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A B S T R A C T   

Introduction: Timeliness of routine vaccination shapes childhood infection risk and thus is an important public health metric. Estimates of indicators of the timeliness 
of vaccination are usually produced at the national or regional level, which may conceal epidemiologically relevant local heterogeneities and make it difficult to 
identify pockets of vulnerabilities that could benefit from targeted interventions. Here, we demonstrate the utility of geospatial modelling techniques in generating 
high-resolution maps of the prevalence of delayed childhood vaccination in The Gambia. To guide local immunisation policy and prioritize key interventions, we also 
identified the districts with a combination of high estimated prevalence and a significant population of affected infants. 
Methods: We used the birth dose of the hepatitis-B vaccine (HepB0), third-dose of the pentavalent vaccine (PENTA3), and the first dose of measles-containing vaccine 
(MCV1) as examples to map delayed vaccination nationally at a resolution of 1 × 1-km2 pixel. We utilized cluster-level childhood vaccination data from The Gambia 
2019–20 Demographic and Health Survey. We adopted a fully Bayesian geostatistical model incorporating publicly available geospatial covariates to aid predictive 
accuracy. The model was implemented using the integrated nested Laplace approximation—stochastic partial differential equation (INLA-SPDE) approach. 
Results: We found significant subnational heterogeneity in delayed HepB0, PENTA3 and MCV1 vaccinations. Specific districts in the central and eastern regions of The 
Gambia consistently exhibited the highest prevalence of delayed vaccination, while the coastal districts showed a lower prevalence for all three vaccines. We also 
found that districts in the eastern, central, as well as in coastal parts of The Gambia had a combination of high estimated prevalence of delayed HepB0, PENTA3 and 
MCV1 and a significant population of affected infants. 
Conclusions: Our approach provides decision-makers with a valuable tool to better understand local patterns of untimely childhood vaccination and identify districts 
where strengthening vaccine delivery systems could have the greatest impact.   

1. Introduction 

Immunisation is a highly effective and cost-efficient means of con
trolling infectious diseases [1]. Studies estimate that every dollar spent 
on immunisation yields a return on investment (ROI) of more than 16 
dollars. If the broader benefits of immunisation are considered, the ROI 
rises to 48 dollars [2]. Since its establishment, the expanded programme 
on immunisation (EPI) has significantly reduced the incidence of and 
mortality from childhood vaccine-preventable diseases (VPDs) [3]. 

Between 2000 and 2019, vaccination programs in low- and middle- 
income countries (LMICs) prevented 36 million deaths among children 
aged under five [4]. Despite these hard-won successes, the COVID-19 
pandemic caused the biggest setback in routine childhood vaccina
tions in 30 years. In 2021 alone, 18.2 million children globally did not 
receive the first dose of the diphtheria-tetanus-pertussis (DTP) con
taining vaccine, and an additional 6.8 million children were under- 
vaccinated [5]. Thus, a more holistic approach, considering different 
aspects of the routine vaccination system, needs to be adopted to 
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facilitate speedy recovery from the drastic disruptions caused by the 
pandemic. 

The success of EPI programs has traditionally been evaluated by 
measuring vaccination coverage rates [6,7]. This indicator assumes 
uptake and overlooks whether doses are received within the recom
mended window, are too early or delayed [8,9]. Yet, several factors, 
including local VPD epidemiology, maternal antibodies, and the earliest 
safe age for a vaccination with optimal efficacy and minimal risks, 
determine an ideal age window for vaccination [10]. High coverage and 
timely delivery are crucial to achieve the full benefits of vaccines [6]. 
Timely vaccination, that is, vaccination received within the recom
mended window in an age-appropriate manner [11], is an essential 
quality dimension of immunisation programs for various reasons. At the 
programmatic level, too early or delayed vaccination could alert pro
gram managers to potential issues with vaccine delivery [7]. At the in
dividual level, vaccines received too early could lead to suboptimal 
immune response due to interference with maternal antibodies [12,13]. 
Conversely, delayed vaccination could increase children’s exposure to 
VPDs, such as pertussis and measles, whose peaks occur during the first 
year of life [10,14]. Because of its high infectivity rate, measles requires 
at least 95 % vaccination coverage and population immunity to prevent 
outbreaks [15]. However, evidence from high-income countries suggests 
that measles outbreaks have occurred in the past due to suboptimal 
population immunity associated with delayed measles vaccination, even 
in the presence of a high overall coverage [16]. It is therefore imperative 
that countries like The Gambia [17,18], which have attained a persis
tently high vaccination coverage, must now explore the quality dimen
sion – i.e., ensuring that children across all subpopulations receive 
vaccination in a timely, age-appropriate manner. 

Regardless of source or strength of evidence of vaccination, survey- 
based estimates of vaccination coverage are typically produced at the 
national level or at the scale of large regions. This approach is often due 
to administrative convenience, operational limitations, or high cost of 
data collection to produce more spatially detailed estimates. Such large- 
area estimates mask epidemiologically important heterogeneities in 
local vaccine coverage and limit the identification of low coverage areas 
capable of sustaining pockets of disease transmission and which could 
benefit from targeted efforts [19]. Consequently, geospatial modelling 
approaches, utilizing geolocated household survey data have gained 
traction as a vital tool for creating high-resolution estimates and maps of 
vaccination coverage [20–24]. Recently, studies exploring the timeli
ness of childhood vaccination in LMICs have also gained significant 
momentum [25,26]. Nevertheless, to date, no studies have produced 
high-resolution maps showing the spatial patterns of the timeliness of 
routine childhood vaccination. The Immunization Agenda 2030 
(IA2030) is an ambitious global strategy that aims to halve the number 
of under- or unvaccinated children and eliminate measles transmission 
globally [3]. This requires new data and methodological approaches to 
precisely locate and target these subpopulations to ensure no one is left 
behind. Maps are a powerful tool that can help identify vulnerable 
subpopulations and their programmatic relevance in vaccination is well 
recognised by the WHO IA2030 [3], UNICEF, and Gavi, the Vaccine 
Alliance [27]. 

In this paper, we show the utility of geospatial modelling techniques 
for high-resolution mapping of the timeliness of routine vaccination in 
The Gambia. We mapped the prevalence of delayed vaccination na
tionally at 1 × 1-km2 resolution, second (District), and third (Wards) 
health administrative levels among children aged 12–35 months in The 
Gambia. To guide immunisation micro-planning, we also identified the 
specific districts and wards where there was a combination of high 
estimated prevalence and a significant population of affected infants. 
We focused our spatial analysis on delayed vaccination because we have 
previously shown that it is significantly more prevalent in The Gambia 
than other dimensions of vaccination timeliness [28]. We used the birth- 
dose of hepatitis-B vaccine (HepB0), the third dose of pentavalent vac
cine (PENTA3) and the first-dose of the measles-containing vaccine 

(MCV1) as case studies for three reasons. First, several studies have 
shown that delayed HepB0 is a key marker of incomplete or delayed 
subsequent doses of routinely recommended childhood vaccines 
[29,30]. Second, the coverage of PENTA3 (formerly coverage of DPT3) 
is commonly used as a performance indicator for routine vaccine de
livery in The Gambia and globally [7]. Third, a single valid dose of a 
measles-containing vaccine is approximately 93 % effective in providing 
lifelong protection against measles [31]. Yet, despite achieving consis
tently high coverage of MCV1, The Gambia experienced a significant six- 
fold increase in measles cases by mid-2022 compared to the numbers 
reported in 2020 [32]. Postponed measles campaigns and stagnating 
MCV1 coverage since 2017, along with the potential impact of delayed 
MCV1 resulting in the accumulation of susceptible sub-populations, 
might explain the recent trend. The high-resolution geospatial mapping 
of delayed HepB0, PENTA3 and MCV1 may therefore offer critical in
sights on the pattern of vaccination timeliness that could guide targeted 
programmatic actions in The Gambia and serve as an example for other 
immunisation programs. 

2. Methods 

2.1. Study setting and context 

The Gambia, situated in West Africa, has a population of 2.5 million 
and a yearly birth cohort of about 90,000 children who are added to the 
routine childhood immunisation program [33]. In May 1967, The 
Gambia achieved the distinction of being the first country in the world to 
interrupt the transmission of measles virus successfully [34]. The 
Gambian EPI was established in 1979 with six vaccines targeting 
tuberculosis (BCG vaccine), diphtheria, pertussis, tetanus (combined 
DTP vaccine), measles, polio, and yellow fever. The current vaccination 
schedule includes several additional vaccines recommended at birth, 
two, three, four, nine, twelve and eighteen months of age [35]. 

2.2. Data collection 

We obtained cluster-level routine vaccination data for HepB0, 
PENTA3 and MCV1 for children aged 12–35 months from the 2019–20 
Gambia Demographic and Health Survey (GDHS) [36]. The GDHS used a 
stratified, two-stage sampling design to produce estimates of health and 
demographic indicators, including vaccination coverage at the national 
and Local Government Area (LGA) levels and for urban and rural areas. 
Stratification was achieved by separating each of the eight LGAs (i.e., 
Banjul, Basse, Brikama, Janjanbureh, Kanifing, Kerewan, Kuntaur and 
Mansakonko) into urban and rural areas [36]. Samples were drawn from 
within each stratum in two stages. In the first stage, survey clusters were 
selected using a probability proportional to their size within each sam
pling stratum from a national sampling frame. In the second stage, 
households were randomly selected from household lists within the 
chosen clusters. The survey was implemented in a total of 281 clusters 
and 7,025 selected households between 21 November 2019 to 30 March 
2020 [36]. 

The 2019–20 GDHS collected childhood immunization data from 
5,148 children aged 0–35 months who received vaccines at any time 
before the survey. The data was collected based on the mother’s recall of 
vaccination or parent-held vaccination cards. However, to determine the 
timeliness of vaccination, we require a child’s date of birth and vacci
nation dates [6], information only available from their home-based 
vaccination records (HBR). We therefore restricted our analysis to the 
3,248 children (93 % of 12–35-month-olds) with complete birth and 
vaccination dates from their home-based vaccination records. For each 
child, we also extracted the geographical locations, i.e., latitude and 
longitude of the cluster from which their household was selected. 
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2.3. Defining and computing vaccination timeliness 

We used the accepted childhood vaccination window for The Gambia 
[35], converting age recommendations from months to days. For con
sistency, we considered a month to be 30 days. Delayed HepB0, PENTA3 
or MCV1 was defined as being vaccinated after the latest recommended 
window according to the national vaccination schedule in The Gambia 
(i.e., >1 day for HepB0 [37], >150 days for PENTA3, and >300 days for 
MCV1) [35]. We determined the age at vaccination (in days) for each 
vaccine by calculating the difference between vaccination dates and 
birth dates at the individual child level. Afterward, we aggregated the 
individual data from each survey cluster to generate observed cluster- 
level delayed HepB0, PENTA3 and MCV1 prevalence (Fig. 1a, b, and c). 

2.4. Geospatial covariate data and selection 

Geospatial covariates play a crucial role in geostatistical modelling 
by explaining and predicting the outcome variable(s) [38]. In our spe
cific modelling approach, the inclusion of covariates aimed to improve 
the accuracy of outcome predictions, rather than serving an explanatory 
purpose to identify which covariates are driving the outcome [38]. We 
assembled a suite of socio-economic, environmental, and physical geo
spatial covariates from WorldPop which have been previously used in 
predictive modelling of vaccination coverage (Supplementary Table S1) 
[39]. These covariates were processed to generate 1 × 1-km2 raster 
layers using ESRI ArcGIS v10.6. Subsequently, cluster-level data values 
were extracted from each standardised gridded layer using geographical 
coordinates from the 2019–20 GDHS, as previously described 
[20,22,23]. To accommodate DHS’s confidentiality measures involving 
random cluster location displacement [40], we extracted mean covariate 
values from a 2 km and 5 km buffer around urban and rural clusters, 
respectively. We note that this covariate data extraction process can be 
further refined by using a population density layer to calculate weighted 
means within the buffers. 

To determine the optimal set of covariates to be included for the 
predictive modelling of each outcome, we followed previous work by 
conducting a covariate selection process [21,23]. The selection process 
involved checking the relationship between the covariates and vacci
nation timeliness indicators and applying the log transformation where 
necessary to improve relationship; fitting single covariate models and 
ranking the covariates based on their predictive ability using predictive 
R2 values; checking for multicollinearity and selecting between highly 
correlated covariates (correlation > 0.8 or variance inflation factor 
[VIF] > 4.0) using their ranks. Subsequently, the best model/combina
tion of covariates for modelling the indicator was chosen using stepwise 
regression, with backward elimination based on Akaike Information 
Criterion (AIC) in a nonspatial framework using binomial regression 
models. For all the modelled indicators, we included urbanicity (i.e., 
urban or rural) as a covariate even if it was not chosen during the co
variate selection process, as a way of accounting for the urban/rural 
stratification used in the survey design [41]. The covariates chosen for 
each vaccine are displayed as Supplementary Table S1 and Fig. S1. 

To evaluate the need for accounting for spatial autocorrelation when 
modelling the indicators, we fitted binomial regression models with 
independent and identically distributed (iid) random effects, including 
the selected covariates for each indicator. Using the estimates of the iid 
random effect, we fitted a variogram in each case to assess the presence 
of residual spatial autocorrelation in the models (Supplementary 
Fig. S2). To enable the modelling of the prevalence of delayed vacci
nation at district level, we obtained relevant population estimates cor
responding to the survey years for children one year and below in The 
Gambia from WorldPop [42]. The data were also used to generate the 
estimated population of infants affected with delayed HepB0, PENTA3 
and MCV1 in all districts. 

2.5. Geospatial modelling and validation 

The general model we used to create 1x1-km2 prevalence maps of 

Fig. 1. Spatial distribution of the observed delayed 
HepB0, PENTA3, and MCV1 among children aged 
12–35 months as recorded at the 2019–20 GDHS 
cluster level. Note. The cluster-level observed delayed 
vaccination was computed as the proportion of chil
dren sampled in a survey cluster who were vaccinated 
after the recommended national window, based on 
evidence from vaccination cards. The names on the 
cluster-level observed maps indicate the eight Local Gov
ernment Areas (LGAs) in The Gambia.   
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delayed HepB0, PENTA3 and MCV1 is a fully Bayesian geostatistical 
technique with a binomial likelihood (see Supplementary material for 
details). The model was implemented using the integrated nested Lap
lace approximation—stochastic partial differential equation (INLA- 
SPDE) approach [43]. The INLA approach is a faster alternative to the 
traditional Markov chain Monte Carlo (MCMC) technique for perform
ing approximate Bayesian inference. The approach uses numerical 
techniques to approximate the marginal posterior distributions of each 
of the unknown quantities in the model. The SPDE approach facilitates 
the estimation of the Gaussian spatial random effect by reducing the 
computational burden involved in the estimation of Σω through a 
Gaussian Markov random field (GMRF) representation [43]. Further 
details on the implementation of the INLA-SPDE approach are provided 
in Utazi et al. [21,44]. 

To ensure consistency in the modelled prevalence (p) estimates for 
indicators of timeliness across each vaccine [i.e. p(early vaccination) + p 
(timely vaccination) + p(delayed vaccination) = 1 for each prediction 
location], we independently modelled p(timely vaccination) and p 
(delayed vaccination), and then derived p(early vaccination) as 1 - p 
(timely vaccination) - p(delayed vaccination) using the corresponding 
posterior samples. Where necessary, we adjusted the modelled estimates 
to ensure consistency across all indicators for each vaccine and predic
tion location. We chose to model p(timely vaccination) and p(delayed 
vaccination) because there were more observed cases of both events for 
the included vaccines compared to early vaccination, which increased 
the likelihood of obtaining more accurate estimates. 

We summarised the calibrated draws for each predicted outcome as 
mean estimates and 95 % credible interval width (CIs). The predicted 
estimates at 1x1-km2 were then aggregated to policy-relevant adminis
trative areas (i.e., district- and ward-levels) as population-weighted 
means taken over all the grid cells falling within each areas in The 
Gambia by use of administrative boundaries from the Global Adminis
trative Area (GADM) database [45]. We conducted a bivariate analyses 
and then created maps to visualize areas with a combination of high 
prevalence of delayed vaccination and a significant number of affected 
children. 

In-sample model validation was done by comparing the model pre
dictions at the first-administrative level (LGA) to the actual observed 
design-based direct survey estimates computed using the survey pack
age (Supplementary Fig. S4) [46]. To evaluate the performance of our 
model on out-of-sample predictions, we used a 5-fold cross-validation 

approach. We quantified predictive performance using percentage 
bias, mean absolute error (MAE), and root mean squared error (RMSE). 
All of these metrics are described in the Supplementary Table S2. All 
analyses were performed using the R-INLA package in R (R Development 
Core Team, 2023) [47]. To ensure easy understanding of the main 
findings, the results section primarily presents cluster-level, 1x1-km2 

pixel, and district-level estimates (including uncertainty estimate) for 
each vaccine. Additional ward-level estimates (third-administrative 
level) are provided in the Supplementary material, but will be refer
enced throughout the results section. 

3. Results 

Table 1 below shows the design-based estimates of vaccination 
coverage and delayed vaccination at the national and LGA level in The 
Gambia. Overall, the vaccination coverage rates for all three vacci
nes was high, both at the national level and across all the eight LGAs 
(first-administrative level) in The Gambia. However, the prevalence of 
delayed vaccination is also high, particularly for HepB0. 

3.1. Predicted delayed HepB0, PENTA3 and MCV1 vaccination at district 
and ward-level 

The predicted prevalence of delayed HepB0 vaccination surpassed 
that of the other vaccines, indicating a higher degree of delay for this 
particular vaccine. At the 1 × 1-km2 pixel-level, there were significant 
subnational disparities in the predicted prevalence of delayed vaccina
tion throughout The Gambia. The highest pockets of predicted delayed 
vaccination were located in the central and eastern end of the country, 
while the coastal areas generally exhibited the lowest pockets of delays 
(Fig. 2a, b, and c). This pattern was consistent for all three vaccines 
studied, i.e., delayed HepB0, PENTA3, and MCV1 vaccinations. 

The predicted prevalence of delayed HepB0 vaccination at the dis
trict level exhibited significant variation, ranging from 66.4 % to 95.0 %, 
representing a difference of over 25 % (Fig. 3a). Among the 49 districts 
in the country, 17 (34.7 %) had a HepB0 vaccination delay of ≥ 90 %, 
surpassing the national average. Notably, Basse LGA accounted for 41 % 
(7/17) of these districts, while Janjanbureh and Kuntaur LGAs each had 
23.5 % (4/17) (Fig. 3a). A similar pattern emerged at the ward level, 
where the predicted prevalence of delayed HepB0 vaccination ranged 
from 63.5 % to 95.6 %. Janjanbureh, Kuntaur, and Basse LGAs, located 

Table 1 
Design-based Direct Survey Estimates of Vaccination Coverage and Delayed Vaccination Among 12–23 Months Old Children at the First-Administrative Level in The 
Gambia.  

Administrative level Coverage (95 % CI) Delayed vaccination (95 % CI)* 

HepB0 PENTA3 MCV1 HepB0 PENTA3 MCV1 

National-level 98.9 
(98.3, 99.5) 

93.8 
(92.2, 95.6) 

90.6 
(88.3, 92.8) 

89.4 
(81.9, 87.9) 

42.8 
(39.5, 46.1) 

31.6 
(28.5, 34.6) 

Banjul 96.7 
(93.4, 99.5) 

90.1 
(83.0, 97.1) 

86.1 
(77.1, 95.1) 

89.1 
(81.8, 96.4) 

48.5 
(34.3, 62.7) 

26.9 
(14.0, 39.9) 

Basse 97.1 
(95.3, 98.9) 

92.3 
(87.2, 97.4) 

89.8 
(85.2, 94.3) 

95.9 
(93.4, 98.4) 

49.4 
(43.5, 55.3) 

39.6 
(31.2, 48.1) 

Brikama 98.5 
(97.1, 99.9) 

95.4 
(92.8, 97.9) 

89.6 
(85.5, 93.7) 

80.4 
(74.4, 86.4) 

42.4 
(36.7, 48.7) 

27.6 
(22.5, 32.7) 

Janjabureh 98.9 
(97.5, 99.8) 

92.5 
(88.9, 96.1) 

93.8 
(90.3, 97.3) 

95.3 
(92.0, 98.7) 

52.2 
(44.9, 59.6) 

40.6 
(31.8, 49.4) 

Kanifing 97.4 
(95.0, 99.9) 

86.7 
(80.2, 93.2) 

85.7 
(78.1, 93.2) 

80.8 
(73.6, 87.9) 

40.1 
(31.5, 48.7) 

30.3 
(21.5, 39.1) 

Kerewan 99.5 
(98.7, 99.9) 

98.7 
(97.2, 99.8) 

95.4 
(92.2, 98.5) 

84.2 
(77.7, 90.7) 

37.9 
(30.7, 45.1) 

30.7 
(24.5, 36.8) 

Kuntaur 98.0 
(96.0, 99.7) 

95.7 
(92.8, 98.6) 

94.4 
(91.1, 97.7) 

92.5 
(88.4, 96.6) 

44.8 
(37.2, 52.5) 

36.1 
(28.9, 43.3) 

Mansakonko 96.8 
(94.1, 99.6) 

97.0 
(94.4, 99.6) 

97.3 
(94.4, 99.9) 

88.0 
(82.1, 93.9) 

35.6 
(26.4, 44.8) 

34.8 
(27.8, 41.8) 

Note: The administrative levels mentioned in this table include the national level and the Local Government Area level (first administrative level). The direct-survey 
estimates from the 2019–20 The Gambia Demographic Survey are only representative at these specific levels, as well as at the urban and rural levels. *This indicates 
the prevalence of delayed vaccination among children who received vaccination and had documented dates of birth and vaccination. CI = Confidence Interval. 
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Fig. 2. (A) Predicted delayed birth-dose of hepatitis B vaccine (HepB0) at 1 × 1 km2 pixel; (B) predicted delayed third-dose of pentavalent vaccine (PENTA3) at 1 ×
1 km2 pixel; (C) predicted delayed first-dose of the measles-containing vaccine (MCV1) at 1 × 1 km2 pixel among 12–35 months children in The Gambia. 

Fig. 3. (A) Predicted delayed birth-dose of hepatitis B vaccine (HepB0) at the district level; (B) predicted delayed third-dose of pentavalent vaccine (PENTA3) at the 
district level; (C) predicted delayed first-dose of the measles-containing vaccine (MCV1) at the district level among 12–35 months children in The Gambia. 
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in the central and eastern parts of the country had a higher concentra
tion of wards with a delay of ≥ 90 % (Supplementary Fig. S5 and 
Table S3). It is worth noting that even in the coastal areas of Man
sokonko, Banjul, Kerewan, and Kanifing LGAs, which generally had the 
lowest prevalence of delayed HepB0 vaccination, a few wards still 
experienced delays of ≥ 90 %. 

The predicted prevalence of delayed PENTA3 vaccination at the 
district level ranged from 25.7 % to 54.1 %. Among the seven districts 
with a delay of 50 % or more in PENTA3 vaccination, four were located 
in Basse LGA, two in Janjanbureh LGA, and one in Banjul LGA (Fig. 3b). 
Similarly, at the ward level, the prevalence of delayed PENTA3 vacci
nation ranged from 24.2 % to 54.5 %. Basse LGA accounted for the 
majority (57 % or 8/14) of wards with a delay of 50 % or more (see 
Supplementary Fig. S6 and Table S4). The districts and wards with the 
lowest predicted prevalence of delayed PENTA3 vaccinations were pri
marily situated in coastal areas of The Gambia. 

The predicted prevalence of delayed MCV1 vaccination at the district 
level ranged from 22.7 % to 40.2 %, as shown in Fig. 3c. Of the top 10 
districts with delayed MCV1 vaccinations (i.e., delay of 37 % or more), 
five (50 %) were located in Basse LGA in the eastern part of The Gambia, 
while four (40 %) were in Janjanbureh LGA, and one (10 %) was in 
Kuntaur LGA in central parts (Fig. 3c and Supplementary Table S5). 
Similarly, the top 10 wards with the highest delayed MCV1 vaccinations 
(i.e., delay of 38 % or more) were also located in Basse, Janjanbureh, 
and Kuntaur LGAs (Supplementary Table S7). 

Fig. 4 presents the summary of the pattern of delayed vaccination, 
categorized as tertiles, for all vaccines in all the wards in The Gambia. In 
the Basse LGA, all the districts, except one, fell within the highest tertile 
of delayed vaccination for the three vaccines. 

The 95 % credible interval width around the modelled estimates, 
which reflects the uncertainty in the estimates, was generally narrow (i. 
e., <15 %) for the three vaccines and outcomes examined (Fig. 4a, b, and 
c). This indicates that the modelled estimates are relatively robust and 
precise. However, it is worth noting that the uncertainty was generally 
highest for districts and wards located in Brikama LGA, which is situated 

in the coastal area of the country (Fig. 5). 

3.2. Districts with a combination of high estimated prevalence and a 
significant population of affected infants 

Overall, there was some similarity in the spatial pattern of districts 
where there was a combination of high estimated prevalence and a 
significant population of affected infants by delayed HepB0, PENTA3 
and MCV1 (Fig. 5). Our findings revealed that certain districts in Basse 
and Janjabureh LGAs in the eastern and central Gambia, as well as in 
Brikama LGA in coastal Gambia, had a spatial overlap of high estimated 
prevalence and a significant population of affected infants (Fig. 6 and 
Supplementary Table S6). In particular, there was a consistent spatial 
overlap of high delayed vaccination and a significant number of affected 
children across four districts in Basse LGA. These districts include 
Kantora, Jimara, Basse, and Tumana, and this pattern was observed for 
all the vaccines studied. 

4. Discussion 

The routine childhood vaccination program in The Gambia has 
achieved remarkable success, maintaining vaccination coverage of at 
least 90 % for most childhood vaccines for over a decade [18,48]. This 
accomplishment has positioned the country as a model for vaccine de
livery in many sub-Saharan African countries. However, our findings 
emphasize an important point: relying solely on overall vaccination 
coverage estimates may not accurately measure immunisation program 
quality. Significantly, our results offer valuable insights into the per
formance of the vaccine delivery system in The Gambia applying novel 
methodology that could be used in other countries. 

Previous studies on vaccination timeliness in The Gambia did not 
incorporate spatial analysis [49–51], thus, missing the opportunity to 
identify specific areas or “hotspots” of delayed childhood vaccinations. 
The estimates from these studies serve as an important initial step in 
exploring vaccination timeliness, but they are insufficient for targeted 

Fig. 4. The summary of the pattern of modelled estimates for delayed vaccination, categorized as tertiles, for the three vaccines (HepB0, PENTA3 and MCV1) in all 
the 49 districts in The Gambia. Note. Each district (second administrative level) is shown with their corresponding LGA (first administrative level). 
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Fig. 5. (A) Uncertainty estimate (95 % credible interval width) around predicted delayed HepB0 at district level in The Gambia; (B) uncertainty estimate (95 % 
credible interval width) around predicted delayed PENTA3 at district level in The Gambia; (C) uncertainty estimate (95 % credible interval width) around predicted 
delayed MCV1 at district level among 12–35 months children in The Gambia. 

Fig. 6. Bivariate maps showing the spatial relationship between delayed HepB0 (A), PENTA3 (B), MCV1 (C) and the number of affected children across the 49 
districts (second administrative level) in The Gambia. 
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programmatic interventions because they did not identify pockets of 
vulnerabilities that could benefit from targeted interventions. Our 
analysis is the first of its kind to provide a country-wide, high-resolution 
spatial estimation of the timeliness of routine childhood vaccination 
within the context of an LMIC. Our data reveal significant subnational 
inequalities in delayed HepB0, PENTA3, and MCV1 vaccinations, pri
marily concentrated in The Gambia’s central and eastern regions which 
are also the most economically disadvantaged regions [52]. Conversely, 
children in western coastal areas experienced less vaccination delay, 
further corroborating findings from a previous large cross-sectional 
study conducted in The Gambia [51]. National-level estimates of 
vaccination timeliness mask these subnational pockets of delayed 
vaccination, thereby potentially exposing children in those areas to the 
risk of measles and pertussis outbreaks or vertical transmission of hep
atitis B virus. 

Family sociodemographic barriers, health facility readiness, and 
physical accessibility of vaccination services, among other factors, have 
previously been reported to impact vaccine delivery and uptake [53,54], 
and they may help explain the observed pattern of subnational in
equalities in our study. Previous research has established a clear 
connection between geographical isolation from service delivery chan
nels and the coverage of routine childhood vaccines [55,56]. However, 
the extent to which these factors affect vaccination timeliness remains 
largely unexplored. To achieve optimal vaccination coverage, The 
Gambia currently employs a unique system that combines fixed facilities 
and outreach sites. Most fixed health facilities are located in coastal 
areas and provide services at least once a week [57]. Outreach sites, on 
the other hand, serve remote locations, potentially more prevalent in the 
eastern region of The Gambia, at least once a month [57]. Travel diffi
culties between households, fixed facilities and outreach sites may 
hinder travel and result in delayed uptake and delivery of vaccines to 
remote communities. This two-tier routine vaccine delivery mechanism 
may partially explain the spatial pattern of delayed vaccination 
observed in our study. However, exploring other potential health system 
or structural drivers contributing to the significant subnational in
equalities reported in our data is a crucial next step. 

While the majority of districts or wards with the highest prevalence 
of delays were not located in the coastal areas of The Gambia, we 
observed that some districts had a combination of high prevalence and a 
significant absolute number of children with delayed vaccinations in this 
area. This finding is unsurprising, as it reflects a higher population 
density in these areas. More children likely live in districts and wards in 
the country’s more urban and coastal regions. These findings demon
strate the usefulness of geospatial analysis in uncovering areas with co- 
occurrence of high under-vaccination (including delays) and a signifi
cant absolute number of children. Clusters or pockets of locations with 
high population density, under- or delayed vaccination can sustain 
outbreaks of VPDs such as measles and pertussis. Previous studies have 
demonstrated the significant impact of clustering or pockets of under- 
vaccinated subpopulations on the occurrence of disease outbreaks, 
particularly in countries that have already achieved high overall 
coverage rates [58,59]. While we have not established a direct link be
tween vaccination timeliness and VPDs outbreaks, improving timeliness 
potentially plays a role in preventing outbreaks or contributing to 
achieving disease elimination in the context of high coverage. 

Our findings provide valuable insights for immunization program 
managers and decision-makers, offering a tool to visualize and 
comprehend local patterns of vaccination timeliness more precisely. 
This information can play a crucial role in identifying districts where 
routine vaccine delivery systems require strengthening and prioritizing 
interventions for maximum impact. It is especially significant consid
ering our data demonstrated that four districts in Basse consistently 
exhibited high delayed vaccination and a significant number of affected 
children across all the vaccines studied. This finding suggests that these 
districts may have peculiar health system or other issues that could 
benefit from targeted interventions. Our findings underscore the 

significance of employing fine-scale spatial mapping techniques to 
investigate timeliness, particularly in countries like The Gambia, where 
overall vaccination coverage is high. This approach is crucial as it can 
reveal untimely vaccination patterns at lower administrative levels that 
may be masked by the aggregated data at higher levels. 

In future work, we need to explore the spatiotemporal pattern of 
untimely vaccination to determine whether the subnational heteroge
neities in delayed vaccination identified in our study persist over time or 
exhibit seasonal or monthly variations. Such analysis could benefit from 
geocoded longitudinal population survey data. One strength of using 
such data is the ability to link vaccination data with other epidemio
logical and disease surveillance data, and the fact that they cover under- 
documented or often missed communities. There is also a need to 
investigate whether there is a spatial relationship between areas that 
report measles outbreaks, low overall MCV1 coverage rates, and high 
prevalence of delayed MCV1. This can be done by using longitudinal 
vaccination data linked to measles epidemiological or disease- 
surveillance data. When triangulated with other datasets to produce 
additional metrics, such data could potentially shed more light on the 
impact of untimely vaccination on population immunity and enable the 
programmatic assessment of EPI performance. In future work, we will 
also consider developing a methodology for mapping indicators of 
timeliness of routine childhood vaccination using a combination of 
geolocated survey data and District Health Information Software (i.e., 
DHIS2) data. In a multi-temporal analysis, this could have the added 
benefit of improving the accuracy of the modelled estimates. 

Our study provides valuable insights into subnational patterns of 
vaccine timeliness using a probabilistic spatial modelling framework. 
However, the dataset analyzed and the methods deployed are subject to 
some limitations. First, the sampling frames used in the 2019–20 GDHS 
may have missed hard-to-reach or disadvantaged populations. This 
could lead to an under- or over-estimation of the prevalence of delayed 
vaccination in certain areas. To address this, we recommend using more 
accurate geocoded data from targeted surveys in future analyses to 
obtain better estimates in such locations. Second, to ensure confidenti
ality of respondents, the GDHS randomly displaced the geographical 
coordinates at the cluster level. This displacement is restricted so that 
the points remain within the country and within the DHS survey region. 
While we created buffers around the coordinates in rural and urban 
locations in line with previous approaches [20,22,23], there might have 
been some residual influence on the modelled estimates, especially at a 
more granular level. Thirdly, excluding children without HBR may lead 
to potential under- or overestimation of the timeliness estimates, espe
cially if there is differential availability of records across clusters, dis
tricts or wards. Nevertheless, it is worth noting that HBR and 
vaccination records availability was high (~93 %) in the 2019–20 
GDHS, which likely limited such potential bias in our analysis. Lastly, it 
is important to acknowledge that the 2019–20 GDHS sample was de
signed to be representative at the national and regional levels, consid
ering urban/rural stratification, and not at the district or ward level. 
However, the Bayesian spatial modelling approach utilized in this ana
lysis has been well validated and is known to provide robust estimates. 
Despite these limitations, our analysis provides an important first step in 
refining interventions to strengthen vaccination programs in a targeted 
and cost-effective manner. This is especially important in the wake of 
the COVID-19 pandemic, as we need to ensure that children receive their 
routine vaccines in a timely manner so they are protected from VPDs. 
Our findings can also be used to assess the progress made in expanding 
immunisation and ensuring effective protection for children following 
the implementation of such interventions. 

5. Conclusion 

This study identified all districts and wards in The Gambia where 
there was a combination of a high estimated prevalence of delayed 
vaccination and a significant population of affected infants. Our 
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methodological approach enabled us to identify districts and wards with 
the highest prevalence of delayed vaccination, which would not have 
been possible using large area estimates. This information is valuable for 
immunisation programme managers as it allows them to identify the 
most vulnerable districts that could benefit from targeted immunisation 
interventions. Our results and existing subnational-level estimates of 
vaccination coverage provide a more detailed understanding of the 
overall quality of routine childhood vaccination in The Gambia. This 
information is valuable for identifying areas that require targeted in
terventions to improve vaccination timeliness. Additionally, our 
approach can be applied to other countries, serving as a model to guide 
immunisation programs and service providers that seek to enhance the 
overall quality of the immunisation system. 
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