϕ̂β(zi) = 0
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where ϕ̂β(z) is an estimate of ϕβ(z). Therefore Θ̂p/τ̂
2
p is an estimating equations estimator where Θ̂p is

the VTE estimator in the current paper and

τ̂p = n−1
n∑
i=1

φ̂(zi)

is the AIPW estimator of the ATE.

D.5 IC for continuous analogue estimands

Here we use the same fomalism as in Appendix D.1. To derive the ICs of interest we consider the results
in (D.2) and (D.4) in the setting where we set gP (x) = λ(x). We will show that,

∂tgPt(x) =
f̃(x)

f(x)
{ỹ − µ(x)− λ(x){ã− π(x)}} ã− π(x)

var(A|X = x)
(D.6)

and hence, letting

φλ(z) ≡ {y − µ(x)− λ(x){a− π(x)}}
a− π(x)

var(A|X = x)
+ λ(x)

then by (D.2) the IC of E{λ(X)} is,

φλ(z)− E{λ(X)}

and by (D.4), the IC of E [var{λ(X)|X−s}] is,

{φλ(z)− λs(x)} − {φλ(z)− λ(x)} − E [var{λ(X)|X−s}]

where λs(x) = E{λ(X)|X−s = x−s}. The IC for var{λ(X)} follows as a special case where s includes all
the observed covariates. To demonstrate (D.6) we first note that, by (D.1),

∂tcovPt(A, Y |X = x) = ∂tEPt{[A− EPt(A|X)][Y − EPt(Y |X)]|X = x}

=
f̃(x)

f(x)
[{ã− π(x)}{ỹ − µ(x)} − covP (A, Y |X = x)]

We also obtain ∂tvarPt(A|X = x) as a special case of the above expression when Y = A. By the quotient
rule,

∂t
covPt(A, Y |X = x)

varPt(A|X = x)
=
∂tcovPt(A, Y |X = x)

varP (A|X = x)
− covP (A, Y |X = x)

varP (A|X = x)

∂tvarPt(A, Y |X = x)

varP (A|X = x)

=
f̃(x)

f(x)
{ỹ − µ(x)− λ(x){ã− π(x)}} ã− π(x)

var(A|X = x)

Thus, the desired results follow.





Appendix E

Supplement to nonparametric score
testing

E.1 Non-invariance to reparameterisation of Wald CIs

In Section 6.2.3 of the main text, we showed how the TMLE estimator achieves invariance to differentiable
reparameterisations of the estimand by debiasing the initial plug-in estimator in the distribution space,
rather than in the estimand space. Wald confidence sets, centred on TMLE point estimators, however,
are not invariant to differentiable reparameterisations of the estimand, as we demonstrate here. Trivially,
Wald confidence sets centered on one-step bias correction point estimators are also not invariant to
differentiable reparameterisations of the estimand, since the point estimator itself is not invariant to such
reparameterisations.

Consider the setting where d = q = 1 and h(.) is monotonic, i.e. Ψ(P0) and h{Ψ(P0)} represent scalar
estimands. Letting Ψ(P̂ ∗

n) denote a TMLE estimator of Ψ(P0), then since h{Ψ(P̂ ∗
n)} is an RAL estimator

for h{Ψ(P0)}

h{Ψ(P̂ ∗
n)} − h{Ψ(P0)} = h′{Ψ(P0)}Un(P0) + op(n

−1/2)
√
n[h{Ψ(P̂ ∗

n)} − h{Ψ(P0)}]
d→ N

(
0, h′{Ψ(P0)}2I0

)
where h′(.) denotes the derivative of h(.). Estimating the variance, h′{Ψ(P0)}2I0 by h′{Ψ(P̂ ∗

n)}2In(P̂ ∗
n)

results in a Wald CI for h{Ψ(P0)}, as the set of values h0 which satisfy

n
[
h{Ψ(P̂ ∗

n)} − h0
]2

h′{Ψ(P̂ ∗
n)}2In(P̂ ∗

n)
≤ c2α

This inequality implies the Wald CI for h{Ψ(P0)}

h{Ψ(P̂ ∗
n)} ± h′{Ψ(P̂ ∗

n)}

√
c2αIn(P̂

∗
n)

n
(E.1)

Alternatively, one might have first constructed a Wald CI for Ψ(P0) centred on the TMLE point estimator

Ψ(P̂ ∗
n)±

√
c2αIn(P̂

∗
n)

n
(E.2)

then, letting h[.] denote the image of h(.), one obtains a CI for h{Ψ(P0)} as

h

Ψ(P̂ ∗
n)±

√
c2αIn(P̂

∗
n)

n

 . (E.3)
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Generally the interval in (E.3) is not equal to the interval in (E.1). It follows that the Wald type confidence
sets are not invariant to differentiable reparameterisations of the estimand, even when they are centred on
TMLE point estimators. Moreover, there is no guarantee that the interval in (E.2) lies in the domain of
h(.), in which case (E.3) is not well defined. When (E.2) does lie in the domain of h(.), however, a Taylor
expansion of (E.3) gives

h{Ψ(P̂ ∗
n)} ± h′{Ψ(P̂ ∗

n)}

√
c2αIn(P̂

∗
n)

n
+ oP (n

−1/2)

from which we conclude that the Wald intervals in (E.1) and (E.3) are asymptotically equivalent up to a
term which is op(n

−1/2).
We reason that Wald confidence sets are generally not invariant to differentiable reparmeterizations of

the estimand because they are constructed in the estimand space, rather than the distribution space. In
the next section, we propose a score confidence set construction method that delivers invariant confidence
sets by constructing the confidence set in the space of distributions. As such, the comparison between the
proposed score confidence sets and nonparametric Wald confidence sets is analogous to the comparison
between TMLE point estimators and one-step bias-correction point estimators, described in Section 6.2.2.

E.2 Significance Threshold discussion

Here we discuss three different methods for obtaining a threshold k which can be compared against the
score statistic Mn(P ), i.e. where the score test is defined as the set of distributions for which Mn(P ) ≤ k.
In the main text, we advocate the value k = c2α/n, where c

2
α is the 1− α quantile of a χ2

d random variable.

This is a natural choice, since nMn(P0)
d→ χ2

d.
Instead of basing inference on the score statistic Mn(P ), one could have based score type inference

on an analogous statistic where the covariance matrix I0 is estimated as the ‘mean corrected’ covariance
matrix Ĩn(P0) in (6.6). The resulting ‘mean corrected score statistic’ M̃n(P ) ≡ U⊤

n (P )Ĩ−1
n (P )Un(P )

shares the same asymptotic distribution as the proposed score statistic Mn(P ) since Ĩn(P0)− In(P0)
p→ 0

as n→∞.
For the purposes of score interval construction, using the mean corrected score statistic in place of

Mn(P ) is equivalent to using the score statistic Mn(P ), but with a different value for k. To see why,
consider the ‘mean corrected’ score statistic

M̃ = M̃n(P ) = u⊤(I − uu⊤)−1u

where for convenience we let u = Un(P ) and I = In(P ) so that the score statistic is writtenM =Mn(P ) =
u⊤I−1u. Multiplying by (1−M) gives

M̃(1−M) = u⊤(I − uu⊤)−1u(1− u⊤I−1u)

= u⊤(I − uu⊤)−1(I − uu⊤)I−1u =M

Hence

M̃ =
M

1−M

M =
M̃

1 + M̃

and we conclude that

M̃ ≤ k ⇐⇒ M ≤ k

1 + k
.

A score set based on the asymptotic χ2
d distribution of M̃ is therefore equivalent to score set based on M ,

which uses k = c2α/(n+ c2α). This choice of threshold is expected to affect inference only in small samples,
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since the thresholds c2α/n and c2α/(n+ c2α) are asymptotically equivalent. We remark that asymptotically
valid inference is obtained when k is set to any sequence kn such that nkn → c2α.

By construction, M̃ ≥ 0, which implies that M ∈ [0, 1). There is, however, no guarantee that c2α/n
lies on the interval [0, 1), and it is possible for the threshold c2α/n to be outside of [0, 1), for example
when the dimension d is large, n is small, and α is small, i.e. a wide confidence interval for a high-
dimensional estimand with few observations. This represents an overly ambitious setting in practice e.g.
for α = 0.05, d = 100, n = 124 then c2α ≈ 1.002, and hence no values will be excluded from the score set.

A philosophically appealing fix for this issue is to use consider the distribution of Mn(P0) when
ϕ(Z,P0) is known to be normally distributed. In such a setting, the exact distribution of Mn(P0) is also
known

Mn(P0) ∼ Beta

(
d

2
,
n− d
2

)
(E.4)

To see why, note that when ϕ(Z,P0) ∼ N (0, I0) is normally distributed with mean zero and covariance
matrix I0 then, t2 ≡ (n − 1)M̃(P0) is an ‘Hotelling’s t-squared statistic’, a multivariate version of the
more familiar ‘Student’s t-statistic’ (Hotelling, 1931), and hence

n− d
d

M̃(P0) ∼ Fd,n−d

where Fd,n−d denotes an F distributed random variable with d and n− d degrees of freedom. The result
in (E.4) follows immediately from this observation, since, for an F-distributed random variable A ∼ Fp,q

pA/q

1 + pA/q
∼ Beta

(p
2
,
q

2

)
.

This can be shown by manipulation of the relevant density functions, and it helps to use the fact that for
Y = aX/(1− aX)

FY (y) = P

(
aX

1− aX
< y

)
= P

(
X <

y

k − ay

)
= FX

(
y

a− ay

)
The result in (E.4) for normally distributed ICs suggests that one could set k = Bα,d,n where Bα,d,n

denotes the 1 − α quantile of a Beta{d/2, (n − d)/2} distributed random variable. This threshold is
asymptotically valid even when ϕ(Z,P0) is not normally distributed since nBα,d,n → c2α. Unlike c2α,
however, the threshold k based on the beta distribution is guaranteed to lie on the interval [0, 1]. The
three thresholds values are plotted in Figure E.1 for some small sample sizes.

E.3 Review of generalised methods of moments

The score statistic Mn(P ) is analogous to parametric GMM hypothesis test statistics considered by Newey
and West (1987); Hansen et al. (1996); Dufour et al. (2017). In this Section we sketch the relevant GMM
hypothesis test statistics, with requisite regularity assumptions provided by Dufour et al. (2017). To make
the analogy clear, we deliberately reuse the notation, which we used for the nonparametric score statistics
in the main text. Consider inference of a parameter θ0 ∈ Θ ⊆ Rp that uniquely satisfies a set of d ≤ p
moment conditions P0{ϕ(Z, θ0)} = 0, where ϕ(z, θ) represents a ‘moment function’. Define

Un(θ) = n−1
n∑
i=1

ϕ(zi, θ)

In(θ) = n−1
n∑
i=1

ϕ(zi, θ)ϕ
⊤(zi, θ)

such that,
√
nUn(θ0)

d→ N (0, I0) where I0 = plimn→∞ In(θ0), and it is assumed that I0 is nonsingular and
I0 <∞ in the positive definite sense. LettingMn(θ) = U

⊤
n (θ)I−1

n (θ)Un(θ), then, according to Hansen et al.
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Figure E.1: Score threshold plotted against sample size for α = 0.05 and d = 1, 3. Here ‘Mean-corrected’
refers to the threshold k = c2α/(n + c2α), whilst ‘Beta’ refers to the threshold k = Bα,d,n. In both cases
these are normalised by the threshold k = c2α/n, which is represented by the line at y = 1.

(1996) the so-called GMM-‘continuously updated estimator’(GMM-CUE) of θ0 is θ̂∗ = argminθ∈ΘMn(θ).
If we assume that the Jacobian matrix V0 below exists, then the GMM-CUE estimator is RAL in the
sense that

θ̂∗ − θ0 = −V0Un(θ0) + op(n
−1/2)

V0 = P0

{
dϕ(zi, θ0)

dθ

}
Next suppose that our goal is to infer some other quantity Ψ(θ0) where Ψ : Θ 7→ Rd. Technically the
dimension of Ψ is required to be less than or equal to the dimension of the moment conditions, though
for clarity we use d for both here. In this setting, Dufour et al. (2017) propose testing the hypothesis
H0 : Ψ(θ0) = ψ0 using the statistic,

Dn ≡ n
{
Mn(θ̂)−Mn(θ̂

∗)
}

where in a slight abuse of notation H0 ⊆ Θ denotes the set of parameter values θ satisfying Ψ(θ) = ψ0

and

θ̂ = argmin
θ∈H0

Mn(θ)

It follows from Dufour et al. (2017) that, provided requisite regularity conditions hold, then Dn
d→ χ2

d

under H0. Moreover, when Un(θ̂
∗) = 0 then Dn = nMn(θ̂)

d→ χ2
d. Hence, a confidence set for Ψ at

significance level α can be constructed as{
Ψ(θ) such that Mn(θ) ≤

c2α
n

}
.

Comparing this description of GMM estimators to the discussion in the main text, we see that, our
nonparametric developments are connected to the GMM in the sense that the nonparametric model
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M plays the role of the parameter set Θ, and that the influence curve is treated as a GMM moment
function. Since the GMM generalises likelihood based inference, the interpretation of the influence curve
as a GMM moment function is compatible with the framework of TMLE, where the influence curve is
treated like a score function associated with some likelihood. Just as TMLE follows likelihood based
inference once a parametric submodel has been constructed, our proposed DIE interval estimators follow
GMM based inference once a parametric submodel has been constructed around a TMLE distribution
estimator. Connecting nonparametric inference and TMLE to the GMM is potentially significant since it is
possible that other GMM techniques could be applied to nonparametric inference problems, e.g. empirical
likelihoods and exponentially tilted GMM estimators (Owen, 1988; Qin and Lawless, 1994; Kitamura and
Stutzer, 1997; Imbens, 1997; Corcoran, 1998; Imbens, 2002; Newey and Smith, 2004).





Appendix F

Supplement to optimally weighted
average derivative effects

Derivation of (7.4)

Assume (C1), f̃(a|z) ≡ w(a|z)f(a|z) is differentiable, and (C2), f̃(s|z) = f̃(t|z) = 0, where s and t denote
the boundary of the support of A. Integration by parts gives,

E{w(A|Z)µ′(A,Z)|Z = z} =
∫ t

s

µ′(a, z)f̃(a|z)da

= µ(t, z)f̃(t|z)− µ(s, z)f̃(s|z)−
∫ t

s

µ(a, z)f̃ ′(a|z)da

= E{l(A|Z)µ(A,Z)|Z = z} = E{l(A|Z)Y |Z = z}

To motivate Theorem 7, note that inverting (7.4) gives

f̃(a|z) = −
∫ a

s

l(a∗|z)f(a∗|z)da∗ = −E{l(A|Z)|A ≤ a,Z = z}F (a|z)

Proof of Theorem 7

Theorem 7 essentially follows by the integration by parts argument above. Rather than work with the
exposure weight in (7.5) directly, we consider the function f̃(a|z) ≡ w(a|z)f(a|z). Our goal is to show
that this integrates to 1, i.e. E{w(A|Z)|Z} = 1, and that it satisfies (C2). Note (C1) is satisfied since
f̃ ′(a|z) = −l(a|z)f(a|z) by the fundamental theorem of calculus. To do so, let Θ(u) denote a step function
which is 1 for u ≥ 0 and 0 for u < 0 and hence,

f̃(a|z) = −
∫ t

s

Θ(a− a∗)l(a∗|z)dP (a∗|z)

where dP (a|z), is the probability measure of A given Z. Integrating over a, gives∫ t

s

f̃(a|z)da =

∫ t

s

[∫ t

s

−Θ(a− a∗)da
]
l(a∗|z)dP (a∗|z)

For the part in the square brackets,∫ t

s

−Θ(a− a∗)da =

∫ t

a∗
−1dx = a∗ − t
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Hence, ∫ t

s

f̃(a|z)da = E{l(A|Z)A|Z = z} − tE{l(A|Z)|Z = z} = 1

Thus f̃(a|z) integrates to 1. As a side note, when the exposure weight is non-negative then f̃(a|z) is
a density function. Next we show f̃(a|z) satisfies (C2) when A is a continuous random variable. Since
a∗ ≤ t, then Θ(t− a∗) = 1, hence

f̃(t|z) = −
∫ t

s

l(a∗|z)dP (a∗|z) = −E{l(A|Z)|Z = z} = 0

Similarly, since a∗ ≥ s, then Θ(s− a∗) = 1 only for a∗ = s,

f̃(s|z) = −
∫ s

s

l(a∗|z)dP (a∗|z) = −l(s|z)P (A = s|Z = z)

Since A is continuous, P (A = s|Z = z) = 0. This completes the proof.

Proof of Lemma 4

First we prove that Theorem 7 is satisfied when l(a|z) is monotonically increasing and (D1) E{l(A|Z)|Z} =
0 and (D2) E{l(A|Z)A|Z} = 1 almost surely. We split l(a|z) into a positive and negative part by
defining two non-negative functions, l+(a|z) = max{l(a|z), 0} and l−(a|z) = max{−l(a|z), 0} such that,
l(a|z) = l+(a|z)− l−(a|z). It follows from (D1) that,

E{l+(A|Z)|Z} = E{l−(A|Z)|Z}

This equality is satisfied by l+(a|z) = l−(a|z) = 0, however this solution violates (D2), hence the positive
and negative parts are both non-zero. Since, l(a|z) is monotonically increasing there must be some value,
c = c(z), on the support of A, such that the positive part is zero for a < c and the negative part is zero
for a ≥ c, i.e.

l(a|z) = l+(a|z)Θ(a− c)− l−(a|z){1−Θ(a− c)}

First consider the inequality in (7.5) when a < c,∫ a

s

l(a∗|z)dP (a∗|z) = −
∫ a

s

l−(a∗|z)dP (a∗|z) ≤ 0

When a ≥ c, ∫ a

s

l(a∗|z)dP (a∗|z) =
∫ a

c

l+(a∗|z)dP (a∗|z)−
∫ c

s

l−(a∗|z)dP (a∗|z)

The first part on the right hand side is ≤ E{l+(A|Z)|Z = z} and the second part is = E{l−(A|Z)|Z = z}
therefore, in both cases, ∫ a

s

l(a∗|z)dP (a∗|z) ≤ 0

Hence f̃(a|z) ≥ 0, so the inequality in (7.5) is satisfied. The proof is completed by verifying that the
contrast function in (7.7) is monotonically increasing when v(a, z) is monotonically increasing or decreasing
but not constant. This is fairly straight forward and we note that the decreasing case follows from the
increasing case since (7.7) is invariant to replacing v(a, z) with −v(a, z).
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Proof of Theorem 8

An efficient estimator of θw is regular asymptotically linear, such that

θ̂w = θw + n−1
n∑
i=1

ϕθ,w(oi) + op(n
−1/2)

where ϕθ,w(o) is the influence curve of θw in (7.10). Hence,

n1/2(θ̂w − θw,S) = n−1/2
n∑
i=1

w(zi)l(ai|zi){yi − µ(ai, zi)}+ op(1)

By the central limit theorem, n1/2(θ̂w − θw,S)
d→ N (0, V ), where the efficiency bound is

V = E
{
w(Z)2l(A|Z)2{Y − µ(A,Z)}2

}
= E

{
w(Z)2l(A|Z)2E

(
{Y − µ(A,Z)}2|X,Z

)}
= E

{
w(Z)2l(A|Z)2σ2(A,Z)

}
= E

{
w(Z)2E[l(A|Z)2σ2(A,Z)|Z]

}
Minimizing E{l2(A|Z)σ2(A,Z)|Z = z} subject to E{l(A|Z)|Z = z} = 0 and E{l(A|Z)A|Z = z} = 1.
Using Lagrange multipliers, λ1, λ2, which are both constant given Z = z,∫

l2(a|z)σ2(a, z)− 2λ1l(a|z)− 2λ2{l(a|z)a− 1}dP (a|z)

Differentiating the Lagrangian with respect to l(a|z) and setting equal to zero gives.

l(a|z) = λ1 + λ2a

σ2(a, z)

Applying the two constraints fixes λ1 and λ2, giving the contrast function stated in the main theorem.
Next we consider optimizing for w(z) under the constraint E{w(Z)} = 1. Again, the use of Lagrange
multipliers gives ∫

w(z)2E{l2(A|Z)σ2(A,Z)|Z = z} − 2λ3{w(z)− 1}dP (z)

and differentiating the Lagrangian with respect to w(z) and setting equal to zero gives

w(z) =
λ3

E{l2(A|Z)σ2(A,Z)|Z = z}

The constant, λ3 is fixed by the constraint, completing the proof.

Proof of Lemma 5

Let α(w) be a function such that α(w) = 0 for w = 0 and α(w) = 1/w otherwise. Now consider the
expectation

E
[
W {V α(W )− g(U)}2

]
= E

{
V 2α2(W )W

}
+ E

{
g2(U)W − 2g(U)VWα(W )

}
= E

{
V 2α2(W )W

}
+ E

{
g2(U)E(W |U)− 2g(U)E{VWα(W )|U}

}
For the purposes of minimization over g(.) the first term on the right hand side can be discarded since it
does not depend on g(.). Hence

argmin
g(.)

E
[
W {V α(W )− g(U)}2

]
= argmin

g(.)

E
{
g2(U)E(W |U)− 2g(U)E{VWα(W )|U}

}
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By the calculus of variations, the minimiser g∗(u) satisfies,

g∗(u)E(W |U = u) = E{VWα(W )|U = u}

Since W ̸= 0 almost surely,

E{VWα(W )|U} = E{VWα(W )|W ̸= 0,U}
= E(V |W ̸= 0,U)

= E(V |U).

Hence the result follows provided that E(W |U) ̸= 0 which is true since W > 0 almost surely.

F.1 Estimator Asymptotic Distribution

F.1.1 Estimator of ψ

Throughout we use superscript hat to denote functional estimators obtained from an independent sample,
and we define,

ϕ̂ψ(o) =
{y − µ̂(z)}{a− π̂(z)} − λ̂(z){a− π̂(z)}2

β̂(z)
+ λ̂(z)− ψ̂0

where ψ̂0 denotes an initial plug-in estimate of ψ. We make the following assumptions, where ||f || ≡
E{f2(O)}1/2 denotes the L2(P ) norm.

(A1) The propensity score error, ||π − π̂|| is oP (n−1/4−δ) for some δ ≥ 0.

(A2) The outcome error, ||µ− µ̂|| is oP (n−1/4+δ).

(A3) The product of ||λ− λ̂|| and ||β − β̂|| is oP (n−1/2).

(A4) The variance estimates are bounded as β̂(z) ≥ ϵ for some ϵ > 0 with probability 1.

(A5) There exists a constant K > 0 such that each of λ̂(z), ... has a range uniformly contained in (−K,K),
with probability one as n→∞.

(A6) There exists a P -Donsker class G0 such that P (ϕ̂ψ(.) ∈ G0)→ 1.

Under these assumptions we show that the remainder term, R, in the expansion below is oP (n
−1/2)

ψ̂0 − ψ = −E{ϕ̂ψ(O)}+R

where we highlight that the expectation is conditional on the independent functional estimators, e.g. λ̂(z)
is treated as a fixed function. We then show that

−E{ϕ̂ψ(O)} = n−1
n∑
i=1

ϕψ(oi) +Hn − n−1
n∑
i=1

ϕ̂ψ(oi) (F.1)

where Hn as an empirical process term, which is oP (n
−1/2) under our assumptions. It follows therefore

that for

ψ̂ = ψ̂0 + n−1
n∑
i=1

ϕ̂ψ(oi)

ψ̂ − ψ = n−1
n∑
i=1

ϕψ(oi) + oP (n
−1/2)

Formally ψ̂ is a one-step bias correction estimator, but it is seen to be equivalent to the estimating
equations estimator in the main text.
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The remainder term

To simplify notation, in this subsection we largely omit function arguments, for example µ = µ(Z) with

similar for µ̂, λ, λ̂, π, π̂, β̂, β. Evaluating the remainder R ≡ E{ϕ̂ψ(O) + ψ̂0 − ψ} gives

R = E

[
(Y − µ̂)(A− π̂)− λ̂(A− π̂)2

β̂
+ λ̂− λ

]

where we have used the fact that ψ = E[λ]. Next we use the results,

E[(Y − µ̂)(A− π̂)|Z] = λβ + (µ− µ̂)(π − π̂)
E[(A− π̂)2|Z] = β + (π − π̂)2

to obtain

R = E

[
(π − π̂){µ− µ̂− λ̂(π − π̂)}+ (λ− λ̂)(β − β̂)

β̂

]

≤
(
1

ϵ

)
E
[
(π − π̂){µ− µ̂− λ̂(π − π̂)}+ (λ− λ̂)(β − β̂)

]
where the inequality follows from (A4). Using the inequality, (a+ b)2 ≤ 2(a2 + b2),

R2 ≤
(

2

ϵ2

)E [(π − π̂){µ− µ̂− λ̂(π − π̂)}]2︸ ︷︷ ︸
first remainder

+E
[
(λ− λ̂)(β − β̂)

]2
︸ ︷︷ ︸

second remainder


and we show that the two marked remainder terms above are oP (n

−1), and hence R itself is oP (n
−1/2).

For the second remainder term, the Cauchy-Schwarz inequality gives

E
[
(λ− λ̂)(β − β̂)

]2
≤ E

[
(λ− λ̂)2

]
E
[
(β − β̂)2

]
which is oP (n

−1) under (A2). Similarly, for the first remainder term the Cauchy-Schwarz inequality gives,

E
[
(π − π̂){µ− µ̂− λ̂(π − π̂)}

]2
≤ E

[
(π − π̂)2

]
E
[
{µ− µ̂− λ̂(π − π̂)}2

]
≤ 2E

[
(π − π̂)2

] {
E
[
(µ− µ̂)2

]
+ E

[
λ̂2(π − π̂)2

]}
≤ 2E

[
(π − π̂)2

] {
E
[
(µ− µ̂)2

]
+K2E

[
(π − π̂)2

]}
where the second inequality follows from the inequality, (a+ b)2 ≤ 2(a2 + b2), and the third inequality
follows by (A5). The first remainder term is therefore oP (n

−1) under (A1) and (A2), hence R is oP (n
−1/2)

The empirical process term

In this subsection we use a common empirical processes notation, where we define linear operators P and
Pn such that for some function h(O), P{h(O)} ≡ E{h(O)} and Pn{h(O)} ≡ n−1

∑n
i=1 h(oi). Hence we

write E{ϕ̂ψ(O)} as

(Pn − P ){ϕψ(O)}+ (Pn − P ){ϕ̂ψ(O)− ϕψ(O)} − Pn{ϕ̂ψ(O)}
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which follows from adding and subtracting (Pn − P ){ϕψ(O)} and Pn{ϕ̂ψ(O)} to P{ϕ̂ψ(O)}. This
expression recovers (F.1) since the IC is mean zero, in the sense that P{ϕψ(O)} = 0, and we define the
empirical process term

Hn ≡ (Pn − P ){ϕ̂ψ(O)− ϕψ(O)}

= (Pn − P ){f̂(O)− f(O)}

where

f̂(O)− f(O) =
{Y − µ̂(Z)}{A− π̂(Z)} − λ̂(Z){A− π̂(Z)}2

β̂(Z)
+ λ̂(Z)

− {Y − µ(Z)}{A− π(Z)} − λ(Z){A− π(Z)}2

β(Z)
+ λ(Z)

and we use the fact that (Pn − P ){ψ̂0 − ψ} = 0. By e.g. Lemma 19.24 of van der Vaart (1998b), Hn is

oP (n
−1/2) provided that ||f̂(O)− f(O)|| = oP (1).

F.1.2 Estimator of Ψ

We consider an estimator for Ψ = C/D where

C ≡ E [{Y − µ(Z)}{A− π(Z)}]
D ≡ E

[
{A− π(Z)}2

]
Our goal is to consider the estimator Ψ̂ = Ĉ/D̂ where

Ĉ ≡ n−1
n∑
i=1

{yi − µ̂(zi)}{ai − π̂(zi)}

D̂ ≡ n−1
n∑
i=1

{ai − π̂(zi)}2

We will show that, under (A1), (A2), and [Assumptions not complete]

(B1) There exists a constant K > 0 such that each of µ̂(z), ... has a range uniformly contained in (−K,K),
with probability one as n→∞.

(B2) There exists a P -Donsker class G0 such that P (ϕ̂c(.) ∈ G0)→ 1 and P (ϕ̂d(.) ∈ G0)→ 1.

then Ĉ and D̂ are regular asymptotically linear in the sense that,

Ĉ − C = n−1
n∑
i=1

ϕc(oi) + op(n
−1/2)

D̂ −D = n−1
n∑
i=1

ϕd(oi) + op(n
−1/2)

where

ϕc(o) ≡ {y − µ(z)}{a− π(z)} − C
ϕd(o) ≡ {a− π(z)}2 −D

denote the ICs of C and D respectively. It follows by algebraic manipulations that,

√
n(Ψ̂−Ψ) =

D

D̂

[
n−1/2

n∑
i=1

ϕΨ(oi) + op(1)

]
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where ϕΨ(o) = {ϕc(o)−Ψϕd(o)}/D is the IC of Ψ. Next we use Slutsky’s Theorem and the fact that
D̂/D converges to 1 in probability, to write,

lim
n→∞

√
n(Ψ̂−Ψ) = lim

n→∞
n−1/2

n∑
i=1

ϕΨ(zi)

which gives the desired result due to the central limit theorem. We note that this set up is quite general
when one considers estimands which are written as the ratio of two other estimands, such as Ψ in the
present context. Since C and D are of the same form, we show regular asymptotically linearity of the
numerator C with the result for D following as the special case when Y = A almost surely.

Numerator estimator

Throughout we use superscript hat to denote functional estimators obtained from an independent sample,
and we define,

ϕ̂c(o) ≡ {y − µ̂(z)}{a− π̂(z)} − Ĉ0

where Ĉ0 denotes an initial plug-in estimate of C. Under (A1), (A2) and (B1) to (Bn) we show that the
remainder term, R, in the expansion below is oP (n

−1/2)

Ĉ0 − C = −E{ϕ̂c(O)}+R

where we highlight that the expectation is conditional on the independent functional estimators, e.g. π̂(z)
is treated as a fixed function. We then show that

−E{ϕ̂c(O)} = n−1
n∑
i=1

ϕc(oi) +Hn − n−1
n∑
i=1

ϕ̂c(oi) (F.2)

where Hn as an empirical process term, which is oP (n
−1/2) under our assumptions. It follows therefore

that for

Ĉ = Ĉ0 + n−1
n∑
i=1

ϕ̂c(oi)

Ĉ − C = n−1
n∑
i=1

ϕc(oi) + oP (n
−1/2)

Formally Ĉ is a one-step bias correction estimator, but it is seen to be equivalent to the definition of Ĉ
above.

Remainder term

To simplify notation, in this subsection we largely omit function arguments, for example µ = µ(Z) with

similar for µ̂, π, π̂. Evaluating the remainder R ≡ E{ϕ̂c(O) + Ĉ0 − C} gives

R = E [(Y − µ̂)(A− π̂)− (Y − µ)(A− π)]
= E [(µ− µ̂)(π − π̂)]

where we have used the fact that Ψ = E [(Y − µ)(A− π)]. By the Cauchy-Schwarz inequality,

R2 = E [(µ− µ̂)(π − π̂)]2 ≤ E
[
(µ− µ̂)2

]
E
[
(π − π̂)2

]
which is oP (n

−1) provided that the product of ||µ − µ̂|| and ||π − π̂|| is oP (n−1/2). In the special case
where Y = A almost surely, i.e. for the denominator estimator D̂, we require that ||π − π̂||2 = oP (n

−1/2).
Both of these conditions are satisfied under (A1) and (A2).
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The empirical process term

Similar to the empirical process argument in Appendix F.1.1, we define the empirical process term

Hn ≡ (Pn − P ){ϕ̂c(O)− ϕc(O)}

which, by e.g. Lemma 19.24 of van der Vaart (1998b), is oP (n
−1/2) provided that P

[
{ϕ̂c(O)− ϕc(O)}2

]
converges to zero in probability.

F.2 Additional illustrated results

Table F.1: Least squares estimands applied to IWPC data, using the discrete superlearner algorithm for
model fitting. Values indicate point estimates, given in INR/(mg/week), with 95% Wald confidence intervals
given in parentheses. P-values represent those obtained from a Wald based test of the null hypothesis that
the estimand is 0.

Estimand Algorithm Result
Ψ 1 1.87×10−3 (0.648×10−3,3.09×10−3) p=0.003
Ψ 2 1.87×10−3 (0.661×10−3,3.08×10−3) p=0.002
ψ 1A -9.23×10−2 (-1.84,1.65) p=0.92
ψ 2A -0.704 (-1.74,0.335) p=0.18
ψ 1B 1.47×10−3 (-0.125×10−3,3.06×10−3) p=0.07
ψ 2B 1.51×10−3 (-0.136×10−3,3.17×10−3) p=0.07
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Supplement to causal derivative effects
for continuous exposures

Moment and Cumulant Functions of the least squares intervention
distribution

Consider a random variable, X with measure dP0(x), mean µ, variance σ2, and support [a, b]. The least
squares intervention density is,

f̃(x) =

∫ b

a

Θ(x− x∗)µ− x
∗

σ2
dP0(x

∗)

where Θ(.) is the unit step function. The characteristic function of this density is

φ̃(t) =

∫ b

a

eitxf̃(x)dx

=

∫ b

a

∫ b

a

eitxΘ(x− x∗)µ− x
∗

σ2
dP0(x

∗)dx

=

∫ b

a

µ− x∗

σ2

[∫ b

a

eitxΘ(x− x∗)dx

]
dP0(x

∗).

For the part inside the square brackets,∫ b

a

eitxΘ(x− x∗)dx =

∫ b

x∗
eitxdx =

eitb − eitx∗

it

Hence,

φ̃(t) =

∫ b

a

µ− x∗

itσ2

{
eitb − eitx

∗
}
dP0(x

∗) =

∫ b

a

x∗ − µ
itσ2

eitx
∗
dP0(x

∗)

=
−1
tσ2
{φ′(t)− iµφ(t)} (G.1)

where φ(t) = E(eitX) is the characteristic function of the density f , with derivative φ′(t) = E(iXeitX).
Similarly, if the moment function M(t) = E(etX) exists, then the moment function of the least squares
intervention density is

M̃(t) =
1

tσ2
{M ′(t)− µM(t)} = M(t)

tσ2

{
M ′(t)

M(t)
− µ

}
=

exp{K(t)}
tσ2

{K ′(t)− µ}
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where K(t) = log{M(t)}. Hence, letting K̃(t) = log{M̃(t)}, the cumulant function of the least squares
intervention density is given by (8.14), where we note that the mean and variance are the first and second
cumulants of K(t) respectively.

Proof of Theorem 12

To demonstrate symmetry of the ALSE transformation, we use the standard result that the characteristic
function of a random variable is real if and only if the distribution of the corresponding random variable
is symmetric about 0, see Feller (1966), Chapter XV. We let X be a symmetrically distributed random
variable with finite mean, µ and variance, σ2 and write the transformed variable X̃, which is distributed
according to the least squares intervention distribution associated with X. It follows from (G.1) that,

EP̃ {e
it(X−µ)} = −1

tσ2

d

dt
E{eit(X−µ)}

Here E{eit(X−µ)} is the characteristic function of the random variable X − µ which is symmetric about 0,
and hence the RHS is real. The LHS is the characteristic function of the random variable X̃ − µ which
must also be real, and hence symmetric about 0.

Least squares intervention distribution for certain exposure distributions

The Gamma distribution with shape parameter, α and rate parameter, β, and cumulants, κ1 = α/β and
κ2 = κ1/β and cumulant generating function,

K(t;α, β) = −α log

(
1− t

β

)
Therefore, by (8.14),

K̃(t;α, β) = −(α+ 1) log

(
1− t

β

)
which happens to be K(t;α+ 1, β). Note the Chi-squared Distribution is a special case of the Gamma
distribution with, α = k/2 and β = 1/2.

The beta distribution, with shape parameters, α, and β, has the density

f(x|α, β) = Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

for x ∈ [0, 1] and 0 otherwise. The mean is µ = α/(α+ β) and we note that xf(x|α, β) = µf(x|α+ 1, β),
hence,

f̃(x|α, β) =
∫ x

0

µ− x∗

σ2
f(x∗|α, β)dx∗ =

µ

σ2
{F (x|α, β)− F (x|α+ 1, β)}

The distribution function, F (x|α, β) has the property that

F (x|α+ 1, β) = F (x|α, β)− Γ(α+ β)

αΓ(α)Γ(β)
xα(1− x)β

Therefore, using the fact that µ/σ2 = (α+β)(α+β+1)/β, we recover the result, f̃(x|α, β) = f(x|α+1, β+1).
The beta-prime distribution, with shape parameters, α, and β, has the density

f(x|α, β) = Γ(α+ β)

Γ(α)Γ(β)
xα−1(1 + x)−α−β
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for x ≥ 0. Whilst the result for the beta-prime distribution can be derived in a similar way to the beta
distribution, it is sufficient to verify that

d

dx
f(x|α+ 1, β − 2) =

µ− x
σ2

f(x|α, β)

The result follows since, by (8.8),

d

dx
f̃(x|α, β) = µ− x

σ2
f(x|α, β)
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Supplement to conclusion and outlook

H.1 Proof of Theorem 13

This proof makes use of the following Lemma (see Section H.2 for proof),

kn(x+ δ) =

n∑
j=0

(
n

j

)
kj(x)δ

n−j (H.1)

where
(
n
j

)
is a binomial coefficient. We start by considering the remainder term,

Rn(x) = f(x)−
n∑
i=0

E{f (i)(X)}
i!

ki(x)

Applying the Lemma gives,

Rn(x+ δ) = f(x+ δ)−
n∑
i=0

E{f (i)(X)}
i!


i∑

j=0

(
i

j

)
kj(x)δ

i−j


= f(x+ δ)−

n∑
j=0

kj(x)

j!

n∑
i=j

E{f (i)(X)}
(i− j)!

δi−j

= f(x+ δ)−
n∑
j=0

kj(x)

j!

n−j∑
i=0

E{f (j+i)(X)}
i!

δi

Since EP {kj(X)} = 0 for j > 0 and EP {k0(X)} = 1, it follows that

E{Rn(X + δ)} = E

{
f(X + δ)−

n∑
i=0

f (i)(X)

i!
δi

}
By Taylor’s theorem (see below),

E{Rn(X + δ)} = E {rn(X + δ)}

where rn(.) is a function such that,

lim
δ→0

rn(X + δ)

δn
= 0

Hence,

lim
δ→0

E{Rn(X + δ)}
δn

= E

{
lim
δ→0

rn(X + δ)

δn

}
= 0

which completes the proof.
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Theorem 14 (Taylor’s Theorem) Let, f(x), be a function which is n ≥ 1 times differentiable at a
point x∗. Then there exists a function rn(x) such that

f(x) =

n∑
j=0

f (j)(x∗)

j!
(x− x∗)j + rn(x)

and

lim
δ→0

rn(x
∗ + δ)

δn
= 0

H.2 Proof of the Lemma in (H.1)

This Lemma is exactly that in Proposition 2.5 of Ta (2015). For completeness we provide a proof below.
From the generating function of kn(x) it follows that

∞∑
n=0

kn(x+ δ)
tn

n!
=

(
etx

MX(t)

)(
etδ
)

=

{ ∞∑
n=0

kn(x)
tn

n!

}{ ∞∑
n=0

δn
tn

n!

}

Applying the Cauchy product gives,

∞∑
n=0

kn(x+ δ)
tn

n!
=

∞∑
n=0


n∑
j=0

kj(x)
tj

j!
δn−j

tn−j

(n− j)!


=

∞∑
n=0


n∑
j=0

(
n

j

)
kj(x)δ

n−j

 tn

n!

Note that the order of summation can be changed due to the absolute convergence of the series. This
completes the proof.

H.3 Note on expressing Appell polynomials

Letting KX(t) = logMX(t) denote the cumulant generating function, we write the Appell polynomial
generating functions as,

∞∑
n=0

tn

n!
kn(x) = etx−KX(t)

= exp

(
tx−

∞∑
i=1

κi
ti

i!

)

This is of the form of the complete Bell polynomials, which are defined as the polynomials Bn(y1, . . . , yn)
with generating function,

∞∑
n=0

Bn(y1, . . . , yn)
tn

n!
= exp

 ∞∑
j=1

yj
tn

j!


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These have their origin in counting set partitions and have functional forms which are well known, see e.g.
12.3.7 of Andrews (1984). The first few complete Bell polynomials are

B0 = 1

B1(y1) = y1

B2(y1, y2) = y21 + y2

B3(y1, y2, y3) = y31 + 3y1y2 + y3

B4(y1, y2, y3, y4) = y41 + 6y21y2 + 4y1y3 + 3y22 + y4
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