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Abstract

Standard applications of meta-analysis consider a single effect-size estimated from independent studies.

However, extensions to deal with more complex meta-analytical problems have been presented, such

as multivariate, network, multilevel, dose-response, longitudinal meta-analysis and meta-regression.

These extensions are characterised by non-independence among effect-sizes with a complex correlation

structures that need to be modelled or accounted for. In my PhD, I reviewed and brought together

these different extensions, developing a coherent extended mixed-effects framework for meta-analysis.

The framework is built on the link between meta-analysis and linear mixed-effects models, where

patterns of effect sizes are modelled through a flexible structure of fixed and random terms. The

extended mixed-effects framework for meta-analysis has been implemented in the R package mixmeta.

Meta-analytic models are often applied to environmental epidemiology using two-stage designs. In

this setting, location-specific exposure-response associations are estimated in the first stage, and then

the estimates are pooled using meta-analytic methods in the second stage. In my PhD, I illustrated

multiple design extensions of the classical two-stage method, all implemented using the extended

mixed-effects framework described above. In addition, I applied the framework and related software to

show the advantages of using the extended two-stages design in environmental epidemiology studies,

allowing a clearer characterisation of the short-term health effects of environmental stressors. In these

applications, I first explored the role of urban characteristics in modifying the effects of temperature

on health. Then I used a multi-country, multi-city, longitudinal design to quantify the independent

role of air conditioning in the attenuation of heath related health risk. Finally, I developed a two-

stage ecological modelling approach to examine the impact of meteorological variables on SARS-CoV-2

transmission. The extended mixed-effects framework for meta-analysis and related software has proved

to be a valid and useful analytical tool to address research questions on environmental health risks

and beyond.
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Preface

This PhD thesis consists of a collection of research papers and software documentation. These publi-

cations are related to the same research topic, but they have been published as independent research

contributions. As a result, concepts and definitions could be repeated in different papers, and, more

importantly, their content is not uniformly linked and standardized. The thesis is therefore divided

into three main parts, where the selected publications are preceded by an introduction and followed

by a final discussion. The aim is to present my research activity during the PhD project as a coherent

body of work.

The introduction in Part I contains two main chapters. The context of complex meta-analysis, as a

general analytical tool as well as applications in environmental epidemiology, is illustrated in Chapter 1.

Chapter 2 offers a summary of the publications, also introducing the main statistical developments and

the related software implementation. In Part III, Chapter 8, I provide a final discussion and describe

potential directions for future research.

Part II includes the selected five publications in different chapters. The order has been chosen to

reflect the research steps of the PhD project. The first publication in Chapter 3 present the extended

framework for complex meta-analysis. The article in Chapter 4 illustrates multiple design extensions

of the classical two-stage method in environmental epidemiology, all implemented using the extended

random-effects framework for complex meta-analysis. The publication in Chapter 5 is an example

of a standard two-stage design applied in environmental epidemiology. The last Chapters 6 and 7

include two publications that describe the extensions of the classical two-stage method in environmental

epidemiology.
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Introduction
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Chapter 1

Background

1.1 Historical facts

The term ”Meta-Analysis” was introduced in 1976 by Gene V. Glass in his seminal paper ”Primary,

Secondary, and Meta-Analysis of Research” (Glass, 1976). He defined ”Meta-Analysis” as ”the statisti-

cal analysis of a large collection of analysis results from individual studies for the purpose of integrating

the findings”. We can recognise two critical aspects in his definition: firstly, the number of results

from individual studies is ”large”, with difficulties in extracting meaningful information; secondly, the

stochastic nature of the results is assumed, and statistical methods are claimed to integrate the find-

ings. According to Glass, the meta-analysis should be a ”rigorous alternative to the casual, narrative

discussions of research studies”. In the same period, in medical statistics, there were the first attempts

to combine information from randomised controlled trials (RCT) (Altman, 2015; Peto et al., 1977).

These techniques were appealing as the RCTs were of a small sample size with low power to detect

effects and a high probability of false-positive findings. Meta-analytic works continued to increase in

medical sciences in the 1980s, and 1990s (Shadish and Lecy, 2015) along with the ”Evidence-Based

Medicine” paradigm.

13



CHAPTER 1. Background

Several authors pointed out the misleading use of meta-analytic methods (Bailar III, 1995; Egger and

Smith, 1995; Eysenck, 1994); concerns were expressed about the biases that could affect the individual

studies, the lack of similarity across studies on crucial aspects of the study design (individual, setting,

treatment, and outcome), and the presence of selective publication processes. These concerns were

amplified by the tendency to apply the meta-analytic method to summarise results from observational

studies (Egger et al., 1998; Shapiro, 1997). Observational studies do not rely on randomisation to en-

sure homogeneity of exposure groups, but rather the researchers use selection procedures, information

on personal characteristics, and analytic methods to minimize possible bias due to confounding. The

heterogeneity of the population investigated, and the different techniques used to minimise information

and selection biases required statistical methods (e.g., ”meta-regression”) that allow studying possible

factors explaining the heterogeneity of the study results.

Individual Patient Data (IPD) meta-analysis could partially address the problems of applying meta-

analytic techniques to summarise RCTs and observational studies by obtaining and synthesising raw

participant data from each study (Riley et al., 2010). However, IPD meta-analysis is resource-intensive

as it requires a considerable effort in building the research network and creating a team with skills

and competence to collect the data, perform the quality checks, and the data analysis. As advantages,

I can mention that the researcher can adopt common and predefined selection criteria, standardise

the analysis plan across the studies, and check the assumptions of statistical models used (Burke

et al., 2017; Riley et al., 2010). Another advantage of IPD meta-analysis is the possibility to evaluate

modifiers explaining the heterogeneity of the study results with higher power and avoiding ecological

bias when compared to ”meta-regression” techniques (Thompson and Higgins, 2002). There are two

statistical approaches for IPD meta-analysis: the one-stage or the two-stage approach (Burke et al.,

2017; Higgins et al., 2001). In the two-stage approach, the row participant data are analysed in each

study, summary effect estimates are calculated along with a measure of their precision (e.g., standard

error or confidence intervals), then the estimates are pooled using standard meta-analytic models.

The one-stage meta-analysis analyses all the row data in a single model, for example, using a fixed

or random-effects (hierarchical, multilevel) model to account for the study’s clustering of participants.

Overall no clear evidence can be draw on the choice between one-stage or two-stage approach (Burke

14



CHAPTER 1. Background

et al., 2017; Crowther et al., 2014; Goldstein et al., 2000; Higgins et al., 2001; Thompson et al., 2001;

Turner et al., 2000; Whitehead et al., 2001).

The last two decades have seen an expansion of the scope of meta-analyses. Within medical research

two major directions can be identified. First, from the initial emphasis on RCTs and observational

studies the attention has moved also to diagnostic (Ma et al., 2016), prognostic (Arends et al., 2008;

Jackson et al., 2014), and genetic (Bagos and Liakopoulos, 2010; Hong and Breitling, 2008) studies.

Second, meta-analysis characterised by a complex study design has been performed (Ishak et al., 2007;

Riley et al., 2017). Other development were systematic reviews of systematic reviews (panoramic

meta-analysis) (Hemming et al., 2012), cross-design synthesis (Larose and Dey, 1997; Prevost et al.,

2000), and split/analysis/meta-analysis methods applied to Big Data (Cheung and Jak, 2016).

1.2 Applications in environmental epidemiology

In environmental epidemiological studies, it is common practice to investigate short-term associations

between environmental exposures and health outcomes by analysing time-series data collected from

multiple locations. The pooling of data collected in multiple locations increases the statistical power,

thus facilitating the detection of small risks usually associated with environmental stressors (Armstrong

et al., 2020). Moreover, the analysis of large datasets collected across multiple populations increases

the representativeness of the findings.

In this setting, the hierarchical structure of the time-series data should be considered when performing

the analysis, e.g., using fixed or mixed-effects (multilevel) models. Moreover, to remove unmeasured

time-varying confounders, the model usually requires an aggressive control for trends with the definition

of highly-parametrised models, and the assumption that these trends vary across locations. As a results,

the number of parameters to be estimated could be very high. It could be computationally unfeasible to

perform the analysis with a single model (one-stage approach), and alternative approaches are needed.

An analytical approach applied in this setting is based on the two-stage design, which has become the

standard method for the analysis of multi-location data (Baccini et al., 2008; Basagana et al., 2018;

Berhane and Thomas, 2002; Bobb et al., 2014; Chen et al., 2012; Dominici et al., 2000; Gasparrini

et al., 2015; Liu et al., 2019; Romieu et al., 2012; Samoli et al., 2005; Schwartz, 2000; Wong et al.,

15
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2008). The design is based on the separation of the analysis into two stages: In the first stage, location-

specific exposure-response associations are estimated while adjusting for various (often time-varying)

confounders; then, in the second stage, the estimates are pooled using meta-analytic methods, which

can potentially incorporate location-specific meta-predictors.

The separation of the analysis into two stages provides a flexible and computationally efficient analytical

framework compared to one-stage approaches (Berhane and Thomas, 2002; Dominici et al., 2000;

Gasparrini et al., 2012; Schwartz, 2000). Moreover, another important advantage of the two-stage

design is the enhanced ability to examine heterogeneity in risk across populations, which can be linked

to contextual characteristics.

1.3 Statistical models for meta-analysis

The main objective of a meta-analysis is to obtain a summary (pooled) estimate from those presented

in several studies. The basic meta-analysis method is to obtain a weighted average of estimates from

each study with weights based on the precision of the estimates (Sutton and Higgins, 2008).

The pooled estimate is usually achieved using fixed-effects or random-effects assumptions (Higgins

et al., 2009; Riley et al., 2011; Sutton and Higgins, 2008). A fixed-effects meta-analysis relies on the

assumption of a common underlying effect across all studies. The pooled estimate is calculated as

a weighted average of the study summary estimates, with weights equal to the inverse of the esti-

mated variance. In contrast, random-effects meta-analysis assumes that each study has an underlying

”true” estimate, and these estimates are ”similar” or ”exchangeable” in Bayesian terminology. As a

consequence, random-effects models incorporate the underlying between-study variation of the esti-

mates into the weights (DerSimonian and Laird, 1986). An important component of the meta-analytic

process is the assessment of ”heterogeneity” of the underlying effect and factors that could explain

such variation. To assess the presence of heterogeneity, often a chi-square test based on the Q statis-

tics is undertaken against the null hypothesis of no heterogeneity (Borenstein et al., 2021), but this

test has shown low power (Jackson, 2006). For this reason, measures that quantify the extent of the

heterogeneity are preferable; among those, the I2 statistics measure the proportion of total variation

in study estimates attributable to heterogeneity (Higgins and Thompson, 2002; Higgins et al., 2003).
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The second step in the ”heterogeneity” assessment process is the analysis of factors that could ex-

plain between-study differences. A key tool is meta-regression, which combines meta-analytic and

regression-based approaches (Thompson and Higgins, 2002).

Estimation Methods

In the previous section, we briefly described the standard meta-analytic models. In this setting, the pa-

rameters (using frequentist terminology) to be estimated are the pooled estimates, the between-studies

variance, and the coefficients of the meta-regression model that describe how the pooled estimate varies

according to the characteristics of the single studies. Several estimation methods have been proposed.

These estimation methods will be briefly reviewed in this paragraph, specifically focusing on random-

effects models.

Method of Moments. The traditional approach for random-effects meta-analytical models is rep-

resented by the estimator proposed by DerSimonian and Laird based on the method of moments

(DerSimonian and Laird, 1986). The method of moments is non-iterative and relies on equating the

sample statistic of Q to its expected value; then, the method of moments estimates of the between-

study variability is plugged-in into the pooled effect formula. It is important to note that this method

does not consider uncertainty in the variance estimates when making inferences on the pooled effect.

Likelihood Methods. Likelihood-based methods derive the (restricted) likelihood of the model and

use optimization procedures to maximize them in terms of the model parameters (Brockwell and

Gordon, 2001; Hardy and Thompson, 1996); moreover, some applications deal with the problem of

uncertainty associated with estimating between-study variance (Hardy and Thompson, 1996). The

Maximum Likelihood (ML) estimate of the between-study variance may be downward biased. To

overcome this problem, some authors (Goldstein et al., 2000; Thompson et al., 2001; Turner et al.,

2000) have proposed Restricted (or Residual) Maximum Likelihood (REML) inferential procedures

for the estimation of the pooled effect and between-study variance parameter. The REML procedures

consider the degree of freedom spent for inference on the fixed effect (mean effect size) while estimating

between-study variance parameters.

17



CHAPTER 1. Background

Non parametric approaches. Non parametric approaches have been proposed to avoid the as-

sumption of normal distribution of the random effects; among those are the non-parametric maximum

likelihood (Aitkin, 1999) and Estimating Equations procedures (Ma and Mazumdar, 2011; Ritz et al.,

2008).

Bayesian approach. Several authors have proposed Bayesian inferential procedure for meta-analysis

(Higgins et al., 2009; Sutton and Abrams, 2001; Thompson et al., 2001). A main advantage of the

Bayesian approach is a clearer interpretation of the hypothesis of the random effect. Within the

frequentist (or classic) framework, the effect sizes are supposed to be drawn from an ”infinite” popula-

tion of effect sizes represented by a random variable, while in the Bayesian approach to random-effects

meta-analysis is based on the concept of exchangeability. Exchangeability is the judgment that the

effect sizes, even if they were not identical, cannot be differentiated a priori. Bayesian and likeli-

hood approaches can be viewed as particular cases of hierarchical, mixed effects, or multilevel models

(Goldstein et al., 2000).

Computational techniques

The simple calculations used in the DerSimonian and Laird method have made their approach very

popular, as the author’s derived non-iterative closed formulae for calculating the underlying mean

effect (and its variance) and between-study variability. In contrast, in the simple univariate random-

effects model, the maximum likelihood procedure is based on the score functions of two parameters

(underlying pooled effect and between-study variance), but there is no closed solution because their

respective estimators depend on each other. To solve this problem, iterative solutions of the two score

equations were proposed (Berkey et al., 1998, 1995; Gumedze and Dunne, 2011). Another possible

approach to maximize the likelihood is to use numerical iterative procedures. These procedures were

used to calculate ML estimates of the underlying mean effect and between-study variance compo-

nents (Goldstein et al., 2000; Kalaian and Raudenbush, 1996; Konstantopoulos, 2011; Stram, 1996;

Thompson et al., 2001; Turner et al., 2000). In particular, Konstantopolous (Konstantopoulos, 2011)

and Stram (Stram, 1996) used a Fisher scoring algorithm, while Kalaian and Raudenbusch (Kalaian

and Raudenbush, 1996) used an Expectation-Maximization algorithm, while other authors (Goldstein
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et al., 2000; Thompson et al., 2001; Turner et al., 2000) have used Iterative Generalised Least Square

(IGLS) algorithm (Goldstein, 1986, 2011). Bagos (Bagos, 2015) proposed a ML procedure based on

numerical integration by adaptive quadrature as implemented in the Stata package gllamm (Rabe-

Hesketh et al., 2001).

The maximum likelihood problem can also be addressed through the maximisation of the profile like-

lihood function over the between-study variance parameters after fixing the mean effect estimated

through the generalised least square formula (equivalent to ML estimators). This approach has com-

putational advantages as the iterative algorithm needs only to find the optimum on the between-study

variance parameters space. Gasparrini and colleagues (Gasparrini et al., 2012) proposed a numeric

version of the Newton-Raphson algorithm to calculate ML estimates of the between-study variance

components.

Numerical iterative algorithms have also been used within REML inferential procedures where the

estimates of the between-study variance parameters are plugged into the generalised least square for-

mula for the calculation of the mean summary effect (Gasparrini et al., 2012; Goldstein et al., 2000;

Van den Noortgate et al., 2013, 2015; Riley et al., 2007a; Thompson et al., 2001; Turner et al., 2000).

Alternative Bayesian models (Higgins et al., 2009; Sutton and Abrams, 2001; Thompson et al., 2001)

consider non-informative priors with different distributional choices for the variance-components.

Inferential issues

Inference in the DerSimonian and Laird approach is based on the central limit theorem, which ensures

that the standardised mean effect follows a standard normal distribution asymptotically on n, where

n is the number of the studies (Borenstein et al., 2021). Several authors have proposed alternatives to

the DerSimonian and Laird approach, which considers uncertainty in the between-study variance in the

inferential procedure on the mean effect (Guolo and Varin, 2017; Sidik and Jonkman, 2007; Veroniki

et al., 2016). Among these authors, Hartung and Knapp (Hartung, 1999; Hartung and Knapp, 2001a,b)

proposed a simple adjustment of the standard error of the mean effect and the use of a T distribution

for statistical tests and confidence intervals; Sidik and Janckman proposed a similar method (Sidik and

Jonkman, 2002, 2005). Similarly, the likelihood approach to inference is based on the Wald test that

19



CHAPTER 1. Background

asymptotically follows a standard normal distribution (Brockwell and Gordon, 2001). This approach

relies on the between-study variance estimated through maximum likelihood and does not consider

uncertainty in the estimation. To consider the uncertainty in estimating the between-study variance,

Hardy and Thompson describe the procedure to derive profile likelihood-based confidence intervals

(Hardy and Thompson, 1996); this approach was also used by Turner and colleagues (Turner et al.,

2000). Turner and colleagues have also considered parametric bootstrap (Turner et al., 2000) to take

into account uncertainty in the estimation of the between-study variances, while other authors have

considered a t-distribution for the Wald statistics (Kalaian and Raudenbush, 1996), suggesting use

of tk−4 (Berkey et al., 1995), tk−2 (Higgins et al., 2009; Riley et al., 2007a) or tk−1 (Follmann and

Proschan, 1999) test statistics. For finite-sample inference with REML estimation, Kenward and Roger

proposed an approximate correction of the covariance matrix and degree of freedom (Kenward and

Roger, 1997). This correction has been recently applied to standard univariate meta-analysis (Morris

et al., 2018).

Most interest in the inferential procedures is in the underlying mean effect. Inferential procedures

on the between-study variance parameters have received less attention, and includes methods based

on likelihood-based confidence intervals (Hardy and Thompson, 1996), Wald type (Konstantopoulos,

2011; Stram, 1996) and parametric bootstrap (Turner et al., 2000). These methods have been reviewed

by Viechtbauer (Viechtbauer, 2007) and Veronicki and colleagues (Veroniki et al., 2016). Kalaian and

Raudenbush (Kalaian and Raudenbush, 1996) used Likelihood Ratio tests to compare models with

different structures of the between studies (co)variance matrix, but these tests have problems due to

boundary conditions of the parameter space of the null hypothesis (Pinheiro and Bates, 2006).

Non-parametric inferential approaches, e.g. (permutation, and resampling procedures (Guolo and

Varin, 2017)), and parametric bootstrap (Turner et al., 2000)) could gain robustness and closer nominal

level of type I error concerning standard meta-analytic methods, but are computationally intensive with

a possible loss of power. Problems related to the uncertainty of the between-study variance components

and their effects on the precision of the mean effect sizes are naturally solved in the Bayesian framework,

modelling these quantities as random variables. Posterior distributions of between-study variance and

mean effect sizes can be calculated using point estimates and credible intervals derivation.
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1.4 More complex settings for meta-analysis

In the last decades, there have been extensions in the scope of the meta-analysis. Meta-analytic

techniques have been applied in complex study settings; these include, among others, studies with

multiple treatments (network meta-analysis) or multiple outcomes (Riley et al., 2017), and longitudinal

studies (repeated-effects sizes) (Ishak et al., 2007) The standard meta-analytic models, introduced

in the previous chapter, assume independence across estimates obtained from different studies. In

contrast, recent applications include more complex settings where the estimates show a complex pattern

of dependencies. Ignoring this correlation pattern between estimates could lead to inefficient and or

biased estimates (Jackson et al., 2011, 2017; Riley et al., 2017). The following sections will show

different examples that involve complex patterns of dependencies among effect measures and require

more advanced study designs.

Multiple outcomes and multiple treatments

In some new applications of meta-analysis, multiple estimates are reported on each study; for example,

studies could report more than one clinical outcome (e.g. disease-free and overall survival times in

patients with cancer), multiple measures or sub-scales of the same psychometric test, various biomark-

ers, or multiple measurements of accuracy or performance (Riley et al., 2017). These estimates could

be correlated at the study level because, as shown by Gleser and Olkin (Olkin and Gleser, 2009), the

correlation at the individual level implies a correlation between effect sizes at the population (study)

level. Correlation among effect estimates could also arise when multiple treatments are compared

against a common control group. As shown by Gleser and Olkin (Olkin and Gleser, 2009), in this case,

the correlation is related to the between-study variation of the baseline risk (or value).

Multiple parameters also arise in two-stage designs applied to environmental epidemiological studies.

In this context, in each study area, multiple parameters could be used to represent complex exposure-

response dependencies, such as non-linear and lagged temperature-health associations of temperature

(Gasparrini, 2014; Gasparrini et al., 2012), or alternatively correlated effects of multiple exposures,

such as different pollutants included in the same first-stage model (Dominici et al., 2004).

Multivariate meta-analysis deals with all these issues by jointly modelling the correlated outcome,
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assuming a multivariate normal distribution with a known within-study covariance matrix. (Berkey

et al., 1998; Bujkiewicz et al., 2013; Kalaian and Raudenbush, 1996; Nam et al., 2003; Olkin and

Gleser, 2009; Raudenbush et al., 1988; Ritz et al., 2008; Stram, 1996; Van Houwelingen et al., 2002;

Wei and Higgins, 2013a). It is important to note here that the different effect estimates are not pooled

all together, but the multivariate meta-analysis produces summary estimates for each outcome or

treatment (Riley et al., 2017). An important application related to multivariate meta-analysis with

multiple treatments (White et al., 2012) is Network meta-analysis or Multiple Treatment Comparisons

(MTC). In this application, the set of treatments under comparison can be different across studies, and

gain in efficiency from correlation among effect sizes is reached through the assumption of consistency

(Riley et al., 2017).

Methods that handle multiple effect sizes generally assume that the within-study covariance matrix

is known. For some complex applications, it is possible to reconstruct the within-study covariance

matrix (Olkin and Gleser, 2009). In other applications, often the within-study correlation matrix

is not known. Riley and colleagues (Riley, 2009) showed that ignoring the within-study correlation

could result in estimates with inferior inferential properties. For example, estimates could have higher

mean square error and standard error, or could be even biased if the missing mechanism is not ignor-

able. These inefficiencies and biases depend on the scale of the within-study correlation respect to the

between-study correlation and the variability of the within-study correlation among the studies. Sev-

eral authors have proposed inferential procedures to take into account the missing within-covariance

matrix (Hedges et al., 2010; Riley et al., 2007b; Tipton, 2015; Wei and Higgins, 2013b).

Multiple levels

In the same applications, summary effect sizes have natural levels of hierarchy (Stevens and Taylor,

2009); for example, two or more study reports can come from the same research group or laboratory.

Multiple effect sizes could also have been calculated for different higher-level units such as firms, hospi-

tals, school districts, neighbourhoods or cities. In these situations, the issue is that the inner-level effect

size estimates within the outer level could be correlated. These correlations could produce unexplained

heterogeneity that must be modelled to account for the hierarchical structure (Konstantopoulos, 2011;
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Stevens and Taylor, 2009). As pointed out by Stevens and Taylor (Stevens and Taylor, 2009), it is

essential to consider these sources of correlations among studies, as correlated estimates tend to over-

influence the pooled estimates, and the down-weighting implied by random effects models could reduce

the influence of these studies. Some attempts at multilevel meta-analytic models have been proposed

to combine the results of several systematic reviews (panoramic meta-analysis), for example, when

the same treatment has been associated with different surgery or cancer type (Hemming et al., 2013).

Multilevel meta-analysis models also allow modelling the covariance among multiple outcomes without

knowing the within-study covariance matrix (Van den Noortgate et al., 2013, 2015).

Longitudinal studies

Another example of recent applications of meta-analysis characterised by a complex study design is

when meta-analysis is applied to studies with a longitudinal design, and these studies could report

effect sizes measured at several time points. As the estimates are calculated on the same subjects,

these estimates could be correlated. Meta-analysis of longitudinal studies reporting multiple effect

sizes could use the information on the correlation among repeated-effect size measures to produce

unbiased and more efficient estimates. Some authors have proposed multivariate or multilevel meta-

analytic models to pool repeated summary estimates at common observations time-points (Ahn and

French, 2010; Ishak et al., 2007; Lopes et al., 2003; Musekiwa et al., 2016; Peters and Mengersen, 2008;

Trikalinos and Olkin, 2012). Multivariate meta-analysis allow the user to model the autocorrelation

among effect estimates using different parametrisation of the within-study and between study covari-

ance matrix; for example, within or between study covariance terms could be parametrised to model

an autoregressive process (AR(1)) of the effect estimates, but these models require estimates to be

calculated at common, evenly pre-defined time-points across all the studies.

No previous study has investigated the problem of pooling multiple results from different studies ob-

tained at different time points. In this case, the between-study covariance matrix could be modelled to

give the covariance between random terms as a function of the ”temporal distance” among measures,

as for Gaussian Markov Fields Models (Rue and Held, 2005).
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Non linear or complex associations

Dose-response meta-analytic models have been used to summarise a linear association between the

exposure-response across epidemiological studies (Berlin et al., 1993). The standard approach consists

of a two-stage procedure where, in the first stage, for each study, the slope of the association and its

precision are estimated, taking into account the within-study correlation among effect estimates at

different levels of the exposure. In the second stage, the slopes are pooled using standard fixed or

random effects methods. Within a study, the association between the exposure and the outcome could

be non-linear. To describe the non-linear association, a set of parameters would be needed (e.g. using

polynomials, fractional polynomials or splines), and these parameters are correlated as estimates in

the same sample. In this case, a two-stage procedure using a multivariate meta-analytic model has

been proposed (Gasparrini et al., 2012; Liu et al., 2009; Orsini et al., 2011; Rota et al., 2010): in the

first stage, a set of parameters characterising the non-linear associations and their covariance matrix

are estimated on each study taking into account the within-study correlation among effect estimates

at different levels of the exposure, and at the second stage, the set of parameters are pooled using

multivariate meta-analysis.

Other non-standard applications

Other non-standard meta-analysis are the estimation of the relationship between the outcome of in-

terest and surrogate markers (Buyse et al., 2000), studies of accuracy of diagnostic/screening tests (Ma

et al., 2016), cross-design synthesis (Larose and Dey, 1997; Prevost et al., 2000), and split/analysis/meta-

analysis methods applied to Big Data (Cheung and Jak, 2016).

A higher grade of complexities arises when some of the proposed extensions overlap; Riley and col-

leagues (Riley et al., 2017) presented examples of meta-analysis with multiple treatments and multiple

outcomes, or meta-analysis with multiple treatments, with each of the multiple treatments charac-

terised via a dose-response effect on the outcome.
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Software for more complex meta-analysis

Software for multivariate meta-analysis

Multivariate meta-analysis models can be fitted using specific software: for instance the packages

metafor, mvmeta, mmeta, mtvmeta, metaSEM, and robumeta in the R environment, the user-written

package mvmeta in Stata, as well as using statistical software specifically designed to fit multilevel

models, such as MlWin (Goldstein et al., 2000; Rasbash et al., 2000; Thompson et al., 2001; Turner

et al., 2000).

The mvmeta package in R was developed by my supervisor, Prof. Antonio Gasparrini, and it performs

fixed and random-effects (single level) multivariate meta-analysis and meta-regression. The mvmeta

package computes maximum likelihood and restricted maximum likelihood estimates through a Quasi-

Newton algorithm. In the metafor package, the ML and REML estimates are calculated through

iterative numerical procedures based on the Fisher scoring algorithm, but the implementation is based

on the full marginal model and could face computational issues with complex random-effects structure

and a high number of studies and or repetitions. The metaSEM implements the Structural Equa-

tion Model (SEM) approach for meta-analysis proposed by Cheung (Cheung, 2014a,b, 2015). This

framework use iterative numerical methods to estimate fixed effects and random-variances parameters,

through ML and REML procedures. Although the approach linking meta-analysis and SEM is interest-

ing, it requires additional knowledge of SEM, and it may not be easy for the user to specify a complex

model using SEM parametrisation. The rubumeta package estimates the between-study variances using

moment methods. It calculates standard errors of the mean summary effects using a robust method

that does not need information on the within-study covariance matrix (Hedges et al., 2010; Tipton,

2015). Within Stata, the mvmeta programme was developed by Ian White (White et al., 2011). In this

package, between-study variances are estimated using ML and REML through the Newton-Raphson

method and an extension of the moment methods described by Jackson and colleagues (Jackson et al.,

2010). The inference is based on the asymptotic standard distribution for the Wald statistics. The

standard error provided for an REML analysis allows uncertainty in estimating the between-study

covariance matrix by inverting the second derivative matrix of the restricted likelihood.
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Software for multilevel meta-analysis

The two meta-analysis packages metafor and metaSEM, both in the R environment, also allow the user

to specify and estimate multilevel meta-analytic models, but both packages only allow up to two levels.

These packages were described in the previous paragraph.

Software for longitudinal meta-analysis

Longitudinal meta-analysis with repeated measures at common observation points can be fitted using

the packages that allow multivariate meta-analysis models. Some of these programs, such as metafor,

and mvmeta, enable the user to specify the between-study covariance matrix in terms of the autore-

gressive process. This specification is useful when the different points are evenly spaced. To date, only

the statistical package metafor can fit longitudinal meta-analysis with a continuous-type autoregressive

structure in which the estimates refer to different time points that are not evenly spaced.

Software for dose-response meta-analysis

The R package dosresmeta, developed by Crippa and colleagues, estimates the parameters of non-linear

dose-response meta-analysis using a two-stage approach. Interestingly, the package has been recently

updated with the possibility to model non-linear meta-analysis with a one-stage model (Crippa et al.,

2019).

Software for specific application meta-analysis

Several softwares has been developed specifically for extended applications of meta-analysis. For

example, within the R environment we could cite the packages MAMA for meta-analysis of gene-

expression studies, mada for meta-analysis of diagnostic studies, and netmeta to perform network

meta-analysis (Polanin et al., 2017; Schwarzer et al., 2015).

Meta-analysis with general statistical software

Given the link with mixed-effects (multilevel or hierarchical) models, standard and more complex

meta-analytic models can be estimated using general statistical software. For example, several authors
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use the SAS PROC MIXED procedure (Konstantopoulos, 2011; Van den Noortgate et al., 2013, 2015;

Riley et al., 2007a; Singer, 1998; Van Houwelingen et al., 2002), while Bagos (Bagos, 2015) shows how

to fit complex meta-analytic models using Stata gllamm. Notably, several scholars used software specif-

ically designed to fit multilevel models MlWin (Goldstein et al., 2000; Rasbash et al., 2000; Thompson

et al., 2001; Turner et al., 2000). Within the R environment, the package nlme allows to fit linear

and non-linear mixed effects models and could be used to fit (basic or complex) meta-analytic models.

However, there are differences in the estimates of the fixed-effects coefficients and their standard errors

with respect to other packages (e.g. metafor) both using maximum likelihood and restricted maximum

likelihood procedures.

These are important contributions, but they require advanced knowledge of statistical and computa-

tional aspects and could be difficult for the user to customize complex meta-analytic models. Moreover,

using general statistical software for multilevel modelling needs to fix the within-study error as known,

and this could be feasible for standard univariate meta-analysis on which there is a single known

variance for each estimate, but it can be more problematic for the extensions (e.g., correlated known

errors) on which the between study covariance matrix needs to be supplied by the user.

1.5 Aims and objectives

The literature review presented in the previous sections highlights that meta-analysis of complex studies

is a hot topic with contributions from several scholars. Despite the interest in the topic, there are still

difficulties in applying complex meta-analytic methods in applied meta-research problems, e.g. for

modelling complex risks associated with environmental factors (Riley et al., 2017; Sutton and Higgins,

2008). These difficulties are partly due of a lack of a unified framework on which all the complex

models can be formulated. In section 1.4, I showed several models for the different specific settings

for complex meta-analysis, but these were presented as separate developments rather than as various

extension within the same modelling structure. The main aim of this PhD is to develop a general

(united) framework for complex meta-analysis and to derive multiple design extensions of the classical

two-stage method, all implemented using the extended random framework for complex meta-analysis.

The definition of a framework and related optimal inferential procedures will be implemented in a user-
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friendly software to further increase the use of theoretically-sound and efficient statistical methods in

complex meta-analytic research with a particular focus on environmental epidemiology.

In particular, the specific objectives of the PhD are:

1. Objective 1: to develop an extended random-effects framework for complex meta-analysis. The

extended framework will allow the specification of several non-standard applications of meta-

analysis (e.g., multivariate, multilevel, longitudinal, dose-response, and their combination) within

a common model using consistent estimation and inferential procedures.

2. Objective 2: to derive multiple design extensions of the classical two-stage method, all imple-

mented using the extended random framework for complex meta-analysis. This framework will

offer a flexible and generally applicable tool to implement extensions of the classical two-stage

study design used in environmental epidemiology.

3. Objective 3: to implement the analytic and inferential extended framework in a new R Package

mixmeta. The availability of user-friendly software designed to be coherent with the formu-

lation of an extended random-effects framework for complex meta-analysis will facilitate the

implementation, use, and dissemination of complex meta-analytic procedures in traditional and

non-standard applications.

4. Objective 4: to illustrate the application of the extended random-effect framework for complex

meta-analysis in environmental epidemiology studies. These studies are characterised by complex

settings with multiple levels of hierarchies, non-linearity, spatial and temporal structure and

represent an ideal context to demonstrate the advantages of the extended framework.
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Contribution of selected publications

In this chapter, I provide a summary of the contribution of my research to the field of statistical methods

for complex meta-analysis and its application in environmental epidemiology, coherent with the PhD

objectives illustrated in Section 1.5. In the next Section 2.1, I will introduce the main methodological

developments of this thesis (PhD’s Objectives 1 and 2), while the implementation of these methods on

the statistical environment R (PhD’s Objective 3) is illustrated in Section 2.2. Finally, Section 2.3 will

provide an overview of the publications. I will illustrate each publication in this section, emphasising

this PhD’s substantive contribution to methodological developments (PhD’s Objectives 1 and 2) and

the environmental epidemiology field (PhD’s Objective 4). Moreover, I will highlight my role in the

various steps from study planning to article publication.

2.1 Methodological developments

In Section 1.4, I presented extensions that deal with more complex meta-analytical problems. These in-

clude, potentially among others, multivariate models for pooling multiple outcomes or multi-parameter

associations (Gasparrini et al., 2012; Jackson et al., 2011), network meta-analysis for indirect mixed-

treatment comparison (Riley et al., 2017), multilevel versions for hierarchically-structured studies
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(Stevens and Taylor, 2009), dose-response meta-analysis (Crippa et al., 2019; Orsini et al., 2011), and

longitudinal meta-analysis for studies reporting multiple estimates at different times (Ishak et al.,

2007). Although these extensions were presented separately, all of them can be described as examples

on which multiple estimates are obtained within each study; this data structure creates a dependence

among estimates. Consequently, the dependence within and or between studies creates more complex

correlation structures that need to be modelled or accounted for in obtaining pooled estimates.

In my PhD, coherently with Objective 1, I reviewed and brought together these different developments

into a coherent extended mixed-effects framework for meta-analysis (Sera et al., 2019a). The extended

framework for meta-analysis is built on the known link between meta-analysis and linear mixed-effects

(LME) models, where patterns of effect sizes are modelled through a flexible structure of fixed and

random terms (Bagos, 2015; Berkey et al., 1998; Goldstein et al., 2000; Konstantopoulos, 2011; Van den

Noortgate et al., 2013; Stram, 1996; Thompson et al., 2001; Turner et al., 2000; Van Houwelingen et al.,

2002).

As discussed in section 1.2, the two-stage design has become a standard tool in environmental epi-

demiology to model multi-location data. However, its standard form is rather inflexible and poses

important limitations for modelling complex risks associated with environmental factors. In my con-

tribution, in accordance with Objective 2 of this PhD, I illustrate multiple design extensions of the

classical two-stage method (Sera and Gasparrini, 2022), all implemented using the extended random

framework for complex meta-analysis . This framework offers a flexible and generally applicable tool

to implement extensions of the classical two-stage study design used in environmental epidemiology.

2.2 Software implementation

The extended mixed-effects framework for meta-analysis has been implemented within R, a free pro-

gramming language and software environment for statistical computing and graphics.

The choice to create the two R packages has been motivated by several considerations. First, the ap-

proach is based on relatively complex statistical methods and routines requiring non-trivial computing

skills to provide stable results. The availability of fully-documented packages in a freely-available soft-

ware can promote the application of the techniques by other research teams. Second, the production of
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the packages involves generalising the methodologies beyond the specific data and models I have used

in my research. The packages are therefore expected to be applicable in a broader range of analyses

and potentially easier to improve and extend.

Following Objective 3 of this PhD, the extended random-effects framework for complex meta-analysis

have been implemented in the R package mixmeta (https://cran.r-project.org/web/packages/

mixmeta/index.html). The package was first released on CRAN on July 2019. At the time of writing,

the current version is 1.2.0, after ten updates.

The main function in the package is mixmeta(), which performs fixed and random-effects meta-analysis

and meta-regression. This regression-type function contains arguments to define formulae which spec-

ify the outcomes and the fixed effect linear predictors and random terms that allow setting the random

structure of the model. The mixmeta() function calls internal functions to compute maximum like-

lihood and restricted maximum likelihood estimates through a hybrid Quasi-Newton and iterative

reweighted least square (IGLS) algorithm. Additional functions are used, among other purposes, to

obtain predictions and best linear unbiased predictions, to run heterogeneity tests and to compute fit

statistics.

The package includes several datasets used for applications of the extended meta-analytical framework.

Documentation of the package is provided through the reference manual (Gasparrini et al., 2021),

reported in Appendix A. The manual also provides examples of specific models and fully demonstrates

the flexibility of the extended meta-analytical framework.

2.3 Overview of the publications

The six publications summarise my research activity within the PhD project. They include five research

papers, as chapters in Part II, and a package reference material in Appendix A. I am the first and

corresponding author of the five research papers and the co-author of the package reference material.

The five research papers have already been published in high-impact international scientific journals.

The order of the publications has been chosen to describe a coherent research project. However, the

manuscripts have been published or submitted as independent contributions, and the text included

in the different chapters is not consistently linked. This section aims to provide the reader with a
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summary of each publication, progressively illustrating my research’s conceptual, methodological and

more applied steps. In particular, the first two papers present the main methodological developments,

in accordance of Objectives 1 and 2 of this PhD, while the last three research papers are related

to Objective 4 of this PhD and illustrate the substantive contribution of this PhD in environmental

epidemiology.

Research paper I

The first research paper, originally published as Sera et al. (2019a) and included in Chapter 3, rep-

resents the first methodological output coherent with Objective 1 of this PhD. In this contribution,

I illustrate a general framework for meta-analysis based on linear mixed-effects models, where po-

tentially complex patterns of effect sizes are modelled through an extended and flexible structure of

fixed and random terms. This definition includes, as special cases, a variety of meta-analytical models

that have been separately proposed in the literature, such as multivariate, network, multilevel, dose-

response, longitudinal meta-analysis and meta-regression. As the paper’s first author, I structured the

methodological description of the general framework for meta-analysis based on linear mixed-effects

models in agreement with the co-authors. I developed the algebra for this model family. I indepen-

dently chose the example included in the paper and performed the analysis. I was the lead author

of the manuscript and acted as the corresponding author during the submission process, drafting the

responses to reviewers and changes to the various versions.

Research paper II

The second research paper, originally published as Sera and Gasparrini (2022) and included in Chap-

ter 4, along with the documentation added in the online Appendix, represents the second method-

ological output and follows the Objective 2 of this PhD. In this contribution, I illustrate extensions

of the classical two-stage study design used in environmental epidemiology. I introduce the extended

two-stage design and its features in the article, including the design structure and related modelling

framework. Then, after presenting the specific example and the related dataset, I demonstrate ap-

plications of the various design extensions in multiple case studies using multi-location analyses of
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temperature and air pollution health risks. Methodological notes, data, and R scripts for reproducing

the examples are added as supplementary material.

As the first author of the paper, I structured the paper. I independently chose the example included

in the paper and performed the analysis. I was the lead author of the manuscript and acted as the

corresponding author during the submission process, drafting the responses to reviewers and changes

to the various versions.

Research paper III

The third research paper, originally published as Sera et al. (2019b), is included in Chapter 5. In this

contribution, related to Objective 4 of the PhD, I explored the role of urban characteristics in modifying

the direct effects of temperature on health. In particular, I used a multi-country dataset to study

the effect modification of temperature-mortality relationships by a range of city-specific indicators.

This study is an example of a standard two-design applied in environmental epidemiology. I used

distributed lag non-linear time-series models in the first stage and multivariate meta-regression models

in the second stage to estimate fractions of mortality attributable to heat and cold (AF%) in each city.

In the last third stage, I used meta-regression models to evaluate each indicator’s effect modification

across cities. The analysis, even if it presents complex aspects as the multivariate meta-regression

models used in the second stage, represents an example of a ”standard” two-stage design from which

extensions, e.g. multilevel and or longitudinal can be derived.

As the first paper’s first author, I coordinate the work with all the co-authors discussing the study

design, research question, and the relevant epidemiological and public health issues. I independently

conducted the analysis, discussing the analytical approaches, interpretation and conclusions with the

research team. I took the lead in writing the manuscript and acted as the corresponding author during

the submission process, drafting the responses to reviewers and changes to the various versions.

Research paper IV

The fourth research paper, originally published as Sera et al. (2020) is included in Chapter 6. In this

contribution, I used a multi-country, multi-city, longitudinal design to quantify the independent role
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of air conditioning in attenuating heath-related health risk. This study is an example of a two-stage

design with a longitudinal structure that can be analysed using the extended framework for complex

meta-analysis (Objective 4 of the PhD). I used collected the daily time series of mortality, mean temper-

ature, and yearly air conditioning prevalence for 311 locations in Canada, Japan, Spain, and the USA

between 1972 and 2009. In the first stage, I fitted a quasi-Poisson regression combined with distributed

lag non-linear models for each city and sub-period to estimate summer-only temperature–mortality

associations. In the second stage, I used the extended random-effects framework to implement a mul-

tilevel, multivariate spatio-temporal meta-regression model to evaluate the effect modification of air

conditioning on heat–mortality associations. The modelling strategy allows to compute relative risks

and fractions of heat-attributable excess deaths under observed and fixed air conditioning prevalences.

As the paper’s first author, I coordinate the work with all the co-authors discussing the study design,

research question, and the relevant epidemiological and public health issues. I independently conducted

the analysis, discussing the analytical approaches, interpretation and conclusions with the research

team. I took the lead in writing the manuscript and acted as the corresponding author during the

submission process, drafting the responses to reviewers and changes to the various versions.

Research paper V

The fifth research paper, originally published as Sera et al. (2021), is included in Chapter 7. In this

contribution, I used a two-stage ecological modelling approach to examine the impact of meteorological

variables on SARS-CoV-2 transmission between cities across the globe while accounting for confounding

of non-pharmaceutical interventions and city-level covariates. It represents an excellent example of a

two-stage design with a multilevel structure with cities nested within a country (Objective 4 of the

PhD). In the first stage, I used estimated the effective reproduction number (Re), in each city, over

a city-specific time window early in the epidemic. In the second ‘cross-sectional’ stage, I estimated

the association between city-level Re with each meteorological variable, controlling for confounding by

total population, population density, GDP per capita, percentage of population >65 years, pollution

levels (i.e. particulate matter, PM2.5), and the lagged OxCGRT Government Response Index at the

end-point of the selected time-window (lagged by ten days). In the model I considered the two-level
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(cities and countries) structure of the data using a multilevel meta-regression model implemented

trought the extended random-effects framework for complex meta-analysis.

As the paper’s first author, I coordinate the work with all the co-authors discussing the study design,

research question, and the relevant epidemiological and public health issues. I independently conducted

the analysis, discussing the analytical approaches, interpretation and conclusions with the research

team. I took the lead in writing the manuscript and acted as the corresponding author during the

submission process, drafting the responses to reviewers and changes to the various versions.
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Standard methods for meta-analysis are limited to pooling tasks in which a sin-
gle effect size is estimated from a set of independent studies. However, this
setting can be too restrictive for modern meta-analytical applications. In this
contribution, we illustrate a general framework for meta-analysis based on lin-
ear mixed-effects models, where potentially complex patterns of effect sizes are
modeled through an extended and flexible structure of fixed and random terms.
This definition includes, as special cases, a variety of meta-analytical models that
have been separately proposed in the literature, such as multivariate, network,
multilevel, dose-response, and longitudinal meta-analysis and meta-regression.
The availability of a unified framework for meta-analysis, complemented with
the implementation in a freely available and fully documented software, will
provide researchers with a flexible tool for addressing nonstandard pooling
problems.

KEYWORDS

dose-response, longitudinal, meta-analysis, mixed-effects models

1 INTRODUCTION

Meta-analysis has become a standard method to summarize evidence in various scientific fields.1 Traditional applications
require a set of single effect size estimates that are collected from multiple independent studies. However, extensions to
deal with more complex meta-analytical problems have been presented. These include, potentially among others, mul-
tivariate models for pooling multiple outcomes or multiparameter associations,2,3 network meta-analysis for indirect
mixed-treatment comparison,4 multilevel versions for hierarchically structured studies,5 dose-response meta-analysis,6,7

and longitudinal meta-analysis for studies reporting multiple estimates at different times.8 Although these extensions
were presented separately, all of them can be described as cases where multiple observations are collected within each
study, and their dependence within and/or between studies creates more complex correlation structures that need to be
modeled or accounted for.

In this contribution, we review and bring together these different developments into a coherent unified framework,
built on the known link between meta-analysis and linear mixed-effects (LME) models, where patterns of effect sizes are
modeled through a flexible structure of fixed and random terms.9-17 The manuscript is organized as follows: the analytic
formulation of the unified framework is introduced in Section 2, followed by estimation and inferential procedures in
Section 3. Specific applications are presented in Section 4, including analytic definitions linked to the general framework,

Abbreviations: AIC, Akaike information criteria; BCG, Bacillus Calmette-Guerin; BIC, Bayesian information criteria; BLUP, best linear unbiased
prediction; GLS, generalized least squares; LME, linear mixed-effects; ML, maximum likelihood; OR, odds ratio; REML, restricted maximum likelihood;
(R)IGLS, (restricted) iterated generalized least squares; RMSE, root mean square error; RR, incidence relative rate; TB, tuberculosis.

Statistics in Medicine. 2019;38:5429–5444. wileyonlinelibrary.com/journal/sim © 2019 John Wiley & Sons, Ltd. 5429
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and illustrations through real-data examples. Section 5 describes the software implementation of the modeling frame-
work in the new R package mixmeta, while Section 6 presents the results of a simulation study. Section 7 draws some
conclusions. R code and data for replicating examples and simulation results are added as supplementary material, with
an updated version available at the personal website and GitHub page of the last author.

2 A MIXED-EFFECTS FRAMEWORK FOR META-ANALYSIS

A unified modeling framework can be defined by casting the meta-analytical problem as a LME model. In general terms,
we assume that there is a set of n total measures effect sizes (observations) of k different outcomes, representing units of
analysis aggregated in i = 1, … ,m groups that are considered independent. Additional L−1 inner levels of grouping could
exist within each of the m outer groups, for a total of L grouping levels. Grouping levels can be represented by studies
themselves, as in standard meta-analysis, or be defined either between or within studies. An extended mixed-effects
metaregression model for the yi effect sizes (outcomes) in group i can be generally written as

yi = Xi𝛃 + Zibi + 𝛜i, i = 1, … ,m,

bi ∼ N (0,𝚿i) , 𝛜i ∼ N (0, Si) .
(1)

Here, Xi𝛃 defines the fixed effects that represent the population-averaged outcomes in terms of p unit-level
meta-predictors in the design matrix Xi, with fixed-effects coefficients 𝛃. The random part of the model, Zibi, describes
the deviation from the population averages in terms of q predictors defined at different grouping levels and composing
the random-effects design matrix Zi, with coefficients bi. The vector 𝛜i defines the unit-level sampling errors. The model
has marginal distribution yi ∼ N(Xi𝛃,𝚺i), where the marginal (co)variance matrix 𝚺i = Si + ZiΨiZi

T is given by the sum
of within-group errors (assumed known) and between-group random effects, defined by (co)variance matrices Si and 𝚿i,
respectively. The latter is composed of a block-diagonal form of level-specific matrices 𝚿(1), … ,𝚿(L) (from outer to inner
levels), defined by a set of parameters 𝛏 dependent on their specific form (eg, unstructured, (heterogeneous) compound
symmetry, and (heterogeneous) autoregressive of first order)18 and on constraints for ensuring positive definiteness. These
matrices are expanded consistently with the inner structure of each group, similarly to Zi (see Section 4.3 for algebraic
details).

3 ESTIMATION

Likelihood functions
The unknown parameters of the model in Equation (1) are the vector 𝛃 of fixed effects and the vector 𝛏 that characterizes
the set of level-specific (co)variance matrices of random effects composing𝚿i. These can be estimated through (restricted)
maximum likelihood (ML and REML) estimators, with the marginal (restricted) log-likelihood functions derived from
the LME framework19,20 as

l (𝛃, 𝛏|y) = − 1
2

n log(2𝜋) − 1
2

m∑
i=1

log |𝚺i| − 1
2

m∑
i=1

(yi − Xi𝛃)T𝚺−1
i (yi − Xi𝛃) ,

lR (𝛏|y) = − 1
2
(n − p) log(2𝜋) + 1

2
log

|||||
m∑

i=1
XT

i Xi

||||| − 1
2

log
|||||

m∑
i=1

XT
i 𝚺

−1
i Xi

|||||
− 1

2

m∑
i=1

log |𝚺i| − 1
2

m∑
i=1

(yi − Xi𝛃)T𝚺−1
i (yi − Xi𝛃) .

(2)

Note that the REML version lR only depends on 𝛏, as it is obtained by reprojecting y using a set of n − p orthogonal
error contrasts, a transformation which is reflected algebraically in the inclusion of the two additional determinant terms
in Equations (2). The estimators derived from REML are generally considered superior, particularly in regard to the esti-
mation of random components, as they account for the loss of degrees of freedom in the estimation of 𝛃 that induces a
downward bias in the ML counterpart. However, they pose limitations for hypothesis testing, as discussed in the following.
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For known 𝛏, ML estimates of the fixed-effects coefficients and their associated (co)variance matrix can be easily
obtained by generalized least squares (GLS) estimators, expressed in closed form as

𝛃̂ =

( m∑
i=1

XT
i 𝚺

−1
i Xi

)−1 m∑
i=1

XT
i 𝚺

−1
i yi,

V(𝛃̂) =
( m∑

i=1
XT

i 𝚺
−1
i Xi

)−1

.

(3)

Fixed-effects meta-analytical models can be simply estimated using Equation (3) by setting 𝚺i = Si. For random-effects
models, when the random part is unknown, the joint estimation of 𝛃 and 𝛏 requires iterative methods for maximiz-
ing the likelihood functions in Equations (2). For computational convenience, a profiled approach is preferable, where
iterative algorithms are defined in terms of parameters 𝛏 only, and values of 𝛃̂ are obtained by Equation (3) and
plugged in at each iteration, until convergence. Alternative algorithms have been proposed, such as Newton-Raphson,
expectation-maximization, and (restricted) iterative generalized least squares (IGLS and RIGLS), each of them with
different properties.18,21,22 See Section 5 for additional details.

Hypothesis testing and model comparison
Inferential procedures follow standard LME theory and concern the fixed-effects parameter vector 𝛃 and the set of
random-effects (co)variance matrices 𝚿(𝓁), with 𝓁 = 1, … ,L. Regarding the fixed effects, under the marginal model
and replacing 𝚺i in Equation (3) with its ML or REML estimate through 𝛏̂, the vector 𝛃̂ follows a multivariate normal
distribution with (co)variance matrix V(𝛃̂). These results can be used to derive approximated confidence intervals and
(multivariate) Wald tests for specific coefficients or their linear combinations. If the Wald test gives significant results,
a common question is which particular linear combinations of the coefficients are significantly different from zero. The
common example is where we find a difference on the k effect sizes, and we wish to perform all possible comparisons.
A simultaneous comparison procedure that maintains the overall type I error was proposed by Goldstein.23 Comparison
between nested models can be performed through likelihood ratio (LR) tests, or more generally using fit statistics such as
the Akaike or Bayesian information criteria (AIC and BIC), each of which is easily computed using the (restricted) ML
values from Equation (2).

LR tests and AIC/BIC can also be used for hypothesis testing and model selection, for instance by comparing alternative
structures for random-effects (co)variance matrices 𝚿(𝓁) or by assessing the presence of heterogeneity at each grouping
level 𝓁. However, it must be noted that the chi-square distribution is a poor approximation to the actual distribution of
the LRT statistic when applied to a large number of parameters, and when testing heterogeneity, with the null hypothesis
𝚿(𝓁) = 0 lying on the boundary of the parameters space. More importantly, the REML log-likelihood function is not
invariant to one-to-one reparametrization of the fixed effects, as this changes the specification of the error contrasts;
therefore, LR tests and AIC/BIC can only be used to compare REML models with the same fixed-effects specification.

In addition to inferential tools borrowed directly from LME models, other statistics traditionally used in meta-analysis
to assess the presence and amount of heterogeneity can be easily extended in this more general mixed-effects framework,
for instance the Cochran Q and I2.24,25 These can be defined as

Q =
m∑

i=1
(yi − Xi𝛃̂)TS−1

i (yi − Xi𝛃̂),

I2 = max
{

Q − n + p
Q

, 0
}

,

(4)

where 𝛃̂ are estimated by the correspondent fixed-effects model with no random term. The Cochran Q statistic follows a
𝜒2

n−p distribution under the hypothesis of no heterogeneity, and can be used to define the related test, while the I2 statistic
quantifies the amount of heterogeneity as the proportion of total variation above that related to sampling error.

Prediction
In this complex meta-analytic setting, inferential procedures can be complemented with prediction tools that inform
about potentially complex relationships that are pooled across studies, including for example multivariate and non-linear
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associations.3 In this context, predictions offer a method to link specific values of metaregressors defined at any grouping
level with effect size expectations. Given a set of unit-level metapredictors x0 that form the design matrix X0 depending
on the specific model (see Section 4), the (marginal) predicted mean ŷ0 with (co)variance matrix V(ŷ0) are obtained by

ŷ0 = X0𝛃̂,
V(ŷ0) = X0V(𝛃̂)XT

0 .
(5)

In addition to the marginal level, improved study-specific estimates can be obtain as best linear unbiased predictions
(BLUPs). These are interpreted as trade-off between yi and ŷi, with estimates of effect sizes borrowing information within
and/or between studies. BLUPs can be defined as conditional expectations given the random effects, and its empirical
version ŷbi and (co)variance matrix V(ŷbi) are provided as

ŷbi = X0𝛃̂ + Zi𝚿̂iZT
i 𝚺̂

−1
i (ŷi − Xi𝛃̂),

V(ŷbi ) = X0V(𝛃̂)XT
0 + Zi𝚿̂iZT

i − Zi𝚿̂iZT
i 𝚺̂

−1
i Zi𝚿̂iZT

i .
(6)

It is interesting to note that, in a multilevel context, BLUPs can be defined also as predictions at higher levels of group-
ing. For instance, BLUPs at level 𝓁 ≤ L are derived by including in 𝚿̂i and Zi only the random-effects components
corresponding to the grouping levels in 𝓁 and above (see Section 4.3 for an algebraic definition of levels).

4 SPECIFIC APPLICATIONS

Different models for meta-analysis can be expressed as special versions of the general framework in Equation (1). These
includes the standard methods, extensions mentioned above, and their combinations, among potentially other models.
In this section, we describe the most common cases, graphically represented in Figure 1, highlighting their distinctive
aspects and their link with the general framework.

Figure 1 shows how extensions of the standard model are generally characterized by repeated measures and group-
ings that induce patterns of correlation across effect sizes. As in LME models, these potentially complex structures can
be flexibly modeled by a combination of fixed and random terms, optionally including meta-predictors with alternative
parameterizations, for instance indicators and continuous smooth functions. In the following, we illustrate each case by

Standard Multivariate Multilevel

Dose-response Longitudinal

FIGURE 1 Graphical illustration of data structures in specific applications of the extended framework for meta-analysis
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replicating and extending real-data meta-analyses from published studies, reproduced in the R scripts provided in the
supplementary material. Details on the data and substantive context can be found in the references or in the help pages
of the R package mixmeta.

4.1 Standard meta-analysis
The objective of a standard meta-analysis is to obtain a summary (pooled) estimate from single effect sizes estimated
separately in independent studies. The basic estimation procedures are based on the computation of weighted averages
across studies, with weights proportional to the precision of the estimates.26 The pooled estimate can be derived under
fixed-effects or random-effects assumptions,27,28 with random-effects models incorporating the underlying between-study
variation into the weights.24

Analytic formulation
Several authors have already pointed out that the random-effects meta-analysis can be expressed as a LME model in a
regression context.14,29 Specifically, the standard model for a set of effect sizes yi can be defined as

𝑦i = 𝛽0 + bi + 𝜖i, i = 1, … ,m,

bi ∼ N(0, 𝜏2), 𝜖i ∼ N
(
0, s2

i
)
,

(7)

where 𝛽0 is the pooled effect, bi are the study-specific random effects distributed with between-study variance 𝜏2, and 𝜖i is
the error term distributed with known within-study variance s2

i . This standard model represents the simplest case of the
general extended framework in Equation (1), with n = m (a single estimate from separate studies), and scalar quantities
Xi = Zi = 1, 𝛃 = 𝛽0, bi = bi, 𝛜i = 𝜖i, 𝚿 = 𝜏2, and Si = s2

i . In fixed-effects models, the term bi does not exist. The model
in Equation (7) can be extended to meta-regression by defining a set of study-level predictors xi = [xi1, … , xip]T and by
setting Xi = xT

i , where usually xi1 = 1 specifies the intercept term.

Illustrative example
In this first example we consider a meta-analysis and meta-regression performed by Colditz and colleagues that evaluate
the efficacy of the Bacillus Calmette-Guerin (BCG) vaccine for preventing tuberculosis (TB).30 The dataset was used by
several authors to illustrate their random-effects regression models.15,17,29 The data refers to 13 prospective clinical trials
that estimated the odds ratio (OR) of TB between groups vaccinated with the (BCG) vaccine and non-vaccinated control
populations.

We apply the general framework to estimate the parameters for the log-OR 𝛽0 and between-study variance 𝜏2 in
Equation (7) using an ML estimator (see Section 3), replicating the results reported by Van Houwelingen and colleagues.17

Consistently, the estimated OR is 0.476 (95%CI: 0.336 to 0.675), with a clear indication of a protective effect of BCG vac-
cine, and the estimated 𝜏2 is 0.302, with suggestions of a large heterogeneity (I2 = 92.6%). Similarly to the original analysis,
we can investigate the influence on vaccine efficacy of various meta-predictors such as study location, year of publication
and method of treatment allocation. For instance, adding latitude in a meta-regression model reduces the between-study
variance and residual heterogeneity (𝜏2 = 0.004, and I2 = 56.2%). The coefficient for latitude is -0.033 (95%CI: -0.039 to
-0.026), indicating an improved efficacy of the vaccine at higher latitudes.

4.2 Multivariate meta-analysis
An important extension of the standard univariate model in Equation (7) is multivariate meta-analysis, in which each
study still reports single estimates, but for multiple effect sizes referring to different outcomes, such as disease free and
overall survival risks in cancer patients.2,31 The same model has been extended to other contexts, for instance to pool
results from multiparameter functions defining nonlinear relationships,3 or meta-analysis of diagnostic accuracy tests.32

A common application of multivariate models is for network meta-analysis applied in mixed-treatment comparisons,
where efficiency can be gained by exploiting the correlation among effect sizes that measure relative effects across different
treatments.4,33
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TABLE 1 Example of multivariate (network) meta-analysis of 24 trials comparing alternative treatments of
smoking cessation, using a consistency model and a structured between-study (co)variance matrix.
Previously reported by White35

Comparison Estimated log-OR Standard error p-value
Self-help versus no contact (B versus A) 0.398 0.330 0.227
Individual counselling versus no contact (C versus A) 0.702 0.196 <0.0001
Group counseling versus no contact (D versus A) 0.866 0.373 0.020

Analytic formulation
In all these applications, the k-dimensional vector yi contains estimates for multiple (potentially correlated) effect sizes
in each study. A model for random-effect multivariate meta-analysis can be represented as follows:

yi = Xi𝛃 + bi + 𝛜i, i = 1, … ,m,

bi ∼ N(0,𝚿), 𝛜i ∼ N(0, Si).
(8)

This can be written in terms of the general framework in Equation (1) by setting Xi = Zi = Ik, 𝛃 = [𝛽1, … , 𝛽k]T, bi =
[bi1, … , bik]T, and k×k between-study𝚿 and within-study Si (co)variance matrices. Here, each of the m studies represents
a group with multiple estimates, with a total of n = k · m units in the balanced (full-outcome) case. Missing outcomes
(unbalanced case) can be accounted for by excluding related rows in the matrices Xi and Zi. Similarly to the univariate
case in Section 7, the model can extended to multivariate meta-regression by setting Xi = xT

i ⊗ Ik, with ⊗ as the Kronecker
product operator and 𝛃 being the kp-dimensional coefficient vector that defines the association of the k outcomes with the
p predictors. This notation defines the same set of metapredictors for all outcomes, but it allows different associations for
each of them. Alternative parameterizations can be used to define outcome-specific sets of meta-predictors or to impose
the same effects across outcomes.

Illustrative example
As an example of multivariate models, we consider an application of network meta-analysis on 24 trials that compare four
alternative interventions to promote smoking cessation, labelled here A–D (see Table 1).34 Each trial compares only two
or three interventions, and the joint meta-analysis allows to gain information through indirect comparisons. Treatment
A is used here as the reference, and trials without an arm A were augmented with 0.01 individuals and 0.001 successes.
Here, the yi and Si represent the log-OR of cessation and associated (co)variance error matrix of treatments B, C, and D
versus A estimated in each trial, including missing values. In the following, we replicate results previously presented in
the article by White.35

The first model is formulated under the assumption of consistency, that is allowing heterogeneity between studies but
with no systematic variation across trial designs (defined by groups of trials reporting the same comparisons).36 This model
can be fitted using the general framework in Equation (1) expressed as Equation (8), with 𝛃 = [𝛽1, 𝛽2, 𝛽3]T representing
the three comparisons of treatments B, C, and D versus A. Following White,35 we impose a parsimonious structure to the
random-effects (co)variance matrix 𝚿, assuming the same variance 𝜏2 for all the comparisons and fixing their correlation
to 0.5. The results of the consistency models are reported in Table 1: Treatments C and D are effective with respect treat-
ment A, with substantial heterogeneity among studies (𝜏2 = 0.454 and I2 = 86.3%). The consistency assumption that direct
and indirect evidence agree with each other can be relaxed by defining and testing design-by-treatment interactions.33,36

This inconsistency model has ten fixed-effects coefficients compared with the three of the simpler version, and a global
Wald test with a p-value of 0.646 fails to reject the consistency assumption.

4.3 Multilevel meta-analysis
The previous models work under the assumption that studies independently provide single estimates of one or multiple
outcomes. This setting can be too simplistic for some applications of meta-analysis. For example, some studies can report
multiple estimates of the same effect size, either at different stages or for separate groups. Similarly, studies can exhibit
nested levels of hierarchy, with higher grouping factors being represented for instance by geographical areas, adminis-
trative units, or study characteristics.5 This configuration of repeated measures and/or hierarchical structures creates a
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potentially complex pattern of dependence across effect sizes that must be accounted for. Multilevel meta-analysis has been
proposed, in different forms, to extend the model defined in Section 4.1 by modeling the dependence through structured
random effects.5,9-11,13

Analytic formulation
Here, we provide a general definition of multilevel random-effect meta-analysis that is applicable in various settings. The
pattern of correlation is defined by aggregating effect sizes in groups, which can be defined both between and within
studies. Nested grouping levels are used to express a hierarchical structure of random effects. For the sake of clarity, we
start from a model for n effect sizes (units) aggregated in two nested grouping levels, written as

𝑦i𝑗r = 𝛽0 + bi + bi𝑗 + 𝜖i𝑗r, i = 1, … ,m, 𝑗 = 1, … ,mi, r = 1, … ,ni𝑗 ,

bi ∼ N
(
0, 𝜏2

1
)
, bi𝑗 ∼ N

(
0, 𝜏2

2
)
, 𝜖i𝑗r ∼ N

(
0, s2

i𝑗r

)
.

(9)

Here, 𝜏2
1 is the variance of the random effects at the outer grouping level i, which includes m independent groups. In

contrast, 𝜏2
2 is the random-effects variance within each of the mi inner level groups nested in each outer-level group i. The

units indexed by r represent measured effect sizes from the nij studies in the inner group j nested within the outer group
i, each with known within-study variance s2

i𝑗r.
The model in Equation (9) can be extended to include an indefinite number L of grouping levels, with 𝓁 = 1, … ,L,

and generally written in terms of the unified framework described in Section 2. First, we define 𝑗 = 1, … , g𝓁i as the
number of groups at level 𝓁 within each outer level i, with g1

i = 1 by definition. Each group includes r = 1, … ,n𝓁
i𝑗 units,

with
∑

𝑗𝓁n𝓁
i𝑗 = ni. The definition of the various elements in Equation (1) requires block-diagonal expansions and column

binding consistent with repeated measures and grouping levels, respectively, with
⨁

vav representing an operator that
creates a block-diagonal matrix of elements av. We first define the design matrix for the fixed effects as Xi = 1ni , and
the known error structure at the outermost level as 𝛜i=

⨁
r𝑗𝜖i𝑗r. The random-effects part can be written by first defining

design matrices for each group at various levels of random effects as Z𝓁
i𝑗 = 1n𝓁

i𝑗
, then expanding them at each level as

Z𝓁
i =

⨁
𝑗Z

𝓁
i𝑗 , and finally binding them as Zi = [Z1

i , … ,ZL
i ]. Consistently, the between-group (co)variance matrix is defined

as 𝚿i=
⨁

𝓁Ig𝓁i
⊗ 𝜏2

𝓁 . The model can be extended further to metaregression by replacing Xi with a ni × p design matrix
including p fixed-effects predictors. Similarly, q𝓁 random-effects predictors at any level 𝓁 can be included by replacing Z𝓁

i𝑗
with a n𝓁

i𝑗 × q𝓁 design matrix, and 𝜏2
𝓁 with a random-effects (co)variance matrix 𝚿𝓁 .

Illustrative examples
In a first example, we consider a meta-analysis of 56 studies that evaluate the effect of a modified school calendar on
standardized reading achievement.37 The studies were performed in 11 separate school districts, with at least three studies
in each district, therefore providing a classic example of multilevel structure. Using the notation in Equation (9), in this
example, the outer grouping level i are the school districts, which define m = 11 independent groups. Within each school
district, a variable number of studies were performed, eg, four studies were performed in the first school district, ie, m1 = 4.
The study j, nested within the school district i, is the inner level in the multilevel structure with one single observation
r = 1, with a single effect size in each inner group j nested within the outer group i. We fitted three models with different
random-effects structures using a ML estimator: first, a traditional meta-analysis using the model in Section 4.1, with a
single level of random effects assigned to each study; second, a single-level meta-analysis with random effects by district,
therefore including repeated measures within each group; and third, a full two-level meta-analysis with nested random
effects by study and district. The results, partly replicating the analysis of Konstantopoulos,13 are reported in Table 2. The
comparison makes clear the advantage of recognizing the multilevel structure of the data, with the pooled effect size 𝛽0
increasing from 0.128 in the standard model to 0.184 in the two-level model. The latter, in addition, shows a better fit, as
suggested by the lower AIC, and indicates the presence of heterogeneity at both district and study levels, with 𝜏2

1 = 0.058
and 𝜏2

2 = 0.033, respectively.

A second example of multilevel meta-analysis considers 20 randomized trials of thrombolytic therapy, which evalu-
ated short-term mortality risks after a myocardial infarction.38 The hypothesis is that the thrombolytic therapy reduces
the risk and that the benefit is particularly substantial for very early treatment. Some of the trials report separate esti-
mates of absolute risk change for sub-groups of treatment times, leading to a multilevel structure with 38 (potentially
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TABLE 2 Example of multilevel meta-analysis of 56 studies that evaluate changes in standardized reading achievement after
the implementation of a modified school calendar, with studies clustered within school districts. Previously reported by
Konstantopoulos.13

Model Grouping levels Pooled estimate (Std error) Random-effects variances
𝜷0 𝝉𝟐𝟏 (district) 𝝉𝟐𝟐 (study) AIC

One-level (standard) Study 0.128 (0.043) - 0.087 37.292
One-level (repeated measures) District 0.196 (0.086) 0.075 - 69.432
Two-level Study within district 0.184 (0.080) 0.058 0.033 22.790

TABLE 3 Example of multilevel meta-analysis of 20 randomized trials of thrombolytic therapy for myocardial
infarction, with multiple estimates of absolute risk change at different times of treatment. Previously reported by
Thompson et al.10

Model Fixed effects (Std error) Random-effects variances
𝜷0 (intercept) 𝜷1 (treatment delay in hours) 𝝉𝟐𝟏 (trials) 𝝉𝟐𝟐 (times)

Standard meta-analysis -0.02600 (0.00314) - - 0.00747
Two-level meta-analysis -0.02600 (0.00314) - <0.00001 0.00747
Two-level meta-regression -0.03494 (0.00421) 0.00161 (0.00049) 0.00216 0.00006

repeated) observations within 20 trials. We applied alternative models fitted by REML, partly reproducing the analysis by
Thompson et al10: specifically, a standard meta-analysis that ignores clustering by trial, a two-level meta-analysis, and
a two-level meta-regression that includes treatment delay as a metapredictor. The results, shown in Table 3, show that
both standard and two-levels random-effects meta-analyses produce an estimate of absolute risk difference of -0.02600,
suggesting a protective effects of thrombosis treatment, and that the second model indicates presence of heterogeneity
within but not between the higher level of grouping represented by trials (𝜏2

2 = 0.00747 and 𝜏2
1 < 0.0000). However, the

inclusion of treatment delay in a meta-regression explains most of the variability at the inner level (𝜏2
2 = 0.00006), with a

residual heterogeneity between trials of 𝜏2
1 = 0.00216. These models (and other specifications) can be compared through

AIC (when defined using the same fixed-effects structure) or using Wald tests for meta-predictors.

4.4 Dose-response meta-analysis
Dose-response meta-analysis has been used to summarise linear and non-linear health associations across epidemiolog-
ical studies.39 The standard approach consists of a two-stage procedure. In the first stage, study-specific associations
are determined using a set of parameters that represent estimates at different doses, usually retrieved from published
data and relying on various methods to approximate their (co)variance matrix accounting for within-study correlations.6
These estimates are then pooled in the second stage using standard meta-analytical models (see Section 4.1) for linear
dose-response relationships or multivariate methods (see Section 4.2) for multiple parameters of functions representing
nonlinear associations.40,41 Recently, Crippa et al have proposed a one-stage approach for dose-response meta-analysis
that provides important advantages and allows defining dose-response meta-analysis within the general framework
proposed in Equation (1).7

Analytic formulation
The one-stage model for a linear dose-response random-effects meta-analysis can be written as follows:

𝑦i𝑗 = 𝛽xi𝑗 + bixi𝑗 + 𝜖i𝑗 , i = 1, … ,m, 𝑗 = 1, … ,ni,

bi ∼ N(0, 𝜏2), [𝜖i1, … , 𝜖ini ] ∼ N(0, Si).
(10)

Here, for each study i, the ni units yij represent the association measures (eg, log OR or log risk ratios) at different
doses xij, commonly retrieved by using published estimates. The fixed-effects and random-effects parameters 𝛽 and bi
represent the pooled linear dose-response association and its study specific deviations, respectively. Note the absence of an
intercept for this model. Similarly to the standard model in Equation (7), 𝜏2 represents the variance of the random effects.
Following Crippa et al,7 this model can be written as a special version of the general framework in Section 2 by setting
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TABLE 4 Example of dose-response meta-analysis of eight cohort studies on alcohol and colorectal cancer,
with alternative model specifications. Previously partly reported by Orsini et al6 and Crippa and Orsini42

Model Within-study correlations Fixed effects Random effects Degrees of freedom AIC
L1 Zero correlation Linear Linear 2 -2.06
L2 Greenland and Longnecker Linear Linear 2 -6.13
NL1 Greenland and Longnecker Non-linear Non-linear 9 1.28
NL2 Greenland and Longnecker Non-linear Linear 4 -7.88
NL3 Greenland and Longnecker Non-linear None 3 -9.88
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FIGURE 2 Dose-response relationships between alcohol intake
and incidence relative rates of colorectal cancer assuming a linear
and non-linear association (Models L2 and NL1 in Table 4), with
95% confidence intervals [Colour figure can be viewed at
wileyonlinelibrary.com]

Xi = Zi = [xi1, … , xij]T, 𝛃 = 𝛽, bi = bi, and 𝚿 = 𝜏2. The within-study error structure is represented by a ni × ni matrix
Si, usually approximated using alternative methods.6,42 This model can be easily extended to the pooling of non-linear
dose-responses by applying functions to transform xij, for instance quadratic terms or splines, thus obtaining a ni × q
matrices Xi and/or Zi, and a q × q matrix 𝚿.

Illustrative example
As an example of dose-response meta-analysis, we consider the data on eight cohort studies participating in the Pooling
Project of Prospective Studies of Diet and Cancer.43 Each study estimated the incidence relative rate (RR) of colorectal
cancer in various categories of alcohol intake while controlling for a set of potential confounders, using non-drinkers as
the reference. The categories were then converted in a dose by assigning the median value of individual consumptions,
reporting log-RR estimates at multiple levels in a continuous scale. We fitted alternative models using a ML estimator,
exploiting the flexibility of the extended framework in defining fixed effects and within and between-study correla-
tions. Specifically, we specified linear and non-linear terms in both fixed and random parts, the latter by using natural
cubic splines with internal knots at approximately the 25th and 75th percentiles of alcohol consumption. Within-study
correlations were optionally reconstructed using the method of Berlin et al.39

The models are presented in Table 4, including number of parameters and AIC, and partly replicate and extend results
presented by Orsini et al6 and Crippa and Orsini.6,42 Consistently, findings show that accounting for within-study correla-
tion significantly improves the fit of the model, as indicated by the lower AIC of model L2 versus L1. The RR corresponding
to 12 g/day of alcohol intake in the two models changes to 1.080 (95%CI: 1.047 to 1.115) from 1.048 (1.016 to 1.080),
respectively. The inclusion of non-linear terms in both fixed and random parts does not improve the fit (NL1 versus L2).
However, the simplification to linear random effects in NL2, allowed by the flexibility of the unified framework, indicates
evidence of non-linearity (NL2 versus L2). The Cochran Q test for models NL1-NL2 suggests little evidence of heterogene-
ity (p-value = 0.25), as confirmed by the better fit of the fixed-effects non-linear dose-response meta-analysis in model
NL3. The predicted RR for different doses obtained through linear and non-linear meta-analytic models L2 and NL1 are
represented in Figure 2, with similar shapes to graphs previously presented.6,42

4.5 Longitudinal meta-analysis
Another example of recent extensions of meta-analytical methods is for applications with studies where the same out-
come is measured at several time points. Longitudinal meta-analysis have been proposed in this context to account for the
intrinsic within-study and between-study correlations.8,44 The common procedure is to apply meta-analytical methods for
multivariate meta-analysis (see Section 4.2), treating effect sizes estimated at different times as separate outcomes,8,45,46
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although this representation poses important constraints, as explained below. Alternative approaches define the longi-
tudinal design as a special case of the multilevel setting described in Section 4.3, with repeated measures within each
study.44,47 This provides a way to formulate longitudinal meta-analysis within the unified framework in Equation (1),
offering a general, flexible, and efficient modeling structure.

Analytic formulation
As mentioned above, traditional methods defines longitudinal meta-analysis as a multivariate model, where the effect
sizes yi = (𝑦i,t1 , … , 𝑦i,tk )

T measured at k times in study i are treated as separate outcomes, and modeled as in Equation (8).
However, this approach requires that the measurements are taken at common time points across studies, and while it may
account for the sequential order, for instance by imposing autoregressive structures to the within and/or between-study
correlations for evenly-spaced measures, it ignores most of the information provided by the longitudinal setting. A more
flexible definition for a set of effect sizes measures at ni times in study i is derived directly from LME models as

𝑦it = (𝛼 + ai) + (𝛽 + bi)ti𝑗 + 𝜖it, i = 1, … ,m, 𝑗 = 1, … ,ni,

[ai, bi] ∼ N(0,𝚿), [𝜖it1 , … , 𝜖itni
] ∼ N(0, Si),

(11)

with 𝛼, 𝛽, ai, and bi as fixed and random coefficients for intercepts and slopes. This formulation treats time as a continuous
predictor that can be modeled through both fixed and random terms, and allows studies to report estimates at different
times. The traditional multivariate approach can be defined as a special case by using indicators for a common set of time
points. The model in Equation (11) can be written as the general framework in Equation (1) by setting ti = [ti1, … , tini ]

T,
and Xi = Zi = [1ni , ti]. 𝚿 and Si define the random-effects and within-study error (co)variance matrices, respectively,
optionally with specific structures, such as diagonal or (continuous) autoregressive of first order (AR1). The model can
allow nonlinear trends by specifying smooth functions of time (see Section 4.4), or include additional metapredictors, in
both cases either as fixed or random effects by extending Xi and Zi, respectively.

Example of longitudinal meta-analysis
We illustrate an application of longitudinal meta-analysis using data on 17 randomized controlled trials comparing treat-
ments of malignant gliomas. Each study measured the survival OR at 6, 12, 18, and 24 months since the start of the
treatment.48 Musekiwa et al45 have previously analyzed the data using multivariate models fitted with REML, defin-
ing various longitudinal meta-analytic models with different specification of the within and between-study (co)variance
structures. Here, we replicate and extend the results using the more flexible general framework and adopting alternative
specifications.

The first set of results using multivariate models with indicators for the four time points are reported in Table 5. Consis-
tently with the original analysis,45 the first three options (Models 1-3) do not allow correlations in the within-study errors,
while the other options (Models 4-6) assume a heterogeneous AR1 structure with correlation fixed at 0.61. Different struc-
tures were used for the random-effects (co)variance, leading to different total degrees of freedom. The best-fitting option
in terms of AIC is Model 4, with independent random effects and AR1 within-study errors. The analysis can be extended
by defining time as a continuous variable, specifying an additional Model 7 as in Equation (11). This random-slope model
specifies a diagonal structure for intercept and (centered) time as random effects, and keeps the AR1 within-study errors,
using only four degrees of freedom. Models 7 and 4 were (re)fitted using ML, that allows comparison between different
fixed-effects specifications (in this case, linear and through indicators, respectively). The results are graphically illustrated
in Figure 3, showing the pooled OR along time after treatment. AIC indicates a better fit of Model 7 (101.4 versus 107.5,
respectively), suggesting a linear trend and actually little evidence of changes in survival along time, with a p-value of
0.92 for the coefficient 𝛽 of time (not shown). This example highlights the advantages offered by the modeling flexibility
of the general modeling framework.

5 SOFTWARE

The unified random-effects framework for meta-analysis and the frequentist inferential procedure described in the previ-
ous sections are implemented in the R package mixmeta. The main function of the program is mixmeta(), which uses
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Model (Co)variance structures Degrees of freedom AIC
Within-study errors Random effects

Model 1 Diagonal Diagonal 8 121.6
Model 2 Diagonal Compound symmetry 5 117.0
Model 3 Diagonal Heterogeneous AR1 9 120.9
Model 4 Heterogeneous AR1 Diagonal 8 107.5
Model 5 Heterogeneous AR1 Heterogeneous AR1 9 107.7
Model 6 Heterogeneous AR1 Unstructured 14 117.3

TABLE 5 Example of longitudinal
meta-analysis of 17 randomized controlled
trials comparing treatments of malignant
gliomas, reporting survival odds ratio at
multiple times after treatment. Previously
partly reported by Musekiwa et al45
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FIGURE 3 Survival odds ratio after start of the treatment of
gliomas (Models 4 and 7 fitted using maximum likelihood), with 95%
confidence intervals [Colour figure can be viewed at
wileyonlinelibrary.com]

a simple syntax to fit a wide range of meta-analytical models. For instance, the following code:

mixmeta(cbind(y1 + y2)˜ x1 + x2, S, data, random=list(˜ z1 | g1, ˜ 1 | g2),
method="reml")

performs a bivariate two-level meta-regression using a REML estimator. In this example, effect sizes for two outcomes y1
and y2, with unit-level errors S, are modeled in terms of fixed-effect predictors x1 and x2. Random effects are specified
by intercept plus variable z1 and intercept only, for nested grouping levels g1 (outer) and g2 (inner), respectively. The
flexible formula syntax, similar to that applied in the R package nlme for LME models, allows the definition of all the var-
ious versions illustrated in Section 4. Other functions are available for hypothesis testing, predictions, model assessment,
and simulations, among other regression tasks.

At the time of writing, the package implements a hybrid estimation procedure, with few runs of a (R)IGLS algorithm
followed by quasi-Newton iterations. The former is robust to initial values and quickly moves close to the ML, while
the latter provides a fast convergence within this region. As mentioned in Section 3, these algorithms adopt a profiled
approach, where the likelihood functions in Equations (2) are defined in terms of random-effect parameters 𝛏 only, with
a parameterization that ensures positive definiteness and allows different structures for any of the (co)variance matrices
𝚿(𝓁). Computationally, the estimation algorithms exploit the block-diagonal form of the design and (co)variance matrices
defined in Equations (1)-6, which is particularly convenient in the presence of a high number of studies or outer groups.
A QR decomposition is applied internally in the GLS routine, providing numerical stability even in not well-conditioned
least squares problems.

6 SIMULATIONS

We performed a simulation study to explore the validity and inferential properties of the software implementation of the
unified framework. We considered a complex case represented by a multivariate multilevel meta-analysis, combining the
applications described in Sections 4.2 and 4.3 within the general model defined in Equation (1). Specifically, we simulated
k = 3 outcomes and L = 2 grouping levels, with m groups at the (outer) level 1, each including g2

i = 10 groups at
the (inner) level 2. All the fixed-effects 𝛃 = [𝛽1, 𝛽2, 𝛽3]T, representing the three pooled intercepts, were simulated as 0.
We assumed a compound-symmetry structure for both the 3 × 3 random-effects (co)variance matrices 𝚿1 and 𝚿2, and a
heterogeneous compound-symmetry structure for the residual error matrix Si. Random-effects variances 𝜏2

1 and 𝜏2
2 were

set to 1, while the residual error variances s2
i𝑗r were sampled from a uniform distribution with range [0.1, 2]. Various
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TABLE 6 Simulation study: multivariate
multilevel meta-analysis with k = 3 outcomes and
L = 2 grouping levels, with m groups at the
(outer) level 1, each including g2

i = 10 groups at
the (inner) level 2. Eight simulation scenarios are
defined by the number of outer-level groups m
and correlations 𝜌b1 and 𝜌b2 for each level of
random effects

Parameters 𝜷1 𝝉1 𝝉2 𝝆b1 𝝆b2
m 𝝆w 𝜌b Bias RMSE Coverage Bias Bias Bias Bias
10 0.00 0.00 0.000 0.349 0.940 -0.006 0.004 0.004 -0.004
50 0.00 0.00 -0.001 0.157 0.948 -0.001 0.001 0.002 -0.001
10 0.80 0.00 -0.005 0.351 0.930 -0.005 0.005 -0.045 -0.003
50 0.80 0.00 0.001 0.154 0.951 -0.000 0.001 -0.007 0.000
10 0.00 0.80 0.003 0.357 0.934 -0.007 0.004 -0.019 -0.030
50 0.00 0.80 -0.004 0.155 0.949 0.001 0.000 -0.002 -0.007
10 0.80 0.80 -0.006 0.347 0.928 -0.006 -0.001 -0.058 -0.015
50 0.80 0.80 0.001 0.153 0.951 0.000 0.000 -0.008 -0.003

simulation scenarios are represented by combinations of number of outer-level groups m (10 or 50), correlation 𝜌b1 and
𝜌b2 for each level of random effects (0 or 0.8), and residual correlation 𝜌w (0 or 0.8). For each combination, we simulated
10 000 datasets using the function mixmetaSim(), and fitted the general model with mixmeta() assuming the correct
random-effects (co)variance structures.

Results are reported in Table 6, showing the bias, root mean square error (RMSE), and coverage for the (first)
fixed-effects coefficient, and the bias for the four random-effects parameters. Simulations indicate a negligible amount of
bias for both the fixed and random-effects parameters in all scenarios. As expected, the RMSE decreases when increasing
number of outer-level units. The coverage is slightly below the nominal value, especially for scenarios with lower num-
ber (m = 10) of outer-level groups. Inferential properties do not seem affected by the presence of within or between units
correlation.

7 DISCUSSION

In this contribution, we have presented an extended mixed-effects framework that provides a common modeling
and inferential setting for meta-analysis. It includes traditional applications but also non-standard extensions for
which common meta-analytical methods are not appropriate. The unified approach proposed here generally charac-
terizes these extensions as patterns of dependence between effect sizes, modeled through fixed and random effects
defined by meta-predictors and grouping structures. This modeling approach allows a flexible specification of variety of
meta-analytical models and facilitates the design and implementation of non-standard pooling studies.

The LME structure adopted in the definition of the general model in Equation (1) provides substantial modeling flex-
ibility, through which important constraints in design and modeling aspects can be relaxed. For instance, analyses of
longitudinal data are traditionally performed using models for multivariate meta-analysis that consider repeated mea-
surements from the same study as multiple outcomes.6,8 However, this approach requires a limited set of measurements
to be taken at the same doses/times across studies and prevents their analysis as continuous variables. In the examples in
Sections 4.4 and 4.5, we showed how more flexible models can be defined within our general framework, allowing stud-
ies to provide an indefinite number of measurements taken at any point and the modeling of continuously dose-response
shapes and trends through linear or smooth functions. Similarly, the flexible definition of multilevel models in Section 4.3
allows the specification of complex hierarchical structures and the inclusion of random-effects meta-predictors.

The extended framework presented in this paper is well placed for a two-stage analytical setting, where the estimated
effect sizes are derived from published studies or previously obtained from separate study-specific analyses. One-stage
formulations have been proposed for individual patient data meta-analysis, when data from the original studies are
available and can be directly modeled.49 However, in many applications the one-stage approach provides little advan-
tages, and two-stage procedures offer a valid, computationally stable, and efficient alternative.9,50 In addition, the flexible
framework proposed here allows extensions of the two-stage design to address specific limitations, for example with
the pooling of multiple study-specific parameters of main and interaction terms to evaluates effect modification from
participant-level variables. The two-stage approach relies on the assumption of normal distribution of estimated effect
sizes and random effects, thus requiring approximations, in particular for outcomes measured in a binary scale. One-stage
methods based on generalized linear mixed models (GLMMs) have been developed in this setting, including versions
with alternative distributional assumptions.11,51,52 While these have theoretical and inferential advantages, they present
considerable computational problems, and simulations show improvements only in the presence of small and sparse
data.53,54 An additional requirement of the two-stage procedure, when applied in multi-parameter meta-analyses, is
the knowledge of the within-study covariances. Methods for estimating them from published data were developed in
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multivariate meta-analysis,5,31,55 and in dose-response meta-analysis, and can be applied in this general model.56-58 In
addition, interestingly, the unknown correlations can alternatively be merged in a marginal random-effects structure that
includes within and between-study dependencies.16,59 One of the advantage of using an LME formulation in the extended
framework is that it does not require balanced data where the full set of effect sizes is measured (or reported) for each study.
The extended framework can in fact deal with unbalanced data and more generally deal with the presence of missing
effect sizes. However, the analysis requires the assumption of missing at random (MAR) to provide unbiased estimates.60

The methodology is implemented in the freely available and fully documented R package mixmeta, which comple-
ments standard software for meta-analysis and additional tools for specific extensions. For instance, some analysts have
proposed the use of general LME programs for fitting complex meta-analytical models, such as the procedure PROC
MIXED in SAS,17 the program GLLAMM in Stata,15 MLwiN,11 or the package nlme in R.61 However, the use of general
LME software requires advanced knowledge of statistical and computational aspects and can be difficult for more applied
users. Dedicated routines are available for specific meta-analytical extensions, such as the Stata command and R pack-
age mvmeta for multivariate meta-analysis,3,35 or the R package dosresmeta and drmeta Stata module for dose-response
meta-analysis,42,62 while metafor in R can offer a set of general tools for standard models and various extensions.63 Our
implementation in mixmeta offers a flexible platform where the full range of models presented in Section 4, and their
combinations, can be defined through a simple syntax, fitted using an efficient computational structure, and estimated
following a common underlying statistical theory. This software can complement existing packages and modules for the
specific meta-analytic extensions presented in Section 4.

The simulation study in Section 6 demonstrates the validity and good performance of the modeling framework and
software, even in a relatively complex application represented by a trivariate multilevel meta-analysis. However, some
limitations of the inferential approaches described in Section 3 must be acknowledged. The Wald test procedure for fixed
effects is based on asymptotic distributional approximations, and it ignores the uncertainty related to the estimation of
the random-effects components. This explains the small undercoverage of confidence intervals in Table 6, which however
can be non-negligible in small-sample studies. Similarly, hypotheses on random effects are evaluated through LR tests
and AIC/BIC, but these can have poor performances and problems with boundary conditions. Solutions can be found
in the LME models literature, such as the use of t or F distributions,18 adjustments for standard errors and degrees of
freedom,64 and use of mixture distributions.18,23 Some of these have also been defined for meta-analytical models,27,29,65-68

but still need to be fully developed for this extended framework. Alternative methods can also be developed in a Bayesian
framework, which offers advantages in accounting for various sources of uncertainty, although requiring appropriate
parameterizations and priors specification.10,27,69-71

There is an increasing interest in developing meta-analysis for applications in more complex pooling studies, beyond the
now established extensions described in Section 4.4,72 Emerging areas include investigations that apply two-stage designs
for the analysis of large datasets, where either the complexity of the first-stage regression or the computational demand
prevent the definition of a one-stage model, and the partition of the analysis in two steps provides a feasible and efficient
approach.3,50,73 However, the limitations of traditional meta-analytical methods, requiring the estimation of single inde-
pendent parameters from each subset, poses important constraints in this setting. In contrast, the model in Equation (1)
offers flexibility in the definition of the two-stage analysis, allowing for instance repeated measurements in time or sub-
groups, hierarchies, and spatial or temporal clustering, and complex multiparameter effect estimates. The definition of
a unified framework for meta-analysis, complemented with a full software implementation, provides researchers with a
flexible tool for defining and applying flexible meta-analytical models in a variety of pooling problems.
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#########################################################################
####### 
# Updated R code for the analysis in: 
# 
#   "An extended mixed-effects framework for meta-analysis" 
#   Francesco Sera, Ben Armstrong, Marta Blangiardo & Antonio Gasparrini 
#   Statistics in Medicine - 2019 
#   http://www.ag-myresearch.com/2019_sera_statmed.html 
# 
# Update: 22 Aug 2019 
# * an up-to-date version of this code is available at: 
#   https://github.com/gasparrini/2019_sera_StatMed_Rcode 
#########################################################################
####### 
 
#########################################################################
####### 
# STANDARD META-ANALYSIS (SECTION 4.1) 
#########################################################################
####### 
 
# LOAD THE PACKAGES 
library(mixmeta); library(Epi) 
 
# STANDARD RANDOM-EFFECTS META-ANALYSIS WITH MAXIMUM LIKELIHOOD 
uniran <- mixmeta(logor, logorvar, data=bcg, method="ml") 
 
# RESULTS 
print(summary(uniran), digits=3, report="var") 
print(ci.exp(uniran), digits=3) 
 
# EXTRACT LOG-OR AND CALCULATE 95% CONFIDENCE INTERVALS 
pred <- with(bcg, cbind(logor, logor-1.96*sqrt(logorvar), 
  logor+1.96*sqrt(logorvar))) 
 
# BEST-LINEAR UNBIASED PREDICTIONS, WITH PREDICTION INTERVALS  
blup <- blup(uniran, pi=TRUE) 
 
# FOREST PLOT 
plot(pred[,1], rev(bcg$trial)+0.2, xlim=c(-3,3), ylim=c(0,14), pch=18, 
  axes=FALSE, xlab="Log odds ratio", ylab="Trial", main="Forest plot") 
axis(1) 
axis(2, at=bcg$trial, labels=rev(bcg$trial), lty=0, las=1) 
abline(v=coef(uniran)) 
segments(pred[,2], rev(bcg$trial)+0.2, pred[,3], rev(bcg$trial)+0.2, 
lty=5) 
points(blup[,1], rev(bcg$trial)-0.2, pch=19) 
segments(blup[,2], rev(bcg$trial)-0.2, blup[,3], rev(bcg$trial)-0.2) 
legend("right", c("Original","BLUPs"),lty=c(5,1), pch=c(18,19), lwd=1, 
bty="n") 
 
# META-REGRESSION MODEL TO EVALUATE THE EFFECT OF LATITUDE 
uniranlat <- update(uniran, .~. + ablat) 
 
# LIKELIHOOD RATIO TEST (ALLOWED WITH ML) 
drop1(uniranlat, test="Chisq") 
 
# RESULTS 
print(summary(uniranlat), digits=3, report="var") 
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# SEE help(bcg) FOR FURTHER INFO 
 
#########################################################################
####### 
# MULTIVARIATE (NETWORK) META-ANALYSIS (SECTION 4.2, TABLE 1) 
#########################################################################
####### 
 
# LOAD THE PACKAGE 
library(mixmeta) 
 
# INSPECT THE DATA 
head(smoking) 
names(smoking) 
 
# CONSISTENCY MODEL, UNSTRUCTURED BETWEEN-STUDY (CO)VARIANCE 
y <- as.matrix(smoking[11:13]) 
S <- as.matrix(smoking[14:19]) 
mod1 <- mixmeta(y, S) 
summary(mod1) 
 
# CONSISTENCY MODEL, STRUCTURED BETWEEN-STUDY (CO)VARIANCE (PROPORTIONAL) 
mod2 <- mixmeta(y, S, bscov="prop", control=list(Psifix=diag(3)+1)) 
summary(mod2) 
 
# TRANSFORM IN LONG FORMAT, WITH S AS LIST (EXCLUDING MISSING) 
long <- na.omit(reshape(smoking[,c(1,2,11:13)], varying=list(3:5), 
idvar="study",  
  v.names="y", timevar="outcome", times=colnames(y), direction="long")) 
Slist <- lapply(lapply(seq(nrow(S)), function(i) xpndMat(S[i,])), 
function(x) 
  x[!is.na(diag(x)), !is.na(diag(x)), drop=F]) 
 
# THE MODELS ABOVE CAN BE REPLICATED IN THE LONG FORMAT 
mod2b <- mixmeta(y ~ 0 + factor(outcome), random= ~ 0 + 
factor(outcome)|study, 
  data=long, bscov="prop", control=list(addS=Slist, Psifix=diag(3)+1)) 
summary(mod2b) 
 
# DEFINE AND ADD INDICATORS FOR OUTCOME AND DESIGN 
dummy <- cbind(model.matrix(~0+outcome, long), model.matrix(~0+design, 
long)) 
colnames(dummy) <- c(levels(factor(long$outcome)), levels(long$design)) 
long <- cbind(long, data.frame(dummy)) 
 
# INCONSISTENCY MODEL (SPECIAL PARAMETERIZATION OF OUTCOME-BY-DESIGN 
INTERACTION) 
formula <- y ~ 0 + yB + yC + yC:acd + yC:bc + yC:bcd + yD + yD:acd + 
yD:bcd +  
  yD:bd + yD:cd 
mod3 <- update(mod2b, formula=formula) 
summary(mod3) 
 
# WALD TEST 
fwald <- function(model,var) { 
  ind <- grep(var,names(coef(model))) 
  coef <- coef(model)[ind] 
  vcov <- vcov(model)[ind,ind] 



3 
 

  waldstat <- coef%*%solve(vcov)%*%coef 
  df <- length(coef) 
  return(1-pchisq(waldstat,df)) 
} 
fwald(mod3, c(":")) 
 
# SEE help(smoking) FOR FURTHER INFO 
 
#########################################################################
####### 
# MULTILEVEL META-ANALYSIS (SECTION 4.3 - EXAMPLE 1, TABLE 2) 
#########################################################################
####### 
 
# LOAD THE PACKAGE 
library(mixmeta) 
 
# STUDY AS SINGLE LEVEL: STANDARD META-ANALYSIS 
mod1 <- mixmeta(effect, var, random= ~ 1|study, data=school, method="ml") 
print(summary(mod1), digits=3, report="var") 
 
# DISTRICT AS SINGLE LEVEL: META-ANAYSIS WITH REPEATED MEASURES 
mod2 <- mixmeta(effect, var, random= ~ 1|district, data=school, 
method="ml") 
print(summary(mod2), digits=3, report="var") 
 
# NESTED LEVELS OF STUDY AND DISTRICT: TWO-LEVEL META-ANALYSIS 
mod3 <- mixmeta(effect, var, random= ~ 1|district/study, data=school, 
  method="ml") 
print(summary(mod3), digits=3, report="var") 
 
# COMPARISON 
AIC(mod1, mod2, mod3) 
 
# SEE help(school) FOR FURTHER EXAMPLES 
 
 
#########################################################################
####### 
# MULTILEVEL META-ANALYSIS (SECTION 4.3 - EXAMPLE 2, TABLE 3) 
#########################################################################
####### 
 
# STANDARD META-ANALYSIS: IGNORING CLUSTERING OF TRIALS 
subtrial <- seq(nrow(thrombolytic)) 
mod1 <- mixmeta(absrisk, var, random= ~ 1|subtrial, data=thrombolytic) 
print(summary(mod1), digits=5) 
 
# STANDARD META-REGRESSION 
mod2 <- mixmeta(absrisk~time2treat, var, random= ~ 1|subtrial, 
  data=thrombolytic) 
print(summary(mod2), digits=5) 
 
# TWO-LEVEL META-ANALYSIS 
mod3 <- mixmeta(absrisk, var, random= ~ 1|trial/subtrial, 
data=thrombolytic) 
print(summary(mod3), digits=5) 
 
# TWO-LEVEL META-REGRESSION  
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mod4 <- mixmeta(absrisk~time2treat, var, random= ~ 1|trial/subtrial, 
  data=thrombolytic) 
print(summary(mod4), digits=5) 
 
# SEE help(thrombolytic) FOR FURTHER INFO 
 
#########################################################################
####### 
# DOSE-RESPONSE META-ANALYSIS (SECTION 4.4, TABLE 4 AND FIGURE 2) 
#########################################################################
####### 
 
# LOAD THE PACKAGES 
library(mixmeta); library(dosresmeta); library(splines) 
 
# INSPECT THE DATA 
head(alcohol) 
 
# COMPUTE THE WITHIN-STUDY CORRELATIONS EXCLUDING THE REFERENCE 
addS <- lapply(split(alcohol, alcohol$id), function(x) 
  covar.logrr(y=logrr, v=se^2, cases=cases, n=peryears, type=type, 
data=x)) 
sub <- subset(alcohol, !is.na(se)) 
 
# LINEAR FIXED AND RANDOM EFFECTS NOT ACCOUNTING FOR WITHIN-STUDY 
CORRELATIONS  
modL1 <- mixmeta(logrr ~ 0 + dose, S=se^2, random= ~ 0 + dose|id, 
data=sub, 
  method="ml") 
summary(modL1) 
 
# LINEAR FIXED AND RANDOM EFFECTS ACCOUNTING FOR WITHIN-STUDY 
CORRELATIONS 
modL2 <- mixmeta(logrr ~ 0 + dose, random= ~ 0 + dose|id, data=sub, 
method="ml", 
  control=list(addSlist=addS)) 
summary(modL2) 
 
# NON-LINEAR FIXED AND RANDOM EFFECTS 
modNL1 <- mixmeta(logrr ~ 0 + ns(dose, knots=c(10,25)), data=sub,  
  random= ~ 0 + ns(dose, knots=c(10,25))|id, method="ml", 
  control=list(addSlist=addS)) 
summary(modNL1) 
 
# SIMPLIFY THE MODEL BY ALLOWING NON-LINEARITY ONLY IN FIXED EFFECTS 
modNL2 <- update(modNL1, random= ~ 0 + dose|id) 
summary(modNL2) 
 
# FIXED-EFFECTS MODEL (TRICK: random TO DEFINE THE GROUPING, THEN FIX IT 
TO 0) 
modNL3 <- mixmeta(logrr ~ 0 + ns(dose, knots=c(10,25)), random= ~ 1|id, 
  data=sub, method="ml",bscov="fixed", control=list(addSlist=addS, 
Psifix=0)) 
summary(modNL3) 
 
# COMPARE WITH AIC 
AIC(modL1, modL2, modNL1, modNL2, modNL3) 
 
# PREDICT THE RR FOR 12g/day FOM TWO MODELS 
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exp(predict(modL1, newdata=data.frame(dose=12), ci=TRUE)) 
exp(predict(modL2, newdata=data.frame(dose=12), ci=TRUE)) 
 
# PREDICT THE RR ALONG THE DOSE RANGE 
predlin <- exp(predict(modL2, newdata=data.frame(dose=0:60), ci=TRUE)) 
prednonlin <- exp(predict(modNL1, newdata=data.frame(dose=0:60), 
ci=TRUE)) 
 
# PLOT 
par(mar=c(5,4,1,0.5)) 
col1 <- do.call(rgb,c(as.list(col2rgb("blue")/255), list(0.2))) 
col2 <- do.call(rgb,c(as.list(col2rgb("green")/255), list(0.2))) 
plot(0:60,predlin[,1], type="l", ylim=c(0.85,1.9), ylab="RR", 
  xlab="Alcohol intake (gr/day)") 
polygon(c(0:60,60:0), c(predlin[,2],rev(predlin[,3])), col=col1 
,border=NA) 
lines(0:60,prednonlin[,1], lty=5) 
polygon(c(0:60,60:0), c(prednonlin[,2], rev(prednonlin[,3])), col=col2 
,border=NA) 
legend("topleft", c("Model L2","Model NL1"), lty= c(1,5), bty="n", 
inset=0.1) 
 
# SEE help(alcohol) FOR FURTHER INFO 
 
#########################################################################
####### 
# LONGITUDINAL META-ANALYSIS (SECTION 4.5, TABLE 5 AND FIGURE 3) 
#########################################################################
####### 
 
# LOAD THE PACKAGE 
library(mixmeta) 
 
data(gliomas) 
# THE gliomas DATASET IS ARRANGED IN A LONG FORMAT 
head(gliomas) 
 
# INDEPENDENT RANDOM EFFECTS, NO WITHIN-STUDY CORRELATION (MODEL 1) 
mod1 <- mixmeta(logOR~0+factor(time), S=logORvar, 
random=~0+factor(time)|study, 
  bscov="diag", data=gliomas) 
print(summary(mod1), digits=3, report="var") 
 
# COMPOUND-SYMMETRY RANDOM EFFECTS, NO WITHIN-STUDY CORRELATION (MODEL 2) 
# NB: THIS REQUIRES A TWO-LEVEL MODEL WITH THE INNER-LEVEL VARIANCE FIXED 
TO 0 
unit <- factor(seq(nrow(gliomas))) 
mod2 <- mixmeta(logOR~0+factor(time), S=logORvar, random=~1|study/unit, 
  bscov=c("unstr","fixed"), data=gliomas, 
control=list(Psifix=list(unit=0))) 
print(summary(mod2), digits=3, report="var") 
 
# HETEROGENEOUS AR1 RANDOM EFFECTS, NO WITHIN-STUDY CORRELATION (MODEL 3) 
mod3 <- update(mod1, bscov="ar1") 
print(summary(mod3), digits=3, report="var") 
 
# BUILD THE HETEROGENEOUS AR1 WITHIN-STUDY ERRORS (CORRELATION AT 0.61) 
cormat <- 0.61^abs(col(matrix(1,4,4)) - row(col(matrix(1,4,4)))) 
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addS <- lapply(split(sqrt(gliomas$logORvar), gliomas$study), inputcov, 
cormat) 
addS <- lapply(addS, function(x) x[apply(!is.na(x),1,any),  
  apply(!is.na(x),2,any)]) 
 
# INDEPENDENT RANDOM EFFECTS, HAR1 WITHIN-STUDY CORRELATION (MODEL 4) 
mod4 <- mixmeta(logOR~0+factor(time), random=~0+factor(time)|study, 
  bscov="diag", data=gliomas, control=list(addSlist=addS)) 
print(summary(mod4), digits=3, report="var") 
 
# HAR1 RANDOM EFFECTS, HAR1 WITHIN-STUDY CORRELATION (MODEL 5) 
mod5 <- update(mod4, bscov="ar1") 
print(summary(mod5), digits=3, report="var") 
 
# UNSTRUCTURED RANDOM EFFECTS, HAR1 WITHIN-STUDY CORRELATION (MODEL 6) 
mod6 <- update(mod4, bscov="unstr") 
print(summary(mod6), digits=3, report="var") 
 
# COMPARE THE FIT WITH AIC 
AIC(mod1, mod2, mod3, mod4, mod5, mod6) 
 
# RE-RUN BEST FITTING MODEL WITH ML (ALLOWS TESTING OF FIXED EFFECTS) 
mod4ml <- update(mod4, method="ml") 
print(summary(mod4ml), digits=3, report="var") 
 
# RANDOM-SLOPE MODEL WITH TIME AS CONTINUOUS AND CENTERED 
mod7ml <- mixmeta(logOR~time, random=~I(time-15)|study, bscov="diag",  
  method="ml", data=gliomas, control=list(addSlist=addS, maxiter=200)) 
print(summary(mod7ml), digits=3, report="var") 
 
# PREDICT 
times <- unique(gliomas$time) 
predmod4ml <- exp(predict(mod4ml, data.frame(time=times), ci=TRUE)) 
predmod7ml <- exp(predict(mod7ml, data.frame(time=times), ci=TRUE)) 
 
# PLOT 
par(mar=c(5,4,1,0.5)) 
plot(c(0.5,2.5)~c(4,26), gliomas, type="n", xlab="Time (months)",  
  ylab="Survival OR") 
abline(h=1) 
colnew <- do.call(rgb,c(as.list(col2rgb("red")/255),list(0.2))) 
polygon(c(times,rev(times)), c(predmod7ml[,2], rev(predmod7ml[,3])), 
col=colnew, 
  border=NA) 
arrows(times, predmod4ml[,2], times, predmod4ml[,3], col=4, angle=90, 
code=3,  
  length=0.05) 
points(predmod4ml[,1]~times, pch=19, col=4) 
lines(predmod7ml[,1]~times, type="o", pch=19, col=2) 
legend("top",c("Model 4 (Indicators)","Model 7 (continuous)"), 
col=c(4,2), 
  lty=c(NA,1),pch=19, cex=0.8, ncol=2, bty = "n", inset=0.05) 
 
# WE COMPARE THE TWO MODELS 
AIC(mod4ml, mod7ml) 
 
# SEE help(gliomas) AND help(dbs) FOR FURTHER INFO 
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#########################################################################
####### 
# SIMULATION STUDY (SECTION 6, TABLE 6) 
#########################################################################
####### 
 
# LOAD THE PACKAGES 
library(mixmeta) 
 
# DEFINE FIXED PARAMETERS 
g2 <- 10 
beta <- 0 
tau <- 1 
 
# DATA FRAME WITH COMBINATIONS OF SCENARIOS 
comb <- data.frame(m=c(10,50), rhob=rep(c(0,0.8),each=2), 
  rhow=rep(c(0,0.8),each=4)) 
comb$rhob <- ifelse(comb$rhob <= -1/(3-1), -1/3, comb$rhob) 
comb$rhow <- ifelse(comb$rhow <= -1/(3-1), -1/3, comb$rhow) 
 
# MATRIX WITH FINAL RESULTS 
res <- matrix(NA, nrow(comb), 8) 
stats <- c("bias","rmse","cov") 
ran <- c("tau1","tau2","rhob1","rhob2") 
colnames(res) <- c(paste("beta",stats,sep="-"),paste(ran,"bias",sep="-
"),"conv") 
 
# NOMINAL VALUE 
qn <- qnorm(0.975) 
 
# NUMBER OF SIMULATIONS 
nsim <- 1000 
 
#########################################################################
####### 
 
# START THE LOOP BY SCENARIO 
for(i in seq(nrow(comb))) { 
   
  # PRINT 
  cat("\n\n ",paste("Combination",i),"\n") 
   
  # DEFINE THE DATA FROM WHICH TO SIMULATE 
  n <- comb$m[i] * g2 
  y <- matrix(0,n,3) 
  S <- inputcov(matrix(runif(n*3, 0.5, 2), n, 3), cor=comb$rhow[i]) 
  Psi1 <- Psi2 <- inputcov(rep(tau, 3), cor=comb$rhob[i]) 
  level1 <- rep(seq(comb$m[i]), each=g2) 
  level2 <- rep(seq(g2), comb$m[i]) 
   
  # SIMULATE (WITH SEED) 
  set.seed(13041975+i) 
  simlist <- 
mixmetaSim(y,S,Psi=list(Psi1,Psi2),random=~1|level1/level2,nsim=nsim) 
   
  # BUILD THE TEMP0RARY OBJECT TO STORE THE ESTIMATES FROM EACH MODEL 
  temp <- matrix(NA, nsim, 6, 
dimnames=list(NULL,c("beta","beta.se",ran))) 
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#########################################################################
####### 
   
  # START THE LOOP BY ITERATION 
  for(j in seq(nsim)) { 
     
    # PRINT 
    cat(j,"") 
 
    # FIT THE MODEL (PREVENT ERRORS DUE TO NON-CONVERGENCE) 
    arglist <- list(simlist[[j]]~1, S=S, random=~1|level1/level2, 
bscov="cs") 
    model <- tryCatch(do.call("mixmeta",arglist), error=function(x) NULL) 
     
    # STORE THE ESTIMATES (SET TO NA IF NON-CONVERGENCE) 
    temp[j,] <- if(!is.null(model)) c(coef(model)[1], 
sqrt(vcov(model)[1,1]),  
      model$Psi[[1]][1,1], model$Psi[[2]][1,1], 
cov2cor(model$Psi[[1]])[1,2], 
      cov2cor(model$Psi[[2]])[1,2]) else NA 
  } 
   
#########################################################################
####### 
   
  # COMPUTE THE STATS (REMOVING THE MISSINGS) 
  res[i,8] <- sum(!is.na(temp[,1]))/nsim 
  temp2 <- na.omit(temp) 
  res[i,-c(2,3,8)] <- colMeans(temp2[,-2]) - 
c(beta,tau,tau,rep(comb$rhob[i],2)) 
  res[i,2] <- sqrt(mean((temp2[,1]-beta)^2)) 
  res[i,3] <- mean(temp2[,1]-qn*temp2[,2]<=beta & 
temp2[,1]+qn*temp2[,2]>=beta) 
   
} 
 
#########################################################################
####### 
 
# SAVE THE RESULTS 
#save.image("simul.RData") 
 
#########################################################################
####### 
# SIMULATION STUDY (SECTION 6, TABLE 6) 
# WITH PARALLELIZATION: THIS ROUTINE MAY NOT WORK IN SOME OS AND MACHINE 
#########################################################################
####### 
 
# LOAD THE PACKAGES 
library(mixmeta) ; library(foreach) ; library(doParallel) 
library(iterators) ; library(parallel) 
 
# DEFINE FIXED PARAMETERS 
g2 <- 10 
beta <- 0 
tau <- 1 
 
# DATA FRAME WITH COMBINATIONS OF SCENARIOS 
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comb <- data.frame(m=c(10,50), rhob=rep(c(0,0.8),each=2), 
  rhow=rep(c(0,0.8),each=4)) 
comb$rhob <- ifelse(comb$rhob <= -1/(3-1), -1/3, comb$rhob) 
comb$rhow <- ifelse(comb$rhow <= -1/(3-1), -1/3, comb$rhow) 
 
# NAMES 
stats <- c("bias","rmse","cov") 
ran <- c("tau1","tau2","rhob1","rhob2") 
 
# NOMINAL VALUE 
qn <- qnorm(0.975) 
 
# NUMBER OF SIMULATIONS 
nsim <- 10000 
 
#########################################################################
####### 
 
# PREPARE THE PARALLELIZATION 
ncores <- detectCores() 
cl <- makeCluster(max(1,ncores-2)) 
registerDoParallel(cl) 
 
#########################################################################
####### 
 
# START THE NESTED LOOP BY SCENARIO/ITERATIONS 
temp <- foreach(combi=iter(comb,by="row"), .packages=c("mixmeta")) %:%  
  foreach(i=icount(nsim), .combine=rbind) %dopar% { 
 
  # DEFINE THE DATA FROM WHICH TO SIMULATE 
  n <- combi$m * g2 
  y <- matrix(0,n,3) 
  S <- inputcov(matrix(runif(n*3, 0.5, 2), n, 3), cor=combi$rhow) 
  Psi1 <- Psi2 <- inputcov(rep(tau, 3), cor=combi$rhob) 
  level1 <- rep(seq(combi$m), each=g2) 
  level2 <- rep(seq(g2), combi$m) 
   
  # SIMULATE (WITH SEED) 
  set.seed(13041975+i) 
  sim <- mixmetaSim(y,S,Psi=list(Psi1,Psi2),random=~1|level1/level2) 
   
  # FIT THE MODEL (PREVENT ERRORS DUE TO NON-CONVERGENCE) 
  arglist <- list(sim~1, S=S, random=~1|level1/level2, bscov="cs") 
  model <- tryCatch(do.call("mixmeta",arglist), error=function(x) NULL) 
   
  # RETURN THE VECTOR OF ESTIMATES (SET TO NA IF NON-CONVERGENCE) 
  if(!is.null(model)) c(coef(model)[1], sqrt(vcov(model)[1,1]),  
    model$Psi[[1]][1,1], model$Psi[[2]][1,1], 
cov2cor(model$Psi[[1]])[1,2], 
    cov2cor(model$Psi[[2]])[1,2]) else NA 
} 
 
#########################################################################
####### 
 
# REMOVE PARALLELIZATION 
stopCluster(cl) 
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#########################################################################
####### 
 
# COMPUTE THE STATS (REMOVING THE MISSINGS) 
res <- t(sapply(seq(temp), function(i) { 
  nan <- sum(!is.na(temp[[i]][,1])) 
  x <- na.omit(temp[[i]]) 
  bias <- colMeans(x[,-2]) - c(beta,tau,tau,rep(comb[i,"rhob"],2)) 
  c(bias[1], 
    sqrt(mean((x[,1]-beta)^2)),  
    mean(x[,1]-qn*x[,2]<=beta & x[,1]+qn*x[,2]>=beta), 
    bias[-1], 
    nan/nsim) 
})) 
colnames(res) <- c(paste("beta",stats,sep="-"),paste(ran,"bias",sep="-
"),"conv") 
 
#########################################################################
####### 
 
# SAVE THE RESULTS 
#save.image("simul.RData") 
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METHODOLOGY

Extended two‑stage designs 
for environmental research
Francesco Sera1,2*    and Antonio Gasparrini2,3,4 

Abstract 

Background:  The two-stage design has become a standard tool in environmental epidemiology to model multi-
location data. However, its standard form is rather inflexible and poses important limitations for modelling complex 
risks associated with environmental factors. In this contribution, we illustrate multiple design extensions of the classi-
cal two-stage method, all implemented within a unified analytic framework.

Methods:  We extended standard two-stage meta-analytic models along the lines of linear mixed-effects models, by 
allowing location-specific estimates to be pooled through flexible fixed and random-effects structures. This permits 
the analysis of associations characterised by combinations of multivariate outcomes, hierarchical geographical struc-
tures, repeated measures, and/or longitudinal settings. The analytic framework and inferential procedures are imple-
mented in the R package mixmeta.

Results:  The design extensions are illustrated in examples using multi-city time series data collected as part of the 
National Morbidity, Mortality and Air Pollution Study (NMMAPS). Specifically, four case studies demonstrate applica-
tions for modelling complex associations with air pollution and temperature, including non-linear exposure–response 
relationships, effects clustered at multiple geographical levels, differential risks by age, and effect modification by air 
conditioning in a longitudinal analysis.

Conclusions:  The definition of several design extensions of the classical two-stage design within a unified frame-
work, along with its implementation in freely-available software, will provide researchers with a flexible tool to address 
novel research questions in two-stage analyses of environmental health risks.

Keywords:  Environmental epidemiology, Two-stage design, Meta-analysis, Temperature, Pollution
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Introduction
In environmental epidemiological studies, it is common 
practice to investigate short-term associations between 
environmental exposures and health outcomes by analys-
ing data collected from multiple locations. An analytical 
approach applied in this setting is based on the two-stage 
design, which has become the standard method for the 
analysis of multi-location data [1–12]. The design is 
based on the separation of the analysis into two steps: 

in the first stage, location-specific exposure–response 
associations are estimated while adjusting for various 
confounders; then, in the second stage, the estimates are 
pooled using meta-analytic methods, which can poten-
tially incorporate location-specific meta-predictors.

The two-stage design offers several advantages. 
First, the pooling of data collected in multiple loca-
tions increases the statistical power, thus facilitating the 
detection of small risks usually associated with envi-
ronmental stressors [13]. At the same time, the separa-
tion in two steps provides a flexible and computationally 
efficient analytical framework compared to one-stage 
approaches [2, 14, 15]. This allows analyses of large data-
sets collected across multiple populations, increasing the 
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representativeness of the findings. Finally, an important 
advantage of the two-stage design is the enhanced abil-
ity to examine heterogeneity in risk across populations, 
which can be linked to contextual characteristics.

However, there are known limitations of this analyti-
cal method. For instance, the standard two-stage design 
requires the association of interest to be represented 
by a single effect summary (e.g., a relative risk or odds 
ratio) for being pooled in the second stage. However, in 
the context of modelling exposure–response associa-
tions, this step requires the simplification of potentially 
complex relationships and/or the adoption of strong 
functional assumptions (e.g., linearity). Similarly, this 
restriction prevents combining multiple estimates of the 
association of interest from the same location, for exam-
ple when collected from different age groups or periods. 
Finally, the standard two-stage analytic design does not 
take into account potential geographical dependencies, 
often occurring in the presence of clustering. These limi-
tations represent important barriers to the application of 
the two-stage framework for addressing more complex 
research questions about environmental health risks.

In this contribution, we illustrate a unified framework 
that combines multiple design extensions of the clas-
sical two-stage method for environmental health stud-
ies, some of which were described independently in 
published analyses [6, 16–19]. This extended two-stage 
framework is based on linear mixed-effects meta-analyt-
ical models, previously developed and published by our 
research group [20], that can combine multivariate out-
comes, longitudinal settings, multilevel structures, and/
or repeated measurement [20]. This framework relaxes 
the constraints described above and offers a flexible and 
generally applicable tool to implement more advanced 
study designs using multi-location data.

The article is organized as follows. Firstly, we introduce 
the extended two-stage design and its features, includ-
ing the design structure and related modelling frame-
work. Then, after presenting the specific example and the 
related dataset, we will demonstrate applications of the 
various design extensions in multiple case studies using 
multi-location analyses of health risks of temperature and 
air pollution. In a final discussion section, we describe 
the epidemiological context, strengths and limitations, 
and area of further research. An up-to-date version of the 
notes, data, and R scripts for reproducing the examples 
are available on a GitHub repository (see Availability of 
data and material).

Methods
Extended two‑stage design
In the classical two-stage design, the data are organ-
ised and analysed in first-stage models that provide 

independent estimates of a single parameter representing 
the association of interest in each study area, for instance, 
a city. These effect summaries are then pooled in the sec-
ond stage using meta-analytic techniques to combine the 
information and compute an overall estimate. As dis-
cussed above, these requirements pose important analyt-
ical constraints. The extended two-stage described here 
overcomes these limitations, first allowing different esti-
mates of single or multiple parameters to be computed in 
each location, and then relaxing the assumption of inde-
pendence of estimates within and between locations.

This extended framework provides a flexible setting 
that allows designing more complex epidemiological 
studies to address more elaborated research questions. 
For example, in each study area, multiple parameters 
could be used to represent complex exposure–response 
dependencies, such as non-linear and lagged tempera-
ture-health associations of temperature [21], or alter-
natively correlated effects of multiple exposures, such 
as different pollutants included in the same first-stage 
model [22]. At the same time, relaxing the independence 
assumption allows accounting for correlations arising 
when the locations are nested within higher geographical 
levels (e.g., cities within countries), therefore modelling 
patterns of similarities and differences [19]. Moreover, in 
each study area, the first-stage model can be applied mul-
tiple times to obtain repeated measures of the same asso-
ciation, for instance longitudinally at different times or 
for different sub-groups, such as by age or sex. This struc-
ture allows the investigation of temporal variations in risk 
[17] and the flexible pooling of effect modifications [16].

These analytic features, namely complex multivariate 
exposure–response relationships, geographical hierar-
chies, and longitudinal or repeated-measure structures 
can be incorporated individually or simultaneously in the 
extended two-stage framework, offering a flexible ana-
lytic context for modern environmental research studies.

Statistical framework
The extension of the two-stage design is made possible by 
the development of a unified statistical framework, pre-
viously developed and published by our research group 
[20], that specifies the second-stage meta-analysis as a 
mixed-effects linear model [20], as described below. Here 
we assume that estimates of the association of interest θ̂ i 
have been obtained from each of the i = 1, . . . , n loca-
tions. Here θ̂ i generally represents the output of the first-
stage analysis (see appendix A), and it can include single 
or multiple coefficients obtained by single or repeated 
measurements across times or groups, depending on the 
specific application. In addition, without loss of general-
ity, such estimates can be obtained from various types of 
first-stage models, such as time series for aggregated data 
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[23] or survival analysis of individual-level records [24], 
among others.

The first-stage estimates θ̂ i can be combined in the sec-
ond stage using an extended random-effects meta-analy-
sis that flexibly models potentially complex dependence 
structures. This extended meta-analytical model can be 
written as a linear mixed-effects model:

with bi ∼ N (0,�) , and εi ∼ N (0, Si).
The design matrix X i , potentially expanded to account 

for multivariate outcomes, includes fixed-effect predic-
tors and associated coefficients β . Random terms are 
represented by the design matrix Zi with coefficients bi , 
and by the errors εi . The random terms have (co)variance 
matrices � and Si , representing the deviations and errors 
between and within locations, respectively.

It is important to note that the association parameter  
θ̂ i could have a general nested design with L level induc-
ing possible non-independence of the estimates, e.g. 
associations estimated at multiple times, or in cities 
nested within a country. The extended framework natu-
rally considers the nested design with a hierarchy of the 
random-effects effects vectorbi , then bi consists of the 
random coefficients operating on the levels (from outer 
to inner)l = 1, . . . , L : bTi =

(
b
T
i1, . . . , b

T
iL

)
 , and the design 

matrix Zi of the random terms has the corresponding 
p ar t i t ioningZi = (Zi1| . . . |ZiL),Zil = (Zil1| . . . |Zilnl) . 
Note that every matrix Zilj has nonzero entries only in 
the rows that correspond to units in the group j 
(j = 1, . . . , nl) of levell .

The (co)variance matrix of the random terms has then 
the following structure:

where � l is the covariance of the random terms operat-
ing at level l .

Example and data
The various extensions of the two-stage design will be 
illustrated using the same analytical example of multi-city 
time-series data collected as part of the National Morbid-
ity, Mortality and Air Pollution Study (NMMAPS) [25]. 
This database contains, among other information, daily 
series of mortality counts and weather and pollution 
measurements totalling 5114 observations for the period 
1987–2000 in each of 108 cities in the USA. This data 
resource has been used in several epidemiological analy-
ses to assess health risks associated with air pollution and 
later with temperature [5, 26–30].

(1)θ̂ i = X iβ + Zibi + εi

� =

nl∑

j=1

Zilj� lZ
T
ijl

The NMMAPS data consisted of daily series of all-
cause and cause-specific mortality, also stratified by age 
groups (0–64, 65–74, 65 and older), and various indices 
of daily levels of several pollutants and weather variables. 
In addition, the database included city-level metadata 
with several variables on geographical, climatological, 
demographic and socio-economic characteristics. The 
original datasets were collected on the 15th of May, 
2013 through the package NMMAPSdata in the R soft-
ware [31]. The package is now archived and the mortal-
ity series are not provided anymore. The data are here 
complemented with information on air conditioning use, 
collected longitudinally for a subset of cities and obtained 
from different sources [17].

The database is used in a series of case studies 
described in the next sections to illustrate the various 
extensions of the two-stage design. In each of them, we 
assume that first-stage models have been performed sep-
arately in the 108 locations, collecting summary esti-
mates of association parameter(s)  θ̂ i and their (co)
variance matrix V

(
θ̂ i

)
 , and optionally location-specific 

metadata. These data are made available in a GitHub 
repository, together with the R code for the first stage to 
produce these quantities from the original data, and for 
the second stage to reproduce the results of the case 
studies (see Availability of data and material). Methodo-
logical and analytical details, in particular related to the 
first-stage modelling, are omitted to focus on specific 
aspects of the extensions of the two-stage design, with 
additional information provided in the Supplementary 
Material. As methodological case studies, these analyses 
should be considered illustrative examples and are not 
meant to offer substantive epidemiological evidence.

Results
Case study 1: modelling complex multi‑parameter 
associations
Motivation
As mentioned earlier, an important limitation of the 
standard two-stage design is the need to simplify the 
relationship estimated in the first stage in a single effect 
summary, for it to be pooled in the second stage. This 
prevents the modelling of more complex associations 
represented by multiple parameters.

This limitation can be addressed by extending the two-
stage design so that multiple quantities can be jointly 
combined in the second stage, using meta-analytic mod-
els that take into account their multivariate structure 
and their covariance (correlation) within and between 
locations. The meta-analytical methods can be fur-
ther extended to multivariate meta-regression models 
that include specific predictors to explain (part of ) the 
observed heterogeneity. This extension of the two stage 
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design has been known as a multivariate meta-analy-
sis or multivariate meta-regression [15], and it can be 
represented as a specific parametrisation of the linear 
mixed effects meta-analytic framework presented above. 
These extensions can be implemented with the R pack-
age mvmeta [32] or with the updated and more general R 
package mixmeta [33].

In this case study, we offer an example of this extension 
to assess health risks associated with outdoor tempera-
ture, often characterised by marked non-linearity and 
heterogeneity of the effects across locations. In particu-
lar, we will investigate the association between heat and 
all-cause mortality during the summer months and the 
potential role of city-specific characteristics in modifying 
the risk. This extension of the two-stage design has been 
previously used in published analyses which evaluated 
the short-term health impacts of temperature [6, 16, 34].

Brief description of the data, model, and analysis
We assume that summer-only time series models have 
been fitted in each of the 108 NMMAPS cities to esti-
mates temperature-mortality relationships using spline 
functions (see Supplementary Material B1), obtaining 
sets of four coefficients and their (co)variance matri-
ces that represent the multi-parameter non-linear asso-
ciations. In the second stage, we use these estimates as 
multivariate outcomes in the extended meta-analytical 
framework.

First, we fit a multivariate meta-analysis using a 
maximum likelihood (ML) estimator to pool the 
first-stage results and obtain an estimate of the 

average heat-mortality exposure–response curve. We 
then attempt to identify possible contextual characteris-
tics that explain a quota of heterogeneity. Among poten-
tial factors, we consider population size, education (% of 
people with high-school degree) and unemployment (% 
of unemployed). These variables are included as predic-
tors in multivariate meta-regressions, and their effects 
tested through likelihood ratio (LR) tests. Finally, a step-
wise procedure is applied to select the best set among 
univariable and multivariable models. See Supplemen-
tary Material B1 for details.

Results
The basic multivariate meta-analytic model (with no 
predictors and only intercepts) produces pooled esti-
mates of the set of coefficients representing the average 
heat-mortality association across the 108 cities. These 
coefficients can be used to compute the non-linear expo-
sure–response curve expressed as relative risk (RR) by 
applying the same spline transformations on an aver-
age summer temperature distribution represented in a 
relative percentile scale [15]. The results are displayed in 
Fig. 1, showing a minimum mortality risk at low summer 
temperatures (MMT) and the sharp increase of the RR 
beyond the 90th percentile.

The simple meta-analysis shows a substantial het-
erogeneity in heat-mortality associations across cities, 
with an I2 of 61.5% and a highly significant Cochran Q 
test (p-value < 0.001). Therefore, we assess if some of 
this heterogeneity was explained by some city charac-
teristics, specifically population size, education, and 

Fig. 1  Pooled association between relative temperature (percentiles) and all-cause mortality in 108 US cities during the summer period in 
1987–2000 in Case Study 1. The x-axis is scaled so that the summer temperature distribution match the average percentiles of all the cities. The left 
panel shows the average heat-mortality curve estimated by the multivariate meta-analysis. The right panel illustrate the effect modification from 
population size, predicted from the full multivariate-meta-regression at the 10th-90th percentile values of the city-specific meta-variable
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unemployment, by adding them as predictors in multi-
variate meta-regressions. Results are reported in Table 1. 
When tested separately in univariable models, each pre-
dictor is significantly associated with modification of 
the heat-mortality association. The full multivariable 
model identifies instead independent associations only 
for population size and unemployment, and these results 
are consistent with the selection of the forward stepwise 
procedure.

The tests above demonstrate an effect modification 
by specific city-level meta-variables, but provide little 
information on its direction. This can be identified by 
using the parameters of the multivariate meta-regression 
models to predict the multivariate outcome, namely the 
coefficients of the spline function representing the heat-
mortality relationship, for given values of the meta-pre-
dictors. As an example, we used this method to isolate 
the effect modification of population size, keeping the 
other meta-predictors constant. The results, shown in 
the right panel of Fig. 1, indicate a higher mortality risk of 
heat in larger cities.

This case study demonstrates an extension of the two-
stage design to pool multi-parameter associations. The 
specific example illustrates an application for complex 
exposure–response relationships, but the multi-param-
eter definition can be generalised, and the method is 
applicable for instance also to pool effects of multiple 
pollutants or multiple health outcomes [22].

Case study 2: modelling complex hierarchical structures
Motivation
Another important limitation of the standard two-stage 
design is the assumption of conditional independence 
between first-stage estimates. In environmental epide-
miological associations, this assumption is invalid in 
the presence of geographical clustering, occurring when 
estimates are more similar in locations within the same 
region than between regions.

The two-stage design can be extended accordingly by 
modelling the dependencies among estimates through 
a hierarchical structure (e.g., cities within countries, 
or countries within states). This extension can be 
implemented through a second-stage multilevel meta-
analysis that defines multiple sets of random effects at 
different geographical levels.

In this case study, we provide an example in an anal-
ysis of the association between air pollution and non-
accidental mortality in a multi-city time series study. 
Specifically, we assess the increased risk associated 
with exposure to ozone in a sample of NMMAPS cities 
accounting for clustering within states. We previously 
applied this extended two-stage design in a study evalu-
ating the short-term health effects of pollutants [19].

Brief description of the model, data, and analysis
As in the previous case study, we assume that first-stage 
time series models have been performed in each city, 
collecting estimates of the log-RR for an increase in 
ozone of 10 µg/m3, along with its variance as a meas-
ure of the uncertainty (see Supplementary material B2). 
Estimates for cities with no or limited daily measure-
ments of ozone were set to missing, leaving a sample of 
98 cities within 38 states.

We start the analysis by fitting a standard meta-anal-
ysis with city-specific random effects. Then, in order to 
account for potential geographical differences, we first 
perform a standard meta-regression with state indica-
tors as fixed-effects predictors, and then the extended 
model including two levels of random effects by cities 
nested within states. Finally, we compute state-level 
fixed-effects predictions from the meta-regression, and 
best linear unbiased predictions at both city and state 
level from the multilevel model [20]. See Supplemen-
tary material B2 for details.

Table 1  Degrees of freedom (df ), I2, information criteria, and likelihood ratio (LR) tests for meta-predictors in second-stage multivariate 
regression models of Case Study 1. The last model selected by forward stepwise procedure includes only population size and 
unemployment

df I2 (%) AIC BIC LR test
(p-value)

Model 0 Intercepts 14 61.5 -520.60 -463.64

Model 1  + population size 18 53.3 -529.81 -456.57 0.002

Model 2  + education 18 58.1 -530.26 -456.80 0.002

Model 3  + unemployment 18 55.7 -536.24 -463.11  < 0.0001

Model 4 Full model 26 48.3 -539.60 -433.82

Model 5 Stepwise-selected model 22 49.7 -543.67 -454.16
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Results
The standard meta-analytic model with single-level ran-
dom effects for cities returns a pooled RR of non-acci-
dental mortality of 1.0037 (95%CI: 1.0027 to 1.0047), 
corresponding to a percentage increase of 0.37%, with a 
between-city variance equal to 0.00492. The inclusion of 
state indicators in the meta-regression suggests that there 
are significant geographical differences (LR test with 
a p-value < 0.001). Two drawbacks of this fixed-effects 
approach are the lack of a pooled effect estimate, and the 
high uncertainty in state-level predictions given the low 
number of cities within states and an highly-parameter-
ised model.

The multilevel random-effects model addresses these 
limitations. First, this model provides a pooled relative 
risk of 1.0038 (95%CI: 1.0024 to 1.0051), with a similar 
point estimate and slighter higher confidence intervals 
than the standard meta-analysis. The between-group 
heterogeneity is split between states (0.00302) and cities 
(0.00402), suggesting variation at both levels. Figure 2 dis-
plays these geographical differences by mapping the city-
level best linear unbiased predictions (BLUPs) of the RR 
for a 10 µg/m3 increase in ozone.

Second, the multilevel model can improve the state-
specific estimates by computing BLUPs at this geo-
graphical level. Figure  3 compares these quantities with 
fixed-effects predictions obtained from the standard 
meta-regression model. The results reveal the gain in 

precision of the BLUPs resulting from the shrinkage and 
borrowing of information across states [20]. These esti-
mates are more reliable than fixed-effects predictions, 
where only the within-state information is used.

This case study illustrates how to extend the classical 
two-stage design by accounting for hierarchical depend-
encies between estimates from different locations. This 
flexible multilevel structure offers the possibility to 
separate the heterogeneity across geographical levels 
and to obtain more reliable and informative association 
estimates. The approach can be seamlessly extended to 
multi-parameter associations, combining multilevel and 
multivariate models [18].

Case study 3: sub‑groups analysis, and dose–response 
relationships
Motivation
Common applications of the two-stage design entail the 
provision of single effect summaries from each location. 
However, the analysis can sometimes be repeated by sub-
groups of the population defined by specific character-
istics, such as sex or age, resulting in repeated measures 
and dependencies that the standard two-stage design is 
not able to handle.

The extended framework addresses this limitation, offer-
ing an adaptable grouping structure that allows multiple 
association estimates within a location. Moreover, the role 
of sub-groups characteristics can be flexibly examined in a 

Fig. 2  City-level best linear unbiased predictions of the RR of non-accidental mortality for 10 µg/m3 increase in ozone in 97 US cities (Honolulu not 
shown) during 1987–2000, as computed from the two-level random-effects meta-analysis in Case Study 2
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dose–response fashion by including either categorical and 
continuous variables in the fixed-part component. As for 
the extensions presented in the previous case studies, this 
framework is also applicable to multivariate outcomes.

In this case study, we extend further the investigation 
of the association between heat and all-cause mortality 
illustrated in Case Study 1 by stratifying the analysis by 
age. This provides repeated estimates for each of the 108 

Fig. 3  Relative risk (RR) of non-accidental mortality for a 10 µg/m3 increase in ozone across US states during 1987–2000 in Case Study 2. Estimates 
were obtained as state-level fixed-effects predictions from a standard meta-regression model (blue) and as best linear unbiased predictions (BLUPs) 
from a two-level random-effects model (red)
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NMMAPS cities and the opportunity to apply flexible 
models to examine patterns of risk varying by age.

Brief description of the model, data, and analysis
The stratified analysis involves the fitting of the same 
first-stage regression model as in Case Study 1, but this 
time repeated separately for the three age groups (0–64, 
65–74, 65 and older) using age-specific mortality series 
(see Supplementary material B3). We assume that this 
step has been performed and that we have obtained 324 
sets of coefficients and associated (co)variance matrices 
representing age-specific heat-mortality associations in 
three age groups and 108 cities.

In the second stage, we first fit a standard meta-regres-
sion that ignores the city-level clustering and models 
the 324 multivariate outcomes using categorical indica-
tors for age groups and unit-specific random effects. This 
model is first extended to account for clustering by defin-
ing the random-effect grouping structure at the city level. 
Then, we specify a continuous age variable by assigning 
specific values to the groups (60, 70, and 85  years) and 
finally we model it using either a linear or non-linear 
spline parametrisation. See Supplementary Material B3 
for details.

Results
Table  2 offer a comparison between the different mod-
elling strategies. All the models indicate evidence for an 
effect modification of age, but those correctly accounting 
for clustering by defining city-level groups (Models 1–3) 
demonstrate a better fit. The comparison of the more 
flexible models that define a continuous dose–response 
parametrisation (Models 2 and 3) suggests the presence 
of non-linearity. Note that the spline model (Model 3) 
has virtually an identical fit of the model with categorical 
indicators (Model 1), given that the number of groups/
values equals the spline terms. However, the more flex-
ible option defining the effect modification on a continu-
ous scale has still some advantages, as illustrated below.`

The analysis has similarities to Case Study 1, which 
illustrated the effect modification related to city-specific 
variables, but, in this case, modelling within-city varia-
tions in risk. Still, the direction of the effect is difficult to 
ascertain when applying complex multi-parameter func-
tions. Therefore, we rely on the same approach to pre-
dict average heat-mortality exposure–response curves 
for specific age values, taking advantage of the continu-
ous dose–response parametrisation of the repeated-
measure multivariate model. The results are reported in 
Fig. 4, suggesting a clear age pattern with the risk of heat 
increasing at older ages.

This case study shows how to extend the classical two-
stage design to account for repeated measures originat-
ing, for instance, in the presence of multiple estimates 
from population sub-groups in the same location. This 
design extension also offers the possibility of model-
ling effect modifications by specific characteristics using 
flexible dose–response parametrisations on a continu-
ous scale. It is interesting to note that this approach 
relaxes the requirement of defining fixed sub-groups 
(e.g., by age), as different values can be attributed across 
locations.

Case study 4: modelling longitudinal patterns of risk
Motivation
A different setting in which repeated measures can arise 
in two-stage analyses is when multiple estimates are col-
lected at different times for the same location. This situa-
tion poses methodological problems that, similarly to the 
previous case study, standard designs are not equipped to 
handle.

The development of the two-stage methods to address 
these limitations requires accounting for the longitudinal 
structure of the data and modelling temporal trends in 
the exposure–response association. This extension pro-
vides environmental epidemiologists with the possibility 
of studying longitudinal patterns of risk, and considering 
potential time-varying factors explaining the variability 
of the estimated association over time.

Table 2  Comparison of various second-stage repeated-measure meta-analytical models to examine age-specific associations 
between heat and all-cause mortality in Case Study 3. The table report if clustering is accounted for, the parametrisation of age, the I2 
index and information criteria

Clustering Age parametrisation I2 (%) AIC BIC LR test 
for age 
(p-value)

Model 0 No Categorical 36.0 -480.99 -367.82 0.004

Model 1 Yes Categorical 36.0 -553.06 -439.38  < 0.001

Model 2 Yes Linear 36.9 -543.27 -450.26  < 0.001

Model 3 Yes Non-Linear 36.0 -553.06 -439.38  < 0.001
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In this case study, we again revise the analysis of heat-
mortality relationships described in Case Study 1 by fit-
ting the model in multiple sub-periods in each city. This 
step offers the opportunity to study temporal changes in 
the exposure–response curve and to assess the role of air 
conditioning (AC) in attenuating the risk. This case study 
is an illustrative example of a published analysis by our 
research group [17].

Brief description of the model, data, and analysis
We assume that in the first stage the data for the subset 
of 89 NMMAPS cities with information on AC data were 
split into five sub-periods (1987–98, 1990–92, 1993–95, 
1996–98, and 1999–2000), and that separate time series 
models were fitted in each city/period combination, 
deriving a total of 445 sets of coefficients (co)variance 
matrices representing the multivariate association. Each 
city/period combination can be assigned a measure of 
AC prevalence use (%) reconstructed from an external 
database [17] (see Supplementary Material B4).

In a second step, we apply a longitudinal multivariate 
random-effect meta-regression to evaluate changes in 
heat-related mortality risks, accounting for both within 
and between-city variations. We include in the model a 
smooth spline function of calendar year and a linear term 
for AC as time-varying predictors, assessing their contri-
bution with LR tests. As in the previous case study, this 
flexible continuous parametrisation allows the prediction 
of non-linear exposure–response curves for any given 
year and potential scenarios of AC use. See Supplemen-
tary Material B4 for details.

Results
The longitudinal meta-regression model suggests 
an independent effect of both calendar year (LR test 
p-value = 0.038) and air conditioning (p-value = 0.008). 
We evaluate their role by predicting the exposure–
response associations in RR scale for different AC preva-
lence levels (80% vs 20%) in the year 1990. The curves are 
displayed in Fig. 5 (left panel), indicating how increasing 
AC has a protective effect at hot temperatures.

In order to assess the joint contributions of trends and 
AC use, we depict two scenarios to represent longitudinal 
changes in risk along years: a factual scenario using the 
observed trend in average AC prevalence, and a coun-
terfactual scenario with AC use kept constant in time 
at the value of 1987. The right panel of Fig. 5 shows the 
results, summarising the heat effects as the RR computed 
at the 99th percentile versus the MMT along the period 
1987–2000. The predicted risk under the counterfactual 
scenario (in blue) reveals a decreasing trend independ-
ent from AC use. Nonetheless, the comparison with the 
factual scenario (in red) suggests that the increase in AC 
prevalence during the period contributed somehow to 
attenuate the risk.

This last case study demonstrates the extension 
of the two-stage design to study longitudinal asso-
ciations, evaluating changes in risk across both spa-
tial and temporal dimensions. The flexibility of the 
extended framework allows parametrising effects on a 
continuous scale and performing second-stage meta-
analysis with balanced and unbalanced data, with 
important design advantages.

Fig. 4  Average temperature-mortality relationships across 108 US cities during the summer period in 1987–2000 predicted at different ages (in 
years) from the extended model with a continuous spline parametrisation (Model 3) in Case Study 3
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Discussion
In this contribution, we presented several design exten-
sions of classical two-stage studies, and introduced sev-
eral examples that illustrate how the flexibility of this 
modelling tool can improve the investigation of the effect 
of environmental exposures on health outcomes. Specifi-
cally, we showed how the extended two-stage design can 
be applied to investigate complex exposure–response 
dependencies, multilevel longitudinal structures, and 
repeated-measure dose–response associations. The ana-
lytic framework can be applied using classical inferential 
procedures and can be easily implemented using the R 
package mixmeta.

The two-stage design was proposed for the analysis of 
multi-location data. The methodology has been popular-
ised by multi-city time series studies investigating short-
term risk associations with environmental stressors [2, 
5, 10], and it has become a common tool to assess the 
acute effects of pollutants [4, 7–9, 11] and temperature 
[1, 3]. The two-stage design has been also implemented 
in multi-cohort studies (e.g. ESCAPE project) to evalu-
ate to long-term effect of pollutants [12, 24, 35], and in 
genetic epidemiology studies [36, 37]. Several extensions 
of a standard design have been proposed over the years, 
all of which can be represented as specific applications of 
the unified framework proposed here.

The most straightforward extension considers multi-
ple estimates obtained in the first stage and the applica-
tion of multivariate meta-analytic models in the second 
stage. This approach was originally developed to pool 
lagged effects [2], multiple pollutants [22], and non-linear 

dependencies [15], or more complex distributed lag non-
linear associations [38].

Early applications of the two-stage design considered 
a small number of locations within a country, but the 
increased availability of environmental measures and 
health data now allows studies that include hundreds 
of locations within several countries [18, 19, 39]. In this 
setting, the locations can have a hierarchical structure 
that can be directly incorporated into the extended two-
stage design. This extension has been proposed to obtain 
global, country, and city-level estimates of the asso-
ciations by combining information within and between 
locations [18, 19, 39].

Environmental risk factors are often associated with 
risks that vary according to some individual or contextual 
characteristic [28, 40, 41]. The comparison of association 
measures across sub-groups was originally performed 
qualitatively and/or without consideration of the pos-
sible non-independence of multiple estimates collected 
within a location [42]. The extended two-stage design 
can directly model dependencies between the stratified 
estimates within each location, and appropriate inferen-
tial procedures can be used to evaluate differences across 
sub-group estimates.

In addition, such differences can be linked with meas-
urable characteristics that can be included as categori-
cal and continuous fixed-effects terms in the extended 
second-stage meta-regression. This extension allows 
modelling risks varying both within locations (e.g., age 
in Case Study 3) and between locations (e.g., population 
size and unemployment rate in Case Study 1). This effect 

Fig. 5  Left panel: predicted average heat-mortality association (in RR) during the summer predicted for different air conditioning (AC) prevalence 
(20% and 80%) in Case Study 4. Right panel: trends in RR at 99th summer temperature predicted under two scenarios of AC use, corresponding to 
the observed average and a constant 1987 value
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modification patterns can be modelled linearly or non-
linearly using flexible parametric functions, representing 
a further extension of dose–response pooling methods 
applied in observational studies [43, 44].

With the availability of longer time series of envi-
ronmental exposures and health outcomes, research-
ers have started to investigate the temporal variation in 
associations of short term environmental exposures and 
health outcomes [3, 17, 45–49]. In particular, modelling 
approaches have proposed time-varying extensions of 
distributed lag non-linear models [47, 48], Bayesian hier-
archical models [3, 46], and functional meta-regression 
[49]. The extended two-stage design naturally accommo-
dates balanced and unbalanced association parameters 
longitudinally directly accounting for possible non-inde-
pendences, and it provides the possibility to parametrise 
trends through linear and non-linear functions. It is 
important to note that the longitudinal setting can incor-
porate other extensions, such as multivariate outcomes 
and multilevel structures, modelling potentially complex 
structures of longitudinal associations [17].

The data example and the four case studies are consist-
ent with the most common application of the two-stage 
design in time series analysis of short-term effects of 
environmental exposures. However, it is worth noting 
that the framework proposed here is not restricted to 
the time series setting, and first-stage estimates can be 
obtained by any other approach such as case-crossover 
or time-to-event Cox models. Therefore, the extended 
two-stage design can similarly be applied in environmen-
tal epidemiological studies investigating either short or 
long-term effects of environmental exposure, using either 
individual-level or aggregated cross-sectional, case–con-
trol, and cohort data [12, 24, 35–37, 50].

An important advantage of the proposed development 
is the fact that it is grounded on a unified likelihood-
based inferential framework and implemented in freely 
available and easy-to-use software. All the analyses illus-
trated in the four case studies can be performed using 
the R package mixmeta, which offers a simple syntax to 
define all the different models and combinations of them. 
Similar extensions of the two-stage design were proposed 
based on Bayesian hierarchical models, for instance for 
multivariate [22], multilevel [14] and longitudinal data 
[46], but they usually require advanced statistical and 
programming skills and can be computationally more 
demanding. Nonetheless, the Bayesian framework offers 
more flexibility in accommodating random-effects and 
correlations, for instance spatial structures that are not 
yet available and generally more difficult to implement in 
our likelihood-based development.

Conclusions
Technological developments in environmental monitor-
ing, coupled with advancements in data linkage and col-
laborative tools, offer new opportunities for researchers 
to collect large multi-locations databases. The develop-
ment of a general and extended framework for two-stage 
designs is therefore timely and offers a flexible and gener-
ally applicable tool for modern environmental epidemio-
logical studies.
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A. First-stage time-series models 

In the examples described in the four case studies, the first-level data are time series, and 

were modelled accordingly. In each first-level unit i, a set of Ni observations are defined at 

equally-spaced time intervals (here corresponding to days) t=1,…,Ni. In the first stage, the 

aim is to estimate the association between the exposure xit and the outcome Yit after 

controlling for the set of the time-varying confounders cit, in addition to time trends. 

Usually, this aim is achieved by fitting generalized linear models (usually with Poisson or 

quasi-Poisson family) (1): 

𝑔𝑔[E(𝑌𝑌𝑖𝑖𝑖𝑖)] = 𝛼𝛼 + 𝑓𝑓(𝑥𝑥𝑖𝑖𝑖𝑖, ℓ;𝜽𝜽𝑖𝑖) + �𝑠𝑠𝑞𝑞𝑞𝑞(𝑡𝑡;𝜹𝜹𝑖𝑖)
𝑄𝑄

𝑞𝑞=1

+ �ℎ𝑝𝑝𝑝𝑝�𝒄𝒄𝑖𝑖𝑖𝑖𝑖𝑖;𝜸𝜸𝑖𝑖�
𝑃𝑃

𝑝𝑝=1

 (1) 

Where the function 𝑓𝑓(𝑥𝑥𝑖𝑖𝑖𝑖, ℓ;𝜽𝜽𝑖𝑖) specifies the association with the exposure of interest 𝑥𝑥, 

allowing non-linearity and complex temporal dependencies along the lag dimension ℓ. These 

complex relationships can be modelled through distributed lag linear and non-linear models 

(DLMs and DLNMs), which can flexibly define cumulative effects of multiple exposure 

episodes (2). The term(s) 𝑠𝑠𝑞𝑞𝑞𝑞 represent functions expressed at different timescales to model 

temporal variations in risk associated with underlying trends or seasonality, among others.  

 

B. Modelling details about the four case studies 

B1. Pooling complex multi-parameter associations 

In the first stage, we fitted distributed lag non-linear time-series models for each of the 108 

US cities in order to estimate the association between mean temperature and overall 

mortality in summer months (June to September). Briefly, the bi-dimensional cross-basis 
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function was composed of a quadratic B-spline system with two internal knots used to 

represent non-linearity in the temperature dimension, and an unconstrained 

parameterization in the lag space within 0-3 days (2). The coefficients of the cross-basis 

were then “reduced” over the lag dimension to obtain parameters representing the non-

linear net association between mean temperature and overall mortality (2) obtaining a set 

of four coefficients  vector  𝜽𝜽�𝑖𝑖  (4 1)× and their (co)variance matrix  𝑺𝑺𝑖𝑖 (4 4)×  for each of the 

108 cities (3). The confounding effect of long-term trends and seasonality was modelled 

through interaction of a smooth function of day of the year (natural splines with four 

degrees of freedom) and year. 

In the second-stage, the extended random-effects meta-analysis can be used to obtain the 

pooled set of coefficients taking into account the dependencies and uncertainty of the 

coefficients as measured by the covariance matrix of the coefficient set for each city.  

In terms of the extended framework, this represents an example of multivariate meta-

analysis, where the design matrices of the fixed and random effects are identity matrices 

with dimensions equal to the number of coefficients: 𝑿𝑿𝑖𝑖 = 𝒁𝒁𝑖𝑖 = 𝑰𝑰4. Note that the random 

coefficient vector 𝒃𝒃𝑖𝑖 is a (4 × 1) row vector. 

We then fitted meta-regression models to identify contextual factors that could explain a 

quota of the heterogeneity. Among several potential factors, we considered population size, 

percentage of people with high-school degree, and percentage of unemployment. These 

variables will be included in the fixed-effects part of the meta-analytic model by setting  

𝑿𝑿𝑖𝑖 = 𝒙𝒙𝑖𝑖𝑇𝑇 ⊗ 𝑰𝑰4 , with ⊗ is the Kronecker product operator, where 𝒙𝒙𝑖𝑖𝑇𝑇are the variable values 

measured in first-level unit i. With this parametrisation, in equation (1), 𝜷𝜷 is the (12 X 1) 
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dimensional coefficient vector that defines the association of the 4 outcomes with the 3 

predictors. 

B2. More complex hierarchical structure 

In the first-stage, we fitted  quasi-Poisson time-series models for each of the 85 US cities 

with available data in order to estimate the association between ozone and non-accidental 

mortality. Ozone was modelled linearly over the moving average of 0-1 lags. The parameters 

of the DLM model were “reduced” over the lag dimension, similarly to the previous case 

stury, obtaining a single coefficient (log-RR for an increase of 10 µg/m3) and its variance for 

each of the 85 cities. We considered the confounding effect of temperature and long-term 

trend/seasonality. Briefly, temperature was modelled using a cross-basis composed of 

quadratic B-spline function with three internal knots (at the 10th, 75th, and 90th percentiles) 

to represent non-linear exposure-response relationships, and and unconstrained 

parametrisation within 0-3 days to model the lag-response shape. The confounding effect of 

long-term trends was modelled with a smooth function of day of the year (natural splines 

with four 7 degrees of freedom per year). 

We estimated the log-RR for an increase of 10 µg/m3 in each of the 85 cities, along with its 

variance as a measure of the precision (uncertainty). These estimates are nested within 35 

states. 

Within the extended meta-analytic framework, we structured the first stage estimated 

coefficients  𝜽𝜽�𝑖𝑖 (n 1)i× considering two hierarchical levels 𝐿𝐿 = 2, with cities nested within US 

states. Note that 𝜽𝜽�𝑖𝑖  is defined at the highest hierarchical level (US states) with in  cities, and 

that cities and US states have specific random effects (e.g. random intercepts)  𝒃𝒃𝑖𝑖1𝑇𝑇 ,𝒃𝒃𝑖𝑖2𝑇𝑇  with 
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design matrices 𝒁𝒁𝑖𝑖1 ( )1in × , a column of ones, and  𝒁𝒁𝑖𝑖2 ( )i in n× with ones on the specific 

row and column identifying the city. Here 𝑿𝑿𝑖𝑖 = 𝟏𝟏 , ( )1in × , a column of ones and specifies 

the intercept term. This is an example of multilevel meta-analytic model. 

B3. Sub-group analysis, modelling dependencies and dose-response relationship 

The NMMAPS dataset provides daily time-series of overall mortality data for three age 

classes: [0, 65), [65, 75), and [75+) for each of the 108 US cities. The analysis follows the 

same scheme as in Section B1, only repeated by each age class. Thus, we obtained 324 sets 

of coefficients and associated (co)variance matrix describing the age-specific temperature 

mortality association nested within 108 cities (i.e., each city has three coefficients). 

When considering the clustering effect of cities, the first stage estimates  𝜽𝜽�𝑖𝑖 is a (12 1)×  

vector (4 splines coefficients estimated for the three age classes) and the within-location 

(co)variance matrix 𝑺𝑺𝑖𝑖 =⊕𝑎𝑎 𝑺𝑺𝑖𝑖,𝑎𝑎 is a block diagonal matrix where diagonal blocks 𝑺𝑺𝑖𝑖,𝑎𝑎 are 

the covariance matrices of the coefficients calculated in each age class (a). We modelled age 

as a fixed-effects variable by stacking by rows the matrices 𝑿𝑿𝑖𝑖,𝑎𝑎, with  𝑿𝑿𝑖𝑖,𝑎𝑎 = 𝒙𝒙𝑖𝑖,𝑎𝑎𝑇𝑇 ⊗ 𝑰𝑰4 , 

where 𝑥𝑥𝑖𝑖,𝑎𝑎𝑇𝑇  is the vector representing the age class (a) in the different parametrisations: 

(categorical; 2 dummies variables), (linear; 1 variable), (non-linear; natural splines with two 

degrees of freedom). Note that in this case the parametrisation of age as categorical and 

non-linear with the chosen cut-offs of 70 years are equivalent, as there are three age 

groups. However, the two model would be different with a higher number of categories. 

The design matrix of the random terms can be defined by stacking by rows the three 

matrices  𝒁𝒁𝑖𝑖,𝑎𝑎 = 𝑰𝑰4. 

B4. Longitudinal 
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For each of the 108 US cities the study interval (1987-2000) was split into five periods: 

[1987, 1989], [1990, 1992], [1993, 1995], [1996, 1998] and [1999, 2000]. For each period, 

we fitted distributed lag non-linear time-series models during summer months (June to 

September). The analysis follows the same scheme as in Section B1, only repeated by 

period. Thus, we obtained 540 sets of coefficients and associated (co)variance matrix 

describing the period-specific temperature mortality association nested within 108 cities. 

Here  𝜽𝜽�𝑖𝑖  is a (20 1)×  vector (four splines coefficients estimated in the five periods) and the 

within location (co)variance matrix 𝑺𝑺𝑖𝑖 =⊕𝑝𝑝 𝑺𝑺𝑖𝑖,𝑝𝑝 is a block diagonal matrix where diagonal 

blocks 𝑺𝑺𝑖𝑖,𝑝𝑝 are the (co)variance matrices of the coefficients calculated in each period (p). 

In addition, we reconstructed location-specific AC air conditioning trends and assigned AC 

prevalence estimates to each location/period unit (4). 

We modelled AC prevalence and calendar year as fixed-effects variables by stacking by rows 

the matrices 𝑿𝑿𝑖𝑖,𝑝𝑝, with  𝑿𝑿𝑖𝑖,𝑝𝑝 = 𝒙𝒙𝑖𝑖,𝑝𝑝𝑇𝑇 ⊗ 𝑰𝑰4 , where 𝒙𝒙𝑖𝑖,𝑝𝑝𝑇𝑇  is the vector representing the AC 

prevalence (linear term) and calendar year (natural spline with one internal knot) in period 

(p). The design matrix of the random terms can be defined by stacking by rows the five 

matrices 𝒁𝒁𝑖𝑖,𝑝𝑝 = 𝑰𝑰4. 

 

C. Backward or step-forward procedures 

The analyst could use different procedures to select relevant predictors (e.g. backward or 

forward stepwise). The backward selection approach starts from the full model (with the 3 

predictors), and a likelihood ratio test is performed to compare the full model and the 

models without each predictor. The step-forward approach starts instead from the model 
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containing only the intercept (Model 0), and at each step the predictor with highest 

reduction of the Akaike information criterion (AIC) is included. 
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R code to reproduce the four case studies presented in the article: 

Sera F, Gasparrini A. Extended two-stage designs for environmental research. *Environmental Health*. 
2022;21:41. DOI: 10.1186/s12940-022-00853-z. [[freely available here](http://www.ag-
myresearch.com/2022_sera_envhealth.html)] 

The five R scripts prepare the data and perform the analyses in each of the four case studies. Specifically: 

 *00.prepdata.R* loads the original NMMAPS data and performs the first-stage time series models to 
obtain exposure summaries and estimates of short-term risk associations with air pollution and 
temperature. These data are used in the following R scripts to perform the second-stage meta-analytical 
models for each design extension (Note: to run this scripts, the user needs to gather the original NMMAPS 
data, which is not made available here).  

*01.heterogeneity.R* reproduces the first case study, illustrating the extension of the two-stage design for 
pooling multi-parameter associations. Specifically, the case study investigates the non-linear and delayed 
relationship between heat and all-cause mortality during the summer months and the potential role of city-
specific characteristics in modifying the risk. 

 *02.multilevel.R* reproduces the second case study, describing  the extension of the two-stage design for 
the analysis of complex hierarchical structures and geographical clustering. Specifically, the case study 
demonstrates how to combine estimates of associations between ozone and mortality in multiple cities 
nested within states. 

*03.doseresp.R* performs the analysis of the third case study, showing the extension of the two-stage 
design for sub-groups analysis and dose–response relationships. Specifically, the case study illustrates how 
the heat-mortality association can be estimated when there are repeated measures from the same city, 
resulting from multiple first-stage models fitted by different age groups. The case study also shows how to 
flexibly model the age effect in a dose-response fashion. 

*04.longitudinal.R* reproduces the fourth case study, illustrating the extension of the two-stage design for 
longitudinal analysis of estimates collected along time. Specifically, the case study examines the temporal 
changes in the exposure–response curve between heat and mortality, and assesses the role of air 
conditioning (AC) in attenuating the risk. 

  



2 
 

# 00.prepdata.R 
 
################################################################################ 
# R code for the analysis in: 
# 
#  Sera F, Gasparrini A. Extended two-stage designs for environmental research. 
#    Environmental Health. 2022;21:41. 
#  https://doi.org/10.1186/s12940-022-00853-z 
# 
# * an updated version of this code, compatible with future versions of the 
#   software, is available at: 
#   https://github.com/gasparrini/Extended2stage 
################################################################################ 
 
################################################################################ 
# RUN FIRST-STAGE MODELS AND SAVE DATA 
################################################################################ 
 
# LOAD THE PACKAGES 
library(dlnm) ; library(mixmeta) 
library(tsModel) ; library(splines)  
library(lubridate) 
 
# PATH TO NMMAPS CITY-SPECIFIC SERIES 
# NB: TO BE REPLACED BY THE PATH TO THE ORIGINAL NMMAPS DATA 
path <- "" 
 
# LOAD THE DATASET WITH METADATA FOR THE CITIES 
cities <- read.csv("data/cities.csv") 
 
################################################################################ 
# LOOP 
 
# CREATE OBJECTS TO STORE THE RESULTS 
tmeanparlist <- tmeanperparlist <- tmeanageparlist <- o3parlist <- 
  tmeansumlist <- vector("list", nrow(cities)) 
 
# RUN THE LOOP 
for(i in seq(nrow(cities))) { 
   
  # PRINT CITY 
  cat(cities$city[i],"") 
   
  # LOAD THE DATA NOT COLLAPSED BY AGE 
  load(paste0(path, "/cities/", cities$city[i])) 
   
  # SELECT VARIABLES 
  vars <- 
c("date","dow","death","accident","tmpd","o3tmean","o3mtrend","agecat") 
  data <- subset(data, select=vars) 
   
  # CONVERT ENVIRONMENTAL VARIABLES 
  # - TEMPERATURE FROM FAHRENHEIT TO CELSIUS 
  # - OZONE FROM DETRENDED AND CONVERTED IN MICROGR/M3 
  data <- transform(data, 
    tmean = (tmpd-32)*5/9, 
   o3 = (o3tmean+o3mtrend) * 1.96 
  ) 
 
  # CREATE COLLAPSED DATA (SELECT ONE AGE GROUP AND COLLAPSE DEATH CAUSES) 
  dataggr <- data[data$agecat=="under65",] 
  dataggr$death <- tapply(data$death, data$date, sum) 
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  dataggr$accident <- tapply(data$accident, data$date, sum) 
   
  # CREATE ALL-CAUSE 
  data$all <- data$death + data$accident 
  dataggr$all <- dataggr$death + dataggr$accident 
   
  # SUBSET FOR SUMMER-ONLY 
  datasum <- subset(data, month(date) %in% 6:9) 
  dataggrsum <- subset(dataggr, month(date) %in% 6:9) 
 
################################################################################ 
# ANALYSIS OF TEMPERATURE - ALL-CAUSE MORTALITY (SUMMER-ONLY) 
  
 # DEFINE CROSS-BASIS FOR TEMPERATURE 
  cbtmean <- crossbasis(dataggrsum$tmean, lag=3, argvar=list(fun="bs", degree=2, 
    knots=quantile(dataggrsum$tmean, c(50,90)/100, na.rm=T)),  
    arglag=list(fun="integer"), group=year(dataggrsum$date)) 
   
  # RUN THE MODEL AND EXTRACT REDUCED PRED (RE-CENTRED LATER) 
  model <- glm(all ~ cbtmean + dow + ns(yday(date), df=4)*factor(year(date)), 
    data=dataggrsum, family=quasipoisson) 
  redpred <- crossreduce(cbtmean, model, cen=mean(dataggrsum$tmean, na.rm=T)) 
   
  # STORE PARAMETERS (COEF + VECTORIZED VCOV) 
  ncoef <- length(coef(redpred)) 
  par <- c(coef(redpred), vechMat(vcov(redpred))) 
  names(par) <- c(paste0("coef", seq(ncoef)), 
    paste0("vcov", seq(ncoef*(ncoef+1)/2))) 
  tmeanpar <- data.frame(cities[i, c("city", "cityname", "state", "statename")], 
    t(par), row.names=i) 
  tmeanparlist[[i]] <- tmeanpar 
 
################################################################################ 
# ANALYSIS OF TEMPERATURE - ALL-CAUSE MORTALITY (SUMMER-ONLY, BY PERIOD) 
   
  # DEFINE THE PERIODS 
  yearlist <- list(1987:1989, 1990:1992, 1993:1995, 1996:1998, 1999:2000) 
   
  # PERFORM MODEL BY PERIOD 
  parlist <- lapply(yearlist, function(ysub) { 
    model <- glm(all ~ cbtmean + dow + ns(yday(date), df=4)*factor(year(date)), 
      data=dataggrsum, family=quasipoisson, subset=year(date) %in% ysub) 
    redpred <- crossreduce(cbtmean, model, cen=mean(dataggrsum$tmean, na.rm=T)) 
    t(c(coef(redpred), vechMat(vcov(redpred)))) 
  }) 
   
  # STORE PARAMETERS (COEF + VECTORIZED VCOV) 
  par <- do.call(rbind, parlist) 
  colnames(par) <- names(tmeanpar)[-c(1:4)] 
  tmeanperpar <- data.frame( 
    cities[i, c("city", "cityname", "state", "statename")], 
    period = sapply(yearlist, function(x) paste(range(x), collapse="-")), 
    year = sapply(yearlist, mean), 
    par, 
    row.names=paste0(i, ".", seq(yearlist)) 
  ) 
  tmeanperparlist[[i]] <- tmeanperpar 
   
################################################################################ 
# ANALYSIS OF TEMPERATURE - ALL-CAUSE MORTALITY (SUMMER-ONLY, BY AGE) 
 
  # DEFINE AGE GROUPS 
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  agecat <- as.character(unique(data$agecat)) 
   
  # PERFORM MODEL BY AGE (SELECTING FROM NON-COLLAPSED DATA) 
  parlist <- lapply(agecat, function(cat) { 
    y <- data$all[data$agecat==cat & month(data$date) %in% 6:9] 
    model <- glm(y ~ cbtmean + dow + ns(yday(date), df=4)*factor(year(date)), 
      data=dataggrsum, family=quasipoisson) 
    redpred <- crossreduce(cbtmean, model, cen=mean(dataggrsum$tmean, na.rm=T)) 
    t(c(coef(redpred), vechMat(vcov(redpred)))) 
  }) 
 
  # STORE PARAMETERS (COEF + VCOV FOR 10-UNIT INCREASE) 
  par <- do.call(rbind, parlist) 
  colnames(par) <- names(tmeanpar)[-c(1:4)] 
  tmeanagepar <- data.frame( 
    cities[i, c("city", "cityname", "state", "statename")], 
    agecat=agecat, 
    par, 
    row.names=paste0(i, ".", seq(agecat)) 
  ) 
  tmeanageparlist[[i]] <- tmeanagepar 
   
################################################################################ 
# ANALYSIS OF OZONE - NON-EXTERNAL MORTALITY (FULL YEAR) 
   
  # DEFINE MOVING AVERAGE OF OZONE AT LAG 0-1 
  o301 <- runMean(dataggr$o3, 0:1) 
   
  # DEFINE CROSS-BASIS FOR TEMPERATURE 
  cbtmean <- crossbasis(dataggr$tmean, lag=3, argvar=list(fun="bs", degree=2, 
    knots=quantile(dataggrsum$tmean, c(10,50,90)/100, na.rm=T)),  
    arglag=list(fun="strata")) 
   
  # RUN THE MODEL AND EXTRACT PAR (ONLY IF ENOUGH NON-MISSING) 
  par <- if(nrow(na.omit(cbind(o301, cbtmean))) < 500 ) c(NA,NA) else { 
    model <- glm(death ~ o301 + cbtmean + dow + ns(date, df=14*7), 
      data=dataggr, family=quasipoisson) 
    c(coef(model)["o301"]*10, vcov(model)["o301","o301"]*10) 
  } 
  names(par) <- c("coef", "vcov") 
 
  # STORE PARAMETERS (COEF + VCOV FOR 10-UNIT INCREASE) 
  o3par <- data.frame(cities[i, c("city", "cityname", "state", "statename")], 
    t(par), row.names=i) 
  o3parlist[[i]] <- o3par 
   
################################################################################ 
# TEMPERATURE DISTRIBUTION (SUMMER ONLY) 
 
  # DEFINE PERCENTILES 
  per <- c(0:9/10, 1:99, 991:1000/10)/100 
  tmeansumlist[[i]] <- quantile(dataggrsum$tmean, per, na.rm=T) 
} 
 
################################################################################ 
# PREPARE AND STORE 
 
# RBIND COEF/VCOV TOGETHER IN DATAFRAMES 
tmeanpar <- do.call(rbind, tmeanparlist) 
tmeanperpar <- do.call(rbind, tmeanperparlist) 
tmeanagepar <- do.call(rbind, tmeanageparlist) 
o3par <- do.call(rbind, o3parlist) 
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# CREATE COUNTRY-AVERAGE SUMMER TEMPERATURE DISTRIBUTION 
avgtmeansum <- data.frame(perc=names(tmeansumlist[[1]]),  
  tmean=apply(do.call(cbind, tmeansumlist), 1, mean)) 
 
# STORE 
write.csv(tmeanpar, file="data/tmeanpar.csv", row.names=F) 
write.csv(tmeanperpar, file="data/tmeanperpar.csv", row.names=F) 
write.csv(tmeanagepar, file="data/tmeanagepar.csv", row.names=F) 
write.csv(o3par, file="data/o3par.csv", row.names=F) 
write.csv(avgtmeansum, file="data/avgtmeansum.csv", row.names=F) 
  



6 
 

# 01.heterogeneity.R 
 
################################################################################ 
# R code for the analysis in: 
# 
#  Sera F, Gasparrini A. Extended two-stage designs for environmental research. 
#    Environmental Health. 2022;21:41. 
#  https://doi.org/10.1186/s12940-022-00853-z 
# 
# * an updated version of this code, compatible with future versions of the 
#   software, is available at: 
#   https://github.com/gasparrini/Extended2stage 
################################################################################ 
 
################################################################################ 
# POOLING COMPLEX MULTI-PARAMETER ASSOCIATIONS 
################################################################################ 
 
# LOAD PACKAGES 
library(mixmeta) ; library(dlnm) ; library(scales) 
 
# LOAD COEF/VCOV FROM FIRST-STAGE MODELS 
tmeanpar <- read.csv(file="data/tmeanpar.csv") 
coef <- as.matrix(tmeanpar[,grep("coef", names(tmeanpar))]) 
vcov <- as.matrix(tmeanpar[,grep("vcov", names(tmeanpar))]) 
 
# LINK WITH CENSUS DATA 
cityind <- tmeanpar[,1:4,] 
citycensus <- read.csv("data/citycensus.csv") 
cityind <- merge(cityind, citycensus, by="city") 
 
################################################################################ 
# RUN THE MODELS 
 
# MODEL WITH NO META-PREDICTOR 
model0 <- mixmeta(coef~1, vcov, data=cityind, method="ml") 
 
# SUMMARY AND HETEROGENEITY TEST 
summary(model0) 
qtest(model0) 
 
# MODELS WITH A SINGLE META-PREDICTOR 
# PREDICTORS: TOTAL POP, % OF PEOPLE WITH HIGH-SCHOOL DEGREE, % OF UNEMPLOYED 
model1 <- update(model0, .~pop100) 
model2 <- update(model0, .~Phigh) 
model3 <- update(model0, .~Punem) 
 
# FULL MODEL 
model4 <- update(model0, .~pop100+Phigh+Punem) 
summary(model4) 
 
# MODEL COMPARISON AND TESTS 
AIC(model0, model1, model2, model3, model4) 
BIC(model0, model1, model2, model3, model4) 
drop1(model4, test="Chisq") 
 
# MODEL SELECTION (STEP FORWARD) 
step(model0, .~pop100+Phigh+Punem) 
 
################################################################################ 
# PLOT THE AVERAGE EXPOSURE-RESPONSE RELATIONSHIPS 
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# LOAD AVERAGE TEMPERATURE DISTRIBUTION ACROSS CITIES 
avgtmeansum <- read.csv("data/avgtmeansum.csv") 
tmean <- avgtmeansum$tmean 
 
# DEFINE SPLINE TRANSFORMATION ORIGINALLY USED IN FIRST-STAGE MODELS 
knots <- tmean[avgtmeansum$perc %in% paste0(c(50,90), ".0%")] 
bvar <- onebasis(tmean, fun="bs", degree=2, knots=knots) 
 
# DEFINE THE CENTERING POINT (AT POINT OF MINIMUM RISK) 
cen <- tmean[which.min(bvar%*%coef(model0))] 
 
# PREDICT THE ASSOCIATION 
cp <- crosspred(bvar, coef=coef(model0), vcov=vcov(model0), model.link="log", 
  at=tmean, cen=cen) 
 
# PLOTTING LABELS 
xperc <- c(0,1,5,25,50,75,95,99,100) 
xval <- tmean[avgtmeansum$perc %in% paste0(xperc, ".0%")] 
 
# PLOT 
plot(cp, ylim=c(0.9,1.4), xlab="Temperature percentile", ylab="RR", 
  lab=c(6,5,7), las=1, xaxt="n", mgp=c(2.5,1,0), cex.axis=0.8, 
  main="Temperature-mortality association") 
axis(1, at=xval, labels=paste0(xperc, "%")) 
abline(v=cen, lty=2, col=grey(0.8)) 
 
################################################################################ 
# PREDICT AND PLOT FOR GIVEN VALUES OF META-PREDICTORS   
 
# DEFINE THE VALUES (SMALL/LARGE POP, WITH AVERAGE OF OTHERS) 
datapred <- data.frame( 
  pop100 = quantile(cityind$pop100, c(5,95)/100), 
  Phigh = mean(cityind$Phigh), 
  Punem = mean(cityind$Punem), 
  row.names=c("Small population", "Large population") 
) 
 
# PREDICT COEF/VCOV 
pred <- predict(model4, datapred, vcov=T) 
 
# PREDICT ASSOCIATIONS 
cp1 <- crosspred(bvar, coef=pred[[1]]$fit, vcov=pred[[1]]$vcov, 
  model.link="log", at=tmean, cen=cen) 
cp2 <- crosspred(bvar,coef=pred[[2]]$fit,vcov=pred[[2]]$vcov, 
  model.link="log", at=tmean, cen=cen) 
 
# PLOT 
plot(cp1, ylim=c(0.9,1.4), xlab="Temperature percentile", ylab="RR", 
  lab=c(6,5,7), las=1, lwd=1.5, xaxt="n", mgp=c(2.5,1,0), cex.axis=0.8, col=3, 
  ci.arg=list(col=alpha(3,0.3)), main="Temperature-mortality association") 
axis(1, at=xval, labels=paste0(xperc, "%"), cex.axis=0.8) 
lines(cp2, lwd=1.5, col=4, ci="area", ci.arg=list(col=alpha(4,0.3))) 
abline(v=cen, lty=2, col=grey(0.8)) 
mtext("By population size") 
legend("topleft", c(rownames(datapred)), lwd=1.5, col=c(3,4), bty="n", 
inset=0.1) 
 
################################################################################ 
# SAVE ARTICLE-STYLE PLOT 
 
# GRAPHICALS PARAMETERS 
layout(t(1:2)) 
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oldpar <- par(no.readonly = TRUE) 
par(mar=c(4,4,2,0.5), cex.axis=0.8) 
 
# PLOTS 
plot(cp, ylim=c(0.9,1.4), xlab="Temperature percentile", ylab="RR", 
  lab=c(6,5,7), las=1, xaxt="n", mgp=c(2.5,1,0)) 
axis(1, at=xval, labels=paste0(xperc, "%")) 
abline(v=cen, lty=2, col=grey(0.8)) 
title("Average relationship") 
 
plot(cp1, ylim=c(0.9,1.4), xlab="Temperature percentile", ylab="RR", 
  lab=c(6,5,7), las=1, lwd=1.5, xaxt="n", mgp=c(2.5,1,0), col=3, 
  ci.arg=list(col=alpha(3,0.3))) 
axis(1, at=xval, labels=paste0(xperc, "%")) 
lines(cp2, lwd=1.5, col=4, ci="area", ci.arg=list(col=alpha(4,0.3))) 
abline(v=cen, lty=2, col=grey(0.8)) 
legend("topleft", c(rownames(datapred)), lwd=1.5, col=c(3,4), bty="n", 
inset=0.1) 
title("By population size") 
 
# RESET 
par(oldpar) 
layout(1) 
 
# PRINT 
dev.print(pdf, file="figures/multipar.pdf", height=5, width=12) 
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# 02.multilevel.R 
 
################################################################################ 
# R code for the analysis in: 
# 
#  Sera F, Gasparrini A. Extended two-stage designs for environmental research. 
#    Environmental Health. 2022;21:41. 
#  https://doi.org/10.1186/s12940-022-00853-z 
# 
# * an updated version of this code, compatible with future versions of the 
#   software, is available at: 
#   https://github.com/gasparrini/Extended2stage 
################################################################################ 
 
################################################################################ 
# MULTILEVEL ANALYSIS BY CITY AND STATE 
################################################################################ 
 
# LOAD THE PACKAGES 
library(mixmeta) ; library(Epi) ; library(maps) ; library(scales) 
library(ggplot2) 
 
# LOAD COEF/VCOV FROM FIRST-STAGE MODELS (FOR OZONE) 
o3par <- read.csv(file="data/o3par.csv") 
coef <- o3par[,grep("coef", names(o3par))] 
vcov <- o3par[,grep("vcov", names(o3par))] 
 
# LOAD CITY-LEVEL METADATA AND LINK WITH LAT/LONG DATA 
cityinfo <- o3par[,1:4,] 
latlong <- read.csv("data/latlong.csv") 
cityinfo <- merge(cityinfo, latlong, by="city") 
 
################################################################################ 
# RUN MODELS 
 
# STANDARD META-ANALYSIS (SINGLE RANDOM-EFFECTS LEVEL) 
model0 <- mixmeta(coef, vcov) 
summary(model0) 
 
# ADD STATE AS FIXED EFFECTS (PARAMETERIZED TO SHOW STATE-SPECIFIC EFFECTS) 
model1 <- mixmeta(coef~0+state, vcov, data=cityinfo) 
summary(model1) 
 
# TWO-LEVEL RANDOM EFFECTS (CITY NESTED WITHIN STATE) 
model2 <- mixmeta(coef, vcov, data=cityinfo, random=~1|state/city) 
summary(model2) 
 
# TEST HETEROGENEITY 
qtest(model0) 
qtest(model1) 
qtest(model2) 
 
# SIGNIFICANCE TEST OF BETWEEN-STATE DIFFERENCES 
# NB: REQUIRES STANDARD PARAMETERIZATION AND USE OF ML ESTIMATOR FOR COMPARISON 
drop1(update(model1, .~state, method="ml"), test="Chisq") 
 
# ESTIMATED EFFECTS IN RR SCALE FOR 10-UNIT INCREASE 
# - POOLED EFFECTS FOR MODELS WITH NO FIXED EFFECTS (WITH CI) 
# - RANGE OF EFFECTS FOR MODEL WITH FIXED EFFECTS 
ci.exp(model0) 
ci.exp(model2) 
range(exp(predict(model1))) 
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################################################################################ 
# PREDICTIONS 
 
# FIXED-EFFECTS PREDICTION OF STATE-AVERAGE EFFECTS  
statefix <- exp(unique(predict(model1, ci=T))) 
 
# BLUPS AT CITY AND STATE LEVEL FROM TWO-LEVEL MODEL 
cityblup <- exp(blup(model2, pi=T)) 
stateblup <- exp(unique(blup(model2, pi=T, level=1))) 
 
# NAMES 
rownames(cityblup) <- cityinfo$cityname[!is.na(coef)] 
rownames(stateblup) <- rownames(statefix) <-  
  unique(cityinfo$statename[!is.na(coef)]) 
 
################################################################################ 
# MAP OF CITY-SPECIFIC BLUPS 
 
# EFFECTS, COLOURS, COORDINATES (NB: REVERSE LONG) 
cutoff <- pretty(cityblup[,1], 8) 
labmap <- paste(format(cutoff)[-length(cutoff)], format(cutoff)[-1], sep="-") 
rrcat <- cut(cityblup[,1], cutoff,  labels=labmap) 
colmap <- colorRampPalette(c("yellow","red"))(length(cutoff)) 
lat <- as.numeric(as.character(cityinfo$lat[!is.na(coef)])) 
long <- -as.numeric(as.character(cityinfo$long[!is.na(coef)])) 
 
# MAP OF CITY-SPECIFIC BLUPS (VERSION 1) 
map("state", interior=F) 
map("state", lty=2, add=T) 
points(long, lat, col=alpha(colmap[rrcat], 0.6), pch=19, cex=1.8) 
legend("bottomright", labmap, pch=19, col=colmap, bty="n", pt.cex=1.5, cex=0.8, 
  title="RR", inset=0.02) 
title("Map of risk associated to ozone") 
mtext("From a multi-level meta-analysis") 
 
# MAP OF CITY-SPECIFIC BLUPS (VERSION 2) 
mapstate <- map_data("state") 
ggplot(mapstate, aes(long, lat, group=group)) + 
  geom_polygon(fill=NA, col="grey") +  
  borders("usa", col="black") + 
  geom_point(aes(group=NULL, col=rrcat), alpha=0.6, size=5,  
    data=data.frame(long=long,lat=lat)) + 
  scale_color_brewer(name="RR", palette="YlOrRd") + 
  xlim(min(mapstate$long), max(mapstate$long)) + 
  ylim(min(mapstate$lat), max(mapstate$lat)) + 
  theme_void() + 
  theme(legend.position=c(1,0), legend.justification=c(1.2,-0.1)) + 
  labs(title="Map of risk associated to ozone",  
     subtitle="From a multi-level meta-analysis") + 
  coord_quickmap() 
 
################################################################################ 
# FOREST PLOT 
 
# SEQUENCES AND LABELS 
yseq <- seq(nrow(stateblup)) 
ylab <- rownames(stateblup) 
 
# FOREST PLOT (VERSION 1) 
par(mar=c(5,8.2,4,2)+0.1) 
plot(yseq, type="n", xlim=c(0.98,1.02), yaxt="n", xlab="RR", ylab="", 
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  mgp=c(2.5,1,0), main="Comparison of state-specific risk estimates") 
axis(2, at=yseq, las=1, tick=F, labels=ylab, cex.axis=0.8) 
grid() 
abline(v=1) 
arrows(stateblup[,2], yseq-0.2, stateblup[,3], yseq-0.2, col=alpha(2,0.5), 
  code=3, angle=90, length=0.01, lwd=2) 
points(stateblup[,1], yseq-0.2, col=2, pch=19, cex=1.2) 
arrows(statefix[,2], yseq+0.2, statefix[,3], yseq+0.2, col=alpha(4,0.5), 
  code=3, angle=90, length=0.01, lwd=2) 
points(statefix[,1], yseq+0.2, col=4, pch=19, cex=1.2) 
legend("topright", c("Fixed-effects","BLUPs"), pch=19, col=c(4,2), pt.cex=1.2, 
  bty="n") 
par(mar=c(5,4,4,1)+0.1) 
 
# CREATE DATAFRAME 
eststate <- data.frame(rbind(statefix, stateblup), row.names=NULL) 
eststate$state <- rep(rownames(statefix), 2) 
eststate$model <- rep(c("Fixed-effects","BLUPs"), each=nrow(statefix)) 
eststate$model <- factor(eststate$model, levels=unique(eststate$model)) 
 
# FOREST PLOT (VERSION 2) 
ggplot(eststate, aes(fit, state, col=model)) +  
  geom_vline(xintercept=1) + 
  geom_errorbar(aes(xmin=ci.lb, xmax=ci.ub), width=0.6, alpha=0.5, 
    position=position_dodge(width=0.75)) + 
  geom_point(size=2, position=position_dodge(width=0.75)) + 
  scale_color_manual(values=c(4,2), name="Prediction")+ 
  theme_bw() + 
  scale_y_discrete(limits=unique(eststate$state)) +  
  coord_cartesian(xlim=c(0.98,1.02)) +  
  theme(legend.position="top") + 
  labs(title="Comparison of state-specific risk estimates") + 
  xlab("RR") + ylab("") 
 
################################################################################ 
# SAVE ARTICLE-STYLE PLOTS 
 
# MAP OF CITY-SPECIFIC BLUPS (VERSION 2) 
ggplot(mapstate, aes(long, lat, group=group)) + 
  geom_polygon(fill=NA, col="grey") +  
  borders("usa", col="black") + 
  geom_point(aes(group=NULL, col=rrcat), alpha=0.6, size=5,  
    data=data.frame(long=long,lat=lat)) + 
  scale_color_brewer(name="RR", palette="YlOrRd") + 
  xlim(min(mapstate$long), max(mapstate$long)) + 
  ylim(min(mapstate$lat), max(mapstate$lat)) + 
  theme_void() + 
  theme(legend.position=c(1,0), legend.justification=c(1.2,-0.1)) + 
  coord_quickmap() 
ggsave("figures/multilevmap.pdf", height=5, width=9) 
 
# FOREST PLOT (VERSION 2) 
ggplot(eststate, aes(fit, state, col=model)) +  
  geom_vline(xintercept=1) + 
  geom_errorbar(aes(xmin=ci.lb, xmax=ci.ub), width=0.6, alpha=0.5, 
    position=position_dodge(width=0.75)) + 
  geom_point(size=2, position=position_dodge(width=0.75)) + 
  scale_color_manual(values=c(4,2), name="Prediction")+ 
  theme_bw() + 
  scale_y_discrete(limits=unique(eststate$state)) +  
  coord_cartesian(xlim=c(0.98,1.02)) +  
  theme(legend.position="top") + 
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  xlab("RR") + ylab("") 
ggsave("figures/multilevforest.pdf", height=9, width=5) 
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# 03.doseresp.R 
 
#########################################################################
####### 
# R code for the analysis in: 
# 
#  Sera F, Gasparrini A. Extended two-stage designs for environmental research. 
#    Environmental Health. 2022;21:41. 
#  https://doi.org/10.1186/s12940-022-00853-z 
# 
# * an updated version of this code, compatible with future versions of the 
#   software, is available at: 
#   https://github.com/gasparrini/Extended2stage 
################################################################################ 
 
################################################################################ 
# MODELLING REPEATED MEASURES AND DOSE-RESPONSE RELATIONSHIPS 
################################################################################ 
 
# LOAD PACKAGES 
library(mixmeta) ; library(dlnm) ; library(splines) ; library(scales) 
 
# LOAD COEF/VCOV FROM FIRST-STAGE MODELS 
tmeanagepar <- read.csv(file="data/tmeanagepar.csv") 
coef <- as.matrix(tmeanagepar[,grep("coef", names(tmeanagepar))]) 
vcov <- as.matrix(tmeanagepar[,grep("vcov", names(tmeanagepar))]) 
 
# CITY-SPECIFIC META-DATA 
cityinfo <- tmeanagepar[,1:5,] 
 
################################################################################ 
# RUN MODELS 
 
# MODEL IGNORING CLUSTERING 
model0 <- mixmeta(coef~agecat, vcov, data=cityinfo, method="ml") 
summary(model0) 
 
# MODEL CONSIDERING CLUSTERING 
model1 <- update(model0, random=~1|city) 
summary(model1) 
 
# DEFINE AGE AS CONTINUOUS VARIABLE 
cityinfo$age <- c(60,70,85)[factor(cityinfo$agecat, 
c("under65","65to74","75p"))] 
 
# MODEL WITH LINEAR EFFECT OF AGE 
model2 <- update(model1, .~age) 
summary(model2) 
 
# MODEL WITH NON-LINEAR EFFECT OF AGE 
model3 <- update(model1, .~ns(age, df=2)) 
summary(model3) 
 
# MODEL COMPARISON AND TESTS 
AIC(model0, model1, model2, model3) 
BIC(model0, model1, model2, model3) 
drop1(model0, test="Chisq") 
drop1(model1, test="Chisq") 
drop1(model2, test="Chisq") 
drop1(model3, test="Chisq") 
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################################################################################ 
# PREDICT AND PLOT FOR GIVEN AGES   
 
# DEFINE THE AGE VALUES 
datapred <- data.frame(age=6:9*10) 
 
# PREDICT COEF/VCOV 
pred <- predict(model3, datapred, vcov=T) 
 
# LOAD AVERAGE TEMPERATURE DISTRIBUTION ACROSS CITIES 
avgtmeansum <- read.csv("data/avgtmeansum.csv") 
tmean <- avgtmeansum$tmean 
 
# DEFINE SPLINE TRANSFORMATION ORIGINALLY USED IN FIRST-STAGE MODELS 
knots <- tmean[avgtmeansum$perc %in% paste0(c(50,90), ".0%")] 
bvar <- onebasis(tmean, fun="bs", degree=2, knots=knots) 
 
# PREDICT FOR 80-YEAR-OLD 
cen <- tmean[which.min((bvar%*%pred[[3]]$fit))] 
cp <- crosspred(bvar, coef=pred[[3]]$fit, vcov=pred[[3]]$vcov, 
  model.link="log", at=tmean, cen=cen) 
 
# PLOTTING LABELS 
xperc <- c(0,1,5,25,50,75,90,99,100) 
xval <- tmean[avgtmeansum$perc %in% paste0(xperc, ".0%")] 
 
# PLOT 
plot(cp, ylim=c(0.9,1.4), xlab="Temperature percentile", ylab="RR", 
  lab=c(6,5,7), las=1, lwd=1.5, xaxt="n", mgp=c(2.5,1,0), cex.axis=0.8, col=3, 
  ci="n", main="Temperature-mortality association") 
axis(1, at=xval, labels=paste0(xperc, "%"), cex.axis=0.8) 
abline(v=cen, lty=2, col=grey(0.8)) 
 
# ADD PREDICTIONS FOR OTHER AGES 
for(i in c(1,2,4)) { 
  cp <- crosspred(bvar, coef=pred[[i]]$fit, vcov=pred[[i]]$vcov, 
    model.link="log", at=tmean, cen=cen) 
  lines(cp, lwd=1.5, col=i) 
} 
legend("top", as.character(datapred$age), lwd=1.5, col=1:4, bty="n", inset=0.1, 
  title="Age", ncol=4) 
mtext("Age patterns") 
 
################################################################################ 
# SAVE ARTICLE-STYLE PLOT 
 
# GRAPHICALS PARAMETERS 
oldpar <- par(no.readonly = TRUE) 
par(mar=c(4,4,1,0.5), cex.axis=0.8) 
 
# PREDICT FOR 80-YEAR-OLD 
cp <- crosspred(bvar, coef=pred[[3]]$fit, vcov=pred[[3]]$vcov, 
  model.link="log", at=tmean, cen=cen) 
 
# PLOT 
plot(cp, ylim=c(0.9,1.4), xlab="Temperature percentile", ylab="RR", 
  lab=c(6,5,7), las=1, lwd=1.5, xaxt="n", mgp=c(2.5,1,0), col=3, ci="n") 
axis(1, at=xval, labels=paste0(xperc, "%")) 
abline(v=cen, lty=2, col=grey(0.8)) 
 
# ADD PREDICTIONS FOR OTHER AGES 
for(i in c(1,2,4)) { 
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  cp <- crosspred(bvar, coef=pred[[i]]$fit, vcov=pred[[i]]$vcov, 
    model.link="log", at=tmean, cen=cen) 
  lines(cp, lwd=1.5, col=i) 
} 
legend("top", as.character(datapred$age), lwd=1.5, col=1:4, bty="n", inset=0.1, 
  title="Age", ncol=4) 
 
# RESET 
par(oldpar) 
 
# PRINT 
dev.print(pdf, file="figures/dosresp.pdf", height=4.5, width=6) 
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# 04.longitudinal.R 
 
################################################################################ 
# R code for the analysis in: 
# 
#  Sera F, Gasparrini A. Extended two-stage designs for environmental research. 
#    Environmental Health. 2022;21:41. 
#  https://doi.org/10.1186/s12940-022-00853-z 
# 
# * an updated version of this code, compatible with future versions of the 
#   software, is available at: 
#   https://github.com/gasparrini/Extended2stage 
################################################################################ 
 
################################################################################ 
# LONGITUDINAL ANALYSIS OF EFFECT MODIFICATION BY AIR CONDITIONING 
################################################################################ 
 
# LOAD PACKAGES 
library(mixmeta) ; library(dlnm) ; library(splines) 
library(nlme) ; library(scales) 
 
# LOAD FIRST-STAGE DATA 
tmeanperpar <- read.csv(file="data/tmeanperpar.csv") 
 
# LOAD AIR CONDITIONING DATA, RESHAPE TO LONG, REMOVE MISSING 
acdata <- read.csv(file="data/acdata.csv") 
acdata <- reshape(acdata, varying=seq(ncol(acdata))[-1], idvar="city", sep="", 
  timevar="year", direction="long") 
acdata <- na.omit(acdata[with(acdata, order(city, year)),]) 
 
# SUBSET ORIGINAL DATA TO CITIES WITH AC MEASURES 
tmeanperpar <- tmeanperpar[tmeanperpar$city %in% acdata$city,] 
 
# ESTRACT COEF/VCOV FROM FIRST-STAGE MODELS 
coef <- as.matrix(tmeanperpar[,grep("coef", names(tmeanperpar))]) 
vcov <- as.matrix(tmeanperpar[,grep("vcov", names(tmeanperpar))]) 
 
# CITY-SPECIFIC META-DATA 
cityinfo <- tmeanperpar[,1:6,] 
 
# PERFORM RANDOM-EFFECTS MODEL TO OBTAIN SMOOTH FIT OF AC TREND 
mlme <- lme(ac ~ bs(year, degree=2, df=4), data=acdata, 
  random=list(city=pdDiag(~ bs(year, degree=2, df=4)))) 
 
# PREDICT AC FOR EACH PERIOD IN EACH CITY 
cityinfo$ac <- predict(mlme, cityinfo) 
summary(cityinfo$ac) 
# PROBLEM: ABOVE 100% 
 
################################################################################ 
 
# MODEL WITH NO META-PREDICTOR 
model0 <- mixmeta(coef, vcov, data=cityinfo, method="ml", 
  random=~1|city, bscov="diag") 
 
# MODEL WITH AC AND TIME (TAKES SOME TIME) 
# NB: ADD control=list(showiter=TRUE) TO INSPECT THE ITERATIVE OPTIMIZATION 
model1 <- mixmeta(coef ~ac+ns(year, knots=1995), vcov, data=cityinfo, 
  method="ml", random=~ns(year, knots=1995)|city, bscov="diag") 
 
# TEST (TAKES EVEN LONGER) 
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drop1(model1, test="Chisq") 
 
################################################################################ 
# PLOT THE AVERAGE EXPOSURE-RESPONSE AT LOW HIGH AC IN YEAR 2000 
 
# LOAD AVERAGE TEMPERATURE DISTRIBUTION ACROSS CITIES 
avgtmeansum <- read.csv("data/avgtmeansum.csv") 
tmean <- avgtmeansum$tmean 
 
# DEFINE SPLINE TRANSFORMATION ORIGINALLY USED IN FIRST-STAGE MODELS 
knots <- tmean[avgtmeansum$perc %in% paste0(c(50,90), ".0%")] 
bvar <- onebasis(tmean, fun="bs", degree=2, knots=knots) 
 
# DEFINE THE CENTERING POINT (AT POINT OF MINIMUM RISK) 
cen <- tmean[which.min(bvar%*%coef(model0))] 
 
# PLOTTING LABELS 
xperc <- c(0,1,5,25,50,75,90,99,100) 
xval <- tmean[avgtmeansum$perc %in% paste0(xperc, ".0%")] 
 
# DEFINE THE VALUES (AC AT 20-80%, YEAR 2000) 
datapred <- data.frame(ac=c("Low AC use"=20,"High AC use"=80), year=2000) 
 
# PREDICT COEF/VCOV 
pred <- predict(model1, datapred, vcov=T) 
 
# PREDICT ASSOCIATIONS 
cp1 <- crosspred(bvar, coef=pred[[1]]$fit, vcov=pred[[1]]$vcov, 
  model.link="log", at=tmean, cen=cen) 
cp2 <- crosspred(bvar,coef=pred[[2]]$fit,vcov=pred[[2]]$vcov, 
  model.link="log", at=tmean, cen=cen) 
 
# EXPOSURE-RESPONSE PLOT 
plot(cp1, ylim=c(0.9,1.4), xlab="Temperature percentile", ylab="RR", 
  lab=c(6,5,7), las=1, lwd=1.5, xaxt="n", mgp=c(2.5,1,0), cex.axis=0.8, col=3, 
  ci.arg=list(col=alpha(3,0.3)), main="Temperature-mortality association") 
axis(1, at=xval, labels=paste0(xperc, "%"), cex.axis=0.8) 
lines(cp2, lwd=1.5, col=4, ci="area", ci.arg=list(col=alpha(4,0.3))) 
abline(v=cen, lty=2, col=grey(0.8)) 
mtext("By AC prevalence") 
legend("topleft", c(rownames(datapred)), lwd=1.5, col=c(3,4), bty="n", 
inset=0.1) 
 
################################################################################ 
# PLOT THE TREND IN RR AT 99TH TMEAN PERC UNDER DIFFERENT AC SCENARIOS 
 
# PREDICT TREND IN AVERAGE AC USE (NB: USE level ARGUMENT IN predict) 
acpred <- predict(mlme, data.frame(year=1987:2000), level=0) 
 
# AVERAGE TMEAN AT 99TH PERCENTILE 
tmean99 <- tmean[avgtmeansum$perc=="99.0%"] 
 
# DEFINE THE SCENARIOS: CONSTANT AC IN 1987 AND ACTUAL AC TREND 
datapred1 <- data.frame(ac=acpred[1], year=1987:2000) 
datapred2 <- data.frame(ac=acpred, year=1987:2000) 
 
# PREDICT COEF/VCOV 
pred1 <- predict(model1, datapred1, vcov=T) 
pred2 <- predict(model1, datapred2, vcov=T) 
 
# PREDICT ASSOCIATIONS 
rr99 <- t(sapply(seq(nrow(datapred1)), function(i) { 
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  # PREDICT ASSOCIATIONS AT 99TH PERCENTILE 
  cp1 <- crosspred(bvar, coef=pred1[[i]]$fit, vcov=pred1[[i]]$vcov, 
    model.link="log", at=tmean99, cen=cen) 
  cp2 <- crosspred(bvar,coef=pred2[[i]]$fit,vcov=pred2[[i]]$vcov, 
    model.link="log", at=tmean99, cen=cen) 
   
  # EXTRACT RR ANC CI 
  est <- c(with(cp1, c(allRRfit, allRRlow, allRRhigh)),  
    with(cp2, c(allRRfit, allRRlow, allRRhigh))) 
  names(est) <- c(t(outer(c("rr1","rr2"), c("","low","high"), paste0))) 
   
  # RETURN 
  est 
})) 
 
# PLOT 
plot(1987:2000, seq(1987:2000), type="n", ylim=range(rr99)*c(0.93,1.07),  
  ylab="RR", xlab="Year", bty="l", las=1, mgp=c(2.5,1,0), cex.axis=0.8, 
  main="Trend in risk") 
arrows(1987:2000-0.1, rr99[,2], 1987:2000-0.1, rr99[,3], col=alpha(4,0.5), 
  code=3, angle=90, length=0.05, lwd=2) 
points(1987:2000-0.1, rr99[,1],  type="o", col=4, pch=19) 
arrows(1987:2000+0.1, rr99[,5], 1987:2000+0.1, rr99[,6], col=alpha(2,0.5), 
  code=3, angle=90, length=0.05, lwd=2) 
points(1987:2000+0.1, rr99[,4], type="o", col=2, pch=19) 
abline(h=1) 
mtext("By scenario of trends in AC prevalence") 
legend("top", c("Constant at 1987","Actual trend"), pch=19, col=c(4,2), bty="n", 
  inset=0.1) 
 
################################################################################ 
# SAVE ARTICLE-STYLE PLOT 
 
# GRAPHICALS PARAMETERS 
layout(t(1:2)) 
oldpar <- par(no.readonly = TRUE) 
par(mar=c(4,4,2,0.5), cex.axis=0.8) 
 
# PLOTS 
plot(cp1, ylim=c(0.9,1.4), xlab="Temperature percentile", ylab="RR", 
  lab=c(6,5,7), las=1, lwd=1.5, xaxt="n", mgp=c(2.5,1,0), col=3, 
  ci.arg=list(col=alpha(3,0.3)), main="Temperature-mortality association") 
axis(1, at=xval, labels=paste0(xperc, "%")) 
lines(cp2, lwd=1.5, col=4, ci="area", ci.arg=list(col=alpha(4,0.3))) 
abline(v=cen, lty=2, col=grey(0.8)) 
legend("topleft", c(rownames(datapred)), lwd=1.5, col=c(3,4), bty="n", 
  inset=0.1, title="AC prevalence") 
 
plot(1987:2000, seq(1987:2000), type="n", ylim=range(rr99)*c(0.93,1.07),  
  ylab="RR", xlab="Year", bty="l", las=1, mgp=c(2.5,1,0), main="Trend in risk") 
arrows(1987:2000-0.1, rr99[,2], 1987:2000-0.1, rr99[,3], col=alpha(4,0.5), 
  code=3, angle=90, length=0.05, lwd=2) 
points(1987:2000-0.1, rr99[,1],  type="o", col=4, pch=19) 
arrows(1987:2000+0.1, rr99[,5], 1987:2000+0.1, rr99[,6], col=alpha(2,0.5), 
  code=3, angle=90, length=0.05, lwd=2) 
points(1987:2000+0.1, rr99[,4], type="o", col=2, pch=19) 
abline(h=1) 
legend("top", c("Constant at 1987","Actual trend"), pch=19, col=c(4,2), bty="n", 
  inset=0.1, title="Scenario of AC prevalence") 
 
# RESET 



19 
 

par(oldpar) 
layout(1) 
 
# PRINT 
dev.print(pdf, file="figures/longitudinal.pdf", height=5, width=12) 
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Abstract

Background: The health burden associated with temperature is expected to increase due

to a warming climate. Populations living in cities are likely to be particularly at risk, but

the role of urban characteristics in modifying the direct effects of temperature on health

is still unclear. In this contribution, we used a multi-country dataset to study effect modi-

fication of temperature–mortality relationships by a range of city-specific indicators.

Methods: We collected ambient temperature and mortality daily time-series data for 340

cities in 22 countries, in periods between 1985 and 2014. Standardized measures of de-

mographic, socio-economic, infrastructural and environmental indicators were derived

from the Organisation for Economic Co-operation and Development (OECD) Regional

and Metropolitan Database. We used distributed lag non-linear and multivariate meta-

regression models to estimate fractions of mortality attributable to heat and cold (AF%)

in each city, and to evaluate the effect modification of each indicator across cities.

Results: Heat- and cold-related deaths amounted to 0.54% (95% confidence interval: 0.49 to

0.58%) and 6.05% (5.59 to 6.36%) of total deaths, respectively. Several city indicators modify

the effect of heat, with a higher mortality impact associated with increases in population den-

sity, fine particles (PM2.5), gross domestic product (GDP) and Gini index (a measure of income

inequality), whereas higher levels of green spaces were linked with a decreased effect of heat.

Conclusions: This represents the largest study to date assessing the effect modification

of temperature–mortality relationships. Evidence from this study can inform public-

health interventions and urban planning under various climate-change and urban-

development scenarios.

Key words: Temperature, heat, mortality, epidemiology, cities, climate

Key Messages

• Urban populations may experience higher risks due to exposure to non-optimal temperature, particularly in a chang-

ing climate, but the role of urban characteristics in modifying such direct health effects is still unclear.

• This represents the largest study to date assessing the effect modification of temperature–mortality relationships, per-

formed by comparing different cities across the world and using standardized indicators.

• The effects of heat on mortality are higher in cities characterized by a higher level of inequalities, higher air-pollution

exposure, fewer green spaces and lower availability of health services.

• Evidence from this study can inform public-health interventions and urban planning under various climate-change

and urban-development scenarios.
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Introduction

Several studies have evaluated the relationship between

ambient temperature and mortality, consistently reporting

increased risks at high and low temperatures.1–3 These

risks are associated with a substantial health burden across

populations living in different parts of the world, indicat-

ing that exposure to non-optimal temperature represents

an important global contributor to excess mortality.1–3

The situation is not likely to improve in the context of cli-

mate change, as the health burden associated with non-

optimal temperature is projected to increase in a warming

planet.4 In addition, scenarios of socio-economic pathways

suggest that future susceptibility is likely to increase with

ageing populations, rapid urbanization and growing

inequalities.5

Populations living in cities are particularly vulnerable to

non-optimal temperature. The structure of urban areas

could enhance temperature-related health risks through a

combination of higher exposures (e.g. urban heat island ef-

fect) and higher vulnerability (e.g. population density and

socio-economic differentials).6,7 Evidence of this excess

health burden, particularly during extreme events as in

Chicago in 1995, Paris in 2003 and Moscow in 2010, has

motivated the development of public-health measures to

reduce preventable mortality and morbidity (e.g. Heat

Health Watch Warning System). Several heat health watch

warning systems (also called ‘heat warning systems’ or

‘heat health warning systems’) have been implemented in

several countries (e.g. the USA, Italy, Germany, France,

Spain, Portugal, the UK, Australia, Canada, South Korea

and China), some of which attempt to target potentially

vulnerable groups in urban communities.8,9 In this context,

identifying aspects that modify the susceptibility to the

impacts of non-optimal temperatures can help improve

health-protection programmes and contribute to the devel-

opment of city-level mitigation and adaptation strategies,

including urban planning and design.

A number of studies have contributed to this topic, in-

vestigating potential effect modifiers of temperature–

mortality associations. In particular, some studies have

adopted ecological study designs to assess community-level

factors, such as urbanization, number of green areas or

vegetative covering.10–19 However, most of the published

studies included homogeneous populations; only a few

compared regions with different geographic and climatic

conditions, and populations with highly variable socio-

economic and demographic characteristics.

In this study, we used data from the Multi-City Multi-

Country (MCC) collaborative network (http://mccstudy.

lshtm.ac.uk/) to evaluate the role of cities’ characteristics

in modifying susceptibility to high and low temperatures.

The MCC database includes time-series data for hundreds

of cities in 22 countries and provides a unique opportunity

to compare health effects across highly heterogeneous pop-

ulations. Specifically, we linked the MCC data with stan-

dardized measures of contextual factors at the city level

and analysed their effect modification for mortality risks

associated with both heat and cold.

Methods

MCC data

The analysis is restricted to 340 cities or metropolitan areas

(from now on generally referred to as cities) available in the

MCC dataset, distributed across 22 countries. For each loca-

tion, the dataset comprises time series of daily mean temper-

ature and mortality counts for all causes or non-external

causes only (International Classification of Diseases—ICD-

9: 0–799; ICD-10: A00–R99) in largely overlapping periods

ranging from 1 January 1985 to 31 December 2014. The

full list of cities, together with additional information, can

be found in Supplementary Material A and B, available as

Supplementary data at IJE online.

Indicators

OECD Regional and Metropolitan Database

We collected data on several city-specific socio-economic

indicators and urban development from the Organisation

for Economic Co-operation and Development (OECD)

Regional and Metropolitan Database.20,21 The OECD

Regional Database provides a set of comparable statistics

and indicators on about 2000 regions and 281 OECD met-

ropolitan areas in 34 OECD member countries and other

economies (http://stats.oecd.org/Index.aspx). They include

yearly time series, from 2000 to 2014, for around 40 indi-

cators of demography, economic, labour-market, social,

environmental and innovation themes. Details on the re-

gional and metropolitan OECD Database can be found in

a specific OECD publication.22 OECD follows a strict

Quality Framework for Statistical Activities.23 The OECD

quality framework defines two dimensions: the quality of

national statistics that OECD receives and the quality of

OECD internal processes for collection, processing, analy-

sis and dissemination of data and metadata. OECD statis-

tics have a high reputation for quality and integrity

throughout the world and we are confident that the data

we used have a high level of accuracy.

First, 136 cities in the MCC database were linked with

the OECD Metropolitan Database at the metropolitan

area (MA) level. In addition, all 340 MCC cities were
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linked with the OECD Regional Database both at small-

region and large-region geographical levels. The former

represents provinces or prefectures, the latter administra-

tive regions or small states.20 In total, a set of 14 indicators

were selected from OECD Regional and Metropolitan

Databases. These indicators encompass demographic,

socio-economic, health-system and urban characteristics

(Table 1). For each indicator, we used the data collected at

the smallest geographical level available, using the value

measured in a single year or averaged across multiple years

in order to minimize the amount of missing data. The defi-

nition of each OECD indicator considered in this analysis

is provided in Table 1.

The set of indicators related to urbanization (e.g. urban-

ized area, green area, concentration of population in the

core, Sprawl index) is available for 136 MCC cities that are

in the OECD MA Database. A subset of socio-economic

indicators (e.g. Gini index, educational level) is available

for OECD country members, but not for OECD country

partners (e.g. China, Brazil, Colombia, Iran, Moldova,

Philippines, Viet Nam). Other indicators (e.g. GDP, % pop-

ulation �65 years, unemployment rate) were available

also among some OECD country partners (Brazil, China,

Colombia). For each indicator, the list of countries with

available information is reported in Supplementary Table 1,

available as Supplementary data at IJE online.

Table 1. OECD Regional and Metropolitan Database indicators included in the analysis: definition, years and geographical level

of observation

Indicator Definition Years MA SR LR

Demographic

% population �65 years % old population (65 years or more) 2000 136 147 37

Life expectancy (years) Life expectancy at birth (years) 2005–06; 2010–11 288

Socio-economic

GDP (US$) GDP per capita (US$) (current prices, current PPP) 2001; 2010 136 59 130

Labour productivity (US$) Labour productivity (Gross Value Added (GVA) per

worker) (current prices, current PPP)

2005; 2009–10 280

Educational level (%) Share of labour force with at least secondary-level

education

2000 265

Unemployment rate (%) Unemployment rate (%) 2001; 2010 136 130 41

Gini index Gini (disposable income, after taxes and transfers); high

index means high inequality

2009–14 280

Poverty gap Poverty rate after taxes and transfers; the poverty line

reflects 60% of the national median income

2009–14 280

Health system

Hospital-bed rates Hospital-bed rates (hospital beds per 10 000 population) 2008–10 279

Urban characteristics

Type of surrounding region

(rural/urban)

The OECD regional typology is based on the following

criteria: population density, degree of rurality and size

of the urban centres located within a region:

2000 272

Predominantly urban¼1

Intermediate¼2

Predominantly rural¼3

Predominantly rural close to a city¼4

Predominantly rural remote¼5

Urbanized area share (%) Urbanized area share (%): share of the urbanized area over

total land of a metropolitan area

2000–01; 2006 136

Green area (square metres

per million persons)

Land in the MA covered by vegetation, forest and parks in

2000 (source: MODIS MCD12Q1), divided by the popu-

lation of the MA and then multiplied by 1 million

2000 136

Concentration of population

in the core (%)

Share of population living in the core areas over the total

metropolitan population

2000 136

Sprawl The sprawl index measures the growth [over the periods

2000–06 and 2000–12, except Japan (1997–2006) and

the USA (2001–06 and 2001–11)] in built-up areas

adjusted for the growth in the city population

2006 100

MA, city/metropolitan area; SR, small region; LR, large region.
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Air-pollution indicators

To characterize long-term air-pollution exposures in each

city, we used global estimates of annual fine particulate

(PM2.5) levels of the Data Integration Model for Air

Quality available for the year 201424 and global annual

mean ground-level nitrogen dioxide (NO2) concentrations

(3 years running mean for year 2001), developed by

Geddes et al.25 Both global estimates were calculated for

grid cells with a spatial resolution of 0.1� for latitude and

longitude.

We linked the 340 MCC cities with the databases con-

taining the PM2.5 and the NO2 global estimates.

Specifically, for each city, we assigned the PM2.5 and NO2

level of the grid cell [spatial resolution (0.1� � 0.1�), which

is approximately 11� 11 km at the equator] including the

coordinates of the city as defined by the World Cities data-

base (https://simplemaps.com/data/world-cities).26

Population and density data

The World Cities database was used to retrieve population

and density indicators for the year 2015. The former is an

estimate of the city’s population, whereas the latter is de-

fined as population per square kilometre.

Weather variables

For each city, we calculated the average daily mean tem-

perature and daily mean temperature range from the ob-

served daily temperature distribution in the MCC dataset,

in the city-specific observation period (between 1985 and

2014). These were used as basic indicators to avoid con-

founding by weather/climatological conditions.

Statistical methods

Description of the indicators

We summarize the distribution of indicators by country

with the median, standard deviation and interquartile

range (IQR). The relationships between indicators were ex-

amined first through the correlation matrix among all pairs

of indicators. To remove the between-countries effects

from the correlation, for all cities of a given country, the

original indicator value was scaled by the country average

indicator value. The country-adjusted correlation matrix

was used as the input of a principal component analysis

(PCA). The PCA is a statistical method that identifies fac-

tors (principal components) that best explain the co-

variability of the data. The principal components show

groups of indicators that co-vary similarly in most cities, as

can be illustrated in a score plot.

Association between the indicators and temperature–

mortality impacts

We adopted a three-step approach to evaluate the associa-

tion between the indicators and temperature–mortality

impacts. Briefly, in the first stage, we calculated the city-

specific temperature–mortality associations, followed by

the estimation of the corresponding heat- and cold-

attributable fractions and, in the last step, we fitted meta-

regression models to evaluate the association between each

indicator and heat and cold AF%. The three steps are de-

scribed in more detail below.

First-stage time-series analysis

We estimated the city-specific temperature–mortality associ-

ations through quasi-Poisson regression27 and distributed

lags non-linear models (DLNMs).28 We modelled the cross-

basis function of daily mean temperature with a natural cu-

bic spline function for the temperature dimension with three

internal knots at the 10th, 75th and 90th percentiles of the

city area-specific temperature distributions, and natural cu-

bic spline with an intercept and two internal knots placed in

equally spaced values in the log scale for the lag dimension.

We extended the lag period to 21 days to capture the long

delay in cold–mortality associations. We included a natural

cubic B-spline function with 8 degrees of freedom (df) per

year to control for long-term trends and seasonality, along

with an indicator for day of the week. The model selection

was based on previous work using a similar dataset.3 We

tested these modelling choices in a sensitivity analysis.

Estimation of city-specific heat- and cold-
attributable fraction

To estimate the city-specific temperature at which mortal-

ity was minimal (called minimum mortality temperature,

MMT) with greater precision, we applied a shrinkage pro-

cedure that borrows information across cities in the same

country with similar climate. Details of this method are

given in previous work.3 We estimated attributable frac-

tions (AF%, in percentage) using the first-stage (unshrunk)

cumulative exposure–response associations, following a

procedure described elsewhere.29 In summary, we com-

puted mortality attributable to cold and heat by summing

the temperature-related deaths occurring in days with tem-

peratures lower or higher than the MMT, and then divid-

ing by the total number of deaths. We calculated empirical

standard error using Monte Carlo simulations,29 assuming

a multivariate normal distribution of the first-stage re-

duced coefficients.
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Association between the indicators and
heat- and cold-attributable fraction

We estimated whether the city-specific estimated

temperature–mortality associations differed by city character-

istics. For each indicator, we used the set of cities with avail-

able information and two separate meta-regression models

were used to evaluate the association between the indicator

and heat and cold AF% including indicators for countries,

and average and range of daily mean temperature as meta-

predictors. We tested and reported residual heterogeneity us-

ing the Cochran Q test and I2 statistic, respectively.30

Results

Description of the sample

Descriptive statistics of mortality and temperature data

are reported in Table 2. Almost 50 million deaths were

observed in the study period. The 340 cities are located

in 22 countries, 13 of which, according to the

International Monetary Fund, are developed countries

whereas 9 are developing countries (Table 2). Figure 1

shows the geographical distribution of the 340 cities and

their average daily mean temperature, illustrating how

this study covers various regions and climatic areas

across the world.

Descriptive statistics of the 18 indicators considered in

the analysis are shown in Table 3. Cities considered in this

analysis show highly variable socio-economic, demo-

graphic, urban characteristics and air-pollution levels.

Weather variables, country and attributable

mortality

Overall, we estimated that 0.54% (95% confidence inter-

val: 0.49 to 0.58%) and 6.05% (5.59 to 6.36%) of mortal-

ity in the 340 MCC cities were attributable to heat and

cold, respectively (Supplementary Table 2, available as

Supplementary data at IJE online). Larger between-city

heterogeneity was observed for heat AF% (I2¼ 85.4%)

than for cold AF% (64.2%). Country explained 15.7 and

10.9% of heterogeneity for heat AF% and cold AF%, re-

spectively. In total, weather variables explained a further

22% of cold AF% heterogeneity, whereas heat AF% het-

erogeneity decreased by only 2.3%.

Demographic, socio-economic, environmental

and urban indicators and attributable mortality

Associations between the indicators and heat- and cold-

related AF% are reported in Figure 2 and Supplementary

Table 3, available as Supplementary data at IJE online.

Results are expressed as AF% variation for a standard

Table 2. MCC dataset: number of cities, deaths, period of observation and mean daily average temperature by country

Country Cities Level of developmenta Deaths Period Daily average temperature (degrees Celsius)—mean (range)

Australia 3 Advanced economy 1 177 950 1988–2009 18.1 [5.6; 35]

Brazil 18 Developing economy 3 401 136 1997–2011 24.6 [3.6; 33.5]

Canada 26 Advanced economy 2 989 901 1986–2011 6.8 [–39.7; 32.1]

Chile 4 Developing economy 325 462 2004–14 13.7 [–1.7; 27.5]

China 15 Developing economy 950 130 1996–2008 15.1 [–23.7; 36.4]

Colombia 5 Developing economy 956 539 1998–2013 23.4 [10.5; 31.1]

Finland 1 Advanced economy 130 325 1994–2011 6.2 [–22.9; 25.5]

France 18 Advanced economy 1 197 555 2000–10 12.6 [–11.6; 32.4]

Iran 1 Developing economy 121 585 2004–13 16.0 [–14.7; 33.3]

Italy 16 Advanced economy 645 420 2001–10 15.7 [–10.7; 39.5]

Japan 7 Advanced economy 3 123 487 1985–2009 15.0 [–12.0; 33.1]

Mexico 10 Developing economy 2 980 086 1998–2014 18.8 [0.4; 35.3]

Moldova 4 Developing economy 59 906 2001–10 10.7 [–25.0; 32.6]

Philippines 4 Developing economy 274 516 2006–10 28.2 [21.8; 33.3]

South Korea 7 Advanced economy 1 726 938 1992–2010 13.7 [–15.7; 33.0]

Spain 51 Advanced economy 3 479 881 1990–2010 15.5 [–10.9; 36.8]

Sweden 1 Advanced economy 201 197 1990–2010 7.2 [–21.5; 26.8]

Switzerland 8 Advanced economy 243 638 1995–2013 10.4 [–14.9; 29.0]

Taiwan 3 Advanced economy 765 893 1994–2007 24.0 [8.1; 33.0]

UK 1 Advanced economy 1 325 902 1990–2012 11.6 [–5.5; 29.1]

USA 135 Advanced economy 22 953 896 1985–2006 14.9 [–31.4; 41.4]

Vietnam 2 Developing economy 108 173 2009–13 27.1 [14.4; 33.9]

aInternational Monetary Fund Advanced and Developing Economies List. World Economic Outlook, April 2016, p. 148; World Economic Outlook, April

2015, pp. 150–53, retrieved 26 June 2015; World Economic Outlook, Database—WEO Groups and Aggregates Information, April 2015, retrieved 26 June 2015.
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deviation (SD) increase of the indicator (provided in Table

3). No indicator is associated with cold-related AF. For

heat, among demographic indicators, high life expectancy

and high population density predicted high AF. Regarding

the socio-economic indicators, GDP and educational level

were positively associated with heat-related AF%. An in-

verse association was observed between number of hospital

beds pro-capita and heat-related AF%. Cities with more

inequalities (higher Gini index) had a larger mortality im-

pact attributable to heat. Among the urban and environ-

mental indicators considered, cities surrounded by a

predominantly rural region and those with a larger green

surface showed lower heat-related AF%, whereas PM2.5

was positively associated with heat AF%.

Figure 1. Average daily mean temperature in 340 MCC cities.

Table 3. Descriptive statistics of the 18 city-specific indicators considered in the analysis

Indicator Number of cities Median IQR range Range SD

Demographic

Population 340 418 800 [174 184; 1 416 981] [7678; 26 174 599] 3 068 757.2

Density (population/km2) 339 2771.0 [1282.6; 5638.6] [9.3; 49 045.1] 7289.3

% population �65 years 320 12.8% [10.4%; 15.1%] [3.1%;27.2%] 4.7%

Life expectancy (years) 288 80.3 [78.5; 81.6] [70.6; 85.0] 2.3

Socio-economic

GDP (US$) 325 37 660 [27 096; 47 585] [3168; 78 444] 15 838.5

Labour productivity (US$) 280 70 450 [64 019; 79 388] [14 647; 366 027] 29 071.5

Educational level (%) 265 21.5% [19.8%; 25.6%] [9.0%; 39.3%] 5.3%

Unemployment rate (%) 307 6.5% [4.4%; 9.4%] [2.5%; 29.7%] 5.2%

Gini index 280 0.355 [0.315; 0.398] [0.253; 0.484] 0.047

Poverty gap 280 22.1% [18.2%; 26.3%] [9.2%;40.0%] 6.0%

Health system

Hospital-bed rates 279 29.0 [23.8; 35.3] [1.6; 192.0] 23.0

Urban characteristics

Type of surrounding region (rural/urban) 272 Predominantly urban¼125

Intermediate¼84

Predominantly rural¼63

Urbanized area (%) 136 13.8% [8.9%; 24.1%] [0.2%; 68.7%] 13.4%

Green area (m2 per million persons) 136 196.6 [37.6; 824.6] [0.01; 6660.6] 1042.9

Concentration of population in the core (%) 136 83.5% [72.8%; 93.4%] [22.6%;100.0%] 16.0%

Sprawl 100 –0.99 [–2.71; 1.79] [–12.13;10.97] 4.0

Air pollution

PM2.5 (mg/m3) 340 9.6 [8.2; 13.9] [4.7; 103.1] 13.2

NO2 (ppb) 339 2.37 [1.08; 4.47] [0.04; 23.3] 3.16
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To give some insight into the inter-relationship between

indicators and their association with attributable mortal-

ity, we performed a PCA. Supplementary Figures S1 and

S2, available as Supplementary data at IJE online, show

the correlation matrix and the results of the analysis. The

first two principal components explained 44.4% of the to-

tal inertia. The first component seems characterized by the

economic development of the MCC cities: high positive

loading scores (represented by arrows) were observed for

GDP, educational level and life expectancy. All these three

variables showed a positive association with heat-related

AF%. The second component characterized cities with

higher levels of air pollution (PM2.5 and NO2), unemploy-

ment rates, inequalities (Gini index), poverty gaps, popula-

tion and density. PM2.5, Gini index and density were all

positively associated with heat-related AF%.

Discussion

This study is based on the largest dataset ever collected to

assess city-level modifiers of the temperature–health asso-

ciations, which include more than 50 million deaths in 22

countries. The analysis allows investigating the heterogene-

ity of temperature-attributable mortality across 340 cities

with a wide range of demographic, socio-economic and

urban characteristics. Strengths of the study are the use of

a standardized set of indicators, as well as the application

of flexible statistical methods. Our findings suggest that

more developed cities are perhaps surprisingly character-

ized by higher mortality attributable to heat, as indicated

by the significant association with GDP, life expectancy

and educational level. Furthermore, a second pattern

emerged, with higher impact of heat on mortality in cities

characterized by high population density, inequalities, pol-

lution levels and fewer green spaces.

Cities have been centres of innovation and growth and

the engines of economic development, but they are particu-

larly vulnerable to the effects of climate change.6,31,32 The

nature of urban infrastructure creates microclimates that

affect temperature; the urban heat island effect is an exam-

ple, where cities are warmer than their surrounding hinter-

lands due to the thermal storage capacity of the built

environment.33 In our results, urban density is associated

with an increased heat effect, which is also shown in other

contextual studies.5,14,19

We used the OECD regional typology to characterize

the region surrounding the urban setting considered in the

analysis. This indicator is based on population density, de-

gree of rurality and size of the urban centres located within

the region. This indicators allows the identification of 63

Figure 2. Associations between the indicators and heat and cold AF%. Coefficients and 95% confidence intervals calculated from a meta-regression

model adjusted by country and weather variables. Results are expressed as AF% change for standard deviation increase in the indicators. The esti-

mates of the coefficients and 95% confidence intervals are reported in Supplementary Table 3, available as Supplementary data at IJE online.
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cities in predominately rural regions (mainly based in the

USA and Spain) and 84 in intermediate (both rural and ur-

ban) regions more evenly distributed across countries.

These cities show a lower heat effect—a result that could

be explained by a lower urban heat island effect and that is

consistent with the increased heat effect observed for urban

density.

Additional factors contribute to the vulnerability of cit-

ies. Among those of particular relevance are demographic

structure, low socio-economic status and social inequity.

In our study, we found a positive association between the

Gini index of the city’s region (an indicator of inequality)

and heat impact. This result is consistent with those ob-

served in contextual10,11,19,34 and individual35 studies

showing a higher heat effect on communities or subjects

with lower socio-economic status. Poorer housing condi-

tions, lower prevalence of air conditioning, poorer health

status and limited access to health care have been suggested

as factors responsible for the increased heat effect in more

deprived communities.10,11,19 The elderly are more sensi-

tive to non-optimal temperatures due to their higher preva-

lence of debilitating diseases, such as heart conditions,

Alzheimer’s disease and dementia,36 which are associated

with an increased effect of temperature on mortality.19 In

our study, we did not observe evidence of an association

between the proportion of people aged more than 65 years

and heat (or cold) attributable fraction. These results could

be partially explained by the limited range of variation in

age distributions across areas within the same country, as

shown in our study, where the IQR range of the country-

centred proportion aged more than 65 years was (–1.8%;

1.1%) on average within countries. Moreover, the propor-

tion of elderly populations is higher in less urbanized and

dense cities [þ2.5% (þ1.5%; þ3.5%)]. The limited range

of the exposure and possible confounding effect of urbani-

zation could have limited in our study the power to detect

the modifier role of age on the heat effect. We also note

that our data are community-level and that future work

with individual-level data is more suited to investigating

these issues.

Urbanization is part of the development process and is

generally associated with higher income, education and

productivity level33; this relationship is shown in our study

with a positive correlation (r¼0.33) between GDP and

city density. At the individual level, higher income and ed-

ucation have been associated with lower heat-related mor-

tality35 due to the higher quality of housing and better

access to information. In our study, however, heat-related

impacts are higher in cities with a higher economic devel-

opment characterized by a higher GDP, productivity, edu-

cational level and life expectancy. Using GDP as an

indicator, Anderson and Bell10 observed a similar positive

contextual association in 107 US urban communities,

whereas Hajat and Kosatky37 found a negative association

with GDP when meta-regressing heat coefficients across

studies internationally. No association was observed at a

contextual level in three other studies.13,34,38 The increased

impacts of heat on cities with higher GDP, educational

level and life expectancy are not necessarily due to those

cities being more unequal, as the correlation of those indi-

cators with Gini is low. One explanation might be an asso-

ciation between economic development with features of

urbanization such as the urban heat island, but further

studies, including individual-level socio-economic indica-

tors, are needed to clarify this.

The vulnerability of cities to climate change has moti-

vated the development of city-level adaptation measures,6,39

among which are urban planning and design including,

for instance, cooling by greening and ventilation. Several

studies have evaluated the modification effect of urban-

landscape characteristics on the temperature–mortality

association.40–49 They used different neighbour-level indica-

tors related to urban land use and land cover (e.g. impervi-

ous surface, open space, vegetation abundance), with some

evidence of a protective effect of vegetation to reduce the

heat effect on mortality.41,44,49 These results are consistent

with the negative association between green areas and heat

AF% observed in our multi-city study.

Air pollution is also a well-known public-health risk

factor. Particulate matters (PM10, PM2.5), ozone, nitrogen

dioxide and sulphur dioxide have been linked to increases

in morbidity and mortality.50 There has been increasing in-

terest in the synergist effect of temperature and pollution

on morbidity and mortality.51,52 Suggested mechanisms

under the synergy hypothesis are, among others, that epi-

sodes of air pollution can increase vulnerability to the

effects of temperature (e.g. respiratory diseases) and that

elderly populations with deficiency of thermoregulation

might suffer from high pollution levels.53 The synergistic

effect of pollutants and temperature has been studied

mostly using case-only or time-series studies, with some ev-

idence of an increased effect of particulate matters at

higher temperatures.51,52 In our study, we found a ten-

dency for a higher AF% for heat in cities with higher levels

of pollution as measured by PM2.5 and NO2; Benmarhnia

et al.11 found a similar contextual association between

NO2 and heat effect in Paris. These results need to take

into account possible ecological confounding, as, in our

dataset, the chronic level of pollutant examined

(PM2.5.and NO2) is correlated with the city population

and density, and shares with these urban-density indicators

the tendency to increase the measured heat AF%.

Few studies have evaluated the role of healthcare access

to reduce the temperature-related mortality.13,34,37 Our
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finding of reduced heat AF in cities with more hospital

beds provides some evidence that an increased level of

health services is an important component of adaptive ca-

pacity in an urban context.

Few studies have evaluated the role of area-level indica-

tors as modifiers of cold effects on mortality with inconsis-

tent results.10,12–14,19,54 In our analysis, climate variables

explain 22% of the heterogeneity, suggesting for cold-

related effects a greater role of acclimatization. Moreover,

more complex mechanisms for cold-related effects have

been described55 that may not be well captured by our set

of indicators. Further research is needed in this area, possi-

bly increasing the number of cities or the set of indicators,

or with addition data such as individual-level data.

This study has several advantages. It represents the first

investigation in which modifiers to both cold and heat

effects at the city level were simultaneously assessed in a

wide multi-country setting through a common study design

and statistical framework. Previous multi-country stud-

ies34,35,37,38 relied on simplifications of the exposure–

response function34,37,38 or qualitatively reviewed the evi-

dence.35 The statistical framework used in this analysis is

based on a two-stage design that incorporates DLNMs and

multivariate meta-regression to flexibly characterize com-

plex temperature–health dependencies at a local level and

to investigate their variations across cities.56 We used the

OECD Regional and Metropolitan Database as a source

for defining socio-demographic indicators at the city level.

This choice ensures a set of indicators collected using stan-

dardized criteria. We must also acknowledge some limita-

tions. The observational periods and data-collection

procedures are not uniform across all countries. Logistical

constraints hinder perfectly consistent data streams across

the globe, as different countries have various protocols for

data acquisition and maintenance. However, our study de-

sign is not sensitive to potential biases arising from these

differences and can appropriately pool information from

data obtained from different sources. Specifically, our two-

stage analytical framework includes indicators for coun-

tries as meta-predictors in the second-stage meta-regres-

sion. This means that, implicitly, the comparison is based

on variations across locations within the same country, as

any structural difference across countries is accounted for

by the fixed-effects indicators. These differences include

potential variations due to non-overlapping periods.

The time frame of data collection varied for some variables

and the reference period used for indicators varied between

2000 and 2014. Moreover, some of the indicators

were measured after the actual city-specific time period of

investigation. As a consequence, there could be some mea-

surement errors in the level of the indicator associated with

each city for the observational period. Under the hypothesis

of no systematic bias within a country, this measurement er-

ror should lower the association under study towards a con-

servative error. However, we found a high correlation

between indices in different years (data not shown), conse-

quently this conservative error should be minor. The dataset

includes several regions around the world, including devel-

oped and developing countries, but entire areas of the world

are not covered, and there is a lack of information from

countries with a lower degree of socio-economic develop-

ment. Results might therefore not be globally representative.

In our analysis, we considered each indicator as an explana-

tory variable in a meta-regression model adjusted by coun-

try and weather variables. We did not attempt a

multivariable model, as many indicators exhibited collinear-

ity, as shown in the PCA. Although it is an interesting re-

search area, we did not plan subgroup analyses by climate

zones or geographical regions. Further work increasing the

number of locations, hopefully including developing coun-

tries, is needed to address this research question.

Conclusion

This study identifies several city characteristics that modify

the vulnerability of urban populations to heat. These

results can be used for determining the health burden pro-

jected in the future under specific climate-change and

socio-demographic scenarios, and for the implementation

of urban-development plans to mitigate the risk.

Supplementary data

Supplementary data are available at IJE online
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Table S1. List of countries with available information by indicator. 
 

Indicator N cities Countries 
Demographic   
Population 340 Australia; Brazil; Canada; Chile; China; Colombia; Finland; France; Iran;  

Italy; Japan; Mexico; Moldova; Philippines; South Korea; Spain; 
Sweden; Switzerland; Taiwan; UK; USA; Viet Nam 

Density 339 Australia; Brazil; Canada; Chile; China; Colombia; Finland; France; Iran;  
Italy; Japan; Mexico; Moldova; Philippines; South Korea; Spain; 
Sweden; Switzerland; Taiwan; UK; USA; Viet Nam 

Old population 
(%) 

320 Australia; Brazil; Canada; Chile; China; Finland; France;  
Italy; Japan; Mexico; South Korea; Spain; Sweden; Switzerland; UK; USA 

Life Expectancy 
(years) 

288 Australia; Canada; Chile; Finland; France; Italy; Japan; Mexico; South 
Korea; Spain; Sweden; Switzerland; UK; USA 

Socioeconomic   
GDP ($) 325 Australia; Brazil; Canada; Chile; China; Colombia; Finland; France;  

Italy; Japan; Mexico; South Korea; Spain; Sweden; Switzerland; UK; USA 
Labour 
productivity ($) 

280 Australia; Canada; Chile; Finland; France; Italy; Japan; Mexico; South 
Korea; Spain; Sweden; UK; USA 

Educational 
level (%) 

265 Canada; Chile; France; Japan; Mexico; South Korea; Spain; Sweden; UK; 
USA 

Unemployment 
rate (%) 

307 Australia; Canada; Chile; China; Colombia; Finland; France;  
Italy; Japan; Mexico; South Korea; Spain; Sweden; Switzerland; UK; USA 

Gini index 280 Australia; Canada; Chile; Finland; France; Italy; Japan; Mexico; South 
Korea; Spain; Sweden; UK; USA 

Poverty gap 280 Australia; Canada; Chile; Finland; France; Italy; Japan; Mexico; South 
Korea; Spain; Sweden; UK; USA 

Health system   
Hospital bed 
rates 

279 Australia; Canada; Chile; France; Italy; Japan; Mexico; Spain; Sweden; 
Switzerland; USA 

Urban 
characteristics 

  

Type of 
surrounding 
region 
(rural/urban) 

272 Australia; Canada; China; France; Italy; Japan; Mexico; South Korea; 
Spain; Sweden; Switzerland; USA 

Urbanised area 136 OECD Metropolitan area database 
Australia; Canada; Chile; France;  
Italy; Japan; Mexico; South Korea; Spain; Sweden; Switzerland; UK; USA 
 

Green Area 136 OECD Metropolitan area database 
Australia; Canada; Chile; France;  
Italy; Japan; Mexico; South Korea; Spain; Sweden; Switzerland; UK; USA 

Concentration 
of population in 
the core (%) 

136 OECD Metropolitan area database 
Australia; Canada; Chile; France;  
Italy; Japan; Mexico; South Korea; Spain; Sweden; Switzerland; UK; USA 

Sprawl 100 OECD Metropolitan area database 



Chile; France; Italy; Japan; Mexico; Spain; Sweden; Switzerland; UK; 
USA 

Environmental   

PM2.5 (µg/m-3) 340 Australia; Brazil; Canada; Chile; China; Colombia; Finland; France; Iran;  
Italy; Japan; Mexico; Moldova; Philippines; South Korea; Spain; 
Sweden; Switzerland; Taiwan; UK; USA; Viet Nam 

NO2 (ppb) 339 Australia; Brazil; Canada; Chile; China; Colombia; Finland; France; Iran;  
Italy; Japan; Mexico; Moldova; Philippines; South Korea; Spain; 
Sweden; Switzerland; Taiwan; UK; USA; Viet Nam 

 
 
  



Table S2. AF% for heat and cold calculated in the all sample, and AF% change due a one degree 
increase of each climate indicator 
 

  Cold  Heat 
 I2 AF% 95% CI  I2 AF% 95% CI  
Covariate 64.2% 6.05 (5.59; 6.36)  85.4% 0.54 (0.49; 0.58)  
         
Country 52.3%    69.7%    
  AF% 

change 
95% CI p 

value 
 AF% 

change 
95% CI p 

value 
Climate 30.3%    67.4%    
Average 
mean 
temperature 

 -0.227 (-0.383; -0.072) 0.004  0.007 (-0.010; 0.023) 0.422 

Range mean 
temperature 

 0.095 (0.010; 0.181) 0.029  0.022 (0.013; 0.031) <0.001 

 

  



Table S3. Associations between the indicators and heat and cold AF%. Coefficients and 95%CI 
calculated form a meta-regression model adjusted by country and weather variables.  Results are 
expressed as AF% change for SD increase of the indicators. 

  Cold Heat 
Indicator n AF% 

change 
95% CI p 

value 
AF% 

change 
95% CI p 

value 
Demographic        
Population 340 -0.025 (-0.164; 0.115) 0.729 0.042 (-0.005; 0.089) 0.079 
Density 
(population/km2) 

339 -0.065 (-0.415; 0.285) 0.717 0.076 (-0.001; 0.152) 0.052 

% population ≥65 
years 

320 0.468 (-0.313; 1.250) 0.240 -0.035 (-0.109; 0.038) 0.342 

Life Expectancy 
(years) 

288 0.518 (-0.502; 1.556) 0.328 0.136 (0.066; 0.206) <0.001 

Socioeconomic        
GDP (US$) 325 -0.118 (-0.958; 0.722) 0.783 0.102 (0.013; 0.191) 0.025 
Labour productivity 
(US$) 

280 -0.205 (-0.872; 0.463) 0.548 0.024 (-0.029; 0.078) 0.369 

Educational level (%) 265 0.188 (-0.451; 0.827) 0.564 0.127 (0.068; 0.185) <0.001 
Unemployment rate 
(%) 

307 -0.161 (-1.102; 0.779) 0.737 0.017 (-0.069; 0.103) 0.695 

Gini index 280 0.268 (-1.047; 1.583) 0.690 0.216 (0.090; 0.341) 0.001 
Poverty gap 280 0.410 (-0.223; 1.044) 0.204 -0.037 (-0.106; 0.033) 0.301 
Health system        
Hospital bed rates 279 -0.065 (-1.448; 1.318) 0.927 -0.212 (-0.337; -0.087) 0.001 
Urban characteristics        
Type of surrounding 
region: intermediate 

272 0.597 (-0.679; 1.873) 0.359 -0.156 (-0.281; -0.031) 0.015 

Type of surrounding 
region: 
predominately rural 

272 0.049 (-1.388; 1.486) 0.946 -0.188 (-0.323; -0.053) 0.006 

Urbanised area (%) 136 0.341 (-0.235; 0.917) 0.246 0.047 (-0.027; 0.122) 0.214 
Green Area (m2per 
million person) 

136 -0.031 (-0.554; 0.493) 0.909 -0.071 (-0.137; -0.005) 0.036 

Concentration of 
population in the 
core (%) 

136 -0.498 (-1.14; 0.143) 0.128 0.054 (-0.036; 0.145) 0.241 

Sprawl 100 -0.587 (-1.317; 0.143) 0.115 0.015 (-0.085; 0.115) 0.769 
Air pollution        

PM2.5 (µg/m-3) 340 -0.178 (-1.766; 1.411) 0.826 0.211 (0.033; 0.389) 0.020 
NO2 (ppb) 339 0.168 (-0.273; 0.609) 0.456 0.045 (-0.002; 0.093) 0.059 

2Meta-regression model adjusted by Country and climate variables 
  



Table S4: Sensitivity analysis. Attributable fraction (AF) % (total, heat, and cold), using varying 
modelling choices. 

Modelling choices 
(340 cities) 

Total (%) Cold AF % Heat AF % 

Main model 6.59 6.05 0.54 
Knots for exposure-
response: 10th, 50th, 
and 90th 

6.62 5.97 0.65 

Knots for exposure-
response: 10th, 25th, 
75th and 90th 

6.66 6.08 0.58 

Quadratic B-spline for 
exposure-response 

7.27 6.66 0.62 

Df for lag-response: 6 6.56 6.03 0.54 
Lag period: 14 days 5.24 4.64 0.60 
Lag period: 28 days 7.73 7.14 0.59 
Df/year for seasonal 
control: 4 

5.73 5.10 0.63 

Df/year for seasonal 
control: 6 

6.43 5.96 0.46 

Df/year for seasonal 
control: 10 

5.63 5.05 0.58 

 
 

 



Figure S1. Correlation matrix between the country-centered indicators. Analysis made on 255 MCC 
cities with no missing data on the indicators. 

 

 

  



Figure S2. Score plot (for cities) and loading plot (for the variables) of the principal component 
analysis performed on 248 MCC locations. 

 

  



Figure S3. Associations between the indicators and heat and cold attributable fraction (AF) % 
between 1995 and 2010. Coefficients and 95%CI calculated form a meta-regression model adjusted 
by country and weather variables.  Results are expressed as AF% change for SD increase of the 
indicators. 

  

 



SUPPLEMENTARY INFORMATION ON THE MCC DATASET 

The dataset has been collected through the Multi-City Multi-Country (MCC) network, an 
international collaboration of research teams working on a program aiming to produce 
epidemiological evidence on associations between weather and health 
(http://mccstudy.lshtm.ac.uk/). The dataset collects time series data on environmental 
and health variables, together with metadata, from several locations (either cities, 
metropolitan areas, provinces, prefectures, or regions) in multiple countries. The 
current analysis includes data from 340 locations from 22 countries. The datasets from 
8 countries (Australia, Brazil, China, South Korea, Spain, Taiwan, and USA) were 
described in the online appendix of a previous publication1. Here we provide details on 
15 countries (Canada, Chile, Colombia, Finland, France, Iran, Italy, Japan, Mexico, 
Moldova, Philippines, Sweden, Switzerland, UK, and Viet Nam). 

Canada. We collected data from 25 census metropolitan areas (CMA) and the city of 
Hamilton between the 1st of January 1986 and 31st of December 2011. A list of 20 CMA 
is reported in the online appendix of a previous publication.1 The other five CMA are 
Niagara, Oakville, Oshawa, Sarnia, and Sault Ste Marie.  Daily mortality, obtained from 
Statistics Canada through access to the Canadian Mortality Database, is represented 
by counts of deaths for all causes. Mean daily temperature (in ˚C) and relative humidity 
(in %), computed as the 24-hour average based on hourly measurements, were 
obtained from Environment Canada. A single weather station was selected for each 
city using the airport monitoring station located closest to the CMA centre. Measures of 
ozone (O3, in ppb), nitrogen dioxide (NO2, in ppb) and particles (PM2·5, in ppb) were 
available in the same period from the National Air Pollution Surveillance (NAPS) 
network of Environment Canada. Daily level of pollutants was computed as the 24-hour 
mean based on hourly measurements in different stations, and then averaged across 
stations with no missing data, with an average of 4 stations per city. In total, missing 
data amount for 2·00% and 0·97% of the mortality and temperature series, 
respectively. These data were used and described in previous publications.2,3 
Chile. We collected data from the city of Chillan (1st of January 2008 to 31st of 
December 2014), Santiago de Chile (1st of January 2008 to 31st of December 2014), 
Temuco (31st of March 2004 to 31st of July 2014), and Valparaiso  between 7th of 
August 2004 and 27th of June 2014. Daily mortality, obtained from Departamento de 
Estadísticas e Información de Salud (Ministerio de Salud), is represented by counts of 
deaths for all causes. Mean daily temperature (in ˚C), computed as 24-hour average 
based on hourly measurements, were obtained from Sistema de Información Nacional 
de Calidad del Aire (SINCA), Ministerio del Medio Ambiente. For Santiago de Chile a 
single weather station "Parque Ohiggins" was selected. In total, missing data amount 
for 0.00% and 10.09% of the mortality and temperature series, respectively. 
Colombia. We collected data from Bogota, Barranquilla, Cali, Cartagena and Medellin 
between 1st of January 1998 and 31st of December 2013. Daily mortality, obtained 
Administrativo Nacional de Estadistica (DANE), is represented by counts of deaths for 
all causes and for non-external causes only (ICD-9: 0-799; ICD-10: A00-R99). Mean 
daily temperature (in ˚C) and relative humidity (in %), computed as 24-hour average 
based on hourly measurement, were obtained from Instituto de Hidrología, 
Meteorología y Estudios Ambientales de Colombia (IDEAM). A single weather station 
was selected for each city; in particular, for Bogota, Barranquilla, Cartagena and 



Medellin we used the airport monitoring station located closest to the city centre. In 
total, missing data amount for 0.01% and 2.81% of the mortality and temperature 
series, respectively. 
Finland. We collected data from the city of Helsinki between the 1st of January 1994 
and 31st of December 2011. Daily mortality, obtained from Statistics Finland, is 
represented by counts of deaths for all causes. A dataset containing minimum, mean, 
and maximum daily temperatures was obtained from the Finnish Meteorological 
Institute. In this dataset, point measurements from the weather measuring stations 
around the country have been interpolated onto a 10×10 km grid covering the whole of 
Finland, using a Kriging model. The temperature variables in the Helsinki Temperature 
Time-series have been extracted from the GIS-database for KKJ-coordinates 
6675470:2552920 (KKJ, Finnish National Coordinate System based on ED50). These 
are the coordinates for weather measuring station Kallion urheilukenttä of Helsinki 
Region Environmental Services Authority HSY. In total, missing data amount for 0.00% 
and 0.00% of the mortality and temperature series, respectively. 
France. We collected data from 18 cities (see full list in Table B1) between 1st of 
January 2000 and 31st of December 2010. Daily mortality, obtained from French 
National Institute of Health and Medical Research (CepiDC), is represented by counts 
of deaths for all causes. Mean daily temperature (in ˚C), computed as the mean of the 
minimal and maximal temperature, were obtained from the Meteo France. A single 
weather station was selected for each city; for 15 out 18 locations the weather station 
was located at the nearest airport. Two cities (Lille and Lens) have the same 
temperature series from the same weather station. In total, missing data amount for 
0.00% and 0.06% of the mortality and temperature series, respectively. 
Iran. We collected data from the city of Mashhad between 1st of January 2004 and 
31st of December 2013. Daily mortality, obtained from Database of Mashhad 
Municipality, is represented by counts of deaths for all causes. Mean daily temperature 
(in ˚C) and relative humidity (in %), computed as the 24-hour average based on hourly 
measurements, were obtained from the Iran Meteorological Organization. A single 
weather station was selected. In total, missing data amount for 2.11% and 0.03% of the 
mortality and temperature series, respectively. 
Italy. We collected data from 16 cities (see full list in Table B1) between 1st of January 
2001 and 31st of December 2010. Daily mortality, obtained from local mortality 
registries and from the rapid mortality surveillance system operational since 2004, is 
represented by counts of deaths for all causes. Mean daily temperature (in ˚C), 
computed as the 24-h average based on 20-minutes measurements, were obtained 
from the Meteorological Service of the Italian Air Force. A single weather station was 
selected for each city, using the airport monitoring station located closest to the city 
centre. In total, missing data amount for 1.61% and 2.58% of the mortality and 
temperature series, respectively.  
Japan. We collected data from 7 cities (see full list in Table B1) between 1st of January 
1985 and 31st of December 2009. Daily mortality, obtained from computerized death 
certificate data from the Ministry of Health, Labour and Welfare, Japan, is represented 
by counts of deaths for all causes and for non-external causes only (ICD-9: 0-799; ICD-
10: A00-R99). Mean daily temperature (in ˚C) and relative humidity (in %) were 
computed as the 24-hour average based on hourly measurements. In total, missing 



data amount for 0.00% and 0.00% of the mortality and temperature series, 
respectively. 
Mexico. We collected data from 10 metropolitan areas (see full list in Table B1) 
between 1st of January 1998 and 31st of December 2014. Daily mortality, obtained from 
the National Institute of Statistics, Geography and Informatics is represented by counts 
of deaths for all causes. Temperature and relative humidity data, were obtained from 
Servicio Meteorológico Nacional (SMN) and the Instituto Nacional de Ecología y 
Cambio Climático (INECC). Daily mean temperature as well as the maximum or 
minimum daily temperature was calculated using hourly data, with a minimum of 
adequacy of information of 50%. In the case of the data from airports, these were daily 
averages of temperature and relative humidity. We obtained the maximum and 
minimum temperatures as well as the average relative humidity across all stations that 
met the sufficiency criteria of having at least 75% data for the day. Measures of ozone 
(O3, in ppb), particles (PM10, in µg/m3), and fine particles measures (PM2.5, in µg/m3) 
were available in the same period. Daily level of pollutants was computed as the 24-
hour mean based on hourly measurements. In total, missing data amount for 0.00% 
and 26.67% of the mortality and temperature series, respectively. 
Moldova. We collected data from the city of Anenii Noi (1st of January 2003 to 31st of 
December 2010), Cahul (1st of January 2003 to 31st of December 2010), Chisinau (1st 
of January 2001 to 31st of December 2010), and Falesti (1st of January 2003 to 31st of 
December 2010). Daily mortality, obtained from National Centre for Health 
Management, Moldova, is represented by counts of deaths for all causes. Mean daily 
temperature (in ˚C) computed as the average between daily minimum and maximum, 
were obtained from State Hydrometeorological Service, Moldova. A single weather 
station was selected for each city. In total, missing data amount for 0.00% and 0.00% 
of the mortality and temperature series, respectively. 
Philippines. We collected data from four cities (Cebu, Davao, Manila, and Quezon) 
between the 1st of January 2006 and 31st of December 2010. Daily mortality, obtained 
from Philippine Statistics Authority-National Statistics Office, is represented by counts 
of deaths for all causes. Mean daily temperature (in ˚C), and relative humidity (in %), 
computed as the 24-hour average based on hourly measurements, were obtained from 
Philippine Atmospheric Geophysical and Astronomical Services Administration, and 
National Oceanic and Atmospheric Administration. A single weather station was 
selected for each city. In particular, for Davao and Cebu we used the airport monitoring 
station closest to the city centre, while the weather station was located in Manila Port 
for Manila, and in the Science Garden for Quezon. In total, missing data amount for 
0.14% and 0.01% of the mortality and temperature series, respectively. 
Sweden. We collected data from the city of Stockholm between 1st of January 1990 
and 31st of December 2010. Daily mortality, obtained from the Swedish Cause of 
Death Register at the Swedish National Board of Health and Welfare, is represented by 
counts of non-external causes only (ICD-9: 0-799; ICD-10: A00-R99). Mean daily 
temperature (in ˚C) computed as the 24-hour average based on hourly measurements, 
were obtained from the Swedish Meteorological and Hydrological Institute. A 
measuring station, located at Bromma Airport, was selected. In total, missing data 
amount for 0.00% and 0.25% of the mortality and temperature series, respectively.  
Switzerland. We collected data from 8 cities (Basel, Bern, Zurich, Geneva, Lausanne, 
Lucerne, Lugano, St. Gallen) between 1st January 1995 to 31st December 2013. 



Lugano also includes the small municipalities around the main city of Lugano with 
similar altitude. Daily mortality, provided by the Federal Office of Statistics 
(Switzerland), is represented by counts of non-external deaths with accidents included 
(International Classification of Diseases, 10th revision (ICD-10) codes A00-R99, V01-
V99, W00-X59). Daily data on several meteorological indicators were collected from 
the IDAWEB database (a service provided by MeteoSwiss, the Swiss Federal Office of 
Meteorology and Climatology). A single weather station located within or near the 
urban area was selected for each city. The meteorological indicators were: mean daily 
temperature (in ˚C) and relative humidity (in %), computed as the 24-hour average 
based on hourly measurements. Daily measurements of nitrogen dioxide (NO2, in ppb), 
particles (PM10, in ppb), and ozone (O3, in ppb), were provided by the 
Immissionsdatenbank Luft (IDB, Federal Office of the Environment, Bern, Switzerland) 
and computed as 24-h average for the former two and as 1h-maximum for the latter. In 
total, missing data amount for 0.00% and 0.00% of the mortality and temperature 
series, respectively. 
UK. We collected data for the region of London between 1st of January 1990 and 31st 
of August 2012. Daily mortality, obtained from the Office of National Statistics, is 
represented by counts of deaths for all causes. Mean daily temperature (in ˚C) 
computed from the 24-h average of hourly measurements) were obtained from the 
British Atmospheric Data Centre. Data from seven meteorological stations were used 
to derive the mean daily temperature time serie. In total, missing data amount for 
0.00% and 0.00% of the mortality and temperature series, respectively 
Vietnam. We collected data from the cities of Ho Chi Minh City (1st of January 2010 to 
31st of December 2013), and Hue (1st of January 2009 to 31st of December 2013). 
Since 1992, a mortality data-collecting system based on the commune health center 
has been introduced in an official book named A6 [Vietnam Ministry of Health. Decision 
No 822/BYT.QD to issue mortality reporting book A6/YTCS. 1992]. Data from the A6 
are collected at the commune health center level and then forwarded to the provincial 
and central levels. In this study, daily mortality data from the A6 mortality reporting 
system, is represented by counts of deaths for all causes and for non-external causes 
only (ICD-9: 0-799; ICD-10: A00-R99). Mean daily temperature (in ˚C), and relative 
humidity (in %) computed as computed from the 24-h average of hourly 
measurements, were obtained from National Oceanic and Atmospheric 
Administration's (NOAA) National Climate Data Center (NCDC). A single weather 
station was selected for each city. In total, missing data amount for 0.00% and 0·45% 
of the mortality and temperature series, respectively. 
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Table B1. Descriptive statistics and indicators for the 340 MCC cities included in the analysis. 

City Country Deaths Start 
year 

End 
year 

T mean Min 
Temp 

Max 
Temp 

Population Density GDP Gini 
Index 

PM2.5 

Brisbane Australia 191996 1988 2009 20.3 7.4 31.5 1856353 2023.5 37520 0.332 6.567 
Melbourne Australia 449092 1988 2009 15.7 5.6 35.0 2178625 3224.6 37745 0.319 6.446 
Sydney Australia 536862 1988 2009 18.3 7.9 31.8 5956422 3824.3 39965 0.348 6.040 
Belem Brazil 132910 1997 2011 26.9 23.4 29.4 2491237 22674.8 5040 NA 13.918 
Belo Horizonte Brazil 464778 1997 2011 22.0 11.9 29.5 5160724 7379.2 8799 NA 9.626 
Brasilia Brazil 114801 1997 2011 21.3 14.1 29.1 4421461 846.1 30793 NA 8.324 
Cuiaba Brazil 51336 1997 2011 26.4 11.4 33.4 803287 2578.5 11413 NA 18.757 
Curitiba Brazil 155276 1997 2011 17.7 3.6 27.4 3040860 3232.2 10775 NA 9.973 
Fortaleza Brazil 202340 1997 2011 27.0 23.2 29.7 4116276 16704.3 4592 NA 8.278 
Goiania Brazil 134263 1997 2011 24.5 15.1 32.0 2182195 2005.6 8438 NA 10.189 
Joao Pessoa Brazil 53970 1997 2011 27.0 22.2 30.3 1128883 5400.3 4377 NA 8.360 
Maceio Brazil 92525 1997 2011 25.2 20.8 29.1 1407431 14050.4 4050 NA 8.233 
Manaus Brazil 98204 1997 2011 27.2 21.3 32.8 2396744 12595.7 8769 NA 13.901 
Natal Brazil 80753 1997 2011 26.5 21.8 29.8 1307043 9768.8 5215 NA 7.582 
Porto Alegre Brazil 215734 1997 2011 19.7 5.2 33.5 3331241 14503.9 9203 NA 11.688 
Recife Brazil 263492 1997 2011 26.0 21.8 29.4 3303598 6974.5 5356 NA 8.363 
Salvador Brazil 223545 1997 2011 25.6 20.3 29.2 4420845 15829.1 5582 NA 7.312 
Sao Luis Brazil 81852 1997 2011 26.9 23.0 29.9 530385 4602.1 3610 NA 9.351 
Sao Paulo Brazil 916233 1997 2011 20.3 7.8 28.6 19443795 20285.3 15222 NA 15.969 
Teresina Brazil 67174 1997 2011 27.4 22.4 32.5 1040221 8304 3502 NA 10.849 
Vitoria Brazil 51950 1997 2011 24.8 16.2 31.4 1164656 9805.6 11436 NA 9.557 
Abbotsford Canada 27098 1986 2011 10.7 -12.9 29.0 227525 3509.8 35381 0.323 6.666 
Calgary Canada 132883 1986 2011 4.5 -33.9 24.3 1470322 1852.2 57370 0.320 7.012 
Edmonton Canada 154899 1986 2011 4.1 -39.7 29.4 1241391 4129.2 57370 0.320 6.397 



Halifax Canada 71264 1986 2011 6.7 -23.5 26.6 402430 7059.3 30070 0.303 5.963 
Hamilton Canada 113876 1986 2011 8.1 -24.1 29.6 880476 8206.9 41180 0.331 9.126 
Kingston Canada 39019 1986 2011 7.6 -26.0 29.5 159498 4767.1 37343 0.331 7.182 
Kitchener-Waterloo Canada 71387 1986 2011 7.0 -25.2 29.8 617613 2363.8 37343 0.331 7.827 
London Ontario Canada 96799 1986 2011 8.2 -24.7 30.7 508418 1902 37343 0.331 7.584 
Montreal Canada 255272 1986 2009 6.9 -27.3 29.3 4195556 20207.3 34202 0.290 9.195 
Ottawa Canada 136955 1986 2011 6.6 -28.4 29.7 1384629 11165.9 39505 0.331 7.236 
Regina Canada 49530 1986 2011 3.1 -36.5 31.4 264275 5731.9 43880 0.308 9.135 
Saint John NB Canada 44302 1986 2011 5.3 -25.0 25.7 98378 9.3 30251 0.285 5.802 
Saskatoon Canada 56891 1986 2011 2.6 -38.9 32.1 288672 2089.5 43880 0.308 7.047 
St. John's NFL Canada 54328 1986 2011 5.2 -21.3 24.3 164917 244 38856 0.306 5.201 
Sudbury Canada 40907 1986 2011 4.3 -33.8 28.8 159436 946.6 37343 0.331 5.513 
Thunder Bay Canada 35663 1986 2011 3.1 -33.6 27.3 108359 855 37343 0.331 6.946 
Toronto Canada 673074 1986 2011 8.5 -24.7 31.5 6540921 8383.8 41180 0.331 9.109 
Vancouver Canada 329577 1986 2011 10.5 -10.7 28.4 1760166 2466 35381 0.323 6.801 
Victoria Canada 84747 1986 2011 10.2 -10.4 26.7 396171 1162.6 35381 0.323 7.051 
Windsor Canada 65259 1986 2011 10.1 -25.0 31.5 370514 3684.6 37343 0.331 10.088 
Winnipeg Canada 168512 1986 2011 3.2 -38.6 30.9 891345 3834.3 34573 0.298 6.748 
Niagara Canada 98788 1986 2011 9.3 -21.0 30.5 50193 3249.3 37343 0.331 8.594 
Oakville Canada 58991 1986 2011 8.6 -21.9 31.1 193832 1314 37343 0.331 8.478 
Oshawa Canada 72386 1986 2011 7.6 -26.1 30.2 473471 3185 37343 0.331 7.366 
Sarnia Canada 28656 1986 2011 8.8 -25.0 30.7 155084 1725.2 37343 0.331 8.344 
Sault Ste. Marie Canada 28838 1986 2011 5.1 -29.6 27.7 73368 328 37343 0.331 6.380 
Chillan Chile 8619 2008 2014 13.2 0.2 25.4 224550 391.4 9237 0.412 18.262 
Santiago Chile 254344 2008 2014 15.4 2.1 27.5 2906611 6478.2 18919 0.484 27.784 
Temuco Chile 16709 2004 2013 11.5 -1.7 25.9 371080 747 5388 0.449 24.427 
Valparaiso Chile 45790 2004 2013 14.7 6.0 25.7 442938 857.3 14004 0.436 20.076 
Anshan China 30076 2004 2006 11.4 -19.0 36.4 2018775 11072.7 8174 NA 57.669 
Beijing China 74786 2007 2008 14.8 -6.8 30.7 13033601 35522.2 15756 NA 88.334 



Fuzhou China 17142 2004 2006 20.7 3.7 32.2 2482720 29313 7885 NA 33.981 
Guangzhou China 57721 2007 2008 22.8 5.4 33.5 7567325 14240.7 9155 NA 55.218 
Hangzhou China 21743 2002 2004 17.9 -1.4 36.4 3381629 15459.9 10421 NA 69.003 
Hong Kong China 213860 1996 2002 23.7 6.9 33.8 8154579 32289.7 NA NA 33.637 
Lanzhou China 33877 2004 2008 7.4 -20.0 33.0 3284718 8900.5 3168 NA 68.355 
Shanghai China 172940 2001 2004 17.7 -2.4 34.0 22102012 14681.7 16548 NA 58.743 
Shenyang China 96588 2005 2008 8.2 -22.0 28.0 5905692 46512.8 8174 NA 70.279 
Suzhu China 49633 2005 2008 17.2 -2.8 33.8 2168091 6244.4 10254 NA 71.035 
Taiyuan China 43771 2004 2008 11.2 -13.6 30.5 4178975 44550.9 5098 NA 71.338 
Tianjin China 15857 2005 2008 13.3 -10.5 31.3 7356207 15598.7 14322 NA 103.132 
Wuhan China 62440 2003 2005 17.9 -1.5 35.8 7805706 44001.9 5302 NA 76.964 
Wulumqi China 12281 2006 2007 8.6 -23.7 32.6 2583725 42517.9 4932 NA 65.762 
Xian China 47415 2004 2008 13.4 -8.0 32.0 8705600 870 5050 NA 80.344 
Barranquilla Colombia 91624 1998 2013 27.7 23.0 31.0 2143491 9167.4 6642 NA 22.596 
Bogota Colombia 426297 1998 2013 13.9 10.5 17.4 10219661 5553.1 13728 NA 19.221 
Cali Colombia 188960 1998 2013 24.5 19.3 29.6 3305836 4511.1 9000 NA 13.443 
Cartagena Colombia 53115 1998 2013 28.0 24.3 31.1 1330500 1895.5 7754 NA 20.534 
Medellin Colombia 196543 1998 2013 22.8 18.3 27.5 3648479 7478.2 8672 NA 20.494 
Helsinki Finland 130325 1994 2011 6.2 -22.9 25.5 1115957 3123.6 50028 NA 8.193 
Bordeaux France 53219 2000 2010 13.7 -4.9 31.3 633344 5541 35675 0.281 13.049 
Clermont-Ferrand France 19040 2000 2010 12.0 -8.7 30.3 255206 3235.3 31288 0.308 11.063 
Dijon France 18786 2000 2010 11.3 -8.4 31.1 234755 3673.1 34627 0.311 11.345 
Grenoble France 32738 2000 2010 12.1 -10.1 29.0 352839 8562.7 34516 0.288 14.305 
Le Havre France 24323 2000 2010 11.5 -4.6 29.3 307034 3309.5 31700 0.253 11.816 
Lens-Douai  France 36686 2000 2010 11.0 -7.0 28.0 31398 2700 23699 0.296 13.366 
Lille France 90900 2000 2010 11.0 -7.0 28.0 750328 6614.1 29825 0.296 14.682 
Lyon France 77106 2000 2010 12.9 -6.7 31.9 1183817 8235.3 43138 0.288 16.047 
Marseille France 94792 2000 2010 15.6 -2.0 31.6 1494811 24351.3 35479 0.304 11.564 
Montpellier France 26978 2000 2010 15.3 -2.5 30.9 411879 4773.5 30537 0.302 12.454 



Nancy France 28945 2000 2010 10.9 -10.5 29.1 239822 7128.2 30038 0.269 13.239 
Nantes France 43547 2000 2010 12.5 -4.6 31.3 496538 4594.6 34899 0.272 12.326 
Nice France 51959 2000 2010 16.2 1.3 31.4 802120 4528.5 35929 0.304 13.287 
Paris France 455460 2000 2010 12.5 -5.4 32.4 4963177 9705.2 57112 0.343 17.468 
Rennes France 16600 2000 2010 12.2 -4.2 31.8 303972 4053.5 34178 0.270 10.201 
Rouen France 41927 2000 2010 10.6 -6.7 29.3 376556 5440.2 32403 0.253 13.181 
Strasbourg France 34874 2000 2010 11.1 -11.6 28.9 494831 3692.5 35640 0.317 18.919 
Toulouse France 49675 2000 2010 13.8 -4.4 31.8 856555 4031.5 38663 0.272 12.458 
Mashhad Iran 121585 2004 2013 16.0 -14.7 33.3 3401753 348 NA NA 33.336 
Bari Italy 7234 2005 2007 15.8 -0.8 36.0 566821 2776.3 26504 0.307 15.704 
Bologna Italy 39553 2001 2010 14.6 -8.9 32.3 615303 2613.8 48783 0.302 22.739 
Brindisi Italy 2405 2006 2009 17.6 0.9 36.5 141300 272.4 19035 0.307 16.297 
Cagliari Italy 12716 2001 2010 17.3 3.0 31.9 310005 2832.5 31668 0.311 11.754 
Florence Italy 31078 2001 2009 15.6 -3.0 32.6 1121517 3477.2 45866 0.280 17.218 
Genoa Italy 29546 2003 2006 15.6 -0.7 31.5 925700 2357.4 42574 0.322 16.343 
Milan Italy 102836 2001 2010 14.2 -4.7 31.8 2779161 6806.5 56647 0.304 28.394 
Naples Italy 33443 2006 2009 16.9 -2.1 31.2 2113972 7814.7 22881 0.353 17.015 
Padua Italy 4303 2006 2007 13.5 -3.4 29.1 214125 2300 37619 0.269 24.901 
Palermo Italy 48411 2002 2010 19.1 4.1 39.5 1103675 4066.6 23115 0.369 16.566 
Pisa Italy 7699 2001 2009 15.1 -2.4 29.7 191362 454 35368 0.280 17.619 
Rome Italy 208407 2001 2010 15.9 -0.4 31.0 1704952 2071.2 48656 0.347 17.764 
Taranto Italy 12764 2001 2009 17.4 1.6 32.3 196598 878.8 21654 0.307 13.189 
Trieste Italy 12825 2006 2010 15.7 -2.1 30.4 319202 1983.1 41508 0.261 15.596 
Turin Italy 72835 2001 2010 12.8 -10.7 29.6 1691263 6828.2 40263 0.286 18.978 
Venice Italy 19365 2001 2009 14.0 -6.5 30.1 406224 1383 39532 0.269 20.015 
Fukuoka Japan 185959 1985 2009 17.1 -0.9 32.4 2788289 4305.1 29834 0.314 18.192 
Kitakyushu Japan 206425 1985 2009 17.1 -0.9 32.4 983037 2019 29849 0.314 14.759 
Nagoya Japan 367480 1985 2009 16.0 -2.0 32.7 3806279 7107.9 35725 0.275 13.384 
Osaka Japan 550458 1985 2009 17.0 -0.2 32.9 8849000 6706 32991 0.302 14.829 



Sapporo Japan 256792 1985 2009 9.0 -12.0 30.1 3133786 1675.5 29149 0.327 9.976 
Sendai Japan 126279 1985 2009 12.5 -4.8 31.2 2162562 1325.3 29847 0.292 9.187 
Tokyo Japan 1430094 1985 2009 16.4 0.5 33.1 26174599 4381.5 40165 0.300 14.121 
Guadalajara Mexico 351426 1998 2014 21.1 11.9 28.0 3739589 5445 14193 0.438 17.540 
Leon Mexico 110095 1998 2014 19.5 8.0 33.0 1858626 16759.2 11478 0.412 21.586 
Ciudad Juarez Mexico 91721 1998 2014 20.2 0.4 35.3 2014500 4197.7 13442 0.441 14.996 
Comarca Lagunera Mexico 99640 1998 2014 23.3 3.2 33.8 1488613 33 16709 0.441 14.367 
Monterrey Mexico 286416 1998 2014 22.1 1.2 33.3 2978874 2440.4 25484 0.423 25.058 
Puebla-Tlaxcala Mexico 206429 1998 2014 16.6 5.9 24.0 2489599 7950.1 9023 0.454 21.703 
San Luis Petosi Mexico 77816 1998 2014 17.6 2.4 27.8 685934 1781.6 12304 0.461 17.337 
Tijuana Mexico 96965 1998 2014 17.5 7.0 32.0 2152957 2729.4 15305 0.417 9.517 
Toluca de Lerdo Mexico 129783 1998 2014 13.9 5.7 20.3 819561 1841.7 10234 0.437 26.011 
Valley of Mexico Mexico 1529795 1998 2014 16.4 6.2 24.8 21163226 9700 20216 0.437 27.075 
Anenii Noi Moldova 799 2003 2010 10.5 -22.0 31.6 7678 NA NA NA 16.058 
Cahul Moldova 2812 2003 2010 11.3 -20.2 32.3 66196 104.8 NA NA 18.799 
Chisinau Moldova 54832 2001 2010 10.8 -21.4 32.6 980061 1219.7 NA NA 17.157 
Falesti Moldova 1463 2003 2010 10.2 -25.0 31.2 17800 3544 NA NA 18.265 
Cebu Philippines 43855 2006 2010 28.1 23.4 32.0 1206134 20411.5 NA NA 18.064 
Davao Philippines 44467 2006 2010 28.1 23.1 30.8 1913504 21692.6 NA NA 17.980 
Manila Philippines 94009 2006 2010 28.8 23.5 33.3 8627575 49045.1 NA NA 33.341 
Quezon Philippines 92185 2006 2010 28.0 21.8 32.9 4142580 21379 NA NA 30.103 
Busan South Korea 340551 1992 2010 14.9 -7.1 30.2 5220000 12132.3 19293 NA 23.973 
Daegu South Korea 207086 1992 2010 14.4 -8.5 32.9 3690000 5042.3 17797 NA 25.636 
Daejeon South Korea 105049 1992 2010 13.0 -12.6 31.8 2182330 1785.7 19943 NA 25.069 
Gwangju South Korea 108222 1992 2010 14.1 -9.0 31.3 2136938 4704.4 19193 NA 30.777 
Incheon South Korea 193478 1992 2010 12.5 -14.7 31.5 3825000 16775.5 27111 NA 30.025 
Seoul South Korea 716638 1992 2010 12.8 -15.7 33.0 14694000 4981.2 27111 NA 27.757 
Ulsan South Korea 55914 1992 2010 14.5 -7.4 30.8 1493365 7468.3 58480 NA 25.438 
Vitoria Spain 38581 1990 2010 11.8 -6.4 30.6 243918 880 46938 0.302 6.026 



A Coruna Spain 75572 1990 2010 15.0 2.4 29.0 427924 6299 31029 0.302 9.057 
Albacete Spain 34158 1990 2010 14.4 -10.7 31.6 176147 158.6 26104 0.333 9.372 
Alicante Spain 51253 1990 2010 18.4 4.0 32.2 434759 1792.3 26017 0.334 10.058 
Almeria Spain 41618 1990 2010 19.1 5.4 36.2 214363 704.6 26505 0.344 10.368 
Avila Spain 21147 1990 2010 11.2 -6.3 28.6 59258 255 26310 0.310 8.721 
Badajoz Spain 37579 1990 2010 17.2 1.6 33.9 161211 105.1 22688 0.315 9.000 
Barcelona Spain 365724 1990 2010 16.3 1.4 30.9 4041595 17073 37751 0.325 14.953 
Bilbao Spain 82030 1990 2010 14.8 -0.4 32.2 790963 8601.4 37254 0.302 10.219 
Burgos Spain 41193 1990 2010 10.9 -9.8 29.8 215411 1715.6 36592 0.310 9.069 
Caceres Spain 22017 1990 2010 16.4 0.1 34.1 95855 55 22058 0.315 7.873 
Cadiz Spain 40682 1990 2010 18.6 3.9 32.9 123948 10000 23898 0.344 12.844 
Castellon Spain 41632 1990 2010 17.8 3.4 32.0 171669 1600 30826 0.334 9.897 
Ceuta Spain 9793 1990 2010 18.7 4.1 32.8 82376 4500 29406 0.414 14.107 
Ciudad Real Spain 22650 1990 2010 15.8 -3.2 33.7 74921 260 25023 0.333 10.090 
Cordoba Spain 71562 1990 2010 18.3 1.0 36.3 440336 268 23301 0.344 10.138 
Cuenca Spain 16498 1990 2010 13.3 -4.4 29.8 57032 63 25420 0.333 7.581 
Girona Spain 30810 1990 2010 14.8 -2.3 30.4 97586 2502 37578 0.325 9.626 
Granada Spain 77716 1990 2010 15.7 -3.1 32.7 432393 2861.7 23273 0.344 9.422 
Guadalajara Spain 20115 1990 2010 13.3 -3.8 29.0 67388 417.9 28568 0.333 9.222 
Huelva Spain 43169 1990 2010 18.2 3.8 36.2 167377 1213.6 24038 0.344 12.437 
Huesca Spain 15670 1990 2010 14.1 -5.5 32.0 52347 330 35584 0.315 6.774 
Jaen Spain 36427 1990 2010 17.0 -3.1 35.3 127618 278 22459 0.344 9.156 
Leon Spain 44880 1990 2010 11.1 -8.5 27.9 201915 3376.7 29365 0.310 7.400 
Lleida Spain 37200 1990 2010 15.2 -7.6 30.6 139176 660 38142 0.325 9.348 
Logrono Spain 33058 1990 2010 14.0 -4.9 31.5 175988 2044.4 35454 0.317 10.460 
Lugo Spain 35048 1990 2010 12.1 -4.1 29.1 98560 300 26122 0.302 8.505 
Madrid Spain 576566 1990 2010 15.2 -1.8 32.4 2833937 5676 42081 0.339 10.190 
Malaga Spain 116461 1990 2010 18.7 4.4 34.2 803734 1548.3 23644 0.344 10.246 
Melilla Spain 8727 1990 2010 19.0 3.8 36.1 78476 6380 27198 0.380 16.485 



Murcia Spain 77678 1990 2010 19.0 3.8 36.1 533242 534.3 27096 0.309 12.485 
Ourense Spain 38757 1990 2010 15.1 -1.3 31.5 167137 1265.2 25444 0.302 8.015 
Oviedo Spain 71913 1990 2010 13.3 -1.6 28.4 329224 1210.3 29861 0.305 12.492 
Palma Mallorca Spain 83128 1990 2010 16.7 1.8 32.1 401270 1900 35667 0.339 9.606 
Palmas G. Canaria Spain 85973 1990 2010 21.3 13.7 33.4 383308 3800 28124 0.331 10.397 
Pamplona Spain 56897 1990 2010 13.1 -5.2 31.6 330439 8210.6 40740 0.287 9.630 
Pontevedra Spain 31206 1990 2010 14.8 2.4 30.4 82549 701.04 28515 0.302 8.523 
Salamanca Spain 45440 1990 2010 12.3 -5.1 29.1 239737 3871.9 28186 0.310 8.607 
San Sebastian Spain 66047 1990 2010 13.7 -1.7 30.3 186095 3686 42175 0.302 8.911 
Santander Spain 58362 1990 2010 14.6 1.1 27.8 178465 5100 31229 0.296 10.658 
Segovia Spain 17095 1990 2010 12.4 -6.3 31.4 56660 350 30067 0.310 8.258 
Sevilla Spain 177514 1990 2010 19.5 2.7 36.8 1309044 5283.4 25265 0.344 13.059 
Soria Spain 12594 1990 2010 11.2 -7.2 28.1 39838 150 30407 0.310 7.892 
Tarragona Spain 26417 1990 2010 17.9 -0.1 32.4 152770 2613.6 36984 0.325 10.074 
Tenerife Spain 52474 1990 2010 21.6 13.4 34.3 538000 1400 26993 0.331 8.526 
Teruel Spain 11995 1990 2010 12.2 -10.9 27.8 35396 80 34544 0.315 8.127 
Toledo Spain 31042 1990 2010 15.9 -2.0 34.0 70441 401.6 26710 0.333 8.829 
Valencia Spain 214073 1990 2010 18.5 3.4 33.8 1209304 7356.3 30226 0.334 11.789 
Valladolid Spain 67795 1990 2010 12.9 -4.8 30.9 437595 1618.5 33590 0.310 9.671 
Zamora Spain 20858 1990 2010 13.3 -4.3 30.8 66293 440 25343 0.310 8.495 
Zaragoza Spain 143087 1990 2010 15.7 -4.8 32.9 773209 738.9 34226 0.315 9.948 
Stockholm Sweden 201197 1990 2010 7.2 -21.5 26.8 1885309 8512.5 54811 0.314 5.630 
Basel Switzerland 37607 1995 2013 10.8 -12.4 29.0 585635 7608.6 52566 0.285 12.578 
Bern Switzerland 28193 1995 2013 9.4 -14.2 26.4 259296 1028.8 42997 0.268 13.937 
Geneve Switzerland 26306 1995 2013 11.0 -9.2 28.8 812385 12833.2 54530 0.319 13.434 
Lausanne Switzerland 20810 1995 2013 11.3 -10.3 28.9 249602 3214.4 43253 0.319 13.191 
Lugano Switzerland 28567 1995 2013 12.9 -5.3 28.2 79059 1982.8 42326 0.256 14.045 
Luzern Switzerland 15073 1995 2013 9.9 -11.6 27.1 202491 1380.8 37793 0.280 13.448 
St. Gallen Switzerland 13543 1995 2013 8.6 -14.9 27.0 105858 1915.3 40905 0.256 11.213 



Zürich Switzerland 73539 1995 2013 9.7 -13.5 27.7 895730 4479 61496 0.314 14.085 
Kaohsiung Taiwan 212330 1994 2007 25.2 10.5 32.0 2904247 11691.3 NA NA 34.994 
Taichung Taiwan 162814 1994 2007 23.6 8.1 32.0 2355387 21559.9 NA NA 37.864 
Taipei Taiwan 390749 1994 2007 23.2 8.1 33.0 2704974 10000 NA NA 29.485 
London UK 1325902 1990 2012 11.6 -5.5 29.1 11704709 1353.2 50197 0.386 14.937 
Akron, OH USA 107392 1985 2006 10.1 -26.7 30.8 199110 1368.2 42511 0.367 10.074 
Albuquerque, NM USA 73279 1985 2006 14.2 -14.7 32.2 545852 2212.2 45276 0.410 6.664 
Allentown-Bethlehem, 
PA 

USA 61366 1985 2006 11.0 -20.6 31.4 118032 3630.9 52115 0.387 9.260 

Atlanta, GA USA 310249 1985 2006 17.2 -15.0 32.5 420003 1080.6 62350 0.390 8.671 
Atlantic City, NJ USA 49410 1985 2006 12.2 -18.1 32.2 39558 2814.5 52115 0.387 8.420 
Austin, TX USA 69427 1985 2006 20.8 -8.6 35.0 790390 1628.5 50801 0.398 8.922 
Bakersfield, CA USA 88852 1985 2006 18.3 -1.9 36.7 347483 1402.2 47585 0.409 9.072 
Baltimore, MD USA 319591 1985 2006 13.2 -17.8 32.5 620961 2256.3 54045 0.375 10.706 
Barnstable-Yarmouth, 
MA 

USA 51337 1985 2006 10.2 -17.2 30.6 68986 317.3 53721 0.402 7.496 

Baton Rouge, LA USA 62561 1985 2006 20.0 -8.6 32.8 229493 1777.7 47800 0.422 8.570 
Bergen-Passaic, NJ USA 239023 1985 2006 13.1 -18.6 34.7 1406342 1300 52115 0.387 9.453 
Birmingham, AL USA 171109 1985 2006 17.2 -13.3 32.2 212237 2306.5 54122 0.394 8.837 
Boston, MA USA 533170 1985 2009 10.9 -16.9 32.2 617594 10917.7 77140 0.402 6.712 
Brownsville, TX USA 36059 1985 2006 23.6 -3.9 33.1 175023 2778.5 44975 0.398 8.032 
Buffalo, NY USA 212201 1985 2006 9.3 -21.1 30.3 261310 3082 39390 0.415 9.847 
Canton-Massillon, OH USA 77288 1985 2006 10.1 -26.7 30.8 105156 921.94 38972 0.367 9.221 
Charleston, WV USA 49105 1985 2006 13.2 -20.6 31.7 51400 1989.3 40344 0.381 7.581 
Charlotte, NC USA 82255 1985 2006 16.2 -12.5 32.5 731424 4985.7 71057 0.390 8.291 
Chattanooga, TN USA 60219 1985 2006 16.1 -15.8 32.8 176588 471.8 40476 0.390 9.007 
Chicago, IL USA 1115158 1985 2006 10.0 -26.7 33.6 2695598 7364.9 55966 0.392 10.498 
Cincinnati, OH USA 171958 1985 2006 12.9 -23.6 33.1 296943 3656.5 48995 0.352 9.944 
Cleveland, OH USA 404057 1985 2006 10.5 -24.4 30.8 396815 475.6 59358 0.367 11.502 



Columbia, SC USA 75994 1985 2006 17.8 -11.1 32.8 129272 526 44301 0.383 8.870 
Columbus, OH USA 159353 1985 2006 11.8 -24.4 31.7 787033 1389.3 53034 0.367 10.129 
Dallas, TX USA 260718 1985 2006 19.1 -13.1 35.8 1197816 2247.5 66880 0.398 9.566 
Dayton, OH USA 108776 1985 2006 11.3 -27.5 32.2 141527 981.9 45561 0.367 10.186 
Daytona Beach, FL USA 107272 1985 2006 21.8 -3.3 31.7 61005 260 37657 0.408 7.996 
Denver, CO USA 182600 1985 2006 10.5 -25.6 30.3 600158 2722.2 60559 0.378 7.762 
Des Moines, IA USA 54488 1985 2006 10.4 -27.5 32.8 203433 587.6 60867 0.343 8.311 
Detroit, MI USA 729077 1985 2006 10.2 -24.4 31.4 713777 1463.8 51958 0.373 10.088 
Dutchess County, NY USA 43055 1985 2006 9.8 -20.3 31.7 297488 374 53680 0.415 7.987 
El Paso, TX USA 73269 1985 2006 18.1 -8.6 36.7 649121 724.8 31581 0.398 6.442 
Erie, PA USA 54723 1985 2006 10.1 -23.9 30.0 101786 4499.5 41271 0.376 10.136 
Flint, MI USA 75484 1985 2006 8.8 -24.4 30.8 102434 1579.9 36264 0.373 8.940 
Fort Myers-Cape Coral, 
FL 

USA 88850 1985 2006 24.1 1.9 31.4 154305 671.8 37657 0.408 7.639 

Fort Pierce-Port St. 
Lucie, FL 

USA 67004 1985 2006 23.0 -1.4 30.8 417637 1786.3 37657 0.408 7.888 

Fort Worth-Arlington, 
TX 

USA 172892 1985 2006 19.1 -7.5 35.6 1198757 1055.6 46770 0.398 9.241 

Fresno, CA USA 104033 1985 2006 18.0 -2.8 38.6 494665 5135.6 30998 0.409 13.428 
Ft. Lauderdale, FL USA 308032 1985 2006 23.0 0.0 30.8 165521 1423 37657 0.408 6.626 
Galveston, TX USA 40680 1985 2006 20.3 -3.6 32.8 47743 764.2 44975 0.398 7.290 
Gary, IN USA 90669 1985 2006 10.0 -27.8 31.7 80294 1325.3 39330 0.352 11.654 
Grand Rapids, MI USA 78804 1985 2006 9.1 -24.4 31.7 188040 2877.7 51211 0.373 9.455 
Greensboro, NC USA 65906 1985 2006 14.9 -14.2 30.6 269666 2000.6 42208 0.390 8.062 
Greenville, SC USA 58344 1985 2006 16.0 -11.7 32.8 58409 792.4 33801 0.383 8.866 
Hamilton, OH USA 49618 1985 2006 12.9 -23.6 33.1 62477 1866.8 38972 0.367 10.041 
Harrisburg-Carlisle, PA USA 49992 1985 2006 12.1 -21.9 32.5 49528 4625.9 50990 0.376 10.056 
Hartford, CT USA 159050 1985 2006 10.3 -18.3 31.1 124775 5311.3 58867 0.376 7.987 
Honolulu, HI USA 75775 1985 2006 25.5 18.1 30.3 337256 2236.1 46159 0.339 4.706 
Houston, TX USA 366340 1985 2006 20.9 -8.1 33.3 2099451 2770.7 64390 0.398 7.828 



Indianapolis, IN USA 149459 1985 2006 11.8 -26.9 32.2 820445 2004.3 62643 0.352 11.700 
Jacksonville, FL USA 124017 1985 2006 20.4 -7.5 32.5 821784 5465.2 42803 0.408 7.950 
Jersey City, NJ USA 103084 1985 2006 13.1 -18.6 34.7 247597 6928.4 52115 0.387 9.934 
Kansas City, MO-KS USA 218933 1985 2006 12.7 -26.7 33.9 459787 1816.6 53019 0.352 8.642 
Knoxville, TN USA 80418 1985 2006 15.1 -21.1 30.3 178874 1358.6 38377 0.395 7.997 
Lakeland-Winter 
Haven, FL 

USA 95395 1985 2006 23.1 -0.8 32.2 134584 600.8 37657 0.408 8.120 

Lancaster, PA USA 80724 1985 2006 11.7 -19.7 31.1 59322 6098.2 41271 0.376 10.116 
Lansing, MI USA 37393 1985 2006 8.7 -23.3 30.8 114297 765.5 36264 0.373 8.743 
Las Vegas, NV-AZ USA 182220 1985 2006 20.3 -5.6 41.1 583756 2694.6 45509 0.392 6.243 
Little Rock, AR USA 63901 1985 2006 17.1 -14.2 35.3 193524 123.1 50491 0.372 9.515 
Los Angeles, CA USA 1239036 1985 2006 17.4 6.1 31.1 3792621 2772.5 49493 0.409 11.678 
Louisville, KY USA 139347 1985 2006 14.4 -22.8 34.2 597337 4627 47035 0.352 10.251 
Lubbock, TX USA 35407 1985 2006 16.1 -14.4 35.6 229573 1919.9 44975 0.398 6.511 
Madison, WI USA 48763 1985 2006 8.3 -28.9 32.8 233209 8345.3 61390 0.347 8.577 
McAllen-Edinburg-
Mission, TX 

USA 49998 1985 2006 24.3 -3.6 36.7 291358 1046.5 17996 0.398 8.113 

Melbourne-Titusville-
Palm Bay, FL 

USA 88449 1985 2006 22.6 -0.3 31.9 76068 168.6 37657 0.408 6.839 

Memphis, TN USA 152003 1985 2006 17.3 -16.7 33.9 646889 5044.5 47912 0.372 9.188 
Miami, FL USA 372130 1985 2006 25.0 3.3 31.4 399457 4291.6 44723 0.408 7.930 
Middlesex, NJ USA 110324 1985 2006 11.7 -17.5 32.5 13635 1622.7 52115 0.387 9.232 
Milwaukee, WI USA 232056 1985 2006 9.1 -27.2 33.9 594833 784 54365 0.347 9.891 
Minneapolis-St. Paul, 
MN 

USA 241475 1985 2006 7.9 -31.4 32.5 382578 5962.6 59371 0.343 8.454 

Mobile, AL USA 72746 1985 2006 19.7 -9.4 32.8 195111 406.8 34138 0.394 8.329 
Monmouth-Ocean, NJ USA 235036 1985 2006 11.9 -17.2 31.9 642081 522 52115 0.387 8.689 
Myrtle Beach, SC USA 30268 1985 2006 17.8 -8.3 33.3 27109 1524.7 42208 0.390 8.061 
Naples, FL USA 36951 1985 2006 24.0 3.6 30.8 19537 384.2 37657 0.408 7.956 
Nashua, NH USA 51115 1985 2006 8.7 -20.3 30.0 86494 2883.1 43673 0.357 7.963 



Nashville, TN USA 97358 1985 2006 15.5 -20.3 32.5 601222 292.9 56295 0.395 10.189 
Nassau-Suffolk, NY USA 460192 1985 2006 11.4 -16.4 32.2 1506776 608 53680 0.415 8.435 
New Haven-Meriden, 
CT 

USA 157415 1985 2006 10.3 -18.3 31.1 129779 4129.8 58867 0.376 8.444 

New London, CT USA 40419 1985 2006 10.7 -16.9 31.1 27620 2973.9 58867 0.376 7.965 
New York, NY USA 1367085 1985 2006 13.3 -16.4 34.4 8175133 13073.6 67702 0.415 9.361 
Newark, NJ USA 220980 1985 2006 13.1 -18.6 34.7 277140 1586.5 52115 0.387 9.934 
Newburgh, NY USA 49890 1985 2006 10.2 -19.7 30.8 28866 6850.5 53680 0.415 9.112 
Oakland, CA USA 325028 1985 2006 15.2 0.6 27.8 390724 6614.8 47585 0.409 7.641 
Ocala, FL USA 58345 1985 2006 21.7 -3.6 32.2 56315 281 37657 0.408 7.834 
Oklahoma City, OK USA 118753 1985 2006 16.0 -17.8 34.7 579999 705.2 44578 0.371 7.951 
Omaha, NE USA 71558 1985 2006 11.0 -26.7 33.3 408958 310 52624 0.343 8.653 
Orange County, CA USA 320343 1985 2006 18.7 5.3 32.8 3010232 1200 47585 0.409 10.985 
Orlando, FL USA 157019 1985 2006 22.8 -2.5 32.2 238300 1776 47691 0.408 6.775 
Pensacola, FL USA 50546 1985 2006 20.3 -9.2 34.2 51923 1260.1 37657 0.408 8.691 
Philadelphia, PA-NJ USA 911888 1985 2006 13.4 -17.5 33.3 1526006 4969.1 54347 0.376 10.998 
Phoenix, AZ USA 386802 1985 2006 24.0 2.5 41.4 1445632 623.8 47691 0.410 8.827 
Pittsburgh, PA USA 317935 1985 2006 11.0 -25.0 30.3 305704 6740.5 63152 0.376 9.750 
Portland, ME USA 46217 1985 2006 8.0 -20.3 29.7 66194 4504.9 36692 0.361 8.257 
Portland, OR USA 210301 1985 2006 12.5 -11.1 29.7 583776 4456.3 56705 0.361 7.150 
Providence-Fall River, 
RI-MA 

USA 36108 1985 2006 10.9 -16.7 31.4 178042 3814.9 44355 0.402 7.680 

Punta Gorda, FL USA 37773 1985 2006 23.5 3.6 32.2 16641 492.8 37657 0.408 7.640 
Raleigh, NC USA 58561 1985 2006 15.7 -15.6 32.2 403892 3426.5 52985 0.390 8.290 
Reading, PA USA 72337 1985 2006 15.7 -15.6 32.2 88082 5601.3 41271 0.376 10.099 
Riverside-San 
Bernardino, CA 

USA 433285 1985 2006 19.2 3.6 36.7 303871 1522.6 47585 0.409 12.012 

Rochester, NY USA 127040 1985 2006 9.1 -21.1 30.3 210565 3093.6 53680 0.415 8.850 
Rockford, IL USA 46380 1985 2006 9.3 -28.3 31.7 152871 1327.2 47422 0.392 9.201 
Sacramento, CA USA 172136 1985 2006 16.4 -2.5 34.7 466488 3690.7 44379 0.409 8.544 



Saginaw, MI USA 39515 1985 2006 8.6 -23.9 31.1 51508 422.3 36264 0.373 8.960 
Salinas, CA USA 45929 1985 2006 14.4 0.6 27.8 150441 1987.9 47585 0.409 6.568 
Salt Lake City, UT USA 89770 1985 2006 11.7 -20.0 32.8 186440 1232.8 57148 0.320 7.602 
San Antonio, TX USA 186461 1985 2006 20.9 -7.8 34.2 1327407 1662.5 37285 0.398 7.566 
San Diego, CA USA 369956 1985 2006 17.7 6.4 30.8 1307402 10912.3 54256 0.409 8.282 
San Francisco, CA USA 248607 1985 2006 14.5 0.3 30.0 805235 11866.2 74576 0.409 10.202 
San Jose, CA USA 176066 1985 2006 16.3 -1.9 32.2 945942 2744.9 47585 0.409 8.780 
Sarasota-Bradenton, 
FL 

USA 151551 1985 2006 23.2 0.8 32.8 107763 1539.6 37657 0.408 7.520 

Scranton--Wilkes-
Barre--Hazleton, PA 

USA 150119 1985 2006 10.0 -22.2 31.9 76089 2610.7 41271 0.376 9.267 

Seattle, WA USA 225451 1985 2006 11.4 -9.7 28.1 608660 11537.1 78444 0.389 7.867 
Shreveport, LA USA 51716 1985 2006 18.9 -10.0 34.2 199311 1323.7 44401 0.422 8.273 
Spokane, WA USA 68681 1985 2006 8.8 -23.6 30.6 208916 1463.8 47485 0.389 6.960 
Springfield, MA USA 94971 1985 2006 10.3 -18.3 31.1 153060 4636.1 53721 0.402 8.069 
St. Louis, MO-IL USA 312923 1985 2006 14.0 -22.8 33.6 319294 3342.2 47422 0.392 10.753 
Stamford-Norwalk, CT USA 142216 1985 2006 11.4 -16.1 30.8 216763 1381.5 58867 0.376 9.001 
Stockton-Lodi, CA USA 82225 1985 2006 16.7 -3.3 36.9 359792 1843.2 47585 0.409 9.701 
Syracuse, NY USA 84451 1985 2006 9.2 -23.6 30.3 145170 2948.3 53680 0.415 9.042 
Tacoma, WA USA 96086 1985 2006 11.8 -9.4 26.7 198397 6320.3 47485 0.389 7.295 
Tampa-St. Petersburg-
Clearwater, FL 

USA 158555 1985 2006 23.0 -1.1 31.7 335709 4664.6 51813 0.408 8.409 

Toledo, OH USA 92004 1985 2006 10.2 -25.0 31.7 287208 1951.3 46146 0.367 9.782 
Trenton, NJ USA 58430 1985 2006 11.7 -16.4 31.7 84913 5001.8 52115 0.387 9.395 
Tucson, AZ USA 131053 1985 2006 21.1 -1.4 37.2 520116 1242.5 33110 0.410 7.328 
Tulsa, OK USA 95475 1985 2006 16.1 -17.5 35.3 391906 1223.2 46716 0.371 8.641 
Utica-Rome, NY USA 53724 1985 2006 8.2 -25.8 28.9 95960 404 53680 0.415 8.121 
Ventura County, CA USA 87603 1985 2006 16.2 3.6 29.2 823318 140 47585 0.409 10.378 
Virginia Beach, VA USA 187233 1985 2006 16.0 -15.0 33.1 437994 1749 42208 0.390 8.683 



Washington, DC-MD-
VA 

USA 141028 1985 2006 14.6 -16.7 33.9 601723 109.8 72136 0.375 9.753 

West Palm Beach-Boca 
Raton, FL 

USA 233887 1985 2006 24.3 1.7 31.1 322923 1514.6 37657 0.408 6.412 

Wichita, KS USA 68542 1985 2006 14.0 -22.2 33.9 382368 3077.8 44816 0.352 8.937 
Wilmington, DE USA 76254 1985 2006 12.7 -18.9 31.9 70851 4006.6 66071 0.362 9.175 
Worcester, MA USA 135785 1985 2006 8.8 -21.1 28.9 181045 5528.9 58867 0.376 8.262 
York, PA USA 62767 1985 2006 12.2 -22.2 31.1 43718 2280 41271 0.376 9.097 
Youngstown-Warren, 
OH 

USA 86656 1985 2006 9.7 -25.6 30.6 108539 837.5 38972 0.367 8.821 

Ho Chi Minh City Vietnam 101959 2010 2013 28.5 23.0 32.1 6124331 28432.8 NA NA 23.624 
Hue Vietnam 6214 2009 2013 25.7 14.4 33.9 815000 5066.6 NA NA 23.500 
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ORIGINAL ARTICLE

Background: Air conditioning has been proposed as one of the key 
factors explaining reductions of heat-related mortality risks observed 
in the last decades. However, direct evidence is still limited.
Methods: We used a multi-country, multi-city, longitudinal design to 
quantify the independent role of air conditioning in reported attenu-
ation in risk. We collected daily time series of mortality, mean tem-
perature, and yearly air conditioning prevalence for 311 locations in 
Canada, Japan, Spain, and the USA between 1972 and 2009. For each 

city and sub-period, we fitted a quasi-Poisson regression combined 
with distributed lag non-linear models to estimate summer-only 
temperature–mortality associations. At the second stage, we used 
a novel multilevel, multivariate spatio-temporal meta-regression 
model to evaluate effect modification of air conditioning on heat–
mortality associations. We computed relative risks and fractions of 
heat-attributable excess deaths under observed and fixed air condi-
tioning prevalences.
Results: Results show an independent association between increased 
air conditioning prevalence and lower heat-related mortality risk. 
Excess deaths due to heat decreased during the study periods from 
1.40% to 0.80% in Canada, 3.57% to 1.10% in Japan, 3.54% to 
2.78% in Spain, and 1.70% to 0.53% in the USA. However, increased 
air conditioning explains only part of the observed attenuation, cor-
responding to 16.7% in Canada, 20.0% in Japan, 14.3% in Spain, and 
16.7% in the USA.
Conclusions: Our findings are consistent with the hypothesis that 
air conditioning represents an effective heat adaptation strategy, but 
suggests that other factors have played an equal or more important 
role in increasing the resilience of populations.

Keywords: Adaptation; Air conditioning; Longitudinal; Meta-analysis; 
Multilevel; Temperature

(Epidemiology 2020;31: 779–787)

Epidemiologic studies in various countries have provided 
evidence of a decrease in mortality risks associated to ex-

posure to heat over the last decades.1,2 Several mechanisms 
have been suggested as potential drivers of such attenuation, 
including physiologic (referred to as acclimatization), behav-
ioral (e.g., clothing), infrastructural (green spaces), and tech-
nological (heat warning system).2–4 However, evidence is still 
limited, and an appropriate characterization of factors respon-
sible for the attenuation of heat-related risks is still lacking. 
This information is nonetheless critical for planning effective 
public health and climate policies.1–3

Air conditioning is one of the most straightforward strat-
egies to reduce heat stress, and previous investigations have 
assessed its role in modifying mortality risks associated to 
exposure to high temperature using both individual- or aggre-
gated-level designs, although with conflicting results.5–13 These 
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studies adopted either a cross-sectional and/or longitudinal de-
sign, comparing risks at different air conditioning prevalence 
between individuals/locations or at different times. However, 
they faced a number of methodologic challenges. Analyses 
based on the cross-sectional comparison of subjects or cities 
with different air conditioning use and prevalence are prone 
to bias, as other characteristics, such as socioeconomic or cli-
matic conditions, can be responsible for differences in health 
risks. Longitudinal designs can address this issue, but they 
need data consistently collected over a long period of time to 
allow for substantial variation in air conditioning use within 
each location. More importantly, these studies can be affected 
by temporal confounding due to concurrent changes in other 
modifying factors, such as infrastructural changes and access to 
health care. Finally, the complexity of exposure–response rela-
tionships, characterised by non-linearity and temporally delayed 
effects, presents additional problems in modeling temperature–
mortality associations. A recent investigation by Nordio et al 
10 partly addressed these issues by comparing estimates from 
several USA cities over 5 decades, while using flexible expo-
sure–response functions and adjusting for underlying trends. 
However, that study was performed in a single country, and its 
estimates of the role of air conditioning can be affected by the 
lack of separation between spatial and temporal contrasts.

In this contribution, we extend the assessment to a 
multi-country setting and adopting sophisticated longitudinal 
designs to control for spatial and temporal confounding. Spe-
cifically, the analysis makes use of a unique dataset with time-
series data from 331 locations in 4 countries (USA, Japan, 
Canada, and Spain) in the period 1972–2019, and applies 
novel 2-stage methods based on multilevel multivariate spa-
tio-temporal meta-regression models.

METHODS

Data
We collated data on mortality, temperature, and air con-

ditioning prevalence from multiple locations in the 4 countries 
(see eTable 1; http://links.lww.com/EDE/B701). For each loca-
tion, the data consist of daily counts of all-cause (Canada, Japan, 
and Spain) or non-accidental (USA) mortality and temperature 
series in summer months (June to September), and air condi-
tioning prevalence from survey data in multiple years within 
the study period. Table 1 lists the study locations, the observa-
tion period as well as the air conditioning variable and surveys 
used to derive air conditioning prevalences in the 4 countries 
included in this study. Across countries, air conditioning preva-
lence data comes from different surveys with different frequency 
of reporting (see eAppendix; http://links.lww.com/EDE/B701). 
More detailed information on the data collected in each country 
are reported in the eAppendix; http://links.lww.com/EDE/B701.

Statistical Methods
The analytical strategy was based on 3 steps, briefly 

summarized here and described in detail below. In the first 

step, each country-specific study interval was split into mul-
tiple periods. Then, we fitted separate regression models to 
obtain estimates of heat–mortality associations for each lo-
cation and period. In addition, we reconstructed location-spe-
cific air conditioning trends and assigned prevalence estimates 
to each location or period unit. In the second step, we pooled 
the set of coefficients defining the associations to evaluate 
changes in heat-related mortality risks by calendar year and 
air conditioning prevalence, accounting for both within- and 
between-city variations. Finally, in the third and last step, we 
used the coefficients of the meta-regression models to derive 
trends in relative risk (RR) and attributable fractions predicted 
using observed and alternative scenarios of air conditioning 
prevalence trends.

Step 1: Estimating Location and Period-specific Air 
Conditioning Prevalence and Risks

In the first step, for each location, we divided the ob-
servation time was divided into specific time intervals. The 
number and the different periods for each country are reported 
in eTable 2; http://links.lww.com/EDE/B701. Time intervals 
have a length of 4 or 5 years. The length of time intervals was 
chosen a priori to provide enough statistical power to derive 
period-specific estimates, and enough time points to detect 
changes over time. For each country and locations, using the 
original air conditioning data, which was assessed intermit-
tently, we estimated the air conditioning prevalence for each 
period, as described in the eAppendix; http://links.lww.com/
EDE/B701. Briefly, for the USA, Canada, and Spain, we fitted 
a linear mixed-effects model with a B-spline parameterization 
of the time variable (years), and city as grouping level. We used 
best linear unbiased prediction estimates were used to predict 
yearly air conditioning prevalence in mid-summer (1st of July) 
in each city of the 3 countries. For Japan, we used the orig-
inal yearly data and assigned it to mid-summer. To assessed if 
changes in reporting air conditioning prevalence over time af-
fected the predicted trends, we performed a sensitivity analysis 
including an indicator that defines pre- and post-periods corre-
sponding to implementation of the new reporting methods (see 
eAppendix; http://links.lww.com/EDE/B701).

We estimated the location and period-specific temper-
ature–mortality associations through quasi-Poisson regres-
sion14 with distributed lag non-linear models.15 Based on 
previous work,16 we specified the cross-basis function of daily 
mean temperature using a quadratic B-spline function for the 
temperature dimension, with 2 internal knots at the 50th and 
90th percentiles of the location and period-specific summer 
temperature distributions, and unconstrained parameteriza-
tion over lag 0–2. To control for long-term trends and residual 
seasonality, we included interaction terms between a natural 
cubic B-spline function with 4 degrees of freedom of the day 
of the year and indicators of year, along with an indicator of 
day of the week. We tested these modeling choices in a sensi-
tivity analysis.
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Step 2: Modeling Spatial and Temporal Variation  
in risk

The location and period-specific estimates obtained 
from the quasi-Poisson model in step 1 were then combined 
using multilevel multivariate spatio-temporal models that 
consider possible non-independence of estimates within each 
location.17 For each location i m= …1, ,  and year t Ti= …1, ,  
(defined as mid-points of periods), we obtained a k = 4  
length column vector of spline coefficients θit  representing the 
temperature–mortality association cumulated over lag 0–2 in 
location i and period t, and associated k k×  estimated (co)var-
iance matrix Sit. The multilevel multivariate spatio-temporal 
meta-regression model for the multivariate vector response θit  
can be written as:

θ β εit it i i itX Z b= + +  			   (1)

with b Ni ∼ ( )0 1, ψ , and εit itN S∼ ( )0, .
The matrix Xit in the meta-regression model in equation 

1 included fixed-effect predictors, represented by indicators 
of country, calendar year, period-specific average and inter-
quartile range of daily mean temperature, in addition to air 
conditioning prevalence. Temperature variables were selected 
following previous evidence of their role in modifying heat-
related mortality risks, while a linear term for calendar year 
was included to control for underlying variations in risk un-
related to air conditioning use. We compared the role of dif-
ferent fixed-effect predictors through likelihood ratio test in 
models fitted with a maximum-likelihood estimator. We in-
cluded random terms at city- or prefecture-level, represented 
by indicators Zi with random coefficients bi. The random 
coefficients have unstructured (co)variance matrices Ψ1 . The 
term Sit represents the estimation error within location/period 

combinations. A restricted maximum-likelihood estimator 
was used for the final model.

This modeling approach allows investigation of the 
independent effect of changes over time in air conditioning 
prevalence on the temperature–mortality association, while 
adjusting for country- and location-specific trends. Using 
random terms at location level allows the use of information 
both within and between locations.

Step 3: Quantifying Heat-related Risks  
and AC Contribution

The estimated fixed-effects coefficients β
∧
 from the mul-

tilevel multivariate spatio-temporal meta-regression model (1) 
fitted in step 2 can be used to predict a set of spline coefficients 
θ
∧
ct that represent pooled heat–mortality association curves for 

any combination of country, year, and air conditioning preva-
lence. Specifically, associations were predicted longitudinally 
or at the end of country-specific study periods, either using 
observed values of meta-predictors or under specific scenarios 
of air conditioning prevalence. Results were first reported in 
terms of country-averaged RR, using country-specific temper-
ature distributions and minimum mortality temperature as ref-
erences. In addition, we also derived summaries corresponding 
to estimated mortality fractions (in percentage) attributed to 
summer heat for each country/sub-period, following a proce-
dure described elsewhere.18 In brief, we computed the mortality 
attributable to heat first by summing the temperature-related 
deaths occurring in days with temperatures higher than the lo-
cation specific 50th percentile of the summer distribution, and 
then by dividing this excess by the total number of deaths. We 
calculated empirical standard error using Monte Carlo simula-
tions, assuming a multivariate normal distribution of the fixed-
effects coefficients estimated in step 2.18

TABLE 1.  Geographical Boundaries, Observation Period, and Definition of Air Conditioning Prevalence in Each Country

Country Locations Period Air Conditioning Variable Survey

Canada 20 census metropolitan 

areas + city of 

Hamilton

1991–2009 Proportion of dwellings with an air conditioning 

system (central or with a window or room 

mounted air conditioning system)

Survey of Household and Energy Use (SHEU)a

Households and Environment Survey (HES)b

Japan 47 prefectures 1972–2009 Proportion of households with 2 or more occupants 

with air conditioning

Regional statistics databasec

Spain 52 capital cities 1990–2009 Proportion of family homes with “refrigeration”; 

and from 2007 proportion of “homes with air 

conditioning”

Population and Housing Censusd

“Life Conditions” Surveye

USA 211 metropolitan areas 1973–2006 Proportion of households in each metropolitan area 

with central air conditioning

Census of Populationf

American Housing Survey (AHS)g

Residential Energy Consumption Surveyh

aEstimates at regional level in years 1993, 1997, and 2003.
bEstimates at city level in years 2006, 2007, and 2009.
cAsahi Newspaper Publishing (2015).
dEstimates at city level in years 1991 and 2001.
eEstimates at regional level in 2007.
fEstimates before 1985 at city level.
gAHS use a rotation sampling of cities; data available yearly from 1985.
hUsed to estimate air conditioning prevalence in northern New England cities.
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RESULTS

Data Description
During the study period, more than 23 million deaths 

were registered in the 331 locations assessed in the 4 coun-
tries. On average, air conditioning prevalence increased in all 
countries (Figure 1), with the highest prevalence at the end of 
the study period observed in Japan (89.2%), followed by the 
USA (82.8%), Canada (48.8%), and Spain (26.9%).

Multilevel Multivariate Spatio-temporal  
Meta-regression Model

The results of meta-regression models with different 
fixed-effects specifications are shown in eTable 3; http://links.
lww.com/EDE/B701. In the final specification of the multi-
level multivariate spatio-temporal meta-regression model, air 
conditioning prevalence shows an independent association 
with heat-related risks (P = 0.011), while accounting for coun-
try-specific trends and adjusting also by locations and period-
specific average and interquartile range of mean temperature. 
We did not find strong evidence of a differential effect of 
air conditioning prevalence between countries (P = 0.084).  
Inspection of distribution of the residuals and their scatter  
plot versus time and air conditioning prevalence suggested 
a good fit of the model (see eFigure 3; http://links.lww.com/
EDE/B701).

Quantification of the Heat-related Risk  
and its Trend

Figure  2 represents the changes in the heat–mortality 
association curves predicted by spatio-temporal meta-regres-
sion, at the beginning and end of the study periods in the 4 
countries. Japan showed a strong attenuation in risk, with a 
decline of the RRs across almost all the summer temperature 
range. The USA and Spain also displayed a decrease in risk, 
although more evident at highest temperature percentiles. 
Canada showed little evidence of a reduction in heat-related 
RR over the observed period.

Table 2 presents air conditioning prevalence, estimated 
RR at 99th percentile of the temperature distribution versus 
minimum mortality temperature, and estimated excess mor-
tality by country and calendar year. The trend is consistent 
with the attenuation in risk, especially in Japan where the 
RR declined from 1.32 to 1.08 during the period 1975–2007. 
In the same period, the heat-related excess deaths reduced 
from 3.57% to 1.10%. A reduction in RR is also evident in 
the USA and Spain, with a reduction of excess deaths due to 
heat from 0.54% to 2.78% in Spain, and 1.70% to 0.53% in 
the USA. In Canada, there was no evidence of reduction of 
the RR corresponding to the 99th temperature percentile, but 
we observed a decrease in mortality fraction attributable to 
heat, from 1.40% to 0.80%, due to an attenuation in risk at 

FIGURE 1.  Air conditioning (AC) preva-
lence (%) by year in Canada, Japan, Spain, 
and the USA.
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lower temperature percentiles (90th and 50th), as shown in  
eFigure 2; http://links.lww.com/EDE/B701.

Temporal changes in temperature-related risks are gener-
ated by both variation in air conditioning prevalence and un-
derlying trends due to other factors. To quantify the role of air 
conditioning, we fixed the calendar year at the end of the study 
period and calculated the RR at 99th temperature percentile and 
heat-related mortality fraction for different levels of air condi-
tioning prevalence (Table  3). Results indicate that increasing 
the AC prevalence from 30% to 80% would be associated with 
important reduction in heat-related death: 30.2% in the USA, 
24.9% in Canada, 20.3% in Japan, and 8.8% in Spain.

Finally, to separate and quantify the contribution of 
air conditioning prevalence from other time-varying factors 
in attenuating heat-related risks, we compared the excess 

mortality under scenarios of observed increase or no change 
in air conditioning prevalence (Figure 3). The dark and light 
blue bars represent the excess mortality fraction calculated at 
the beginning and at the end of the study periods, using the 
actual air conditioning prevalences, with figures reported in 
Table 2. The middle blue bar represent instead the excess mor-
tality fraction at the end of study period assuming no change 
in air conditioning prevalence: the comparison indicates that 
an increased air conditioning prevalence is responsible for 
only part of the observed attenuation, corresponding approxi-
mately to 16.7% in Canada, 20.0% in Japan, 14.3% in Spain, 
and 16.7% in the USA. These results suggest that other adap-
tation factors can be equally and, in some cases, more impor-
tant for explaining the decreasing trend (see eTable 4; http://
links.lww.com/EDE/B701).

FIGURE 2.  Country-average exposure–response curves (in RR) predicted at the beginning and end of the study periods in Canada, 
Japan, Spain, and the US. The x-axis represents relative temperatures in percentiles, but rescaled using the average distribution of 
absolute temperature across cities in each country.
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DISCUSSION
Our results on air conditioning prevalence in Japan, the 

USA, Canada, and Spain are consistent with the hypothesis that 
air conditioning reduces heat-related mortality. This reduction 
occurs on top of variations in heat-related health risks possibly 
associated with planned and unplanned adaptation processes 
other than air conditioning use. These independent adaptation 
pathways were quantified and compared using alternative sce-
narios of air conditioning prevalence and underlying temporal 
trends. These scenarios indicate that while the increase in air 
conditioning use is associated with a reduction in heat-related 
mortality, this only explains a part of the decline in risk expe-
rienced in some countries, and other adaptation pathways have 
had a more important role in reducing the health burden.

Our results are consistent with published epidemiolog-
ical investigations that have reported a substantial attenuation 
of heat-related health risk.1,2,19 In particular, similar declining 
trends were observed in the USA,6,7,10,16,20–24 Japan,8,9,25 Spain,26 
and Canada.

16 Similar declining trends were also observed in 
Sweden,27 Austria,28 the United Kingdom,29,30 Netherlands,31 9 
European cities,32 and Korea,33,34 but not in China.35

Previous studies have evaluated the protective effect 
of air conditioning on heat-related risks. Some assessments 
used cohort12 and case-control study designs,13 and suggested 
a role of AC in reducing the heat-related mortality risks in 
the USA. These studies were followed by 2-stage studies in 
which the first-stage estimates obtained through case-only11 or 
time-series analyses5 in multiple cities were combined using 
meta-regression models with air conditioning prevalence as 
a contextual variable. These studies confirmed the protective 
effect of air conditioning in the USA, but were prone to eco-
logic confounding as the selected cities can differ by other un-
measured characteristics (e.g., demographic, socioeconomic, 
and infrastructural) related to health risk. More recent studies 
in the USA and Japan used a longitudinal design to disen-
tangle the effect of air conditioning as behavioral adaptive 
measure. In the USA, 2 studies found an independent protec-
tive effect of air conditioning,5,6 but Bobb et al7 observed no 
evidence of protective effect. The longitudinal study of Nor-
dio et al10 reported independent protective effects of air con-
ditioning while controlling for region, time trend, and mean 
summer temperature, using spline models in individual cities 
and a meta-regression approach. The 2 longitudinal studies 
conducted in Japan did not find evidence consistent with an 
independent protective effect of air conditioning over the de-
clining heat-related risk trend.8,9 Differences on previous stud-
ies results can be partly explained by low statistical power, as 
these investigations were conducted in a single country and/
or the temperature–mortality curve was summarized using 
simplified indices. Moreover, these studies did not jointly 

TABLE 2.  Reconstructed Air Conditioning (AC) Prevalence, 
RR at 99Th Percentile of the Temperature Distribution Versus 
Minimum Mortality Temperature, and Attributed Mortality 
Fraction AF% with 95% Confidence Intervals (CI) by Country 
and Year

Country Year AC% 99th RR (95% CI) AF% (95% CI)

Canada 1994 30.1 1.13 (1.09, 1.17) 1.40 (1.23, 1.55)

1998 35.5 1.12 (1.08, 1.16) 1.33 (1.20, 1.44)

2003 41.9 1.11 (1.08, 1.14) 1.22 (1.05, 1.38)

2008 48.8 1.11 (1.07, 1.16) 0.80 (0.59, 0.98)

Japan 1975 15.9 1.32 (1.29, 1.34) 3.57 (3.53, 3.61)

1979 31.1 1.28 (1.26, 1.30) 3.13 (3.10, 3.17)

1983 41.3 1.24 (1.23, 1.26) 2.83 (2.79, 2.86)

1987 52.3 1.21 (1.19, 1.22) 2.52 (2.49, 2.56)

1991 64.1 1.18 (1.16, 1.19) 2.24 (2.20, 2.28)

1995 73.7 1.15 (1.13, 1.16) 1.90 (1.86, 1.94)

1999 81.3 1.12 (1.11, 1.14) 1.70 (1.66, 1.75)

2003 86.0 1.10 (1.08, 1.11) 1.43 (1.39, 1.46)

2007 89.2 1.08 (1.06, 1.10) 1.10 (1.05, 1.14)

Spain 1993 9.0 1.37 (1.32, 1.42) 3.54 (3.38, 3.69)

1998 12.9 1.42 (1.37, 1.46) 3.54 (3.42, 3.65)

2003 19.2 1.35 (1.32, 1.39) 3.51 (3.41, 3.60)

2007 26.9 1.26 (1.22, 1.31) 2.78 (2.63, 2.92)

USA 1975 49.4 1.14 (1.13, 1.15) 1.70 (1.67, 1.73)

1979 56.5 1.13 (1.12, 1.14) 1.56 (1.54, 1.58)

1984 64.1 1.11 (1.10, 1.12) 1.32 (1.30, 1.33)

1989 71.0 1.09 (1.08, 1.10) 1.09 (1.07, 1.10)

1994 76.8 1.08 (1.07, 1.09) 0.88 (0.87, 0.90)

1999 80.7 1.06 (1.05, 1.07) 0.67 (0.65, 0.68)

2004 82.8 1.05 (1.04, 1.06) 0.53 (0.51, 0.55)

CI indicates confidence interval.

TABLE 3.  Predicted Relative Risk (RR) at 99th Temperature 
Percentile, and Attributed Mortality Fraction (AF%) with 95% 
Confidence Intervals (CI) Calculated at the End of the Study 
Period for 4 Scenarios of Air Conditioning Prevalence Levels 
(30%, 55%, 80%, and 100%) in Canada, Japan, Spain, and 
the USA. AC% indicates percent with air conditioning.

Country (Year) AC% 99th RR (95% CI) AF% (95% CI)

Canada (2008) 30 1.12 (1.07, 1.17) 0.93 (0.75, 1.10)

55 1.11 (1.06, 1.15) 0.82 (0.63, 1.00)

80 1.09 (1.05, 1.14) 0.70 (0.51, 0.89)

100 1.08 (1.03, 1.13) 0.61 (0.40, 0.80)

Japan (2007) 30 1.12 (1.09, 1.14) 1.48 (1.41, 1.54)

55 1.10 (1.08, 1.12) 1.33 (1.28, 1.37)

80 1.08 (1.07, 1.10) 1.18 (1.13, 1.22)

100 1.07 (1.06, 1.09) 1.06 (1.01, 1.10)

Spain (2007) 30 1.26 (1.22, 1.31) 2.86 (2.70, 2.99)

55 1.24 (1.20, 1.29) 2.73 (2.58, 2.87)

80 1.23(1.18, 1.28) 2.61 (2.45, 2.77)

100 1.21 (1.16, 1.27) 2.50 (2.32, 2.66)

USA (2004) 30 1.07 (1.05, 1.09) 0.82 (0.79, 0.84)

55 1.06 (1.05, 1.07) 0.69 (0.67, 0.71)

80 1.05 (1.04, 1.06) 0.57 (0.55, 0.59)

100 1.04 (1.03, 1.05) 0.47 (0.45, 0.49)
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consider the longitudinal and spatial structure of the data, and 
the non-independence of the observations within locations.

Our study has several strengths. First, we used distrib-
uted lag non-linear modeling techniques to estimate the heat–
mortality association. This modeling framework helps avoid 
biases due to simplification of the exposure–response asso-
ciation and considers possible lagged effects of heat on mor-
tality.15 Second, we were able to collect mortality, temperature 
and air conditioning data for 331 locations in 4 countries for a 
period of 4 decades. This provided large variability in air con-
ditioning prevalence both within and across locations, offering 
sufficient statistical power to isolate the impact on modifying 
heat–mortality relationships. Third, we used a study design 
based on both spatial and longitudinal comparison, reducing 

the chance of ecologic bias and temporal confounding due to 
concurrent changes in other modifying factors, such as soci-
oeconomic conditions and access to health care. The spatial 
component provides increased variability in response and ex-
posure, while the longitudinal design compares variations in 
risk within a location. Finally, we used novel multilevel mul-
tivariate spatio-temporal meta-regression models that allow 
disentangling of the reduction in heat-related risk associated 
to the increase in air conditioning prevalence from underlying 
trends due to other adaptation pathways, while at the same 
time correctly accounting for correlations between repeated 
measures taken within the same location.17

We must acknowledge some limitations. First, the results 
of our study refer to developed countries with predominantly 

FIGURE 3.  Excess mortality associated to heat reported as attributable fraction (AF%) estimated at the beginning (baseline, dark) 
and end of the study period assuming no change (end-study period with fixed air conditioning, medium) or with the observed 
change (end-study period, light) in air conditioning (AC) prevalence.
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temperate or continental climates. Caution should be used 
when extrapolating results to low-income countries, which are 
characterized by different climatic, sociodemographic, and 
development conditions, and where technology-based adap-
tation measures, such as increasing air conditioning use, may 
be problematic as many low-income countries already expe-
rience chronic shortages of power.2 Second, we reconstructed 
air conditioning prevalence along the past decades by apply-
ing smoothing techniques to irregular survey data from mul-
tiple sources. However, additional analyses described in the 
eAppendix; http://links.lww.com/EDE/B701 show that results 
are robust to this filling-up procedure. The results of the sensi-
tivity analysis suggest that the smoothing process could have 
introduced some error, although it is unlikely that this is corre-
lated with the estimated period-specific risk, and therefore can 
probably be assumed as random. Third, our air conditioning 
variable is defined as presence of air conditioning units or cen-
tral air conditioning at home, but does not capture its actual 
use. Moreover, this measure is not informative about air con-
ditioning use in other environments, such as on public trans-
port, stores, workplaces, and public areas. This may induce 
some additional problems in the interpretation of the results.

The analysis of factors related to changes in susceptibility 
to temperature-related mortality is critical to inform health and 
climate policies. Air conditioning is a solution to regulate am-
bient indoor temperatures and lower the heat stress imposed 
on the human thermoregulatory function,36 and it represents 
one of the most cited behavioral adaptation strategy to climate 
change.37 The results of our analysis confirm that air condi-
tioning is an effective adaptive measure and have contributed 
to reduce the burden of heat-related mortality. According to 
our estimates in the USA and Japan, nearly 0.09% and 0.32% 
of deaths during summer months were delayed by increasing 
the air conditioning prevalence level to more than 80%, respec-
tively. In these countries, the air conditioning market seems to 
have reached a plateau, but the heat-related mortality is still 
substantial. However, the quantitative comparison of the con-
tribution of increase in air conditioning prevalence, and the in-
dependent attenuation of the risk reported in Figure 3, suggest 
that other adaptation pathways can be equally or even more 
effective in reducing the health burden. In Spain and Canada, 
the delayed deaths during summer months were both 0.05%, 
suggesting a further margin on reduction of heat-related mor-
tality, especially in Spain where the reported air conditioning 
prevalence reaches only 30% in 2009. In addition, increasing 
air conditioning use has also important negative consequences, 
including capital and energy cost, carbon and pollution-gen-
erating energy demand, and contribution to the heat-island 
effect.2 However, the current rapid transition of electricity 
generation to carbon zero sources is likely to ameliorate the 
pollution impact in the next few decades. A quantitative assess-
ment of health and economic impacts of this and other adaptive 
changes is critical for generating plausible scenarios of poten-
tial mitigation and adaptation benefit and costs.

In conclusion, in this study, we found a reduction over 
time of the heat-related health risk in Japan, the USA, and 
Spain. Air conditioning prevalence was factor that independ-
ently explained part of the decrease in heat-related deaths, al-
though we estimated that other adaptive strategies accounted 
for a larger proportion of the attenuation. These results can be 
used to inform policy measures based at individual, commu-
nity, and international level, and to improve and extend pro-
jections of future heat impacts on human health.
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Additional information on data collection 

Japan 

We collected data for each of the 47 prefectures in Japan in the period 1972-2009. (1) Daily 
counts of deaths from all causes were extracted from a computerised death certificate 
database maintained by the Ministry of Health, Labour and Welfare of Japan. We derived 
daily mean temperature by averaging hourly measurements provided by the Japan 
Meteorological Agency for a single weather station in the capital city of each prefecture. We 
obtained prefecture-specific prevalence data of AC for households with two or more 
occupants in each year from a regional statistics database. (1) 

USA 

We collected data for 211 metropolitan areas in the USA with a nationwide geographic 
distribution in the period 1973-2006. (2) Metropolitan areas were composed of single or 
multiple counties. All cause daily mortality excluding any death from accidental causes (ICD-
code 10th revision: V01-Y98, ICD-code 9th revision: 001-799) were calculated from individual 
mortality data obtained from the National Center for Health Statistics (NCHS). Daily mean 
temperature was obtained from the airport weather station nearest to each city (National 
Oceanic and Atmospheric Administration [NOAA]). We estimated percentage of households 
in each city with central air conditioning (AC) by combining county-level or metropolitan area-
level data. For years in 1970’s and 1980’s, county-level AC data were gathered from the USA 
Census of Population. For later years, we used metropolitan area data from the American 
Housing Survey (AHS). As the AC prevalence shows a strong (north to south) geographical 
pattern in the USA, for cities not included in the AHS we used the nearest metropolitan area 
with available data.  For northern New England cities, we used regional level data from the 
“US Energy Information Administration, Office of Energy Consumption Residential Energy 
Consumption Survey”. 

Canada 

We collected data from 20 census metropolitan areas (CMA) and the city of Hamilton in the 
period 1986-2009. All-cause daily mortality was obtained from Statistics Canada through 
access to the Canadian Mortality Database. Mean daily temperature, computed as the 24-
hour average based on hourly measurements, were obtained from Environment Canada. A 
single weather station was selected for each city using the airport monitoring station located 
closest to the CMA centre. Proportion of dwellings with an air conditioning system (central or 
with a window or room mounted air conditioning system) was available for years 1993, 1997, 
2003, 2006, 2007, 2009. The information is available at regional level until 2003 (Survey of 
household & energy use (SHEU)), and from 2006 at city level (Households and environment 
survey (HES)). 

Spain 

We collected data from the 52 capital cities in the period 1990-2014. All-cause daily mortality 
was obtained from Spain National Institute of Statistics. Mean daily temperature, computed 
as the 24-hour average based on hourly measurements, was obtained from Spain National 
Meteorology Agency. A single weather station, located within the urban area or at the near 
airport, was selected for each city. Single-day missing values were imputed as the average of 
the days before and after. For periods longer than two days, no imputation was done. AC 
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prevalence data were available for three years, in 1991, 2001 and 2007. Data for 1991 and 
2001 available at city level come from the National Population and housing census and refers 
to number of family homes with “refrigeration". Data for year 2007 available at regional level 
(17 Regions) comes from “Life conditions" survey and refers to "homes with air conditioning".  

Derivation of AC trends 

For each country and location, using the original AC data, we estimated the AC prevalence for 
each sub-period. Briefly, for the USA, Canada and Spain we fitted a linear mixed-effects model 
with a B-spline parametrisation of the time variable (years), and city as grouping level. (3) The 
B-spline variables were used as fixed and random effects, borrowing information across 
locations, and allowing the random terms to model city-specific deviations in the trend. Best 
linear unbiased prediction (BLUP) estimates were used to predict yearly AC prevalence in mid-
summer (1st of July) in each city of the three countries. For Japan, we used the original yearly 
data, and assigned it to mid-summer.  

The original prevalence data for each country, location and sub-period for all the four 
countries, together with the estimated smoothed trends, are reported in eFigures 1 (a)-(d). 

Sensitivity Analyses 

Across countries AC prevalence data comes from different surveys with different frequency 
of reporting. To assess if changes in how AC prevalence was collected and reported affect our 
results we performed a sensitivity analysis in the linear mixed-effects models fitted for 
deriving trends in US and Canada. In particular we added an indicator that defines pre/post 
periods corresponding to implementation of the new reporting methods, using as threshold 
the year 1980 for US (transition from census (counties) to AHS survey (metropolitan areas), 
and the year 2003 for Canada (transition from regional to city level data). The parameters for 
these indicators are not significant at 95% (p=0.11 and p=0.10, and indeed their inclusion 
results in negligible changes in predicted AC prevalence).  

AC data from cities in the USA come from different sources (USA Census of Population, 
American Housing Survey (AHS) and Residential Energy Consumption Survey), which were 
collected with different designs and frequency. We performed a sensitivity analysis to assess 
if the effect of AC in USA was different in cities with (n = 105) and without (n = 106) AHS data. 
Briefly, we applied multilevel multivariate meta-analytic model with calendar year, AC 
prevalence, average and range of mean temperature as fixed effects and city as random term. 
An indicator variable was introduced to represent cities with and without AHS data with an 
interaction term with AC prevalence to assess the AC effect is modified by the two group of 
cities. The results of this analysis show that the AC effect is not modified (p=0.529) by the 
group of cities. 

1. Chung Y, Yang D, Gasparrini A, et al. Changing Susceptibility to Non-Optimum 
Temperatures in Japan, 1972-2012: The Role of Climate, Demographic, and 
Socioeconomic Factors. Environ Health Perspect 2018;126(5):057002. 

2. Nordio F, Zanobetti A, Colicino E, et al. Changing patterns of the temperature–
mortality association by time and location in the US, and implications for climate 
change. Environment international 2015;81:80-6. 

3. Ruppert D, Wand MP, Carroll RJ. Semiparametric regression. Cambridge university 
press; 2003. 
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Additional tables 

eTable 1(a). Total number of deaths during summer months, daily mean temperature 
(Celsius degree) and average AC prevalence by 21 study locations in Canada during the 
study period 1986-2009. 

City Deaths Daily Mean 
Temperature 

Average AC 
prevalence 

Abbotsford 7838 17.0 16.8 

Calgary 38533 14.3 13.4 

Edmonton 45066 15.4 11.3 

Halifax 20661 16.9 7.8 

Hamilton 33352 18.8 67.0 

Kingston 11469 18.8 61.8 

Kitchener-Waterloo 20230 17.9 64.0 

London Ontario 28166 18.8 65.8 

Montreal 80028 18.9 32.0 

Ottawa 39664 18.7 64.3 

Regina 14581 16.3 31.1 

Saint John NB 12648 15.3 31.7 

Saskatoon 16794 15.8 55.5 

St. John's NFL 15741 13.9 7.4 

Sudbury 12019 16.7 7.5 

Thunder Bay 10529 15.3 53.0 

Toronto 198640 19.4 66.5 

Vancouver 94778 16.8 10.5 

Victoria 24457 15.8 11.3 

Windsor 18810 21.0 69.8 

Winnipeg 49069 17.1 34.3 
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eTable 1(b). Total number of deaths during summer months, daily mean temperature 
(Celsius degree) and average AC prevalence by 47 study locations in Japan during the 
study period 1972-2009. 

Prefecture Deaths Daily Mean 
Temperature 

Average AC 
prevalence 

Aichi 452427 25.0 74.7 

Akita 124440 21.7 30.3 

Aomori 138564 20.1 18.5 

Chiba 353653 24.0 63.7 

Ehime 145620 25.2 62.1 

Fukui 73010 24.2 68.1 

Fukuoka 390851 25.5 70.5 

Fukushima 189597 22.5 33.6 

Gifu 167354 25.2 62.1 

Gunma 163532 23.7 59.4 

Hiroshima 238543 25.1 69.8 

Hokkaido 467270 19.2 6.0 

Hyogo 429740 25.2 73.8 

Ibaraki 226688 22.4 53.4 

Ishikawa 99811 24.0 63.4 

Iwate 131879 20.4 20.0 

Kagawa 95519 25.3 74.8 

Kagoshima 185235 26.4 53.6 

Kanagawa 479908 24.0 66.1 

Kochi 90113 25.3 58.2 

Kumamoto 168999 25.8 61.3 

Kyoto 210622 25.4 79.0 

Mie 156597 24.8 68.8 

Miyagi 170173 21.3 33.3 

Miyazaki 104213 25.6 55.0 

Nagano 197618 22.3 27.7 

Nagasaki 146701 25.5 59.6 

Nara 104561 24.2 76.0 

Niigata 228737 23.4 58.2 

Oita 119665 24.9 56.4 

Okayama 174873 25.4 71.5 

Okinawa 78148 27.8 57.9 

Osaka 625918 26.0 83.4 

Saga 83179 25.5 66.6 

Saitama 382546 24.0 73.7 

Shiga 94724 24.2 67.8 

Shimane 83086 23.9 56.5 

Shizuoka 279169 24.6 58.5 

Tochigi 158398 22.9 55.0 
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Tokushima 83947 25.2 66.3 

Tokyo 839158 24.7 74.2 

Tottori 60834 24.1 59.6 

Toyama 104314 23.5 63.4 

Wakayama 108623 25.5 70.5 

Yamagata 124152 21.9 38.8 

Yamaguchi 155872 24.6 62.0 

Yamanashi 75953 24.0 42.1 

 

eTable 1(c). Total number of deaths during summer months, daily mean temperature 
(Celsius degree) and average AC prevalence by 52 study locations in Spain during the study 
period 1990-2014. 

City Deaths Daily Mean 
Temperature 

Average AC 
prevalence 

A Coruna 16435 18.9 4.6 

Albacete 7657 23.1 15.0 

Alicante 17524 24.8 23.2 

Almeria 9622 25.2 26.2 

Avila 3293 19.0 5.7 

Badajoz 7356 24.7 28.2 

Bilbao 25981 19.8 6.1 

Barcelona 119966 23.1 19.4 

Burgos 10884 18.1 3.0 

Cadiz 9221 23.8 18.0 

Caceres 4585 24.5 29.3 

Ciudad Real 4078 24.7 21.8 

Ceuta 3668 23.3 8.4 

Cordoba 18015 26.4 39.8 

Castellon 8906 24.4 20.3 

Cuenca 3405 21.7 12.2 

Guadalajara 3780 21.6 17.5 

Girona 4579 22.1 19.3 

Granada 15302 23.7 26.4 

Huelva 8310 24.6 19.7 

Huesca 3506 22.3 16.6 

Jaen 6148 25.2 35.7 

Leon 9530 18.2 3.0 

Logrono 8150 21.4 7.2 

Lleida 7641 23.5 22.0 

Lugo 6118 17.5 3.2 

Malaga 32155 24.9 21.5 

Madrid 194623 23.7 21.6 

Melilla 3100 24.6 11.7 
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Murcia 19671 26.1 35.1 

Ourense 7223 21.5 4.1 

Oviedo 14887 18.1 5.0 

Palmas G. 
Canaria 

20947 23.9 3.9 

Palma 
Mallorca 

20727 23.7 22.6 

Palencia 5697 19.5 3.9 

Pamplona 11776 20.1 7.6 

Pontevedra 4520 19.6 3.7 

Segovia 3706 20.3 4.1 

Salamanca 10890 19.8 4.7 

San 
Sebastian 

12657 18.5 6.5 

Santander 13103 19.3 6.3 

Soria 2366 18.7 3.8 

Sevilla 42071 26.9 42.5 

Teruel 2328 20.4 15.1 

Tenerife 11999 24.7 6.3 

Toledo 3927 24.8 27.5 

Tarragona 6777 25.1 19.0 

Vitoria 11886 18.1 6.0 

Valladolid 18921 20.7 6.0 

Valencia 51853 24.8 28.1 

Zamora 4517 21.1 2.8 

Zaragoza 42089 23.8 21.2 
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eTable 1(d). Total number of deaths during summer months, daily mean temperature 
(Celsius degree) and average AC prevalence by 211 study locations in USA during the study 
period 1973-2006. 

City Deaths Daily Mean 
Temperature 

Average AC 
prevalence 

AUGUSTA  (GA) 16328 25.4 85.6 

AKRON  (OH) 50880 20.3 54.6 

ALBANY  (NY) 28663 19.7 59.2 

ALBUQUERQUE  (NM) 29823 23.6 61.6 

ALLENTOWN  (PA) 27587 21.3 73.2 

ANCHORAGE  (AK) 5904 13.5 1.0 

ANAHEIM  (CA) 137811 22.6 47.7 

ANN ARBOR  (MI) 14962 20.3 64.7 

ANNANDALE  (VA) 24150 23.7 92.9 

AUSTIN  (TX) 29496 27.6 94.8 

ATLANTIC CITY  (NJ) 23639 21.9 61.1 

ATLANTA  (GA) 133722 24.4 84.5 

AZTEC  (NM) 3051 21.7 76.7 

BATH  (NY) 7696 19.2 42.5 

BUFFALO  (NY) 102555 19.7 32.4 

BAKERSFIELD  (CA) 37912 27.1 73.7 

BOULDER  (CO) 10504 21.4 40.9 

BALTIMORE  (MD) 151409 23.3 79.6 

BANGOR  (ME) 12045 17.9 33.0 

BOISE CITY  (ID) 10125 20.9 50.2 

PATERSON  (NJ) 112797 22.4 81.0 

BURLINGTON  (VT) 7828 19.1 36.4 

BIRMINGHAM  (AL) 80149 25.1 84.2 

BARNSTABLE  (MA) 22275 20.1 50.7 

BROWNSVILLE  (TX) 15246 28.2 78.1 

BOSTON  (MA) 230062 20.8 58.0 

BATON ROUGE  (LA) 27480 26.4 92.9 

CEDAR RAPIDS  (IA) 12886 20.8 81.0 

CHICAGO  (IL) 543251 22.3 76.3 

CHARLOTTE  (NC) 34665 24.2 83.5 

CHARLESTON  (SC) 21786 26.0 86.5 

CHATTANOOGA  (TN) 27278 24.3 90.1 

CHARLESTON  (WV) 23102 21.8 77.9 

COLUMBUS  (OH) 73424 21.7 75.4 

COLORADO SPRINGS  
(CO) 

21173 19.0 39.0 

CLEVELAND  (OH) 192411 21.8 58.5 

CINCINNATI  (OH) 83233 22.5 78.9 

CANTON  (OH) 35823 20.2 58.8 



8 
 

COLUMBIA  (SC) 32946 25.4 91.0 

CARLISLE  (PA) 16529 22.3 62.9 

CORPUS CHRISTI  (TX) 20657 27.9 84.9 

LAYTON  (UT) 7228 21.4 50.1 

DALLAS  (TX) 116462 28.3 95.4 

DENVER  (CO) 81168 20.4 43.0 

BEAVER DAM  (WI) 5773 19.7 60.5 

DOVER  (DE) 8362 22.8 75.9 

DURHAM  (NC) 14200 23.8 83.3 

DES MOINES  (IA) 25279 22.1 85.6 

DETROIT  (MI) 348759 21.6 63.1 

DAVENPORT  (IA) 25669 21.5 84.1 

DAYTONA BEACH  (FL) 44885 26.4 91.3 

DAYTON  (OH) 50614 21.8 78.1 

EL CENTRO  (CA) 6978 32.2 54.3 

ELKHART  (IN) 11791 22.3 73.7 

EL PASO  (TX) 30456 26.7 72.6 

ELIZABETH  (NJ) 46629 23.1 77.6 

ERIE  (PA) 25514 20.0 37.5 

ESSEX  (MA) 62360 20.5 58.2 

EUGENE  (OR) 22396 17.7 27.7 

EVANSVILLE  (IN) 17643 23.7 85.9 

EVERETT  (WA) 28599 17.0 6.0 

FARGO  (ND) 6372 19.1 48.7 

FLINT  (MI) 34774 19.7 51.1 

FRESNO  (CA) 44191 26.1 83.0 

FORT LAUDERDALE  (FL) 133746 28.2 93.6 

FORT MYERS  (FL) 34326 27.3 94.1 

FORT PIERCE  (FL) 26163 27.1 85.6 

FORT WORTH  (TX) 74381 27.9 96.0 

FORT WAYNE  (IN) 23452 21.0 76.6 

FAYETTEVILLE  (NC) 14727 25.2 85.7 

GARY  (IN) 42247 22.4 76.0 

GREEN BAY  (WI) 13173 18.9 60.8 

GREENSBURG  (PA) 39408 22.3 54.9 

GRAND HAVEN  (MI) 11578 19.4 56.3 

GRAND JUNCTION  (CO) 6151 23.1 49.6 

GRAND RAPIDS  (MI) 36477 19.9 55.3 

GREENSBORO  (NC) 29000 23.3 84.8 

GREENVILLE  (SC) 24980 24.8 82.5 

GAINESVILLE  (FL) 11380 25.9 87.1 

GETTYSBURG  (PA) 5058 22.7 56.9 

HICKORY  (NC) 9600 23.2 75.4 

HOLLAND  (MI) 5255 19.4 56.3 
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HONOLULU  (HI) 36742 26.6 30.9 

HARRISBURG  (PA) 23678 22.3 61.7 

HARTFORD  (CT) 71541 21.4 60.4 

HOUSTON  (TX) 161273 27.3 94.4 

INDIANAPOLIS  (IN) 70216 22.2 81.8 

IOWA CITY  (IA) 3434 21.0 85.0 

JACKSONVILLE  (FL) 55432 26.9 89.1 

JERSEY CITY  (NJ) 52656 19.5 66.6 

KLAMATH FALLS  (OR) 4132 17.1 27.3 

KALAMAZOO  (MI) 15947 21.3 61.6 

KENOSHA  (WI) 10620 20.2 64.2 

KANSAS CITY  (KS) 100016 24.8 87.2 

KNOXVILLE  (TN) 36093 23.6 87.8 

LAFAYETTE  (IN) 8821 21.9 79.8 

LAFAYETTE  (LA) 10644 26.6 89.5 

LAKE CHARLES  (LA) 14017 27.4 88.6 

LAKELAND  (FL) 39449 27.8 79.7 

LANCASTER  (PA) 35226 22.5 78.9 

LANSING  (MI) 17190 19.6 53.4 

LOGAN  (UT) 2466 20.0 39.6 

LOUISVILLE  (KY) 65088 23.8 83.0 

LA PORTE  (IN) 9585 20.9 74.0 

LOS ANGELES  (CA) 585151 21.5 49.3 

LAS VEGAS  (NV) 60738 30.8 94.5 

LITTLE ROCK  (AR) 29271 25.9 92.4 

MACON  (GA) 15179 25.6 83.3 

MCALLEN  (TX) 20083 28.9 77.7 

MIDDLESEX  (NJ) 48927 22.8 86.1 

MIDDLETOWN  (OH) 21954 22.3 78.7 

MEDFORD  (OR) 13963 20.6 37.7 

MADISON  (IL) 21823 24.7 80.0 

MODESTO  (CA) 26730 25.8 49.9 

MADISON  (WI) 21529 19.8 62.4 

MIAMI  (FL) 173549 27.9 87.7 

MELBOURNE  (FL) 34939 27.3 89.3 

MILWAUKEE  (WI) 109839 20.2 64.7 

MEMPHIS  (TN) 70069 26.3 94.1 

TOMS RIVER  (NJ) 103364 23.0 78.4 

MINNEAPOLIS  (MN) 113123 20.6 75.9 

MONTGOMERY  (AL) 18371 27.3 87.2 

MOBILE  (AL) 32427 27.0 91.4 

MONROE  (LA) 11976 26.3 86.9 

MERCER  (PA) 12730 19.8 52.6 

UPPER MARLBORO  (MD) 33827 23.0 90.6 
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MUSKEGON  (MI) 14426 19.4 55.2 

MUNCIE  (IN) 10741 22.4 74.6 

MYRTLE BEACH  (SC) 12073 25.6 83.4 

NAMPA  (ID) 4082 20.6 47.1 

NASHUA  (NH) 22925 21.5 47.9 

MELVILLE  (NY) 217220 21.4 73.4 

NILES  (MI) 14168 20.8 62.2 

NORFOLK  (VA) 69980 24.5 87.9 

NASHVILLE  (TN) 44063 24.5 94.8 

NEWBURGH  (NY) 23313 20.6 58.5 

NEW HAVEN  (CT) 72842 21.7 59.5 

NEW LONDON  (CT) 18931 20.6 54.1 

NEW ORLEANS  (LA) 88199 27.6 89.0 

NEWARK  (NJ) 107048 23.1 71.1 

NEW YORK  (NY) 691188 19.5 61.4 

OCALA  (FL) 21980 26.0 81.9 

OKLAHOMA CITY  (OK) 52741 25.7 93.7 

OAKLAND  (CA) 145642 16.9 31.0 

OMAHA  (NE) 33423 22.4 92.7 

ORLANDO  (FL) 65320 26.8 91.0 

OTTAWA  (IL) 11733 21.3 74.2 

PHILADELPHIA  (PA) 427954 22.6 78.0 

PHOENIX  (AZ) 152406 33.2 88.4 

PALM BEACH  (FL) 94124 27.3 89.5 

PLYMOUTH  (MA) 34916 20.2 56.5 

PENSACOLA  (FL) 21640 26.8 90.4 

PORTLAND  (OR) 94919 18.7 28.9 

PROVO  (UT) 11373 21.8 46.1 

PORT ARTHUR  (TX) 23927 26.9 90.1 

PORTAGE  (IN) 8380 22.4 78.8 

PORTLAND  (ME) 21078 18.3 36.1 

PROVIDENCE  (RI) 118928 20.7 50.4 

PITTSBURGH  (PA) 154655 21.1 57.4 

RICHMOND  (VA) 40673 23.8 86.4 

ROCHESTER  (NY) 60756 19.6 48.3 

ROCKVILLE  (MD) 38423 24.5 92.0 

READING  (PA) 32927 22.2 71.2 

RENO  (NV) 18059 20.6 71.0 

RALEIGH  (NC) 24517 23.9 89.2 

RIVERSIDE  (CA) 177334 23.3 79.6 

SACRAMENTO  (CA) 72377 22.1 89.2 

SCRANTON  (PA) 71109 19.9 47.2 

SAN DIEGO  (CA) 158466 21.3 34.0 

SAN FRANCISCO  (CA) 118777 16.9 7.2 
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SALT LAKE CITY  (UT) 39245 22.8 50.9 

SAN JOSE  (CA) 79032 21.8 32.2 

SANTA BARBARA  (CA) 25352 18.2 38.1 

SAN ANTONIO  (TX) 81165 28.1 86.3 

SPOKANE  (WA) 31111 18.8 45.4 

SPRINGFIELD  (MA) 44171 21.1 61.9 

SPRINGFIELD  (MO) 18837 23.3 81.1 

SPARTANBURG  (SC) 19782 24.2 77.3 

SARASOTA  (FL) 62363 27.7 93.3 

STEUBENVILLE  (OH) 11219 21.5 58.6 

ST. CHARLES  (MO) 11185 24.4 88.9 

STOCKTON  (CA) 35179 23.5 84.1 

EAST ST. LOUIS  (IL) 23205 24.5 85.0 

SOUTH BEND  (IN) 22463 20.8 70.5 

ST. LOUIS  (MO) 131259 24.7 88.4 

STAMFORD  (CT) 66789 20.6 72.8 

ST. PETERSBURG  (FL) 68483 28.5 90.8 

STATE COLLEGE  (PA) 7171 19.7 55.5 

SEATTLE  (WA) 102243 16.0 7.3 

SIOUX CITY  (IA) 7325 21.5 83.5 

TACOMA  (WA) 41570 17.1 8.2 

TAMPA  (FL) 68483 27.3 89.9 

TUCSON  (AZ) 52297 29.1 60.8 

TALLAHASSEE  (FL) 10497 26.1 88.9 

TOLEDO  (OH) 44939 21.3 66.0 

TOPEKA  (KS) 14340 23.7 89.3 

TRENTON  (NJ) 27141 22.5 86.2 

TERRE HAUTE  (IN) 11482 22.2 80.6 

TULSA  (OK) 42061 26.1 92.6 

VISALIA  (CA) 22014 25.4 44.5 

VANCOUVER  (WA) 15616 18.6 8.6 

VENTURA  (CA) 37298 18.8 43.4 

WICHITA  (KS) 30425 24.9 92.4 

OGDEN  (UT) 10926 23.5 47.6 

WILMINGTON  (DE) 34130 22.7 81.6 

WINSTON-SALEM  (NC) 22695 24.2 80.4 

WORCESTER  (MA) 62512 18.8 46.6 

WASHINGTON  (DC) 67541 24.3 87.3 

WASHINGTON  (PA) 22831 20.7 54.5 

YOUNGSTOWN  (OH) 41226 19.6 56.9 

YORK  (PA) 28005 22.0 71.6 
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eTable 2. Country specific sub-periods, and period specific averagre daily mean 
temperature (Celsisus degree). 

Country Sub-period Average daily mean 
temperature 

Canada [1991; 1995] 16.7 

Canada [1996; 2000] 17.1 

Canada [2001; 2005] 17.4 

Canada [2006; 2009] 17.0 

Japan [1972; 1976] 23.5 

Japan [1977; 1980] 24.0 

Japan [1981; 1984] 23.6 

Japan [1985; 1988] 23.9 

Japan [1989; 1992] 24.3 

Japan [1993; 1996] 24.1 

Japan [1997; 2000] 24.7 

Japan [2001; 2004] 24.6 

Japan [2005; 2009] 24.7 

Spain [1990; 1994] 22.0 

Spain [1995; 1998] 21.8 

Spain [1999; 2004] 22.5 

Spain [2005; 2009] 22.4 

USA [1973; 1976] 22.4 

USA [1977; 1981] 23.0 

USA [1982; 1986] 22.7 

USA [1987; 1991] 23.2 

USA [1992; 1996] 23.0 

USA [1997; 2001] 22.9 

USA [2002; 2006] 23.0 
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eTable 3. Multivariate multilevel meta-regression models with different fixed-effects specification 

and related p-values of Wald tests. 

 Model 1 Model 2 Model 3 Model 4 

Country*year interaction  <0.0001 <0.0001 <0.0001 

Air Conditioning (%) 
 

  <0.0001 0.011 

Average summer mean 
temperature ⁰C 

   0.740 

Interquartile range of mean 
temperature ⁰C 

   <0.0001 

I2 35.0% 22.5% 22.1% 20.5% 
Model 1: Intercept 
Model 2: Intercept, country*year interaction 
Model 3: Intercept, country*year interaction, AC 
Model 4: Intercept, country*year interaction, AC, average mean temperature, interquartile range of mean temperature 
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eTable 4. Attributable fractions (AF%), Attributable deaths by country and sub periods calculated under observed air conditioning 

prevalence (Scenario 1) and under Scenario 2 on which, in each country,  air conditioning prevalence is set at the level observed at the 

beginning of the observational period. Delayed deaths were calculated as difference between attributable deaths calculated between 

scenario 2 and scenario 1. 

  
Scenario 1. Observed air conditioning prevalence Scenario 2: Air conditioning prevalence set at the level 

observed at the beginning of the observational period 

 

  
AF% Attributable deaths AF% Attributable deaths Delayed 

deaths 

Country Period Point 

estimate 

95%CI Point 

estimate 

95%CI Point 

estimate 

95%CI Point 

estimate 

95%CI 
 

Canada [1991; 1995] 1.4 (1.2; 1.6) 2366.4 (2070.9; 2642) 1.4 (1.2; 1.6) 2381.2 (2108.8; 2647) 14.8 

 
[1996; 2000] 1.3 (1.2; 1.5) 2284.4 (2047.4; 2506) 1.4 (1.2; 1.5) 2345.4 (2116.8; 2571.2) 61.0 

 
[2001; 2005] 1.2 (1.1; 1.4) 1928.1 (1663.4; 2191.7) 1.3 (1.2; 1.5) 2095.6 (1835.9; 2336.4) 167.5 

 
[2006; 2009] 0.8 (0.6; 1) 1002.3 (758.8; 1230.7) 0.9 (0.7; 1.1) 1136.8 (903.6; 1357.2) 134.5 

         
Delayed deaths 377.8 

         Total deaths 793073 

         Delayed AF% 0.05 
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Japan [1972; 1976] 3.6 (3.5; 3.6) 37131.7 (36735.3; 37554.5) 3.6 (3.5; 3.6) 37293.1 (36862.9; 37678.3) 161.4 

 
[1977; 1980] 3.1 (3.1; 3.2) 26476.9 (26182.5; 26761.1) 3.3 (3.2; 3.3) 27486.9 (27206.4; 27779.2) 1010.0 

 
[1981; 1984] 2.8 (2.8; 2.9) 24687.3 (24383.1; 24972.6) 3.0 (3; 3.1) 26287.2 (25940.6; 26652.8) 1599.9 

 
[1985; 1988] 2.5 (2.5; 2.6) 23182.0 (22867.4; 23527.1) 2.8 (2.7; 2.8) 25453.3 (25014.1; 25890.6) 2271.3 

 
[1989; 1992] 2.2 (2.2; 2.3) 22402.2 (21979.9; 22798.3) 2.6 (2.5; 2.6) 25862.9 (25263.2; 26440.4) 3460.7 

 
[1993; 1996] 1.9 (1.9; 1.9) 20218.4 (19799.2; 20665.7) 2.3 (2.2; 2.4) 24519.9 (23831; 25203.5) 4301.5 

 
[1997; 2000] 1.7 (1.7; 1.7) 18937.1 (18452.2; 19409.5) 2.2 (2.1; 2.2) 24118.4 (23288.9; 24930.7) 5181.3 

 
[2001; 2004] 1.4 (1.4; 1.5) 17090.7 (16617; 17538) 1.9 (1.8; 2) 22989.7 (22051.7; 23992.8) 5899.0 

 
[2005; 2009] 1.1 (1; 1.1) 18268.8 (17422.3; 19040.2) 1.6 (1.5; 1.6) 26097.9 (24791.5; 27415.1) 7829.1 

         
Delayed deaths 31714.2 

         Total deaths 9764534 

         Delayed AF% 0.32 

Spain [1990; 1994] 3.5 (3.4; 3.7) 6055.3 (5791.6; 6306.5) 3.5 (3.4; 3.7) 6061.7 (5805.7; 6314.6) 6.4 

 
[1995; 1998] 3.5 (3.4; 3.7) 5005.7 (4848; 5179.8) 3.6 (3.5; 3.7) 5050.4 (4888.5; 5214.7) 44.7 

 
[1999; 2004] 3.5 (3.4; 3.6) 7775.2 (7545.3; 7997.1) 3.6 (3.5; 3.7) 7929.4 (7713.4; 8149.7) 154.2 

 
[2005; 2009] 2.8 (2.6; 2.9) 5201.3 (4919.3; 5455.6) 2.9 (2.8; 3) 5438.9 (5178.8; 5707.5) 237.6 

         
Delayed deaths 442.9 

         Total deaths 918076 
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         Delayed AF% 0.05 

USA [1973; 1976] 1.7 (1.7; 1.7) 20659.3 (20327.1; 20967.7) 1.7 (1.7; 1.7) 20540.2 (20216.1; 20847.5) -119.1 

 
[1977; 1981] 1.6 (1.5; 1.6) 23776.4 (23459.7; 24106.6) 1.6 (1.6; 1.6) 24229.1 (23923.3; 24518.9) 452.7 

 
[1982; 1986] 1.3 (1.3; 1.3) 21885.6 (21570.6; 22164.5) 1.4 (1.4; 1.4) 22920.2 (22655.3; 23188) 1034.6 

 
[1987; 1991] 1.1 (1.1; 1.1) 19344.4 (19079.4; 19619.4) 1.2 (1.2; 1.2) 21177.6 (20864.3; 21486.1) 1833.2 

 
[1992; 1996] 0.9 (0.9; 0.9) 16215.0 (15896.4; 16528.2) 1.0 (1; 1) 18368.7 (18049.8; 18680.7) 2153.7 

 
[1997; 2001] 0.7 (0.7; 0.7) 12353.9 (12062; 12604.9) 0.8 (0.8; 0.8) 15016.5 (14666.6; 15358.6) 2662.6 

 
[2002; 2006] 0.5 (0.5; 0.5) 10037.1 (9680.4; 10355.1) 0.7 (0.7; 0.7) 13255.1 (12815.9; 13693.2) 3218.0 

         
Delayed deaths 11235.7 

         Total deaths 11839659 

         Delayed AF% 0.09 
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Additional figures 
 
eFigure 1(a). Location specific air conditioning prevalence with the estimated smoothed 
trends. Canada, 21 locations, period 1986-2009. 
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eFigure 1(b). Location specific air conditioning prevalence with the estimated smoothed 
trends. Japan, 47 locations, period 1972-2009. 
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eFigure 1(c). Location specific air conditioning prevalence with the estimated smoothed 
trends. Spain, 52 locations, period 1990-2014. 
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eFigure 1(d). Location specific air conditioning prevalence with the estimated smoothed 
trends. USA, 211 locations, period 1973-2006. 
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eFigure 2. Country specific trends of relative risks calculated at 90th, 95th and 99th percentile 
of the country specific mean temperature distribution in summer months. 
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eFigure 3. Analysis of the raw residuals of the multivariate multilevel meta-analysis model. 
For each outcome (spline coefficient) are shown the histogram of the residuals, and the 
scatterplot of the residuals (y axis) versus AC prevalence (%) and calendar year (x axes). 
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ARTICLE

A cross-sectional analysis of meteorological factors
and SARS-CoV-2 transmission in 409 cities across
26 countries
Francesco Sera1,2✉, Ben Armstrong 1, Sam Abbott3,4, Sophie Meakin3,4, Kathleen O’Reilly 3,4,

Rosa von Borries 5, Rochelle Schneider 1,6,7,8, Dominic Royé 9, Masahiro Hashizume 10,11,12,

Mathilde Pascal13, Aurelio Tobias11,14, Ana Maria Vicedo-Cabrera 15,16, MCC Collaborative Research Network*,

CMMID COVID-19 Working Group*, Antonio Gasparrini 1,6,17 & Rachel Lowe 3,4,6,18✉

There is conflicting evidence on the influence of weather on COVID-19 transmission. Our aim

is to estimate weather-dependent signatures in the early phase of the pandemic, while

controlling for socio-economic factors and non-pharmaceutical interventions. We identify a

modest non-linear association between mean temperature and the effective reproduction

number (Re) in 409 cities in 26 countries, with a decrease of 0.087 (95% CI: 0.025; 0.148)

for a 10 °C increase. Early interventions have a greater effect on Re with a decrease of 0.285

(95% CI 0.223; 0.347) for a 5th - 95th percentile increase in the government response index.

The variation in the effective reproduction number explained by government interventions is

6 times greater than for mean temperature. We find little evidence of meteorological con-

ditions having influenced the early stages of local epidemics and conclude that population

behaviour and government interventions are more important drivers of transmission.
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Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has rapidly spread across the globe, traversing
diverse climatic and environmental conditions. Sustained

local transmission has occurred in most countries, leading to
political, social and economic challenges and devastating loss of
life. From the early phase of the pandemic, there has been
speculation that weather conditions could modulate SARS-CoV-2
transmission patterns. The debate has been driven by analogy
with existing seasonal endemic respiratory viral infections, such
as influenza and other human coronaviruses, which tend to peak
in the drier and colder winter months in temperate climates1.
However, specific mechanisms behind this seasonality, in terms of
host immunity and susceptibility, viral stability or weather-
sensitive human behaviour are poorly understood2. Dynamic
transmission modelling has shown that meteorological variables,
such as temperature and humidity, are unlikely to have been a
dominant transmission risk factor in the early stages of the
COVID-19 pandemic, given high population susceptibility3,4. As
SARS-CoV-2 is a new virus to humans, with <1 year of data
available at the time of writing, ascertaining the potential for
weather modulated transmission is challenging. Several studies
have attempted such analyses. However, many such studies had
methodological weaknesses and the results were at times
conflicting5,6. Study findings for temperature resulted in either a
positive7,8, negative9,10, non-linear11,12 or non-significant
association13,14 with the COVID-19 response variable. For
example, most studies did not control for key modulating factors,
such as varying government restrictions, socio-economic indica-
tors, population density or age structure15–17.

In this study, we overcome methodological issues of previous
approaches by using a two-stage ecological modelling approach to
examine the impact of meteorological variables on SARS-CoV-2
transmission by comparing cities located across the globe, while
accounting for confounding of non-pharmaceutical interventions
(NPIs) and city-level covariates. The study is based on an
extensive dataset, collected by the Multi-Country Multi-City
MCC Collaborative Research Network (https://
mccstudy.lshtm.ac.uk/), consisting of time series of daily
COVID-19 cases registered between 11 January and 28 April
2020 in 409 locations (cities or small regions) in 26 countries. In
the first stage, we estimated the effective reproduction number
(Re), in each city, over a city-specific time window early in the
epidemic. We use a renewal equation-based approach that esti-
mates latent infections and then map these infections to observed
notifications via an incubation period, a report delay and a
negative binomial observation model with a day of the week
effect18. Focusing on the early phase of the pandemic allows us to
minimise possible biases coming from factors impacting Re (in
particular non-pharmaceutical interventions (NPIs)), which
developed as the pandemic progressed. These include change of
ascertainment methods and strategies, the implementation of
strong NPIs (e.g. travel bans, school closures and lockdown), the
appearance of new variants and ultimately vaccination cam-
paigns. Also, in the first stage we define our exposure variables as
mean values of meteorological variables (including daily mean
temperature, relative and absolute humidity, solar radiation, wind
speed and precipitation), for each city, over the early-phase time
window, using the ERA5 fifth-generation European Centre for
Medium-Range Weather Forecast atmospheric reanalysis of the
global climate19. In a second ‘cross-sectional’ stage, we estimate
the association of city-level Re, calculated for the city-specific
window (allowing for standard errors), with each meteorological
variable, controlling for confounding by total population, popu-
lation density, gross domestic product (GDP) per capita, per-
centage of population >65 years, pollution levels (i.e. particulate
matter, PM2.5) and the lagged Oxford COVID-19 Government

Response Tracker (OxCGRT) Government Response Index at the
endpoint of the selected time window (lagged by 10 days),
allowing for the two-level (cities and countries) structure of the
data using a multilevel meta-regression model20 (see ‘Methods’
for further details). We believe the data used and the analysis
performed in this study improves upon previous approaches.
Specifically, the fine spatial scale of the city-level data and the
methodological design, accounting for confounding of NPIs and
city-level covariates, allows us to accurately quantify the rela-
tionship between meteorological variables and Re.

Results
Descriptive analysis of meteorological variables and Re. The
bivariate distribution of mean temperature and the effective
reproduction number (Re) across the 409 study cities is shown in
Fig. 1, and the characteristics of the 26 countries are reported in
Table 1. The mean effective reproduction number (Re) across all
cities was 1.4, ranging from 0.7 to 2.1, with all but ten cities
experiencing an epidemic curve with a reproduction number >1.
Mean temperatures over the observation period (between January
and April 2020) reflect the late winter/early spring in 381 cities
situated in the northern hemisphere and the summer/early
autumn seasons in 28 cities in the southern hemisphere. Of the
136 cities classified as having high Re values, 35 cities experienced
low temperatures, 64 medium temperatures and 34 high tem-
peratures (Fig. 1). When visualising the unadjusted association of
Re with mean temperature, relative humidity (RH), absolute
humidity (AH), solar radiation at the surface and stratified by
climate zone, we found no clear pattern (Fig. 2).

Associations between meteorological variables and Re. Using a
two-stage meta-regression model, we quantified the influence of
meteorological variables, including mean temperature, on Re
between cities, while controlling for confounding factors includ-
ing government interventions. After adjusting for the city-level
characteristics (e.g. socio-economic and demographic factors)
and the country’s OxCGRT Government Response Index, we
found a modest, non-linear association of mean temperature and
AH with Re (Table 2). Less strong evidence of association was
found for RH, with no evidence of association for solar radiation,
wind speed and precipitation (Table 2). The association between
mean temperature and Re is non-linear, with Re initially rising to
a peak at 10.2 °C, then falling to a trough at 20 °C, 0.087 (95%
confidence interval (CI): 0.025; 0.148) lower than the peak, and
finally rising again (Fig. 3). AH has a similar non-linear shape
with a maximum difference of 0.061 (95% CI: 0.011; 0.111)
between the peak at 6.6 g/m3 and the trough at 11 g/m3.

The effect of NPIs on Re. Although we calculated Re over a time
window in which the OxCGRT Government Response Index,
lagged by 10 days, had not yet reached 70, we included the value
of the lagged OxCGRT Government Response Index at the end of
the city-specific window in the model, to control for residual
confounding. Despite being capped at 70, the OxCGRT Gov-
ernment Response Index had a strong association with the
reproduction number (p < 0.0001) (Supplementary Table 4),
explaining 13.8% of its variability (Fig. 3 and Supplementary
Table 4, Models D1–D7) with an estimated reduction of Re equal
to 0.285 (95% CI: 0.223; 0.347) when levels of the Government
Response Index increase from 21 (5th percentile) to 66 (95th
percentile). Mean temperature explained 2.4% and AH 2.0% of
the variation in Re, and the five city-level characteristics explained
1.4% of the variability of the reproduction number (Supplemen-
tary Table 4, Models D1–D8).
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Sensitivity analyses. We performed several sensitivity analyses to
evaluate the robustness of the results considering alternative
analytic or selection choices (see Supplementary Table 5). The
main results are stable when including a country-level fixed effect
in the meta-regression model, i.e. considering the only within-
country variation of covariates and outcome. Restricting the
analysis to cities with weaker interventions (OxCGRT Govern-
ment Response Index <60) also gives similar results to the main
analysis, apart from wind speed and precipitation also showing an
association with Re. The association between mean temperature
and the effective reproduction number holds across all the sen-
sitivity analyses, apart from in tropical and southern hemisphere
cities, when stratifying by tropical and non-tropical or northern
and southern hemisphere regions. However, this may be
explained by the small number of cities and the resulting low
power in the tropical and southern hemisphere sub-group. The
association between AH and the effective reproduction number is
somewhat less robust with no association observed when
excluding tropical or southern hemisphere cities, when excluding
China and Brazil (countries with earlier and later observation
periods) and when considering meteorological variables lagged by
10 days. Excluding the ten cities with Re < 1 shows a tendency of
an increased Re for cities with low RH (p= 0.009) and a lower Re

in cities with higher solar radiation at the surface (p= 0.047)
(Supplementary Figure 5). We observed similar overall tendencies
to our main results when we did not control for the OxCGRT
Government Response Index in our model, although the effect of
temperature and AH was enhanced (Supplementary Figure 6),
and when considering meteorological variables lagged by 10 days
(Supplementary Table 5). We found no evidence of an interaction
between mean temperature and RH categorised in two levels
(≤65% and >65%) using the median value of 65% as the category
threshold (p= 0.428).

Discussion
We combined datasets of COVID-19 transmission with meteor-
ological, demographic, socio-economic and intervention data for
409 cities in 26 countries across the world to estimate the asso-
ciation between meteorological factors and Re in the early phase
of the COVID-19 pandemic. We found evidence of a modest
non-monotonic association of outdoor mean temperature and
AH with early-phaseRe, after controlling for potential con-
founders, including NPIs. Temperature explained 2.4% and AH
2.0% of the variation in Re, compared to 13.8% explained by the
OxCGRT Government Response Index in the adjusted analysis.
The associations of temperature and AH with Re were not

Fig. 1 Effective reproduction number and mean temperature in the observation window for 409 cities. Bivariate plot of effective reproduction number
(Re) and mean temperature (Ta) (°C) in the observation window for each of the 409 study cities. Dark purple circles represent cities with both high Re and
high Ta, while pale purple circles show areas with both low Re and low Ta. Red circles represent cities with low Re and high Ta and blue circles depict areas
with high Re and low Ta. The bar chart (bottom right) represents the number of cities in each category defined in the bivariate legend (bottom left).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25914-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5968 | https://doi.org/10.1038/s41467-021-25914-8 |www.nature.com/naturecommunications 3



Table 1 Characteristics of the 26 countries included in the study.

Country Number of cities Reported COVID-19 cases Mid-period Re Government index

Australia 3 1747 20/03/2020 1.39 38.5
Brazil 18 17,179 10/04/2020 1.29 61.9
Canada 9 2709 21/03/2020 1.50 58.9
Chile 4 2587 27/03/2020 1.32 55.9
China 11 4178 03/02/2020 1.13 57.3
Czech Republic 1 358 21/03/2020 1.36 69.2
Ecuador 1 1014 20/03/2020 1.39 46.2
Estonia 1 209 20/03/2020 1.16 41.0
Finland 1 710 16/03/2020 1.37 30.1
France 17 5834 17/03/2020 1.51 55.8
Germany 12 7759 16/03/2020 1.43 41.1
Italy 19 11,796 11/03/2020 1.49 67.9
Japan 9 1178 12/03/2020 1.29 37.0
Kuwait 1 108 05/03/2020 1.31 21.8
Mexico 8 1894 25/03/2020 1.25 28.4
Norway 1 626 12/03/2020 1.32 16.7
Peru 1 428 18/03/2020 1.45 57.7
Philippines 2 215 21/03/2020 1.40 64.7
Singapore 1 56 15/02/2020 0.87 30.1
South Korea 4 5877 06/03/2020 1.17 54.8
Spain 52 43,331 11/03/2020 1.51 42.1
Switzerland 7 6908 13/03/2020 1.54 34.3
United Kingdom 45 9354 26/03/2020 1.41 58.0
United States 179 136,303 27/03/2020 1.45 60.7
Uruguay 1 271 19/03/2020 0.91 46.2
Vietnam 1 38 25/03/2020 1.10 45.5

The number of cities per country, total reported COVID-19 cases in the time window, mid-period of the pre-defined window of early transmission, effective reproduction number (Re) and the lagged
OxCGRT Government Response Index at the endpoint of the pre-defined window.

Fig. 2 Effective reproduction number vs key weather variables by climate zone. a Mean temperature (°C), b relative humidity (%), c absolute humidity
(g/m3) and d solar surface radiation (J/m2) vs effective reproduction number (Re) by climate zone (409 cities). The area of the circles is proportional to
the precision (inverse of the variance) of Re estimates.
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independent; the high correlation between them precluded con-
trol of one for the other. Overall, there was little evidence for any
change in the Re of COVID-19 associated with RH and no evi-
dence for precipitation and wind speed.

Associations between temperature, humidity and SARS-CoV-2
transmission might be explained by three mechanisms. First, like
other viruses with a lipid envelope, SARS-CoV-2 has been found
to be sensitive to temperature, humidity and solar radiation under

laboratory conditions21–25, which affects its ability to survive on
surfaces and in aerosols. The droplet behaviour in aerosols
changes with different temperature and humidity levels. Low RH
promotes the accumulation of aerosol particles (since evaporation
leaves behind floating droplet nuclei) increasing the likelihood to
be inhaled26,27. Second, innate and adaptive immune response
mechanisms have been shown to be modulated by seasonal
changes. Lower levels of vitamin D, mediated by decreased

Table 2 Association between weather variables and Re.

+Variables Contrast for which effect size is
presenteda

Effect size 95% CI P value Difference in the likelihood ratio
RLR

2 statistic

Mean temperature (°C) 10.2 vs 20 0.087 (0.025; 0.148) 0.014 +2.5
Absolute humidity (g/m3) 6.6 vs 11 0.061 (0.011; 0.112) 0.036 +2.0
Relative humidity (%) 60 vs 75 0.043 (−0.001; 0.087) 0.058 +1.5
Surface solar radiation downwards
(J/m2)

248 vs 124 −0.053 (−0.117; 0.011) 0.208 +0.6

Wind speed (m/s) 1.1 vs 3.0 −0.038 (−0.090; 0.014) 0.152 +0.7
Total precipitation (m) 0.1 vs 6 −0.031 (−0.075; 0.014) 0.175 +0.4
OxCGRT (0–100) 21 vs 66 0.285 (0.223; 0.347) <0.0001 +13.8

Effect size and variation explained by including, in turn, mean temperature (°C), absolute humidity (g/m3), relative humidity (%), surface solar radiation downwards (J/m2), wind speed (m/s), total
precipitation (m) and OxCGRT (0–100) in the model of Re. P values were obtained from a two-sided Wald test in the multivariable meta-regression multilevel models adjusted by population (log scale),
population density (log scale), GDP (log scale), % population >65 years, PM2.5 (μg/m3, log scale) and the OxCGRT Government Response Index, with cities nested within countries.
aThe exposure contrast for which effect size is presented is that between the values predicting minimum and maximum Re, where clear minima and maxima are observed (mean temperature, absolute
humidity and relative humidity), otherwise the 5th to 95th percentiles.

Fig. 3 Associations between weather variables, non-pharmaceutical interventions and the effective reproduction number. Non-linear associations
between (a) mean temperature (°C), (b) relative humidity (%), (c) absolute humidity (g/m3) and (d) OxCGRT Government Response Index and predicted
Re difference. Curves and their 95% confidence intervals show the predicted difference in Re with respect to a reference value set to the value at the trough
of the curve for meteorological variables (a–c), or for the OxCGRT Government Response Index= 50 (d). Two-sided Wald test p values and adjusted
curves with 95% confidence intervals were obtained from multivariable meta-regression multilevel models adjusted by population (log scale), population
density (log scale), GDP (log scale), % population >65 years of age, PM2.5 (μg/m3, log scale) and OxCGRT Government Response Index, with cities nested
within countries. The marginal distribution along the x-axis represents the observed data for that covariate.
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ultraviolet B radiation exposure during winter might lead to
impaired antiviral innate immune defences28–30. Breathing dry
air can impair mucociliary clearance, reducing the ability of cilia
cells to secrete mucus and remove viral particles (innate immune
response)27,31. Interferon-stimulated genes, usually inducing an
antiviral state as part of the innate immune response have been
found to be impaired at low RH32. High temperatures have been
shown to hinder virus-specific CD8+ T cell responses and anti-
body production (adaptive immune system)33. Third, human
mobility, contact patterns and time spent indoors are affected by
weather conditions34. Very hot and very cold conditions can lead
to more time spent in enclosed spaces, which might increase the
likelihood of SARS-CoV-2 transmission.

Findings from this study are only partly consistent with findings
from other global studies using statistical approaches to investigate
meteorological effects on COVID-19 transmission. Meyer et al.9

found that mean temperature had a modest negative association
with COVID-19 incidence for temperatures above −15 °C based
on a dataset of 100 countries, after controlling for surveillance
capacity, time since first reported case, population density and
median population age, whereas RH had a negative non-
significant association with case incidence. Jüni et al.13 covering
144 geopolitical areas showed that temperature and humidity
measures were not significantly associated with epidemic growth
while significant associations were found for restrictions of mass
gatherings, school closures and measures of social distancing,
which are consistent with our findings of a stronger impact of the
OxCGRT Government Response Index compared to climatic
conditions. Wu et al.35 incorporating data from 166 countries
found that a 1 °C increase in temperature and RH was associated
with a 3% and 0.85% decrease in daily new cases, respectively,
after controlling for wind speed, median population age, Global
Health Index, Human Development Index and population den-
sity. Interestingly, non-linear associations between mean daily
temperature and the instantaneous reproduction number (Rt) in
the United States of America were found in a study by Rubin
et al.12 with Rt decreasing to a minimum as temperatures rose to
11 °C, increasing between 11 and 20 °C and then declining again at
temperatures >20 °C. The shape of the association may be influ-
enced by the indirect effect of weather in varying the likelihood of
social interactions, e.g. at higher temperatures people may con-
gregate in public cities, such as beaches and festivals12, while
colder temperatures could limit social activities, such as sporting
events34. Runkle et al.11 concluded from varying longitudinal
associations in four cities that specific humidity in the range of
6–9 g/kg (i.e. AH range of 7.6–11.4 g/m3) was a significant pre-
dictor of the COVID-19 growth rate, in line with our findings.

Unclear and inconsistent findings related to temperature and
humidity may be due to methodological challenges and data
limitations. Similar methodological challenges were highlighted
when evaluating the association between air pollution and
COVID-19 outbreaks36,37. The novelty of the virus, with less than
a full annual cycle of data available in most places, makes it
difficult to disentangle a seasonal signal or inter-annual trends
from meteorological factors using time-series models38. More-
over, different interventions (e.g. restrictions of mass gatherings,
international travel and school closures) adopted by countries at
different times after the onset of local outbreaks potentially
confound the association between weather variables and COVID-
19 spread. These challenges have led us to consider an ecological
approach where we compared the outbreak curve early in the
epidemic, minimising the confounding effect of NPIs. Despite
this, we found a strong association of the OxCGRT Government
Response Index with Re, confirming the importance of inter-
ventions implemented early on in the epidemic in controlling
COVID-19 dynamics39.

Comparing the early-phase outbreak curves in different
countries is challenging given that countries have different case
definitions, and early COVID-19 data only captured a small
portion of cases, mainly hospitalised patients or individuals with
severe symptoms. The estimated high proportion of asympto-
matic cases compromises the use of COVID-19 case counts to
estimate transmission dynamics40. We used an estimated
response variable, i.e. the effective reproduction number, calcu-
lated accounting for reporting delays and other sources of
uncertainty. The 20-day duration was chosen as a compromise
between needing enough days for a more precise Re estimation,
while, at the same time, limiting the window to provide more
constant weather, case ascertainment and Re estimates within the
window. A larger window would bias estimates in ways that
cannot be readily adjusted for. Our meta-analysis approach
accounts for the uncertainty in Re estimates, which in turn
reduces the level of certainty in the results. Further, 20 days is ~4
generations of infections, which, under most reporting scenarios,
is sufficient to be confident about estimates in the level of
transmission. We assume that within the 20-day time window,
the case definition is constant within a city or country and Re is
not affected by differences in case definition between countries.

A clear strength of this study is the use of an extensive dataset
of 409 cities, representing 44.8% of all cumulative reported
COVID-19 cases registered by 31 May 2020 in the John Hopkins
University Coronavirus Resource Center. Our analysis covers all
major climate zones across the globe, ranging from temperate,
continental to tropical and dry climate settings. Another strength
is our flexible methodological and statistical approach. We used
multilevel meta-analytic models that take into account uncer-
tainty of the response variable, i.e. the effective reproduction
number. The model allowed for possible non-linearity of the
exposures, and we adjusted for a selection of key socio-economic
and demographic factors, as well as using a random effect to
account for the country- and city-level differences. We chose
covariates based on their potential impact on viral transmission
that might confound the examined association of weather and
COVID-19 dynamics. Indeed, population density leads to higher
contact rates, potentially increasing the likelihood of
transmission41. The age structure of a population is relevant given
that elderly people were found to be more susceptible to infection
and more likely to experience clinical symptoms of COVID-19
compared to younger age groups, increasing the likelihood of
seeking medical care and getting tested42. Moreover, differences
in contact patterns among different age groups can further affect
the number of COVID-19 cases in each age group42. Socio-
economic indicators, such as GDP per capita, are important to
consider as more deprived populations might be at higher risk of
infection due to potential conditions of overcrowded accom-
modation, inability to work from home or limited access to
medical care43. Also, among air quality factors, a positive asso-
ciation between PM2.5 and COVID-19 incidence and mortality
has been reported44,45.

We investigated model uncertainties with several sensitivity
analyses, e.g. excluding cities with R < 1, excluding China and
Brazil, cities in the southern hemisphere, cities with a latitude
lower than 45°, and cities with an OxCGRT Government
Response Index of more than 60. Previous studies compared cities
within a country or considered large geographical units13,35,46,
which could lead to a limited exposure range with narrow tem-
perature and humidity variability reported during winter seasons,
or high measurement errors for meteorological variables defined
over large geographical units. We considered small area/city units
distributed among 26 countries worldwide, allowing a good
exposure range and minimising the measurement error of the
exposures.
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Our study has several important limitations in addition to
those already discussed. Cities in the northern hemisphere were
overrepresented compared to southern hemisphere cities, which
indicates that the findings might be more representative for cities
in the global north. Our results need to be put into the context of
complex uncertainties surrounding characteristics of the novel
virus, such as incomplete knowledge on possible underlying
mechanisms between weather conditions and the virus itself, the
role of host immunity and the potential influence of weather-
sensitive human behaviour, such as indoor crowding47. However,
AH was found to demonstrate the strongest indoor-to-outdoor
correlation, indicating that outdoor AH measures could reflect
indoor conditions48,49. Data limitations regarding the novel virus,
including varying accuracy of COVID-19 case numbers, limited
data availability across cities and temporal constraints of an
incomplete seasonal cycle of SARS-CoV-2 contribute to the
limitations of this analysis.

Despite these limitations, the associations of weather with Re in
this study suggests that such effects are likely to be small com-
pared to other drivers of transmission. NPIs had a stronger
impact on variation in transmission between cities than meteor-
ological variables. We found no weather conditions in which
transmission is impeded if precautions (social distancing, mask
use, etc.) are not taken. These results support the statement that,
to date, COVID-19 interventions are critical regardless of
meteorological conditions.

Methods
Data. Data in this study were obtained from a well-established MCC Collaborative
Research Network50. The current MCC network covers 750 locations (cities or
regions) in 43 countries/regions. For this study, 26 countries provided a daily time
series of COVID-19 cases for a total of 502 locations (cities or small regions).
COVID-19 data were downloaded from a publicly available repository or obtained
from health agencies (Supplementary Table 1) and data management was per-
formed using Microsoft Excel 2019. The time series from 1 January 2020 to 31 May
2020 comprises 2,771,137 COVID-19 cases, representing 44.8% of the cumulative
cases registered by 31 May 2020 in the Johns Hopkins database (https://
coronavirus.jhu.edu/). Supplementary Table 1 shows the sources used for each
country along with the definition of COVID-19 cases.

To limit potential confounding by NPIs and temporal variation in case
ascertainment, we selected a 10–20-day window early in the epidemic, starting after
at least ten confirmed cases had occurred in a 10-day period, to reduce noise
introduced by imported cases. We excluded days for which the OxCGRT
Government Response Index exceeded 70, accepting reduced windows down to
10 days in length. The OxCGRT collates publicly available information on 18
indicators about governments’ policy responses to the COVID-19 pandemic
(https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-
response-tracker). These indicators are categorised as containment or closure
policies (e.g. school and workplace closures, restrictions on gatherings and
movement), economic policies (e.g. income support) or health policies (e.g.
COVID-19 testing programmes). The OxCGRT Government Response Index
aggregates these indicators into a single score between 0 and 100 and provides a
measure of how many policies a government has enacted, and to what degree. We
chose 70 as the maximum value of OxCGRT Government Response Index
allowable as a compromise between limiting confounding by government
interventions and including enough cities to enable estimation of the associations
studied (see Supplementary text 1). Applying these conditions/restrictions reduced
our dataset to 409 cities or small regions in 26 countries with an observation period
between 11 January 2020 and 28 April 2020.

Most of the 409 cities are situated in the northern hemisphere (n= 381), and in
temperate (n= 292) or continental (n= 65) climatic zones, with few cities located
in tropical (n= 23) and dry (n= 29) climatic zones. The COVID-19 cases were
observed in the early phase of the epidemics, ranging from the first week of
February 2020 in China to mid-April 2020 in Brazil (Supplementary Figure 1). This
early epidemic phase is characterised in many countries (except Uruguay and
Singapore) by a reproduction number >1 (Table 1).

We estimated Re for infections in the time window of interest using EpiNow2
1.3.218. This R package implements a Bayesian latent variable method for
estimating Re, where infections at time t are estimated using the sum of previous
infections, weighted by an uncertain, gamma-distributed, generation time
probability mass function, and multiplied by an estimate of Re51,52. Initial
infections (prior to the first reported case) were estimated using a log-linear model
with priors based on the observed growth in cases. Complete infection trajectories
were then mapped to reported case counts by first convolving over the incubation

period distribution and an estimated distribution representing the delay between
symptom onset and case report (both assumed to be log-normal). Reporting noise
was then added using a negative binomial observation model combined with a
multiplicative day of the week effect (modelled using a simplex). Re was considered
to be piecewise constant with a breakpoint 3 days into the time window. The Re
estimate from the first 3 days of the window was discarded with the Re estimate
from the remainder of the window used in all analyses. Each region was fitted
independently using Markov chain Monte Carlo. Four chains were used with a
warmup of 1000 samples and 4000 samples post warmup. Convergence was
assessed using the R hat diagnostic53.

We used a gamma-distributed generation time with a mean of 3.6 days
(standard deviation (SD) 0.7) and a SD of 3.1 days (SD 0.8)54,55. This generation
time was slightly shorter than the consensus estimate reported by Ferretti et al.56,
leading to our Re estimates and subsequent effect sizes being conservative. We used
a log-normally distributed prior for the incubation period with a mean of 5.2 days
(SD 1.1) and SD of 1.52 days (SD 1.1)57. The log-normal prior for the delay from
symptom onset to case report was estimated globally using a subsampled Bayesian
bootstrapping approach (with 100 subsamples each using 250 samples) using data
from an international line list of cases. The resulting distribution had a mean of
6.4 days and a standard deviation (SD) of 17 days (or a log mean of 0.83 (SD 0.15)
and a log SD 1.44 (SD 0.12). The subsampled bootstrap approach was used to
incorporate both the temporal and spatial uncertainty in the reporting distribution
as data specific to each setting and time point was not available.

To define our exposures, we considered the following time series from the ERA5
dataset: 2 m temperature, 2 m dewpoint temperature, surface solar radiation
downwards, precipitation, and 10 m eastward (u) and northward (v) components
of wind. These are published by the Copernicus Climate Change service on a
regular latitude/longitude grid of 0.25° (~25 km × 25 km) in NetCDF format19. The
hourly 2 m temperature, 2 m dewpoint temperature and surface solar radiation
downwards were averaged for each day to derive daily mean temperature, dewpoint
temperature and surface solar radiation. From dewpoint temperature and the
corresponding temperature (T; °C) we obtained RH (%) using the R ‘humidity’
0.1.5 package58. The following formula was used to calculate AH (g/m3), which
represents the mass of water vapour in the air mixture59:

AH ¼ ð6:112 ´ eð17:67 ´TÞ=ðTþ243:5Þ ´ 2:1674 ´RHÞ=ð273:15þ TÞ:
The hourly 10 m u and v components of wind were averaged for each day, and

the daily average u and v components were used to compute the wind speed using
the formula wind speed= sqrt(u2+ v2). Hourly precipitation data were summed to
derive daily totals. The daily variables were calculated for each 25 km2 grid cell and
assigned to a city if the city centroid fell within the grid cell.

Mean temperature (and other meteorological variables, Supplementary Table 3)
observed during the city-specific time window reflect the late winter/early spring
observation period in cities situated in the northern hemisphere and in temperate
or continental climatic zones. We found a high correlation between mean
temperature and AH (Supplementary Figure 2). Socio-economic and demographic
characteristics were extracted from the OECD Regional and Metropolitan
database60 and Worldcities database61 (Supplementary Table 2). We selected, a
priori, the following set of confounders: total population, population density, %
elderly population (>65 years) and GDP (per capita). Pollution data (PM2.5) for the
observation period (10–20 days) was obtained from the Copernicus Atmosphere
Monitoring Service global near-real-time service62–64. This product provides
hourly modelled values of surface PM2.5 (μg/m3) at a 0.4 × 0.4 arc degrees grid cell
resolution. The hourly time series were averaged over the observation period and
linked to the city using the city centroid coordinates. Cities vary in terms of socio-
demographic characteristics (Supplementary Table 3). The correlation between
socio-demographic characteristics is shown in Supplementary Figure 3 and the
correlation between meteorological variables, OxCGRT Government Response
Index, day of the year and Re in Supplementary Figure 4. To account for differences
in NPIs we used the OxCGRT Government Response Index65. In this study, we
considered the 10 days lagged value of the OxCGRT Government Response Index,
and for each city, we assigned the index on the last day of the specified window for
each city39. Note, in our analysis, meteorological variables and socio-demographic
covariates were collated and summarised at the city level, while the COVID-19
time series were defined at the smallest administrative level containing the city. We
only included cities for which the COVID-19 time series were available for an area
in which most of the population resided in that city. We, therefore, refer to our unit
of analysis as a city.

Statistical analysis. For descriptive purposes, the following statistics (mean,
standard deviation and range) were calculated for meteorological variables (mean
temperature, AH, RH, surface solar radiation, wind speed, total precipitation) and
covariates considered in this study (total population, population density, % elderly
population (>65 years), GDP (per capita), PM2.5, OxCGRT Government Response
Index). We also calculated the correlation (Pearson coefficient) among meteor-
ological variables and among covariates.

The association between city-level covariates and climatic variables with the
effective reproduction number were evaluated using multilevel meta-regression
models with two levels (cities nested within countries)20 using the R ‘mixmeta’
1.1.0 package. The inclusion of country as a random effect allowed the model to
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account for country differences (e.g. data reporting) with efficient use of the within-
and between-country information. Moreover, the meta-regression models allowed
us to consider the precision of the Re estimates, as estimated by its variance, giving
less weight to more imprecise estimates for shorter time windows.

Firstly, we used two-level meta-regression models to evaluate the possible non-
linear association between each meteorological variable and the reproduction
number Re. We considered possible non-linearity in the association with Re using a
natural spline parameterisation of the meteorological variables with a variable
number of internal knots from 0 (linear term) to 5, placed at respective percentiles
of the variable. We compare the models with different non-linear
parameterisations of the meteorological variable using the Akaike Information
Criteria (AIC), choosing models with the lowest AIC.

We fitted the following two-level random-effects meta-regression models with
cities nested within countries and an increasing number of predictors; Model A
with two random effects (cities and countries) and the intercepts, Model B
including the OxCGRT Government Response Index, Model C considering also
total population, density, GDP, % population older than 65 years, and PM2.5 (total
population, density, GDP and PM2.5 were log-transformed due to the skewness of
their distribution).

Then for each meteorological variable, we fitted two-level meta-regression
models (D1–D6) with the meteorological variable as exposure and total population,
density, GDP, % population older than 65 years, PM2.5 and the OxCGRT
Government Response Index as covariates. We considered non-linearity in the
association with Re using a natural spline parameterisation of the climatic variables
with the number of internal knots as determined in the univariate analysis. The
coefficients of the natural spline parameterisation of the meteorological variable
were used to derive the plot of the association between the meteorological variable
and Re in the 5–95th percentile of the meteorological variable distribution (Fig. 3
and Supplementary Figures 5 and 6). The coefficients of the natural spline
parameterisation of the meteorological variable were also used to test the
association between the meteorological variable and Re using the multivariate Wald
test. All the tests were two-sided. Given the small number of pre-defined exposures
variables, no adjustment was made for multiple comparisons.

We quantified heterogeneity between cities with standard measures of I2 66.
These measures are estimated once from a meta-regression model without meta-
predictors (Model A) and once from the meta-regression models (Models B, C and
D1–D6) to assess the reduction in residual heterogeneity provided by the different
set of predictors. For each model, we calculated the likelihood ratio test (RLR2)
statistic67. RLR2 is calculated as 1− exp(−2/409 × (log Likm− log Lik0), where
log Likm is the log-likelihood of the model of interest and log Lik0 is the log-
likelihood from a null model including only city and country random effect (i.e.
Model A). For each meteorological variable, we calculated the difference in the
likelihood ratio test R2 (RLR2) with respect to Model C (including random effects,
OxCGRT Government Response Index and city-level covariates). For OxCGRT
and city-level covariates, the RLR2 represents the reduction in RLR2 when dropping
OxCGRT or city-level covariates from Model D1 with temperature and all other
terms (i.e. random effects, OxCGRT and city-level covariates).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
COVID-19 data were downloaded from publicly available repositories or obtained from
health agencies (Supplementary Table 1). COVID-19 data for Australia, Brazil, Canada,
Chile, China, Czech Republic, Estonia, Finland, Germany, Italy, Kuwait, Mexico,
Norway, Peru, Philippines, Romania, South Korea, Spain, United Kingdom, United
States and Vietnam are publicly available. COVID-19 data for Japan and Singapore are
available upon request. COVID-19 Data for France, Switzerland and Uruguay were
obtained by a specific request to health agencies and are not publicly available.
Meteorological variables (mean temperature, dewpoint temperature, solar radiation,

wind components and precipitation) were derived from ERA5 reanalysis product ‘https://
cds.climate.copernicus.eu/cdsapp#!/search?type=dataset’.

Pollution levels (PM2.5) was derived from CAMS near real time ‘https://
apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/’.
The OxCGRT Government Response Index was downloaded from the public

repository: https://github.com/OxCGRT/covid-policy-tracker/raw/master/data/
OxCGRT_latest.csv (downloaded 3 August 2020).
Socio-economic and demographic characteristics were extracted from the OECD

Regional and Metropolitan database ‘https://www.oecd.org/regional/regional-policy/
regionalstatisticsandindicators.htm’ and Worldcities database.
Data were processed and harmonised at the city level. The city-level data used in the

main and supplementary analysis of the paper are available in the GitHub directory:
https://github.com/fsera/COVIDWeather/ 68.

Code availability
The code developed in the study to perform the city-level main analysis is available in the
following GitHub repository68.

For each meteorological variable, the effect size was calculated using predicted curves
from multivariable meta-regression multilevel models. We calculated the difference in
the likelihood ratio test R2 (RLR2) with respect to a model including random effects,
OxCGRT Government Response Index, and city-level covariates (Model C,
Supplementary Table 4). RLR2 is calculated as 1− exp(−2/409 × (log Likm− log Lik0),
where log Likm is the log-likelihood of the model of interest and log Lik0 is the log-
likelihood from a null model including only city and country random effect (i.e., Model
A, Supplementary Table 4). For OxCGRT, the RLR2 represents the reduction in RLR2

when dropping OxCGRT from the model with temperature and all other terms (i.e.,
random-effects and city-level covariates).

Received: 18 February 2021; Accepted: 8 September 2021;

References
1. Moriyama, M., Hugentobler, W. J. & Iwasaki, A. Seasonality of respiratory

viral infections.Annu. Rev. Virol. 7, 83–101 (2020).
2. Lowen, A. C. & Steel, J. Roles of humidity and temperature in shaping

influenza seasonality. J. Virol. 88, 7692–7695 (2014).
3. Carlson, C. J., Gomez, A. C. R., Bansal, S. & Ryan, S. J. Misconceptions about

weather and seasonality must not misguide COVID-19 response. Nat.
Commun. 11, 4312 (2020).

4. Baker, R. E., Yang, W., Vecchi, G. A., Metcalf, C. J. E. & Grenfell, B. T.
Susceptible supply limits the role of climate in the early SARS-CoV-2
pandemic. Science 369, 315–319 (2020).

5. O’Reilly, K. M. et al. Effective transmission across the globe: the role of climate
in COVID-19 mitigation strategies. Lancet Planet. Health 4, e172 (2020).

6. Zeka, A. et al. Responding to COVID-19 requires strong epidemiological
evidence of environmental and societal determining factors. Lancet Planet.
Health 4, e375–e376 (2020).

7. Adhikari, A. & Yin, J. Short-term effects of ambient ozone, PM2.5, and
meteorological factors on COVID-19 confirmed cases and deaths in Queens,
New York. Int. J. Environ. Res. Public Health 17, 4047 (2020).

8. Hoang, T. & Tran, T. T. A. Ambient air pollution, meteorology, and COVID‐
19 infection in Korea. J. Med. Virol. 93, 878–885 (2021).

9. Meyer, A., Sadler, R., Faverjon, C., Cameron, A. R. & Bannister-Tyrrell, M.
Evidence that higher temperatures are associated with a marginally lower
incidence of COVID-19 cases. Front. Public Health 8, 367 (2020).

10. Pequeno, P. et al. Air transportation, population density and temperature
predict the spread of COVID-19 in Brazil. PeerJ 8, e9322 (2020).

11. Runkle, J. D. et al. Short-term effects of specific humidity and temperature on
COVID-19 morbidity in select US cities. Sci. Total Environ. 740, 140093
(2020).

12. Rubin, D. et al. Association of social distancing, population density, and
temperature with the instantaneous reproduction number of SARS-CoV-2 in
counties across the United States. JAMA Netw. Open 3, e2016099 (2020).

13. Jüni, P. et al. Impact of climate and public health interventions on the
COVID-19 pandemic: a prospective cohort study. Can. Med. Assoc. J. 192,
E566–E573 (2020).

14. Carleton, T., Cornetet, J., Huybers, P., Meng, K. C. & Proctor, J. Global
evidence for ultraviolet radiation decreasing COVID-19 growth rates. Proc.
Natl Acad. Sci. USA 118, e2012370118 (2021).

15. Smit, A. J. et al. Winter is coming: a Southern Hemisphere perspective of the
environmental drivers of SARS-CoV-2 and the potential seasonality of
COVID-19. Int. J. Environ. Res. Public Health 17, 5634 (2020).

16. Mecenas, P., Bastos, R. T., da, R. M., Vallinoto, A. C. R. & Normando, D.
Effects of temperature and humidity on the spread of COVID-19: A
systematic review. PLoS ONE 15, e0238339 (2020).

17. Briz-Redón, Á. & Serrano-Aroca, Á. The effect of climate on the spread of the
COVID-19 pandemic: a review of findings, and statistical and modelling
techniques. Prog. Phys. Geogr. Earth Environ. 44, 591–604 (2020).

18. Abbott, S., Hellewell, J., Munday, J., Thompson, R. & Funk, S. EpiNow:
estimate realtime case counts and time-varying epidemiological parameters.
Zenodo https://doi.org/10.5281/zenodo.3957489 (2020).

19. Hersbach, H. et al. ERA5 Hourly Data on Single Levels from 1979 to Present
(Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2018).

20. Sera, F., Armstrong, B., Blangiardo, M. & Gasparrini, A. An extended mixed‐
effects framework for meta‐analysis. Stat. Med. 38, 5429–5444 (2019).

21. Ratnesar-Shumate, S. et al. Simulated sunlight rapidly inactivates SARS-CoV-
2 on surfaces. J. Infect. Dis. 222, 214–222 (2020).

22. Schuit, M. et al. Airborne SARS-CoV-2 is rapidly inactivated by simulated
sunlight. J. Infect. Dis. 222, 564–571 (2020).

23. Biryukov, J. et al. Increasing temperature and relative humidity accelerates
inactivation of SARS-CoV-2 on surfaces. mSphere 5, e00441–20 (2020).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25914-8

8 NATURE COMMUNICATIONS |         (2021) 12:5968 | https://doi.org/10.1038/s41467-021-25914-8 | www.nature.com/naturecommunications



24. Chan, K.-H. et al. Factors affecting stability and infectivity of SARS-CoV-2. J.
Hosp. Infect. 106, 226–231 (2020).

25. Dabisch, P. et al. The influence of temperature, humidity, and simulated
sunlight on the infectivity of SARS-CoV-2 in aerosols. Aerosol Sci. Technol. 55,
142–153 (2021).

26. Zhao, L., Qi, Y., Luzzatto-Fegiz, P., Cui, Y. & Zhu, Y. COVID-19: effects of
environmental conditions on the propagation of respiratory droplets. Nano
Lett. 20, 7744–7750 (2020).

27. Lowen, A. C., Mubareka, S., Steel, J. & Palese, P. Influenza virus transmission
is dependent on relative humidity and temperature. PLoS Pathog. 3, e151
(2007).

28. Cannell, J. J. et al. Epidemic influenza and vitamin D. Epidemiol. Infect. 134,
1129–1140 (2006).

29. Grant, W. B. et al. Evidence that vitamin D supplementation could reduce risk
of influenza and COVID-19 infections and deaths. Nutrients 12, 988 (2020).

30. Tamerius, J. et al. Global influenza seasonality: reconciling patterns across
temperate and tropical regions. Environ. Health Perspect. 119, 439–445 (2011).

31. Sun, Z., Thilakavathy, K., Kumar, S. S., He, G. & Liu, S. V. Potential factors
influencing repeated SARS outbreaks in China. Int. J. Environ. Res. Public.
Health 17, 1633 (2020).

32. Kudo, E. et al. Low ambient humidity impairs barrier function and innate
resistance against influenza infection. Proc. Natl Acad. Sci. USA 116,
10905–10910 (2019).

33. Moriyama, M. & Ichinohe, T. High ambient temperature dampens adaptive
immune responses to influenza A virus infection. Proc. Natl Acad. Sci. USA
116, 3118–3125 (2019).

34. Fares, A. Factors influencing the seasonal patterns of infectious diseases. Int. J.
Prev. Med. 4, 128–132 (2013).

35. Wu, Y. et al. Effects of temperature and humidity on the daily new cases and
new deaths of COVID-19 in 166 countries. Sci. Total Environ. 729, 139051
(2020).

36. Villeneuve, P. J. & Goldberg, M. S. Methodological considerations for
epidemiological studies of air pollution and the SARS and COVID-19
coronavirus outbreaks. Environ. Health Perspect. 128, 095001 (2020).

37. Heederik, D. J. J., Smit, L. A. M. & Vermeulen, R. C. H. Go slow to go fast: a
plea for sustained scientific rigour in air pollution research during the
COVID-19 pandemic. Eur. Respir. J. 56, 2001361 (2020).

38. Imai, C., Armstrong, B., Chalabi, Z., Mangtani, P. & Hashizume, M. Time
series regression model for infectious disease and weather. Environ. Res. 142,
319–327 (2015).

39. Liu, Y., Morgenstern, C., Kelly, J., Lowe, R. & Jit, M. The impact of non-
pharmaceutical interventions on SARS-CoV-2 transmission across 130
countries and territories. BMC Med. 19, 40 (2021).

40. Li, R. et al. Substantial undocumented infection facilitates the rapid
dissemination of novel coronavirus (SARS-CoV-2). Science 368, 489–493
(2020).

41. Rocklöv, J. & Sjödin, H. High population densities catalyse the spread of
COVID-19. J. Travel Med. 27, taaa038 (2020).

42. Davies, N. G. et al. Age-dependent effects in the transmission and control of
COVID-19 epidemics. Nat. Med. 26, 1205–1211 (2020).

43. Patel, J. A. et al. Poverty, inequality and COVID-19: the forgotten vulnerable.
Public Health 183, 110–111 (2020).

44. Borro, M. et al. Evidence-based considerations exploring relations between
SARS-CoV-2 pandemic and air pollution: involvement of PM2.5-mediated
up-regulation of the viral receptor ACE-2. Int. J. Environ. Res. Public. Health
17, 5573 (2020).

45. Pozzer, A. et al. Regional and global contributions of air pollution to risk of
death from COVID-19. Cardiovasc. Res. 116, 2247–2253 (2020).

46. Jiang, Y., Wu, X.-J. & Guan, Y.-J. Effect of ambient air pollutants and
meteorological variables on COVID-19 incidence. Infect. Control Hosp.
Epidemiol. 41, 1011–1015 (2020).

47. Ryti, N. R. I., Korpelainen, A., Seppänen, O. & Jaakkola, J. J. K. Paradoxical
home temperatures during cold weather: a proof-of-concept study. Int. J.
Biometeorol. 64, 2065–2076 (2020).

48. Marr, L. C., Tang, J. W., Van Mullekom, J. & Lakdawala, S. S. Mechanistic
insights into the effect of humidity on airborne influenza virus survival,
transmission and incidence. J. R. Soc. Interface 16, 20180298 (2019).

49. Nguyen, J. L., Schwartz, J. & Dockery, D. W. The relationship between indoor
and outdoor temperature, apparent temperature, relative humidity, and
absolute humidity. Indoor Air 24, 103–112 (2014).

50. Gasparrini, A. et al. Mortality risk attributable to high and low ambient
temperature: a multicountry observational study. Lancet 386, 369–375 (2015).

51. Abbott, S. et al. Estimating the time-varying reproduction number of SARS-
CoV-2 using national and subnational case counts. Wellcome Open Res. 5, 112
(2020).

52. Sherratt, K. et al. Exploring surveillance data biases when estimating the
reproduction number: with insights into subpopulation transmission of
Covid-19 in England. Philos. Trans. R. Soc. B 376, 20200283 (2021).

53. Stan Development Team. RStan: The R interface to Stan (Stan Development
Team, 2020).

54. Abbott, S. et al. Estimating the time-varying reproduction number of SARS-
CoV-2 using national and subnational case counts. Wellcome Open Res. 5, 112
(2020).

55. Ganyani, T. et al. Estimating the generation interval for coronavirus disease
(COVID-19) based on symptom onset data, March 2020. Eurosurveillance 25,
2000257 (2020).

56. Ferretti, L. et al. The timing of COVID-19 transmission. Preprint at medRxiv
https://doi.org/10.1101/2020.09.04.20188516 (2020).

57. Lauer, S. A. et al. The incubation period of Coronavirus Disease 2019
(COVID-19) from publicly reported confirmed cases: estimation and
application. Ann. Intern. Med. 172, 577–582 (2020).

58. Jun, C. Calculate water vapor measures from temperature and dew point.
https://github.com/caijun/humidity (2019).

59. Shi, P. et al. The impact of temperature and absolute humidity on the
coronavirus disease 2019 (COVID-19) outbreak - evidence from China.
Preprint at medRxiv https://doi.org/10.1101/2020.03.22.20038919 (2020).

60. OECD. OECD regions at a glance 2016. https://doi.org/10.1787/reg_glance-
2016-en (2016).

61. Simplemaps. World cities database. https://simplemaps.com/data/world-cities
(2016).

62. Christophe, Y. et al. Validation Report of the CAMS Near-Real-Time Global
Atmospheric Composition Service: Period March–May 2019. Copernicus
Atmosphere Monitoring Service (CAMS) Report (2019).

63. Morcrette, J.-J. et al. Aerosol analysis and forecast in the European Centre for
medium-range weather forecasts integrated forecast system: forward
modeling. J. Geophys. Res. Atmos. 114, https://doi.org/10.1029/2008JD011235
(2009).

64. Benedetti, A. et al. Aerosol analysis and forecast in the European centre for
medium-range weather forecasts integrated forecast system: 2. Data
assimilation. J. Geophys. Res. Atmos. 114, https://doi.org/10.1029/
2008JD011115 (2009).

65. Hale, T. et al. Variation in Government Responses to COVID-19. Blavatnik
School of Government Working Paper. www.bsg.ox.ac.uk/covidtracker (2021).

66. Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-
analysis. Stat. Med. 21, 1539–1558 (2002).

67. Kramer, M. R2 statistics for mixed models. Conf. Appl. Stat. Agric. https://
doi.org/10.4148/2475-7772.1142 (2005).

68. Sera, F., Abbott, S. & Royé. Data and code to replicate the analysis of the
paper. ‘A cross-sectional analysis of meteorological factors and SARS-CoV-2
transmission in 409 cities across 26 countries’. https://doi.org/10.5281/
zenodo.5215842 (2021).

Acknowledgements
This work was generated using Copernicus Climate Change Service (C3S) and Coper-
nicus Atmosphere Monitoring Service (CAMS) information [2020]. The authors would
like to thank the European Centre for Medium-Range Weather Forecasts (ECMWF) that
implements the C3S and CAMS on behalf of the European Union. D.R. was supported by
a postdoctoral research fellowship of the Xunta de Galicia (Spain). A.G. was funded by
the Medical Research Council-UK (Grant ID: MR/R013349/1), the Natural Environment
Research Council UK (Grant ID: NE/R009384/1) and the European Union’s Horizon
2020 Project Exhaustion (Grant ID: 820655). R.L. was supported by a Royal Society
Dorothy Hodgkin Fellowship. S.A. and S.M. were funded by the Wellcome Trust
(grant 210758/Z/18/Z210758/Z/18/Z). The following funding sources are acknowledged
as providing funding for the MCC Collaborative Research Network authors: J.K. and
A.U. were supported by the Czech Science Foundation, project 18-22125S. S.T. was
supported by the Shanghai Municipal Science and Technology Commission (Grant
18411951600). N.S. is supported by the NIEHS-funded HERCULES Center
(P30ES019776). H.K. was supported by the National Research Foundation of Korea
(BK21 Center for Integrative Response to Health Disasters, Graduate School of Public
Health, Seoul National University). A.S., F.D.R. and S.R. were funded by the European
Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655). Each member of the
CMMID COVID-19 Working Group contributed to processing, cleaning and inter-
pretation of data, interpreted findings, contributed to the manuscript and approved the
work for publication. The following funding sources are acknowledged as providing
funding for the CMMID COVID-19 working group authors. This research was partly
funded by the Bill & Melinda Gates Foundation (INV-001754: M.Q; INV-003174: K.P.,
M.J., Y.L., J.L.; NTD Modelling Consortium OPP1184344: C.A.B.P., G.M.; OPP1180644:
S.R.P.; OPP1183986: E.S.N.). BMGF (OPP1157270: K.E.A.). DFID/Wellcome Trust
(Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z: C.A.B.P.).
EDCTP2 (RIA2020EF-2983-CSIGN: H.P.G.). ERC Starting Grant (#757699: M.Q.). This
project has received funding from the European Union’s Horizon 2020 research and
innovation programme—project EpiPose (101003688: K.P., M.J., P.K., R.C.B., W.J.E.,
Y.L.). This research was partly funded by the Global Challenges Research Fund (GCRF)
project ‘RECAP’ managed through RCUK and ESRC (ES/P010873/1: A.G., C.I.J., T.J.).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25914-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5968 | https://doi.org/10.1038/s41467-021-25914-8 |www.nature.com/naturecommunications 9



HDR UK (MR/S003975/1: R.M.E.). MRC (MR/N013638/1: N.R.W.; MR/V027956/1:
W.W.). Nakajima Foundation (A.E.). This research was partly funded by the National
Institute for Health Research (NIHR) using UK aid from the UK Government to support
global health research. The views expressed in this publication are those of the author(s)
and not necessarily those of the NIHR or the UK Department of Health and Social Care
(16/136/46: B.J.Q.; 16/137/109: B.J.Q., F.Y.S., M.J., Y.L.; Health Protection Research Unit
for Immunisation NIHR200929: N.G.D.; Health Protection Research Unit for Modelling
Methodology HPRU-2012-10096: T.J.; NIHR200908: R.M.E.; NIHR200929: F.G.S., M.J.;
PR-OD-1017-20002: A.R., W.J.E.). Royal Society (Dorothy Hodgkin Fellowship: R.L.; RP
\EA\180004: P.K.). UK DHSC/UK Aid/NIHR (PR-OD-1017-20001: H.P.G.). UK MRC
(MC_PC_19065—Covid 19: Understanding the dynamics and drivers of the COVID-19
epidemic using real-time outbreak analytics: A.G., N.G.D., R.M.E., S.C., T.J., W.J.E., Y.L.;
MR/P014658/1: G.M.K.). Authors of this research receive funding from the UK Public
Health Rapid Support Team funded by the United Kingdom Department of Health and
Social Care (T.J.). Wellcome Trust (206250/Z/17/Z: A.J.K., T.W.R.; 206471/Z/17/Z: O.B.;
208812/Z/17/Z: S.C.; 210758/Z/18/Z: J.D.M., J.H., N.I.B.; UNS110424: F.K.). No funding
(A.M.F., A.S., C.J.V.-A., D.C.T., J.W., K.E.A., Y.-W.D.C.). LSHTM, DHSC/UKRI
COVID-19 Rapid Response Initiative (MR/V028456/1: Y.L.). Innovation Fund of the
Joint Federal Committee (01VSF18015: F.K.). Foreign, Commonwealth and Develop-
ment Office/Wellcome Trust (221303/Z/20/Z: M.K.).

Author contributions
Conceptualisation—ideas; formulation or evolution of overarching research goals and
aims: F.S., B.A., S.A., K.O’R., M.H., M.P., A.T., A.M.V.-C., A.G., R.L. Data curation—
management activities to annotate (produce metadata), scrub data and maintain research
data (including software code, where it is necessary for interpreting the data itself) for
initial use and later re-use: F.S., B.A., S.A. and S.M. Formal analysis—application of
statistical, mathematical, computational or other formal techniques to analyse or syn-
thesise study data: F.S., B.A. and S.A. Funding acquisition—acquisition of the financial
support for the project leading to this publication: AG. Investigation—conducting a
research and investigation process, specifically performing the experiments or data/evi-
dence collection: F.S., S.A., S.M., R.L., R.S. and MCC Collaborative Research Network.
Methodology—development or design of methodology; creation of models: F.S., B.A.,
S.A. and A.G. Project administration—management and coordination responsibility for
the research activity planning and execution: F.S. and R.L. Resources—provision of study
materials, reagents, materials, patients, laboratory samples, animals, instrumentation,
computing resources or other analysis tools: A.G. Software—programming, software
development; designing computer programmes; implementation of the computer code
and supporting algorithms; testing of existing code components: F.S., B.A., S.A. and A.G.
Supervision—oversight and leadership responsibility for the research activity planning
and execution, including mentorship external to the core team: F.S., B.A. and R.L.
Validation—verification, whether as a part of the activity or separate, of the overall
replication/reproducibility of results/experiments and other research outputs: F.S. and
S.A. Visualisation—preparation, creation and/or presentation of the published work,

specifically visualisation/data presentation: F.S., B.A., S.A., R.L. and D.R. Writing—ori-
ginal draft—preparation, creation and/or presentation of the published work, specifically
writing the initial draft (including substantive translation): F.S., R.L., B.A. and R.v.B.
Writing—review and editing—preparation, creation and/or presentation of the published
work by those from the original research group, specifically critical review, commentary
or revision—including pre- or post-publication stages: F.S., B.A., S.A., S.M., K.O’R.,
R.v.B., R.S., D.R., M.H., M.P., A.T., A.M.V.-C., A.G., R.L., MCC Collaborative Research
Network and CMMID COVID-19 Working Group.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-25914-8.

Correspondence and requests for materials should be addressed to Francesco Sera or
Rachel Lowe.

Peer review information Nature Communications thanks Uriel Kitron, Olivier Restif
and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

MCC Collaborative Research Network

Wenbiao Hu19, Shilu Tong19,20,21,22, Eric Lavigne23,24, Patricia Matus Correa25, Xia Meng26, Haidong Kan26,

Jan Kynčl27,28, Aleš Urban29,30, Hans Orru31, Niilo R. I. Ryti32,33, Jouni J. K. Jaakkola32,33, Simon Cauchemez34,

Marco Dallavalle35, Alexandra Schneider35, Ariana Zeka36, Yasushi Honda37,38, Chris Fook Sheng Ng11,

Barrak Alahmad39, Shilpa Rao40, Francesco Di Ruscio40, Gabriel Carrasco-Escobar41,42, Xerxes Seposo11,

Iulian Horia Holobâcă43, Ho Kim44, Whanhee Lee44, Carmen Íñiguez45, Martina S. Ragettli46,47,

Alicia Aleman48, Valentina Colistro49, Michelle L. Bell50, Antonella Zanobetti39, Joel Schwartz39,

Tran Ngoc Dang51, Noah Scovronick52, Micheline de Sousa Zanotti Stagliorio Coélho53, Magali Hurtado Diaz54 &

Yuzhou Zhang55,56

19School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD, Australia. 20Shanghai Children’s Medical Centre,
School of Medicine, Shanghai Jiao-Tong University, Shanghai, China. 21School of Public Health, Institute of Environment and Human Health, Anhui
Medical University, Hefei, China. 22Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. 23School of
Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. 24Air Health Science Division, Health Canada,
Ottawa, ON, Canada. 25Department of Public Health, Universidad de los Andes, Santiago, Chile. 26Key Lab of Public Health Safety of the Ministry of
Education and NHC Key Lab of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China. 27Department of
Infectious Diseases Eepidemiology, National Institute of Public Health, Prague, Czech Republic. 28Department of Epidemiology and Biostatistics,

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25914-8

10 NATURE COMMUNICATIONS |         (2021) 12:5968 | https://doi.org/10.1038/s41467-021-25914-8 | www.nature.com/naturecommunications



Third Faculty of Medicine, Charles University, Prague, Czech Republic. 29Institute of Atmospheric Physics of the Czech Academy of Sciences,
Prague, Czech Republic. 30Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic. 31 Institute of Family
Medicine and Public Health, University of Tartu, Tartu, Estonia. 32Center for Environmental and Respiratory Health Research (CERH), University of
Oulu, Oulu, Finland. 33Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and University of Oulu, Oulu, Finland. 34Mathematical
Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France. 35Institute of Epidemiology, Helmholtz Zentrum München—German Research
Center for Environmental Health (GmbH), Neuherberg, Germany. 36Institute of Environment, Health and Societies, Brunel University London,
London, UK. 37Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan. 38Faculty of Health and Sport
Sciences, University of Tsukuba, Tsukuba, Japan. 39Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard
University, Boston, MA, USA. 40Norwegian Institute of Public Health, Oslo, Norway. 41Health Innovation Laboratory, Institute of Tropical Medicine
“Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru. 42Scripps Institution of Oceanography, University of California San
Diego, La Jolla, CA, USA. 43Faculty of Geography, Babes-Bolyai University, Cluj-Napoca, Romania. 44Department of Public Health Science, Graduate
School of Public Health, Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea. 45Department of Statistics and
Computational Research, Universitat de València, València, Spain. 46Swiss Tropical and Public Health Institute, Basel, Switzerland. 47University of
Basel, Basel, Switzerland. 48Departament of Preventive and Social Medicine, School of Medicine, Universidad de la República, Montevideo, Uruguay.
49Departmente of Cuantitative Methods, School of Medicine, Universidad de la República, Montevideo, Uruguay. 50School of the Environment, Yale
University, New Haven, CT, USA. 51Department of Environmental Health, Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi
Minh City, Ho Chi Minh City, Vietnam. 52Gangarosa Department of Environmental Health. Rollins School of Public Health, Emory University,
Atlanta, GA, USA. 53Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil. 54Department of Environmental
Health, National Institute of Public Health, Cuernavaca Morelos, Mexico. 55College of Computer Science and Technology, Zhejiang University,
Hangzhou, China. 56Department of Research, Baolue Technology (Zhejiang) Co., Ltd, Hangzhou, China.

CMMID COVID-19 Working Group

Timothy W. Russell3, Mihaly Koltai3, Adam J. Kucharski3, Rosanna C. Barnard3, Matthew Quaife3,

Christopher I. Jarvis3, Jiayao Lei3, James D. Munday3, Yung-Wai Desmond Chan3, Billy J. Quilty3,

Rosalind M. Eggo3, Stefan Flasche3, Anna M. Foss3, Samuel Clifford3, Damien C. Tully3, W. John Edmunds3,

Petra Klepac3, Oliver Brady3, Fabienne Krauer3, Simon R. Procter3, Thibaut Jombart3, Alicia Rosello3,

Alicia Showering3, Sebastian Funk3, Joel Hellewell3, Fiona Yueqian Sun3, Akira Endo3, Jack Williams3,

Amy Gimma3, Naomi R. Waterlow3, Kiesha Prem3, Nikos I. Bosse3, Hamish P. Gibbs3, Katherine E. Atkins3,

Carl A. B. Pearson3, Yalda Jafari3, C. Julian Villabona-Arenas3, Mark Jit3, Emily S. Nightingale3,

Nicholas G. Davies3, Kevin van Zandvoort3, Yang Liu3, Frank G. Sandmann3, William Waites3, Kaja Abbas3,

Graham Medley3 & Gwenan M. Knight3

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25914-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5968 | https://doi.org/10.1038/s41467-021-25914-8 |www.nature.com/naturecommunications 11



 1 

A cross-sectional analysis of meteorological factors and SARS-CoV-2 

transmission in 409 cities across 26 countries   

Supplementary materials 

Supplementary Methods 

Dependence of sample size on maximum Oxford Government Response Tracker 

We chose 70 as the maximum value of OxCGRT Government Response Index allowed in included 
days as a compromise between limiting confounding by government interventions and including 
enough cities to enable estimation of the associations studied. This choice was informed by the 
preliminary evaluation (see Supplementary Figure 7). Supplementary Figure 7a shows the % of the 
502 total cities for which data was available, according to the chosen criteria (window length between 
10-20 days and there were at least 10 cases) for given maximum OxCGRT Government Response 
Index values (ranging from 60 to 100). Supplementary Figure 7b shows the dependence of the number 
of days included in windows for different cut-off values. Windows were also required to include at 
least 10 days and to begin only when 10 cases had occurred. For this purpose, each day’s OxCGRT 
Government Response Index value was lagged ten days, to allow for the incubation period and 
reporting delays. As the OxCGRT Government Response Index cut-off was lowered, the number of 
cities included and of days included in windows diminished. The sharp rise in the number of cities 
included by increasing the maximum allowed OxCGRT Government Response Index from 60 to 70 
with diminishing increases beyond that suggested 70 as a sensible compromise. During the analysis 
we checked the possible residual confounding role of the capped OxCGRT index by including the 
value at the end of the time window (lagged by 10 days) as covariate in our model. After observing its 
strong effect, we retained this variable for all further analyses.  



 2 

Supplementary Figure 1. Range (line) and mean (dot) observation day (midpoint of the time-
window) for the cities within each of the 26 countries. 
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Supplementary Figure 2. Correlations between meteorological variables (Ta = Temperature, RH = 
Relative Humidity, AH=Absolute Humidity, UV=Surface solar radiation, WS=Wind speed, 
Prec=Total precipitations). 



 4 

 

Supplementary Figure 3. Correlations a between city-level socio-demographic variables. 
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Supplementary Figure 4. Correlations between meteorological variables (Ta = Air temperature, RH 
= Relative humidity, AH=Absolute humidity, UV = Surface solar radiation), OxCGRT Government 
Response Index, day of the year, and Reproduction number (Re). 
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Supplementary Figure 5. Associations (with 95% confidence intervals) between (a) mean 
temperature (°C), (b) relative humidity (%), (c) absolute humidity (g/m3), and (d) Solar surface 
radiation with predicted Re difference when cities with Re < 1 were excluded. Two-sided Wald test p-
values and adjusted curves with 95% confidence intervals were obtained from multivariable meta-
regression multilevel models adjusted by population (log scale), population density (log scale), GDP 
(log scale), % population >65 years of age, PM2.5 (µg/m3, log scale) and OxCGRT Government 
Response Index, with cities nested within countries. The marginal distribution along the x axis 
represents the observed data for that covariate.  
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Supplementary Figure 6. Associations (with 95% confidence intervals) between (a) mean 
temperature (°C), (b) relative humidity (%), (c) absolute humidity (g/m3), and (d) Solar surface 
radiation with predicted Re difference when non-pharmaceutical interventions were not controlled for 
in the model. Two-sided Wald test p-values and adjusted curves with 95% confidence intervals were 
obtained from multivariable meta-regression multilevel models adjusted by population (log scale), 
population density (log scale), GDP (log scale), % population >65 years of age, PM2.5 (µg/m3, log 
scale), with cities nested within countries. The marginal distribution along the x axis represents the 
observed data for that covariate.  
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Supplementary Figure 7. (a) % of the 502 total cities for which data was available according to the 
chosen criteria (window length between 10-20 days and there were at least 10 cases) for given 
maximum OxCGRT Government Response Index values (ranging from 60 to 100). (b) number of 
days included in windows for a given cut-off value.  
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Supplementary Table 1. Source and COVID-19 case definition for the different countries. 

Country Start date End date City 
definition 

No. of 
cities 

Source Case Definition 

Australia 22/01/2020 04/06/2020 City 3 Health department website Confirmed COVID-19 
cases 

Brazil 25/02/2020 04/06/2020 Municipality 18 https://covid.saude.gov.br/ The new confirmed 
COVID-19 numbers take 
into account the cases 
recorded from the 
previous day 

Canada 25/01/2020 06/06/2020 Health 
Regions 

17 https://github.com/ishaberry/Covid19Canada 
Berry I, Soucy J-PR, Tuite A, Fisman D. 
Open access epidemiologic data and an 
interactive dashboard to monitor the COVID-
19 outbreak in Canada. CMAJ. 2020 Apr 

The COVID-19 data 
includes confirmed and 
presumptive positive (i.e, 
probable) cases of 
COVID-19. 

Chile 03/03/2020 12/06/2020 Regions 4 https://en.wikipedia.org/wiki/COVID-
19_pandemic_in_Chile 

Confirmed COVID-19 
cases 
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China 22/01/2020 04/06/2020 City 17 nCov19 package in R Confirmed COVID-19 
cases 

Czech 
Republic 

29/02/2020 09/06/2020 Regions 1 The Ministry of Health of the Czech Republic 
- https://onemocneni-
aktualne.mzcr.cz/api/v2/covid-19 
  
Komenda M., Bulhart V., Karolyi M., et al. 
Complex reporting of coronavirus disease 
(COVID-19) epidemic in the Czech Republic: 
use of interactive web-based application in 
practice. Journal of Medical Internet 
Research. 2020, 22(5), e19367. 

RT-PCR confirmed cases 
per day 

Ecuador 12/03/2020 15/05/2020 Provinces 2 Health authority Confirmed COVID-19 
cases 

Estonia 26/03/2020 03/06/2020 County 1 Estonian Health Board  - 
https://www.terviseamet.ee/et/koroonaviirus/a
vaandmed 

Confirmed cases by 
clinical laboratory 
diagnostic tests. 
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Finland 01/03/2020 31/05/2020 Hospital 
districts 

1 Finnish institute of health and welfare (THL) All cases confirmed by 
laboratory testing. The 
date in the time-series 
refers to the date of taking 
the test 

France 28/01/2020 08/06/2020 Departments 17 Santé publique France; data.gouv.fr Until 19/3/2020 
Confirmed cases. From 
20/3/2020 Daily number 
of newly hospitalized 
persons 
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Germany 28/01/2020 31/05/2020 City 12 „Fallzahlen in Deutschland” of the Robert 
Koch-Institut (RKI) - Link to the dataset: 
https://www.arcgis.com/home/item.html?id=f
10774f1c63e40168479a1feb6c7ca74 

"Confirmed cases by 
clinical laboratory 
diagnostic tests. 
Infections confirmed by 
laboratory diagnostic 
evidence in case of a non-
matching clinical picture 
(e.g. asymptomatic) are 
also included. 

Italy 24/02/2020 04/06/2020 Provinces 23 Protezione civile Confirmed COVID-19 
cases 

Japan 16/01/2020 31/05/2020 Prefectures 10 Health authority Confirmed COVID-19 
cases 

Kuwait 22/01/2020 04/06/2020 Country 1 COVID-19 Dashboard by the Center for 
Systems Science and Engineering (CSSE) at 
Johns Hopkins University 

RT-PCR positive 
nasopharyngeal swab 
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Mexico 01/01/2020 04/06/2020 States 8 https://datos.gob.mx/busca/dataset/informacio
n-referente-a-casos-covid-19-en-mexico 

Confirmed COVID-19 
cases 

Norway 21/02/2020 26/05/2020 City 1 https://www.fhi.no/sv/smittsomme-
sykdommer/corona/dags--og-
ukerapporter/dags--og-ukerapporter-om-
koronavirus/ 

Confirmed COVID-19 
cases 

Peru 06/03/2020 05/06/2020 Departments 18 Ministry of Health Peru 
(https://www.datosabiertos.gob.pe/group/dato
s-abiertos-de-covid-19) 

Confirmed COVID-19 
cases; test date 

Philippines 09/03/2020 11/06/2020 City 4 https://doh.gov.ph/covid19tracker RT-PCR confirmed cases 
per day 

Romania 22/03/2020 31/05/2020 County 8 PRESS RELEASE, Strategic Communication 
Group, MINISTRY OF INTERNAL 
AFFAIRS 

new cases of people 
infected with SARS – 
CoV – 2 (COVID – 19) 
these being cases that had 
not previously had a 
positive test 
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Singapore 23/01/2020 16/06/2020 City 1 Ministry of Health Singapore. 
(https://www.moh.gov.sg/covid-19/past-
updates , https://www.moh.gov.sg/covid-
19/situation-report ) 

Dates of confirmed 
COVID-19 cases 

South Korea 20/01/2020 31/05/2020 Provinces 7 From 
http://ncov.mohw.go.kr/ 

People who diagnostic 
test positive for the virus, 
regardless of clinical 
manifestations. 
  
All confirmed cases were 
registered in the KCDC 
Health and Disease 
Integrated Management 
System. 
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Spain 31/01/2020 21/06/2020 Provinces 52 https://cnecovid.isciii.es/covid19/#documenta
ción-y-datos 

Confirmed cases with 
clinical symptoms of 
acute respiratory infection 
of any severity with fever, 
cough or feeling of 
shortness of breath (other 
symptoms such as 
onychophagia, anosmia, 
ageustia, muscle pain, 
diarrhoea, chest pain or 
headache can also be 
considered) and with a 
positive result from a 
Diagnostic Test of Active 
Infection by SARS-CoV-
2 
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Switzerland 01/01/2020 25/05/2020 Cantons 8 Federal Office of Public Health (FOPH, 
https://www.bag.admin.ch/bag/en/home.html)
; Federal Statistical Office (FSO, 
https://www.bfs.admin.ch/bfs/en/home.html) 

Confirmed COVID-19 
cases; date of testing 

United 
Kingdom 

30/01/2020 31/05/2020 LTLA 54 Public health England The date in the time-series 
refers to the date the 
specimen was taken from 
the person being tested 

United States 22/01/2020 04/06/2020 City 211 COVID-19 Dashboard by the Center for 
Systems Science and Engineering (CSSE) at 
Johns Hopkins University 

Confirmed COVID-19 
cases 

Uruguay 24/02/2020 15/06/2020 Departments 1 Epidemiology Section of the Ministry of 
Health 

Date start of symptoms 

Vietnam 23/01/2020 19/06/2020 Provinces 2 Health authority Confirmed COVID-19 
cases 
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Supplementary Table 2. City-level socio-economic, demographic and pollution indicators. 

Indicator Source Year 

Total population (persons) Worldcities database 2015 

Population density (persons per km2) Worldcities database 2015 

Population, % (population > 65 years) OECD 2018 

GDP per capita (US$) OECD 2016;2018 

PM2.5 (µg/m3) CAMS Near real time 2020 (Covid 
window) 
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Supplementary Table 3. Mean, standard deviation (SD) and range (min and max) of the effective 
reproduction number, meteorological and city-level variables calculated in the 409 cities. 

Variable Mean SD min max 

Outcome         

Re 1.43 0.19 0.70 2.11 

Meteorological         

Mean temperature (°C) 11.27 6.66 -8.54 29.18 

Relative humidity (%) 68.49 8.86 24.74 89.38 

Absolute humidity (g/m3) 7.65 3.97 1.88 22.19 

Surface solar radiation 
downwards (J/m2) 

175.36 40.17 89.08 307.79 

Wind speed (km/h) 2.88 1.15 0.63 7.30 

Total precipitation (m/day) 2.46 2.23 0.00 21.07 

City characteristics         

PM2.5 (µg/m3) 10.0 9.5 3.4 87.1 

Total population (persons) 1,309,744.7 3,154,340.3 3,478.0 2,6174,599.0 

Population density (persons 
per km2) 

4,157.4 5,397.8 42.0 53,108.1 

Population, % pop >65 years 13.1 4.5 3.0 27.2 

GDP per capita (US$) 37,752.2 14,922.3 3,168.0 101,375.0 

Gross Value Added per capita 
(US$) 

70,981.0 21,227.4 14,647.0 366,027.5 
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Non pharmaceutical 
Interventions 

        

Oxford Government Index 55.2 13.8 5.8 69.9 
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Supplementary Table 4. Sequence of multilevel meta-regression models. 

Model Model terms LogLik likelihood 
ratio test 

R2 

I2 (%) Two-sided 
p-value 

Model A Only random effects (city and 
country) 

107.6483   66.2   

Model B Model A + Oxford 
government index 

149.0627 18.3 62.7 <0.0001 

Model C Model B +  City-level 
covariates 

153.8145 20.2 55.8 <0.0001 

Model D1 Model C + Mean temperature 
(°C) 

160.1787 22.7 53.3 0.014 

Model D2 Model C + Relative humidity 
(%) 

157.6298 21.7 55.3 0.058 

Model D3 Model C + Absolute humidity 
(g/m3) 

159.0228 22.2 53.3 0.036 

Model D4 Model C + Surface solar 
radiation downwards (J/m2) 

155.4314 20.8 55.7 0.208 

Model D5 Model C + Wind speed (m/s) 155.7435 21.0 55.0 0.152 

Model D6 Model C + Total precipitation 
(m/day) 

154.7431 20.6 55.4 0.175 

Model D7 Model D1 without Oxford 
government index 

126.6178 8.9 58.6   

Model D8 Model D1 without City-level 
covariates 

156.6395 21.3 59.3   

likelihood ratio test R2 calculated as 1-exp(-2/409 x (logLikm-logLik0)), where logLikm is the log-
likelihood of the model of interest and logLik0 is the log-likelihood from a null model including only 
city and country random effect (i.e. Model A).
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Supplementary Table 5. Sensitivity analysis: p values for each experiment.  
 

Mean 
temperature 

(°C) 

Absolute 
humidity 

(g/m3) 

Relative 
humidity 

(%) 

Surface solar 
radiation 

downwards (J/m2) 

Wind speed 
(m/s) 

Total 
precipitation 

(m) 

Model presented in Table 2 (main text) (n = 409) 0.014 0.036 0.058 0.208 0.152 0.175 

Cities with OxCGRT <60 (n = 129) 0.001 0.038 0.454 0.370 0.018 0.036 

No Adjustment by OxCGRT (n = 409) 0.005 0.001 0.055 0.001 0.202 0.158 

No lagged OxCGRT (n = 409) 0.016 0.035 0.107 0.260 0.132 0.256 

Country as fixed effect (n = 409) 0.018 0.011 0.058 0.297 0.148 0.155 

10 days lagged exposure variables (n = 409) 0.001 0.126 0.037 0.009 0.722 0.209 

Models also adjusted by day of the year (n = 409)* 0.015 0.036 0.060 0.210 0.151 0.174 

Only Cities with R>=1 (n = 399) 0.001 0.003 0.009 0.047 0.186 0.182 

Excluding China and Brazil (n = 380) 0.011 0.156 0.049 0.332 0.189 0.880 

Non tropical cities (n = 386) 0.019 0.201 0.063 0.199 0.185 0.699 

Tropical cities (n = 23) 0.198 0.667 0.882 0.501 0.633 0.880 

Northern hemisphere (n = 381) 0.036 0.355 0.054 0.294 0.192 0.774 

Southern hemisphere (n = 28) 0.456 0.666 0.606 0.992 0.223 0.992 

Only cities with latitude < 45 degrees (n = 308) 0.021 0.055 0.066 0.211 0.028 0.221 

p values were obtained from multivariable meta-regression multilevel models adjusted by population (log scale), density (log scale) , GDP (log scale),  % 
population > 65 years, PM2.5 (log scale) and OxCGRT government response index with cities nested within countries. 

*p values were obtained from multivariable meta-regression multilevel models adjusted by population (log scale), population density (log scale), GDP (log 
scale), % population > 65 years, PM2.5 (log scale), OxCGRT oxford government response index and day of the year, with cities nested within countries. 
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Chapter 8

Final comments

In this final chapter, I provide some conclusive comments about my research on the extended random-

effects framework for complex meta-analysis and its application in environmental epidemiological stud-

ies. In the first Section 8.1 I will present the main outputs of this PhD and their relationship with the

PhD’s objectives. In the second Section 8.2 I will present the contribution to the scientific literature

of the output of this PhD project. In the third Section 8.3, I will examine possible future develop-

ments from computational, theoretical, and applied perspectives. A final discussion is then provided

in Section 8.4.

8.1 Outputs of the PhD and their relationship with PhD Objectives

The first objective of this PhD was to develop an extended random-effects framework for complex

meta-analysis. Coherently with this aim, the first methodological output of this PhD is the research

paper (Sera et al., 2019a) reported in Chapter 3. In this paper, I illustrate a general framework

for meta-analysis based on linear mixed-effects models, where potentially complex patterns of effect

sizes are modelled through an extended and flexible structure of fixed and random terms. As shown

in the next section 8.2 the development of a general framework with its implementation in freely
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available statistical software has facilitated the application of complex meta-analytic models in several

fields. The second methodological paper of this PhD (Sera and Gasparrini, 2022) has been presented

in Chapter 4. According to objective 2 of this PhD, this paper illustrates extensions of the classical

two-stage study design used in environmental epidemiology. I demonstrate the advantages of applying

various extensions of the two-stage design in multiple case studies using multi-location analyses of

environmental exposures. Among the benefits a more robust characterisation of the non-linear asso-

ciation curve at different analysis units (e.g. cities, countries), a more flexible parametrisation of the

temporal structure of the association curves and the possibility of exploring differences of association

curves among sub-group (e.g. age, sex). In Chapters 5, 6 and 7, I presented three applications of

the extended framework for complex meta-analysis (Sera et al., 2019b, 2020, 2021). Coherently with

Objective 4 of this PhD, these papers illustrate the application of the extended random-effect frame-

work for complex meta-analysis in environmental epidemiology studies. These studies are characterised

by complex settings with multiple levels of hierarchies, non-linearity, spatial and temporal structure

and demonstrate the advantages of the extended two-stage design using the complex meta-analytic

framework. Following Objective 3 of this PhD, The extended random-effects framework for complex

meta-analysis has been implemented in the R package mixmeta. The availability of fully-documented

packages in a freely-available software has been fundamental for this PhD. The flexibility of the pack-

age allows to represent of different parametrisations of complex meta-analytic problems as shown in

the methodological (Sera and Gasparrini, 2022; Sera et al., 2019a) and more applied papers (Sera

et al., 2020, 2021) of this PhD. These papers include as supplementary material methodological notes,

data, and R scripts for reproducing the examples presented in the papers. The availability of detailed

documentation has promoted the application of the techniques by other research teams, as shown in

the next section 8.2 and I am confident that the material can support future research implementing

extensions of the classical two-stage study design in environmental epidemiology.

8.2 Impact of the PhD research project

The first methodological output of this PhD is the research paper in Chapter 3 presenting the general

framework for meta-analysis based on linear mixed effects. The development of a general framework
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with its implementation in freely available statistical software has facilitated the application of complex

meta-analytic models in several fields. At the time of writing, I identified 53 papers that cited the

research paper Sera et al. (2019a), 21 of which I co-authored. The extended framework was used

to evaluate the short term effects of environmental stressors within the Multi-Country Multi-City

(MCC) scientific collaboration network (Chen et al., 2021; Liu et al., 2022; Madaniyazi et al., 2022;

Masselot et al., 2021; Meng et al., 2021; Mistry et al., 2022; Royé et al., 2021; Tob́ıas et al., 2021;

Urban et al., 2021; Vicedo-Cabrera et al., 2020, 2021). The MCC is a scientific collaboration network

that shares resources and data to investigate the health effect of environmental stressors. In this

setting characterised by time-series data for more than 750 cities in 40 countries, the flexibility of the

extended framework allowed to deal with non-linear exposure-response curve and multilevel structure

of the data (with cities nested within countries), e.g., fitting multivariate multilevel meta-regression

models. Using these models, we obtained more reliable country and city-level BLUPs health impact

estimates. Moreover, the extended framework was used in COVID-19, environmental and clinical

related projects within my research network (Donzelli et al., 2022; Formica et al., 2021; Gasparrini

et al., 2022; Huber et al., 2022; Lavigne et al., 2022; Nottmeyer and Sera, 2021; Onozuka et al., 2022;

de Schrijver et al., 2022; Scortichini et al., 2020; Sim et al., 2020).

Outside my research network, the complex meta-analyitc framework and software have been used in

environmental (Bär et al., 2022; Chu et al., 2021; Chua et al., 2021; Fong and Smith, 2022; Hasegawa

et al., 2022; He et al., 2022; Madaniyazi et al., 2021; Mart́ınez-Solanas et al., 2021; Wen et al., 2022a,b),

and ecological (Beck et al., 2022; Gerli et al., 2020; James et al., 2021; Junqueira et al., 2022; Tuttle

and Donahue, 2022; Wohner et al., 2022) studies.

The methods presented in the methodological paper Sera et al. (2019a) have been also applied in meta-

analysis performed in clinical setting Agrawal et al. (2022); Allinson et al. (2022); Borbón et al. (2022);

Dickerson-Young et al. (2022); Filippini et al. (2021); Jeon et al. (2021); Wieland et al. (2021), and in

behavioural sciences Barth et al. (2022); Lintner (2022); Tarai et al. (2022); Walton et al. (2021).

Lastly, my work has been discussed in several methodological papers (Joshi et al., 2021; Orsini, 2021;

Srinivasjois, 2021; Wu et al., 2022; Yu et al., 2021).

The second methodological paper of this PhD has been presented in Chapter 4. This paper illustrates
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extensions of the classical two-stage study design used in environmental epidemiology. The paper has

just been published, and no impact metric is available, but there is some interest from the scientific

community with more than 1100 accesses to the paper according to the journal metrics, and I am

confident that the paper can support future research implementing extensions of the classical two-

stage study design in environmental epidemiology.

In Chapters 5, 6 and 7 I presented three applications of the extended framework for complex meta-

analysis. These papers have been well received from the scientific community, and in spite of being

recently published, they already feature a high number of citations. In particular, the paper on

modifiers of heat health effects Sera et al. (2019b), published in 2019, now has 65 citations according

to SCUPUS (at time of writing). Notably, it was included in the 2020 report of the Lancet Countdown

on health, and climate change (Watts et al., 2021). The paper on the longitudinal health impact of air

conditioning Sera et al. (2020) has 25 citations according to Dimensions Citations, and the ecological

analysis of COVID-19 Sera et al. (2021), published in the autumn of 2021, has 22 citations according

to Dimensions Citations.

This impact shows the importance of the research I carried out within my PhD project and a strong

motivation to develop the work further.

8.3 Future developments

In this PhD project, I developed the extended random-effects framework for complex meta-analysis

and defined extensions of the two-stage design in environmental epidemiology. This methodological

framework has been applied in several epidemiological projects. This work has stimulated some re-

flections on the possible future development of this research area. These future developments can be

divided into the need to improve the feasibility of using the proposed methodology in a big data setting,

the possibility of considering the uncertainty of the random terms during the inferential process, and

further applications in environmental epidemiology and other research areas. These directions will be

discussed in the following three sections.
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Big data applications

In the research paper Sera et al. (2019a), I showed how several types of meta-analysis (univariate,

multivariate, multilevel, and dose-response) could be modeled as mixed effects models. I used a

likelihood-based computational approach to obtain the estimates, and this approach is implemented

in the package R package mixmeta.

The computational approach implemented in mixmeta uses the block-diagonal structure of the within

and between error terms at the outer level. On applying the method, I observed that by increasing

the number of inner level units, the computational time increases non-linearly. The computational

time becomes an issue when the number of inner level units is on the order of hundreds. For example,

in a two-level model with ten outer level units and 500 inner level units, the computational time is

75 seconds for each iteration of the Newton-Ramphson-based procedure. This problem is even more

relevant with other software that could be used to fit complex meta-analytic models. For example, the

R package metafor that uses the full marginal covariance matrix in the Fisher-scoring estimation pro-

cedure, or the R package nlme based on the QR decomposition operating at each nested level Pinheiro

and Bates (2006). For example, if we considered a two levels models with 10 outer level units and 100

inner level units the R package mixmeta converge in 18.3 seconds, while R package metafor in 193.3

seconds, and the R package nlme in 1121.9 seconds. Some improvement could be reached writing C++

version of some functions used internally by R package mixmeta. A preliminary attempt shows that

using the C++ function and other optimization functions reduces the computational time by 30%. For

example, for a problem with 500 inner level units and ten outer level units, the computational time

for each iteration became 48 seconds instead of 75 seconds.

The estimation procedure implemented in the mixmeta package uses a hybrid approach that considers

the estimates of the random terms obtained after the first ten iterations of the IGLS and RIGLS algo-

rithm proposed by Goldstein (Goldstein, 1986, 1989) under the assumption of unconstrained covariance

among the random terms. These estimated represent the starting point of the Newton-Raphson min-

imisation procedures implemented in the optim package. The implementation in the mixmeta package

of the (R)IGLS algorithm can be made faster using the procedure presented in (Goldstein and Ras-

bash, 1992). I made preliminary attempts at implementing such a procedure with encouraging results.
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The computational time increased linearly with the number of inner level units, e.g., the problem with

500 inner level units and ten outer level units requires 18.3 seconds for each iteration to run, respect

the 75 seconds of the current version. These preliminary results are encouraging and suggest further

research for implementing the complex meta-analytic framework characterised by big data settings.

Uncertainity on the estimates of the variance-components

As described previously, I implemented the extended framework for complex meta-analysis using a

frequentist inferential procedure. This procedure is based on the ML and REML estimation of the

between-study variance components. More specifically, numerical iterative methods (Newton-Raphson)

are used to estimate the variance component. These are plugged into the generalised least square for-

mula for point estimates and standard error for the fixed effects coefficients. In the current version,

no correction for the uncertainty of the estimates of the variance components is implemented.

I started to evaluate different approaches that consider the uncertainty of the variance-covariance com-

ponent estimates in the inferential procedures for the fixed-effects terms. In particular, I considered

three different possible methods. The first is based on likelihood-based confidence intervals as proposed

by Hardy and Thompson (Hardy and Thompson, 1996). This approach requires the specification of

the full likelihood, and it would allow for obtaining confidence intervals for the fixed effects coefficients

and the between studies variance components. A different approach is based on the Hartung-Knapp

method (Hartung, 1999; Hartung and Knapp, 2001a,b; Sidik and Jonkman, 2002). Interestingly, re-

cently a paper shows the equivalence of the Hartung-Knapp method with the weighted least square

regression (van Aert and Jackson, 2019), and this equivalence can be used to generalise the correction

in complex meta-analytic setting, e.g. deriving the weights from the inverse of the marginal covariance

matrix. Lastly, within a finite-sample inference with REML estimation context, Kenward and Roger

proposed an approximate correction of the covariance matrix and degree of freedom (Kenward and

Roger, 1997). This correction has been recently applied to standard univariate meta-analysis (Morris

et al., 2018), and can be extended to multivariate and other complex meta-analytic regression models.

Some of these methods require the analytic formulation of first and second derivatives of the likeli-

hood functions (Gumedze and Dunne, 2011; Stroup, 2012; Wang and Merkle, 2018). I made the first
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attempts to develop these three procedures using Matlab considering simple multivariate multilevel

settings (e.g., two levels with four outer and five inner level units). Still, these procedures need to be

developed in more general settings, and the performance of the different approaches need to be com-

pared with simulation studies. I think this will be an important research area. Papers have compared

methods that take into account uncertainty on the estimation of the (co)variances components in the

simple univariate settings Sidik and Jonkman (2007); Veroniki et al. (2016), but there is no specific

contribution that evaluates this issue in complex meta-analysis.

Applications in environmental epidemiology and other research area

A possible research direction is to explore developments of the two-stage design to evaluate the health

effects of environmental hazards in multi-centre studies using a “causal” perspective based on Ru-

bin’s potential outcomes approach and its implementation using propensity scores. Rubin’s potential

outcomes approach and its implementation using propensity scores have been widely used in observa-

tional studies to remove bias due to the imbalance of confounders between exposure groups. It was

firstly proposed for a binary treatment (exposure) and then extended to consider continuous treatment

(Hirano and Imbens, 2004; Imai and Van Dyk, 2004; Zhao et al., 2020). It has also been extended

to consider multiple treatments (Egger and Von Ehrlich, 2013; Williams and Crespi, 2020). Several

approaches have been proposed and can be broadly classified into approaches based on matching, strat-

ification, weights, and regression. Recently these approaches have been introduced in environmental

epidemiology to investigate the short-term effect of PM2.5 using a matching Baccini et al. (2017) and

a regression approach Forastiere et al. (2020). The potential outcome approach could give some in-

sights into the causal structure of the epidemiological relationship and could more efficiently remove

unbalances due to confounders/exposure associations. In this setting, two methodologically challenges

can be identified; the first is related to the meta-analytic problem of pooling dose-response ”causal”

dose-response curves obtained using a potential outcome regression approach in each study area, and

the second is related to the possibility of using propensity score weights to evaluate the ”causal” effect

of contextual meta-regressor in the second-stage meta-analysis.

One of the specifications of the extended random effect framework for meta-analysis presented in
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this PhD thesis is the multilevel meta-analysis that allows to characterise a possible hierarchical ge-

ographical structure of estimates to be pooled. This has been applied in one of the case-example

of the paper presenting the extended two-stage design in which the association between ozone and

mortality was assessed in US cities nested in the US States. The multilevel parametrisation implies

a common correlation structure between the lower level units (e.g., cities) nested within the highest

group-level (US state). This assumption could be mitigated by imposing a spatial correlation structure

on which the correlation is a function of some distance metrics across the lower-level units (cities).

The possibility of defining the spatial autocorrelation covariance matrix would improve the robustness

of extended two-stage design in a study setting characterised by a spatial structure of units on which

first-stage estimates are estimated. In this PhD I showed applications of the extended two stage-design

in environmental epidemiologic studies, but the extended random-effect framework can be applied in

other multi-centre observational or clinical studies in which the two-stage design could give computa-

tional advantages. In particular, it could be applied to evaluate the effect of modifiers, e.g performing

sub-group or dose-response meta-analysis based on estimates obtained through first-stage stratified

analysis, e.g. by sex or age.

8.4 Conclusions

During the last years, complex meta-analytic problems arose in several research fields. In this PhD

thesis, I developed an extended random effects framework for meta-analysis that provides some tools

to improve the analytical approaches in these fields. In addition, the implementation in a freely

available statistical software facilitates the application of these methods among applied researchers. I

also showed how the extended framework could be applied in environmental epidemiology two stages

studies allowing a clearer characterisation of the short-term effects of environmental stressors. Although

recently proposed and published, these statistical methods and related software seem to represent a

useful and valuable tool for the research community. This is reassuring about the importance of the

research I carried out within my PhD project and a strong motivation to develop it further in the

future.
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mixmeta-package An Extended Mixed-Effects Framework for Meta-Analysis

Description

The package mixmeta consists of a collection of functions to perform various meta-analytical
models in R through a unified mixed-effects framework, including standard univariate fixed and
random-effects meta-analysis and meta-regression, and non-standard extensions such as multivari-
ate, multilevel, longitudinal, and dose-response models.
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Modelling framework

Standard applications of meta-analysis amount to the pooling of estimates of a single effect size,
here defined generally as outcome, collected as unique observations in a set of independent studies,
together with a measure of uncertainty (usually standard errors). Fixed-effects models do not as-
sume heterogeneity across studies, and the estimates are conditional on the set of studies collected in
the meta-analysis. Random-effects meta-analysis, instead, allows a degree of heterogeneity among
studies, assuming the (true but unobserved) study-specific outcomes as randomly sampled from a
(usually hypothetical) population of studies. Meta-regression extends both fixed and random-effects
methods by allowing the pooled outcome to depend on study-level meta-predictors.
However, this traditional setting can be limited for many modern applications of meta-analysis.
For instance, studies can provide estimates of different outcomes. Alternatively, studies can collect
multiple estimates of the same outcome, either longitudinally or referring to different groups or
levels of a continuous variable. Similarly, studies can be clustered, or being characterized by a
hierarchical structure (i.e., by country). In all these instances, the key assumption of independence
across estimates is not met, and basic models must be extended to consider potentially complex
correlation structures within and between studies. This leads to extension to multivariate, multilevel,
longitudinal, or dose-response models for meta-analysis, among others.
A unified modelling framework can be defined by casting the meta-analytical problem as a linear
mixed model. In general terms, we assume that there is a set of n observations of k different
outcomes, representing units of analysis aggregated in i = 1, . . . ,m groups that are considered
independent. An extended random-effects meta-regression model for the yi outcomes in group i
can be generally written as:

yi =Xiβ +Zib+ εi

b ∼ N(0,Ψ), εi ∼ N(0,Si)

Here, Xiβ defines the fixed effects that represent the population-averaged outcomes in terms of
p unit-level predictors in the design matrix Xi with fixed-effects coefficients β. The random part
of the model Zib describes the deviation from the population averages in terms of q unit-level
predictors in the design matrix Zi and random-effects coefficients b. The marginal (co)variance
matrix Σi = ZΨZt + Si is given by the sum of within (assumed known) and between-group
contributions, defined by (co)variance matrices Si and Ψ, respectively.
All the models mentioned above, and other extensions, can be described as special cases of this
unified framework. Specifically, in the standard random-effects univariate meta-analysis or meta-
regression, each group represents a study with a single observation (n = m), whereZi = 1 (q = 1),
and yi, Si and Ψ are scalars. In fixed-effects models, Ψ andZi do not exist. In multivariate models,
the k-dimensional yi represents the different outcomes from study i, Xi is Kronecker-expanded to
k×kp, and Si and Ψ are k×k matrices representing within and between-study correlations among
outcomes, respectively. In multilevel models, where additional inner levels of grouping exist within
each of the m outer-level groups, q is the sum of level-specific meta-predictors, while Ψ andZi have
a block-diagonal and column-binded (and expanded) forms, respectively, with each part referring
to a different level. In longitudinal and dose-response models, repeated measures are accomodated
in a similar way through random-effects grouping.

Estimation methods

The aim is to estimate the kp coefficients β and, for random-effects models, the components of the
between-group (co)variance matrix Ψ. The parameters for the random part depend on the number
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of random-effects levels, and for each of them, on the number of random-effects meta-predictors
and the structure of the related part of the (co)variance matrix, with a maximum of kq(kq + 1)/2
for single-level unstructured Ψ.

Different estimators are implemented in the package mixmeta. The options available in the current
version are:

• Fixed-effects

• Maximum likelihood (ML)

• Restricted maximum likelihood (REML)

• Method of moments

• Variance components

The fixed-effects model is fitted through generalized least squares (GLS), assuming the (co)variance
structure, composed by the within-study errors only, as completely known. Likelihood-based random-
effects estimators, ML and REML, represent the most comprehensive implementation of the mod-
elling framework, and allow the specification all the various models described in the previous sec-
tion through a flexible definition of the random-effects structure. They rely on two alternative
iterative optimization procedures, based on Newton-type and (restricted) iterative generalized least
squares (IGLS and RIGLS) algorithms, respectively. Estimators based on semiparametric alterna-
tives such as the non-iterative method of moments or the iterative variance components are also
included, although they are only available for models with a basic random-effects structure. Further
details on estimation methods are given in the related help pages.

Functions included in the package

The main function in the package is mixmeta, which performs the various models illustrated above.
This function resembles standard regression functions in R, and specifies the model through re-
gression formulae for fixed and random-effects (see mixmetaFormula). The function returns a list
object of class "mixmeta" (see mixmetaObject).

The estimation is carried out internally through mixmeta.fit, a wrapper which accepts data in a
specific format, then prepares the various data components and calls ad hoc estimation functions for
fitting the models. Specifically, mixmeta.fixed is applied for fixed-effects models, while estima-
tors for random-effects models are implemented in the functions mixmeta.ml and mixmeta.reml
for (restricted) maximum likelihood, mixmeta.mm for the method of moments, and mixmeta.vc
for variance components. For likelihood-based methods, alternative iterative optimizations meth-
ods are provided in two sets of functions implementing Newton-type and (R)IGLS algorithms
used for maximizing the (restricted) likelihood. The former method applies specific likelihood
functions. Various types of likelihood-based models are defined by separate regression formulae
for fixed and random-effects (see mixmetaFormula). Specific (co)variance structures for the
between-group random effects at single or multiple levels are available. Fitting parameter options
are set by mixmeta.control.

Method functions are available for objects of class "mixmeta" (see mixmetaObject for a complete
list). The method summary produces a list of class "summary.mixmeta" for summarizing the fit
of the model and providing additional results. The method function predict computes predicted
values, optionally for a set of new values of the predictors. blup gives the (empirical) best linear
unbiased predictions for the set of studies used for estimation. Other default or specific method
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functions for regression can be used on objects of class "mixmeta", such as fitted and residuals,
logLik, AIC and BIC, or drop1 and add1, among others.

Methods for model.frame, model.matrix, and terms are used to extract or construct the model
frame, the design matrix, or the terms of the regression meta-analytical model, respectively. These
specific methods for objects of class "mixmeta" are needed to appropriately deal with missing
values and to account for model frames that include terms for both the fixed and random parts. In
particular, methods for na.omit and na.exclude are used to handle correctly missing values.

Simulations can be produced using the function mixmetaSim and the method function simulate,
which return one or multiple sets of simulated outcomes for a group of studies. The function
inputna and inputcov are used internally to augment the missing data values and to input missing
correlations, respectively.

The method function qtest.mixmeta (producing an object with class of the same name) performs
the (multivariate) Cochran Q test for (residual) heterogeneity. For multivariate models, the function
returns both an overall estimate and those for each single outcome. The generic method function is
qtest.

Printing functions for the objects of classes defined above are also provided. Other functions are
used internally in the source code, and not exported in the namespace. For users interested in getting
into details of the package structure, these functions can be displayed using the triple colon (’:::’)
operator. For instance, mixmeta:::glsfit displays the code of the function glsfit. Also, some
comments are added in the original source code.

Datasets and applications

The package includes several datasets used for applications of the extended meta-analytical frame-
work. The related help pages provide examples of specific models, and fully demonstrate the flexi-
bility of the extended meta-analytical framework. In particular:

• Standard meta-analysis is illustrated using the dataset bcg, including examples of meta-
regression.

• Multivariate meta-analysis is performed using various datasets, including bivariate models
(berkey98, hyp, p53) and multivariate models with three or more outcomes (fibrinogen and
hsls). The examples describe also how to deal with missing data or missing within-group
correlations, and multivariate meta-regression.

• Network meta-analysis is shown in the dataset smoking. The examples illustrate an indirect
mixed-treatment comparison including consistency and inconsistency models.

• Multilevel meta-analysis is displayed in the examples of the datasets school and thrombolytic,
and include data with multiple nested levels of grouping and/or repeated measures within each
group.

• Dose-response meta-analysis is illustrated in the dataset alcohol, using the recently pro-
posed one-stage approach.

• Longitudinal meta-analysis is performed using the datasets dbs and gliomas. The two sets
of examples present different cases using data in wide and long format, respectively.

Additional information

The mixmeta package is available on the Comprehensive R Archive Network (CRAN), with info at
the related web page (CRAN.R-project.org/package=mixmeta). A development website is available
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on GitHub (github.com/gasparrini/mixmeta). General information on the development and applica-
tions of this extended meta-analytical modelling framework, together with an updated version of the
R scripts for running the examples in published papers, can be found in GitHub (github.com/gasparrini)
or at the personal web page of the package maintainer (www.ag-myresearch.com).

The package mixmeta is an extension of the package mvmeta, previously developed to perform
multivariate meta-analytical models. The latter now depends on the former, and while both are still
maintained, users are encouraged to switch to mixmeta as it represents a more general and updated
option. A list of changes included in the current and previous versions of mixmeta can be found by
typing:

news(package="mixmeta")

Use citation("mixmeta") to cite this package.

Warnings

This release of the package mixmeta has been tested with different simulated and real datasets.
The functions generally perform well under several scenarios, and comparisons with alternative
software implementations show good agreement. However, bugs and bad performance under un-
tested conditions may not be excluded. Please report any error or unexpected behaviour to the
e-mail address below.

Note

The package mixmeta provides a unified modelling framework to perform standard and non-
standard meta-analytical models. However, some of these can also be fitted using routines available
in other R packages.

For instance, many packages such as metafor, meta, rmeta provide a more exhaustive and efficient
set of methods for standard univariate meta-analysis and meta-regression, including a wide range
or functions for specific plots and statistical tests.

Specific modelling extensions are also provided by other packages. For example, multivariate or
multilevel models can be also be fitted using functions in metafor and metaSEM, while dose-
response meta-analysis and meta-analysis of diagnostic measures can be performed using dosres-
meta and mada, respectively.

See the CRAN Task View Meta-Analysis for a comprehensive illustration of methods available in
various R packages.

Author(s)

Antonio Gasparrini and Francesco Sera

Maintainer: Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Gasparrini A, Armstrong B, Kenward MG (2012). Multivariate meta-analysis for non-linear and
other multi-parameter associations. Statistics in Medicine. 31(29):3821–3839. [Freely available
here].
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Pinheiro JC and Bates DM (2000). Mixed-Effects Models in S and S-PLUS. New York, Springer
Verlag.

Lindstrom MJ and Bates DM (1988). Newton-Raphson and EM algorithms for linear mixed-effects
models for repeated-measures data. Journal of the American Statistical Association. 83(404):1014–
1022.

Goldstein H (1986). Multilevel mixed linear model analysis using iterative generalized least squares.
Biometrika. 73(1):43–56.

Goldstein H (1992). Efficient computational procedures for the estimation of parameters in multi-
level models based on iterative generalized least squares. Computational Statistics \& Data Analy-
sis. 13(1):63–71.

Stram DO (1996). Meta-analysis of published data using a linear mixed-effects model. Biometrics.
52(2):536–544.

Stevens JR, Taylor AM. Hierarchical dependence in meta-analysis. Journal of Educational and
Behavioral Statistics. 34(1):46–73.

Jackson D, Riley R, White IR (2011). Multivariate meta-analysis: Potential and promise. Statistics
in Medicine. 30(20);2481–2498.

Goldstein H, et al (2000). Meta-analysis using multilevel models with an application to the study of
class size effects. Journal of the Royal Statistical Society: Series C (Applied Statistics). 49(3):399–
412.

Crippa A, et al (2019). One-stage dose-response meta-analysis for aggregated data. Statistical
Methods in Medical Research. 28(5):1579–1596.

Ishak KJ, Platt RW, Joseph L, et al (2007). Meta-analysis of longitudinal studies. Clinical Trials.
4(5):525–539.

alcohol Alcohol Intake and Colorectal Cancer

Description

The dataset contains the data on 8 cohort studies participating in the Pooling Project of Prospective
Studies of Diet and Cancer. A total of 3,646 cases and 2,511,424 person-years were included in
the analysis. Each study estimated the incidence relative rate in different categories of alcohol
intake while controlling for a set of potential confounders, using non-drinkers as the reference.
The categories where then converted in a dose by assigning to each the median value of individual
consumptions, with studies reporting estimates at different levels in a continuous scale.

Usage

alcohol
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Format

A data frame with 48 observations on the following 7 variables:

• id: label for each study, derived from the first author’s name.

• type: code for study design (cohort estimating incidence rate).

• dose: assigned dose level (gr/day of alcohol intake).

• cases: number of cases for each dose category.

• peryears: amount of person-time for each dose category.

• logrr: estimated logarithm of the incidence relative rate.

• se: standard error of the estimates.

Details

The data are stored in a long format, with each record reporting the information for each dose
categories and studies including multiple records. The reference category for each study included,
although the log-RR is fixed to 0 with no standard error (comparing the category with itself). The in-
formation on these reference categories is needed to compute the approximate correlations between
estimates in the same study.

Note

The data provide an example of application of dose-response meta-analysis, with repeated measure-
ments of the effect size associated to different doses within each study. This requires a modelling
structure that accounts for both within and between-study correlations of repeated measurements.
The within-study correlations are usually reconstructed from published data using specific methods.
Results can be compared with those reported by Crippa and Orsini (2016) and Orsini and colleagues
(2012), although they are not identical: while the original analysis used a two-stage approach, the
modelling framework applied here follows the more recent one-stage dose-response meta-analysis
proposed by Crippa and collegues (2019).

The dataset is also available in the same format in the dataframe alcohol_crc of the package
dosresmeta.

Source

Crippa A, et al (2019). One-stage dose-response meta-analysis for aggregated data. Statistical
Methods in Medical Research. 28(5):1579–1596.

Crippa A, Orsini N (2016). Multivariate dose-response meta-analysis: The dosresmeta R package.
Journal of Statistical Software. 72(1):1–15.

Orsini N, et al (2012). Meta-analysis for linear and nonlinear dose-response relations: examples,
an evaluation of approximations, and software. American Journal of Epidemiology. 175(1):66–73.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].
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Examples

### REPRODUCE THE RESULTS IN CRIPPA ET AL (2016) AND ORSINI ET AL (2012)

# LOAD THE PACKAGE dosresmeta AND splines
library(dosresmeta) ; library(splines)

# COMPUTE THE WITHIN-STUDY CORRELATIONS EXCLUDING THE REFERENCE
addS <- lapply(split(alcohol, alcohol$id), function(x)

covar.logrr(y=logrr, v=se^2, cases=cases, n=peryears, type=type, data=x))
sub <- subset(alcohol, !is.na(se))

# NOT ACCOUNTING FOR WITHIN-STUDY CORRELATIONS
nocor <- mixmeta(logrr ~ 0 + dose, S=se^2, random= ~ 0 + dose|id, data=sub,

method="ml")
summary(nocor)

# ACCOUNTING FOR WITHIN-STUDY CORRELATIONS
lin <- mixmeta(logrr ~ 0 + dose, random= ~ 0 + dose|id, data=sub, method="ml",

control=list(addSlist=addS))
summary(lin)

# ALLOWING NON-LINEARITY IN BOTH FIXED AND RANDOM PARTS
nonlin <- mixmeta(logrr ~ 0 + ns(dose, knots=c(10,25)), data=sub,

random= ~ 0 + ns(dose, knots=c(10,25))|id, method="ml",
control=list(addSlist=addS))

summary(nonlin)

# SIMPLIFY THE MODEL BY ASSUMING LINEARITY IN THE RANDOM PART
nonlin2 <- update(nonlin, random= ~ 0 + dose|id)
summary(nonlin2)

# FIXED-EFFECTS MODEL (TRICK: random TO DEFINE THE GROUPING, THEN FIX IT TO 0)
nonlinfix <- mixmeta(logrr ~ 0 + ns(dose, knots=c(10,25)), random= ~ 1|id,

data=sub, method="ml",bscov="fixed", control=list(addSlist=addS, Psifix=0))
summary(nonlinfix)

# COMPARE THE MODELS
AIC(nocor, lin, nonlin, nonlin2, nonlinfix)

# PREDICT THE RR FOR 12g/day FOM TWO MODELS
exp(predict(nocor, newdata=data.frame(dose=12), ci=TRUE))
exp(predict(lin, newdata=data.frame(dose=12), ci=TRUE))

# PREDICT (RECREATE SPLINES FOR EASY CODING)
predlin <- exp(predict(lin, newdata=data.frame(dose=0:60), ci=TRUE))
prednonlin <- exp(predict(nonlin, newdata=data.frame(dose=0:60), ci=TRUE))

# DISPLAY THE NON-LINEAR EFFECT
col1 <- do.call(rgb, c(as.list(col2rgb("blue") / 255), list(0.2)))
col2 <- do.call(rgb, c(as.list(col2rgb("green") / 255), list(0.2)))
plot(0:60, predlin[,1], type="l", ylim=c(0.85,1.9), ylab="RR",

xlab="Alcohol intake (gr/day)", main="Dose-response")
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polygon(c(0:60,60:0), c(predlin[,2], rev(predlin[,3])), col=col1, border=NA)
lines(0:60,prednonlin[,1], lty=5)
polygon(c(0:60,60:0), c(prednonlin[,2],rev(prednonlin[,3])), col=col2, border=NA)

bcg Efficacy of BCG Vaccine in the Prevention of Tuberculosis

Description

The dataset contains the data on 13 prospective clinical trials that compared the rates of tubercolosis
in groups vaccinated with the Bacillus Calmette-Guerin (BCG) vaccine and non-vaccinated control
populations. The outcome here is reported as both relative risk (RR) and odds ratio (OR), with
associated uncertanty.

Usage

bcg

Format

A data frame with 13 observations on the following 13 variables:

• trial: sequence identifying the trial.

• author: label identifying the author(s).

• year: year of publication.

• tpos,tneg: number of positive and negative TB cases in the treated (vaccinated) group.

• cpos,cneg: number of positive and negative TB cases in the control (non-vaccinated) group.

• ablat: absolute latitude of the study location (in degrees).

• alloc: method of treatment allocation (random, alternate, or systematic assignment).

Note

The data provide an example of application of standard univariate meta-analysis and meta-regression,
with independent studies providing a single estimate of a single effect size. Interestingly, the data
can be analyzed also as a multivariate meta-analysis, using a bivariate outcome where risks or odds
of TB can be measured separaterly in treatment and control groups. Results can be compared with
those reported van Houwelingen, Arends, and Stijnen (2002).

The dataset is also available in the same format in the dataframe dat.colditz1994 of the package
metafor.

Source

van Houwelingen HC, Arends LR, Stijnen T (2002). Advanced methods in meta-analysis: multi-
variate approach and meta-regression. Statistics in Medicine. 21(4):589–624.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].
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Examples

### REPRODUCE THE RESULTS IN VAN HOUWELINGEN ET AL (2002)

# FIXED-EFFECTS META-ANALYSIS (SECTION 3.1.1)
unifix <- mixmeta(logor, logorvar, data=bcg, method="fixed")
print(summary(unifix), digits=3)

# RANDOM-EFFECTS META-ANALYSIS WITH MAXIMUM LIKELIHOOD (SECTION 3.1.2)
uniran <- mixmeta(logor, logorvar, data=bcg, method="ml")
print(summary(uniran), digits=3, report="var")

# ORIGINAL ESTIMATES AND BEST-LINEAR UNBIASED PREDICTIONS (FIGURE 3)
pred <- with(bcg, cbind(logor, logor-1.96*sqrt(logorvar),

logor+1.96*sqrt(logorvar)))
blup <- blup(uniran, pi=TRUE)
plot(pred[,1], rev(bcg$trial)+0.2, xlim=c(-3,3), ylim=c(0,14), pch=18,

axes=FALSE, xlab="Log odds ratio", ylab="Trial", main="Forest plot")
axis(1)
axis(2, at=bcg$trial, labels=rev(bcg$trial), lty=0, las=1)
abline(v=coef(uniran))
segments(pred[,2], rev(bcg$trial)+0.2, pred[,3], rev(bcg$trial)+0.2, lty=5)
points(blup[,1], rev(bcg$trial)-0.2, pch=19)
segments(blup[,2], rev(bcg$trial)-0.2, blup[,3], rev(bcg$trial)-0.2)

# COMPUTE THE OUTCOME SEPARATELY FOR TREATMENT AND CONTROL GROUPS
y <- with(bcg, log(cbind(tpos/tneg, cpos/cneg)))
S <- with(bcg, cbind(1/tpos+1/tneg, 1/cpos+1/cneg))

# BIVARIATE RANDOM-EFFECTS META-ANALYSIS (SECTION 4)
mvran <- mixmeta(y, S, method="ml")
print(summary(mvran), digits=3, report="var")

# META-REGRESSION (SECTION 5)
uniranlat <- update(uniran, .~. + ablat)
print(summary(uniranlat), digits=3, report="var")
drop1(uniranlat, test="Chisq")

bdiagMat Block-Diagonal Expansion of a List of Matrices

Description

The function bdiagMat builds a single matrix with block-diagonal from a list of matrices.

Usage

bdiagMat(x)
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Arguments

x a list of matrices, or a single matrix.

Value

A matrix with block-diagonal form if x is a list, or otherwise x itself if a matrix.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>>

See Also

See functions bldiag in package metafor.

Examples

# GENERATE A LIST OF MATRICES, AND CREATE THE BLOCK-DIAGONAL MATRIX
(matlist <- list(matrix(1:4,2), matrix(1:8,2)))
bdiagMat(matlist)

berkey98 Five Published Trials on Periodontal Disease

Description

The dataset contains the results of 5 published trials comparing surgical and non-surgical treatments
for medium-severity periodontal disease, one year after treatment. The 2 estimated outcomes are
average improvements (surgical minus non-surgical, in mm) in probing depth (PD) and attachment
level (AL).

Usage

berkey98

Format

A data frame with 5 observations on the following 7 variables:

pubyear publication year of the trial.

npat number of patients included in the trial.

PD estimated improvement of surgical versus non-surgical treatments in probing depth (mm).

AL estimated improvement of surgical versus non-surgical treatments in attachment level (mm).

var_PD variance of the estimated outcome for PD.

cov_PD_AL covariance of the estimated outcomes for PD and AL.

var_AL variance of the estimated outcome for AL.

Row names specify the author of the paper reporting the results of each trial.
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Source

Berkey CS, et al. (1998). Meta-analysis of multiple outcomes by regression with random effects.
Statistics in Medicine. 17:2537–2550.

Berkey CS., et al. (1995). Multiple-outcomes meta-analysis of treatments for periodontal disease.
Journal of Dental Research. 74(4):1030–1039.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Examples

### REPRODUCE THE RESULTS IN BERKEY ET AL. (1998)

# INSPECT THE DATA
berkey98

# FIXED-EFFECTS
year <- berkey98$pubyear - 1983
mod1 <- mixmeta(cbind(PD,AL) ~ year, S=berkey98[5:7], data=berkey98,

method="fixed")
print(summary(mod1), digits=3)

# GLS MODEL (VARIANCE COMPONENTS)
mod2 <- mixmeta(cbind(PD,AL) ~ year, S=berkey98[5:7], data=berkey98,

method="vc", control=list(vc.adj=FALSE))
print(summary(mod2), digits=3)
round(mod2$Psi, 3)

# ML MODEL
mod3 <- mixmeta(cbind(PD,AL) ~ year, S=berkey98[5:7], data=berkey98, method="ml")
print(summary(mod3), digits=3)
round(mod3$Psi, 3)

blup Best Linear Unbiased Predictions

Description

This is a generic function for generating best linear unbiased predictions (BLUPs) from the results
of various fitting functions for meta-analytical models. The function invokes particular methods
which depend on the class of the first argument. Currently, specific methods exist for several
meta-analytical models in various packages: blup.mixmeta, blup.rma.uni, blup.mvmeta, and
blup.dosresmeta.

Usage

blup(object, ...)
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Arguments

object a model object for which BLUPs are desired.

... further arguments passed to or from other methods.

Details

The generic method function blup calls specific method functions to produces (empirical) best
linear unbiased predictions (BLUPs) from model objects.

These predictions are a shrunk version of unit-specific realizations, where unit-specific estimates
borrow strength from the assumption of an underlying (potentially multivariate) distribution in a
(usually hypothetical) population. The amount of shrinkage depends from the relative size of the
within and between-unit covariance matrices.

Value

The form of the value returned by blup depends on the class of its argument. See the documentation
of the particular methods for details of what is produced by that method. Usually, the results consist
of point estimates of BLUPs and optionally some measure of their uncertainty.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Verbeke G, Molenberghs G. Linear Mixed Models for Longitudinal Data. Springer; 1997.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

See Also

Specific methods for various classes: blup.mixmeta, blup.rma.uni, blup.mvmeta, and blup.dosresmeta.

blup.mixmeta Best Linear Unbiased Predictions from mixmeta Models

Description

This method function computes (empirical) best linear unbiased predictions from fitted random-
effects meta-analytical models represented in objects of class "mixmeta". Quantities can represent
prediction of outcomes given both fixed and random effects, or just random-effects residuals from
the fixed-effects estimates. Predictions are optionally accompanied by standard errors, prediction
intervals or the entire (co)variance matrix of the predicted outcomes.
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Usage

## S3 method for class 'mixmeta'
blup(object, se=FALSE, pi=FALSE, vcov=FALSE, pi.level=0.95, type="outcome",

level, format, aggregate="stat", ...)

Arguments

object an object of class "mixmeta".

se logical switch indicating if standard errors must be included.

pi logical switch indicating if prediction intervals must be included.

vcov logical switch indicating if the (co)variance matrix must be included.

pi.level a numerical value between 0 and 1, specifying the confidence level for the com-
putation of prediction intervals.

type the type of prediction. This can be either outcome (default) or residual. See
Details.

level level of random-effects grouping for which predictions are to be computed. De-
fault to the highest (inner) level, with 0 corresponding to fixed-effects predic-
tions obtained through predict.

format the format for the returned results. See Value.

aggregate when format="matrix" and se or ci are required, the results may be aggre-
gated by statistic or by outcome. See Value.

... further arguments passed to or from other methods.

Details

The method function blup produces (empirical) best linear unbiased predictions from mixmeta
objects. These can represent outcomes, given by the sum of fixed and random parts, or just random-
effects residuals representing deviations from the fixed-effects estimated outcomes. In non-standard
models with multiple hierarchies of random effects, the argument level can be used to determine
the level of grouping for which predictions are to be computed.

These predictions are a shrunk version of unit-specific realizations, where unit-specific estimates
borrow strength from the assumption of an underlying (potentially multivariate) distribution of out-
comes or residuals in a (usually hypothetical) population. The amount of shrinkage depends from
the relative size of the within and between-unit covariance matrices reported as components S and
Psi in mixmeta objects (see mixmetaObject).

Fixed-effects models do not assume random effects, and the results of blup for these models are
identical to predict (for type="oucome") or just 0’s (for type="residuals").

How to handle predictions for units removed from estimation due to invalid missing pattern is de-
termined by the na.action argument used in mixmeta to produce object. If na.action=na.omit,
units excluded from estimation will not appear, whereas if na.action=na.exclude they will ap-
pear, with values set to NA for all the outcomes. This step is performed by napredict. See Note
below.

In the presence of missing values in the outcomes y of the fitted model, correspondent values of
point estimates and covariance terms are set to 0, while the variance terms are set to 1e+10. In this
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case, in practice, the unit-specific estimates do not provide any information (their weight is virtually
0), and the prediction tends to the value returned by predict with interval="prediction", when
applied to a new but identical set of predictors. See also Note below.

Value

(Empirical) best linear unbiased predictions of outcomes or random-effects residuals. The results
may be aggregated in matrices (the default), or returned as lists, depending on the argument format.
For multivariate models, the aggregation is ruled by the argument aggregate, and the results may
be grouped by statistic or by outcome. If vcov=TRUE, lists are always returned.

Note

The definition of missing in model frames used for estimation in mixmeta is different than that
commonly adopted in other regression models such as lm or glm. See info on missing values in
mixmeta.

Differently from predict, this method function computes the predicted values in the presence of
partially missing outcomes. Interestingly, BLUPs for missing outcomes may be slightly different
than predictions returned by predict on a new but identical set of predictors, as the BLUP also
depends on the random part of the model. Specifically, the function uses information from the
random-effects (co)variance to predict missing outcomes given the observed ones.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Verbeke G, Molenberghs G. Linear Mixed Models for Longitudinal Data. Springer; 1997.

See Also

See predict for standard predictions. See mixmeta-package for an overview of the package and
modelling framework.

Examples

# RUN THE MODEL
model <- mixmeta(cbind(PD,AL) ~ 1, S=berkey98[5:7], data=berkey98)

# ONLY BLUP
blup(model)

# BLUP AND SE
blup(model, se=TRUE)

# SAME AS ABOVE, AGGREGATED BY OUTCOME, WITH PREDICTION INTERVALS
blup(model, se=TRUE, pi=TRUE, aggregate="outcome")
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# WITH VCOV, FORCED TO A LIST
blup(model, se=TRUE, pi=TRUE, vcov=TRUE, aggregate="outcome")

# PREDICTING ONLY THE RANDOM-EFFECT RESIDUALS
blup(model, type="residual")

coef.mixmeta Extract Coefficients and (Co)Variance Matrix from mixmeta Objects

Description

These method functions return the estimated fixed-effects coefficients and their (co)variance matrix
for fitted meta-analytical models represented in objects of class "mixmeta".

Usage

## S3 method for class 'mixmeta'
coef(object, format=c("vector","matrix"), ...)

## S3 method for class 'mixmeta'
vcov(object, ...)

Arguments

object an object of class "mixmeta".

format format of the returned object.

... further arguments passed to or from other methods.

Value

For coef, by default a vector (default)with the estimated fixed-effects coefficients. For multivariate
models, a matrix can also be returned.

For vcov, the (co)variance matrix of the estimated fixed-effects coefficients.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>>

See Also

See mixmeta-package for an overview of the package and modelling framework.
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Examples

# RUN THE MODEL
model <- mixmeta(cbind(PD,AL) ~ pubyear, S=berkey98[5:7], data=berkey98)

# COEFFICIENTS
model$coef
coef(model)
coef(model, format="matrix")
summary(model)$coef

# (CO)VARIANCE MATRIX
vcov(model)

dbs Deep-Brain Stimulation for Patients with Parkinson’s Disease

Description

The dataset contains the data on 46 studies published between 1980 and 2004 that assessed the effect
of deep-brain stimulation on the relief of symptoms of Parkinson’s disease. The outcome is reported
as a score motor function, defined with the Unified Parkinson’s Disease Rating Scale (UPDRS-part
III), with lower values indicating better prognosis. Changes in the score were measured at 3, 6, 12
months and long-term after the implantation of the stimulator.

Usage

dbs

Format

A data frame with 68 observations on the following 12 variables:

• author: label identifying the study.
• year: year of publication.
• eff_month3,var_month3: point estimate and variance of the change in the score at 3 months.
• eff_month6,var_month6: point estimate and variance of the change in the score at 6 months.
• eff_month12,var_month12: point estimate and variance of the change in the score at 12

months.
• eff_long,var_long: point estimate and variance of the change in the score in the long term.
• duration: average disease duration (years).
• baseline: average baseline score of the patients.

Details

The data are stored in a wide format, with each record belonging to a single study and different
variables providing estimates of the outcome at different times. Each study report results at one or
multiple times, with the remaining times set to missing. See the dataset gliomas for an example of
similar dataset stored in long format.
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Note

The data provide an example of application of longitudinal meta-analysis, with repeated measure-
ments of the effect size taken at various time point within each study. This requires a modelling
structure that accounts for both within and between-study correlations of repeated measurements.
In this case, the analysis is performed in the wide-format dataset using a multivariate meta-analysis.
However, a long format is better suited for longitudinal meta-analysis, as it is applicable even when
estimates are reported at different times in each study (see the examples in the help page of the
dataset gliomas). Results can be compared with those reported Ishak and colleagues (2007).

Source

Ishak KJ, et al (2007). Meta-analysis of effect sizes reported at multiple time points using general
linear mixed model. Clinical Trials. 4(5):525–39.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Examples

### REPRODUCE THE RESULTS IN ISHAK ET AL (2007), TABLES 1 AND 2

# CREATE THE OUTCOME AND WITHIN-STUDY MATRICES (THE LATTER WITHOUT CORRELATION)
y <- as.matrix(dbs[1:4*2+1])
S <- as.matrix(dbs[1:4*2+2])

# INDEPENDENT RANDOM EFFECTS (TABLE 1, FIRST MODEL)
mv1 <- mixmeta(y ~ 1, S, bscov="diag", data=dbs)
print(summary(mv1), digits=1, report="var")

# HETEROGENEOUS AR1 RANDOM-EFFECTS (TABLE 1, THIRD MODEL)
mv3 <- mixmeta(y ~ 1, S, bscov="har1", data=dbs)
print(summary(mv3), digits=1, report="var")

# BUILD THE LIST HETEROGENEOUS AR1 WITHIN-STUDY ERRORS (CORRELATION AT 0.97)
cormat <- 0.97^abs(col(matrix(1,4,4)) - row(col(matrix(1,4,4))))
addS <- lapply(seq(nrow(S)), function(i) inputcov(sqrt(S[i,]), cormat))
addS <- lapply(addS, function(x) x[apply(!is.na(x),1,any), apply(!is.na(x),2,any)])

# ADD HAR1 WITHIN-STUDY ERRORS (TABLE 1, FOURTH MODEL) USING addSlist
## Not run:
mv4 <- mixmeta(y ~ 1, bscov="har1", data=dbs, control=list(addSlist=addS))
print(summary(mv4), digits=1, report="var")
## End(Not run)

## Not run:
### USE A LONG FORMAT, AS MORE FLEXIBLE AND ALLOWS MORE COMPLEX MODELS

# RESHAPE THE DATASET
long <- reshape(dbs, direction="long", idvar="author", v.names=c("eff","var"),

varying=list(1:4*2+1, 1:4*2+2))

# RE-RUN THE LAST (FOURTH) MODEL
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mv4b <- mixmeta(eff ~ factor(time) - 1, random = ~ factor(time) -1 | author,
bscov="har1", data=long, control=list(addSlist=addS))

print(summary(mv4b), digits=1, report="var")

# COMMON RANDOM EFFECTS (TABLE 1, SECOND MODEL)
mv2 <- mixmeta(eff ~ factor(time) - 1, var, random = ~ factor(time) -1 | author,

bscov="id", data=long)
print(summary(mv2), digits=1, report="var")

# FOURTH MODEL WITH ADDITIONAL CENTERED META-PREDICTORS (TABLE 2)
mv4plus <- mixmeta(eff ~ factor(time) - 1 + I(duration-14) + I(baseline-52),

random = ~ factor(time) -1 | author, bscov="har1", data=long,
control=list(addSlist=addS))

print(summary(mv4plus), digits=1, report="var")
## End(Not run)

### SEE help(gliomas) FOR A COMPLEMENTARY EXAMPLE

fibrinogen Fibrinogen Studies Collaboration

Description

The Fibrinogen Studies Collaboration is a meta-analysis of individual data on 154,012 adults from
31 prospective cohort studies with information on plasma fibrinogen and major disease outcomes.
The dataset reports a subset of the results of a first-stage analysis consisting of the log-hazard ratio
of coronary heart disease for categories of levels of fibrinogen versus a baseline category.

Usage

fibrinogen

Format

A data frame with 31 observations on the following 15 variables:

• cohort: study ID.
• b2,b3,b4,b5: estimated log-hazard ratios for the second to fifth categories versus the baseline

category.
• V_2_2,V_3_3,V_4_4,V_5_5: variances of the estimated log-hazard ratios.
• V_2_3,V_2_4,V_2_5,V_3_4,V_3_5,V_4_5: covariances of the estimated log-hazard ratios.

Details

The published analysis adopted a fixed-effects model on 10 categories of fibrinogen (Fibrinogen
Studies Collaboration 2004, 2005). Here a subset of the results of the first-stage analysis is reported,
namely the log-hazard ratio for 4 categories and associated (co)variance terms, ordered as the lower
triangular elements of the (co)variance matrix taken by column. Details on the first-stage model and
the second-stage meta-analysis are provided in White (2009) and Jackson and colleagues (2010).
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Note

The data provide an example of application of multivariate meta-analysis for multi-parameter asso-
ciation, where a relationship is defined by functions specified by several coefficients. In this case,
the coefficients refer to log-hazard ratio for strata of the original variable versus a baseline category.
A general overview of the application of multivariate meta-analysis in this setting is provided by
Gasparrini and colleagues (2012).

Source

Fibrinogen Studies Collaboration (2004). Collaborative meta-analysis of prospective studies of
plasma fibrinogen and cardiovascular disease. European Journal of Cardiovascular Prevention and
Rehabilitation. 11:9–17.

Fibrinogen Studies Collaboration (2005). Plasma fibrinogen level and the risk of major cardiovas-
cular diseases and nonvascular mortality: an individual participant meta-analysis. Journal of the
American Medical Association. 294:1799–1809.

White IR (2009). Multivariate random-effects meta-analysis. Stata Journal. 9(1):40–56.

Jackson D, White IR, Thompson SG (2010). Extending DerSimonian and Laird’s methodology to
perform multivariate random effects meta-analyses. Statistics in Medicine. 29(12):1282–1297.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Examples

### REPRODUCE THE RESULTS IN WHITE (2009) AND JACKSON ET AL. (2010)

# INSPECT THE DATA
head(fibrinogen)

# REML MODEL
y <- as.matrix(fibrinogen[2:5])
S <- as.matrix(fibrinogen[6:15])
model <- mixmeta(y, S)

# SUMMARIZE THE RESULTS
print(summary(model), digits=3)
round(model$Psi, 3)

gliomas Randomized Trials on Therapies for Malignant Gliomas

Description

The dataset contains the data on 17 randomized controlled trials comparing post-operative radiation
therapy plus chemotherapy versus radiation therapy alone in patients with malignant gliomas. The
outcome of interest is the probability of survival along time, measured as odds ratio at 6, 12, 18,
and 24 months.
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Usage

gliomas

Format

A data frame with 68 observations on the following 8 variables:

• study: number identifying the trial.

• time: time (months) since the start of the treatment at which survival status is assessed.

• ntreat,streat: number of total patients at the beginning of the study and surviving patients
at specific times, respectively, in the treatment group (radiation therapy plus chemotherapy).

• dcontr,ncontr: number of total patients at the beginning of the study and surviving patients
at specific times, respectively, in the control group (radiation alone).

• logOR,varOR: log-odds ratio of survival between treatment and control groups.

Details

The data are stored in a long format, with each record providing the estimate at a single time and
each study providing multiple records. There were missing data for study 17 at months 6 and 18.
There were no survivors in the control group at month 24 for studies 3 and 10, although this still
allows computation of the OR. See the dataset dbs for an example of similar dataset stored in wide
format.

The log-odds ratio is computed empirically as log(st × (nt − st)/((nc − sc)× sc). Its variance is
simply computed as 1/st + 1/(nt − st) + 1/(nc − sc) + 1/sc.

Note

The data provide an example of application of longitudinal meta-analysis, with repeated measure-
ments of the effect size taken at various time points within each study. This requires a modelling
structure that accounts for both within and between-study correlations of repeated measurements.
In this case, the same analysis can be performed in a wide-format dataset using a multivariate meta-
analysis (see the examples in the help page of the dataset dbs). However, the long format is better
suited for longitudinal meta-analysis, as it is applicable even when estimates are reported at differ-
ent times in each study. Results can be compared with those reported Musekiwa and colleagues
(2016). The same dataset was also used by Trikalinos and Olkin (2012), using a similar modelling
scheme.

Source

Musekiwa A, et al (2012). Meta-analysis of effect sizes reported at multiple time points using
general linear mixed model. Plos One. 11(10):e0164898.

Trikalinos TA, Olkin I (2012). Meta-analysis of effect sizes reported at multiple time points: a
multivariate approach. Clinical Trials. 9(5):610–620.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].
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Examples

### REPRODUCE THE RESULTS IN MUSEKIWA ET AL (2012), TABLES 3 AND 4

# INDEPENDENT RANDOM EFFECTS, NO WITHIN-STUDY CORRELATION (MODEL 1)
mod1 <- mixmeta(logOR~0+factor(time), S=logORvar, random=~0+factor(time)|study,

bscov="diag", data=gliomas)
print(summary(mod1), digits=2, report="var")

# COMPOUND-SYMMETRY RANDOM EFFECTS, NO WITHIN-STUDY CORRELATION (MODEL 2)
# NB: THIS REQUIRES A TWO-LEVEL MODEL WITH THE INNER-LEVEL VARIANCE FIXED TO 0
unit <- factor(seq(nrow(gliomas)))
mod2 <- mixmeta(logOR~0+factor(time), S=logORvar, random=~1|study/unit,

bscov=c("unstr","fixed"), data=gliomas, control=list(Psifix=list(unit=0)))
print(summary(mod2), digits=2, report="var")

# BUILD THE HETEROGENEOUS AR1 WITHIN-STUDY ERRORS (CORRELATION AT 0.61)
cormat <- 0.61^abs(col(matrix(1,4,4)) - row(col(matrix(1,4,4))))
addS <- lapply(split(sqrt(gliomas$logORvar), gliomas$study), inputcov, cormat)
addS <- lapply(addS, function(x) x[apply(!is.na(x),1,any), apply(!is.na(x),2,any)])

# INDEPENDENT RANDOM EFFECTS, HAR1 WITHIN-STUDY CORRELATION (MODEL 4)
mod4 <- mixmeta(logOR~0+factor(time), random=~0+factor(time)|study,

bscov="diag", data=gliomas, control=list(addSlist=addS))
print(summary(mod4), digits=2, report="var")

# UNSTRUCTURED RANDOM EFFECTS, HAR1 WITHIN-STUDY CORRELATION (MODEL 6)
mod6 <- update(mod4, bscov="unstr")
print(summary(mod6), digits=2, report="var")

# COMPARE THE FIT
AIC(mod1, mod2, mod4, mod6)

## Not run:
### MORE FLEXIBLE MODELLING OF RANDOM EFFECTS

# RE-RUN BEST FITTING MODEL WITH ML (ALLOWS TESTING OF FIXED EFFECTS)
mod4ml <- update(mod4, method="ml")

# RANDOM-SLOPE MODEL WITH TIME AS CONTINUOUS (CENTERED IN random)
modnew <- mixmeta(logOR~time, random=~I(time-15)|study, bscov="diag",

method="ml", data=gliomas, control=list(addSlist=addS, maxiter=200))
print(summary(modnew), digits=2, report="var")

# COMPARE
AIC(mod4ml, modnew)
## End(Not run)

### SEE help(dbs) FOR A COMPLEMENTARY EXAMPLE
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hsls High School Longitudinal Study

Description

This is a nationally representative, longitudinal study of more than 21,000 9th graders in 944 schools
who will be followed through their secondary and postsecondary years. The data are used for testing
whether sex, socioeconomic status and sex by socio-economic status interaction are predictive of
the mathematics standardized score in each of the eight race groups.

Usage

hsls

Format

A data frame with 8 observations on the following 10 variables:

• race: race group.

• b1,b2,b3: estimated regression coefficients for sex, socio-economic status and sex by socio-
economic status interaction, respectively, on the mathematics standardized score.

• V11,V22,V33: variances of the estimated coefficients.

• V12,V13,V23: covariances of the estimated coefficients.

Source

Chen H, Manning AK, Dupuis J (2012). A method of moments estimator for random effect multi-
variate meta-analysis. Biometrics. 68(4):1278–1284.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Examples

### REPRODUCE THE RESULTS IN CHEN ET AL. (2012)

# INSPECT THE DATA
hsls

# FIXED-EFFECTS MODEL
S <- as.matrix(hsls[5:10])
mod1 <- mixmeta(cbind(b1,b2,b3), S, data=hsls, method="fixed")
summary(mod1)

# MM MODEL
mod2 <- mixmeta(cbind(b1,b2,b3), S,data=hsls, method="mm")
summary(mod2)
mod2$Psi
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hyp Ten Studies Assessing an Hypertension Treatment

Description

The dataset contains the results of ten studies that assess the effectiveness of hypertension treatment
for lowering blood pressure. Each study provides complete data on two treatment effects, the dif-
ference in systolic blood pressure (SBP) and diastolic blood pressure (DBP) between the treatment
and the control groups, where these differences are adjusted for the participants’ baseline blood
pressures. The within-study correlations of the two outcomes are known. Some trials are conducted
on patients with isolated systolic hypertension (ISH).

Usage

hyp

Format

A data frame with 10 observations on the following 7 variables:

• study: study ID.

• sbp,sbp_se: estimated difference and its standard error in systolic blood pressure.

• dbp,dbp_se: estimated difference and its standard error in diastolic blood pressure.

• rho: within-study correlation between the estimated differences in systolic and diastolic blood
pressure.

• ish: indicator for studies on patients with isolated systolic hypertension.

Note

The standard errors for the two outcomes are wrongly reported as variances in the original article
by Jackson and colleagues (2013).

Source

Jackson D, White IR, Riley RD (2013). A matrix based method of moments for fitting the multivari-
ate random effects model for meta-analysis and meta-regression. Biometrical Journal. 55(2):231–
45.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Examples

### REPRODUCE THE RESULTS IN JACKSON ET AL. (2013)

# INSPECT THE DATA
hyp
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# INPUT THE CORRELATION (CAN ALSO BE INPUTTED DIRECTLY, SEE BELOW)
(S <- inputcov(hyp[c("sbp_se", "dbp_se")], cor=hyp$rho))
# CHECK WITH THE FIRST STUDY
cov2cor(xpndMat(S[1,]))

# META-ANALYSIS, REML MODEL
mod1 <- mixmeta(cbind(sbp,dbp), S=S, data=hyp)
print(summary(mod1), digits=2)
round(mod1$Psi,2)

# META-ANALYSIS, REML MODEL (INPUTTING THE CORRELATION DIRECTLY)
mod2 <- mixmeta(cbind(sbp,dbp), S=cbind(sbp_se,dbp_se)^2, data=hyp,

control=list(Scor=hyp$rho))
print(summary(mod2), digits=2)

# META-ANALYSIS, MM MODEL
mod3 <- mixmeta(cbind(sbp,dbp), S=S, data=hyp, method="mm")
print(summary(mod3), digits=2)
round(mod3$Psi,2)

# META-REGRESSION, REML MODEL
mod4 <- mixmeta(cbind(sbp,dbp) ~ ish, S=S, data=hyp)
print(summary(mod4), digits=2)

# META-REGRESSION, MM MODEL
mod5 <- mixmeta(cbind(sbp,dbp) ~ ish, S=S, data=hyp, method="mm")
print(summary(mod5), digits=2)

inputcov Input (Co)Variance Matrices

Description

This function inputs (co)variance matrices of a set of outcomes given the corresponding standard
deviation and correlation values.

Usage

inputcov(sd, cor=NULL)

Arguments

sd a m× k matrix of standard deviations for k outcomes in m matrices, or a vector
for k outcomes in a single matrix.

cor either a vector of length 1, m or k(k − 1)/2, or alternatively a k × k or m ×
k(k − 1)/2 matrix. See Details.
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Details

Depending the number of outcomes k and matrices m, the argument cor is interpreted as:

• if a vector of length 1 (a scalar), the same correlation for all the k outcomes for all the m
matrices;

• if a vector of length m, the same correlation for all the k outcomes for each of the m matrices;

• if a vector of length k(k − 1)/2, the lower triangular elements (without diagonal, taken by
column) of the correlation matrix of the k outcomes, the same for all the m matrices;

• if a k × k matrix, the correlation matrix for the single matrix (only when m=1);

• if a m×k(k−1)/2 matrix, each row represents the lower triangular elements (without diago-
nal, taken by column) of the correlation matrix of the k outcomes for each of the m matrices.

Value

For a single matrix, the (co)variance matrix itself. For multiple matrices, a m× k(k+1)/2 matrix,
where each row represents the vectorized entries of the lower triangle (with diagonal, taken by
column) of the related (co)variance matrix (see vechMat).

Note

This function is called internally by mixmeta for multivariate models to input the correlation(s)
when only the within-unit variances are provided through the argument S. In this case, the correla-
tion values are set through the argument Scor in the control list (see mixmeta.control).

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>>

See Also

See xpndMat. See mixmeta.control.

Examples

# SOME RANDOM SD FOR A SINGLE MATRIX, WITH CONSTANT CORRELATION
(M <- inputcov(runif(4, 0.1, 3), 0.7))
# CHECK CORRELATION
cov2cor(M)

# NOW WITH A MORE COMPLEX CORRELATION STRUCTURE
(M <- inputcov(runif(3, 0.1, 3), c(0.7,0.2,0.4)))
cov2cor(M)

# MULTIPLE MATRICES
(V <- matrix(runif(5*3, 0.1, 3), 5, 3,

dimnames=list(1:5, paste("V", 1:3, sep=""))))
inputcov(V, 0.6)

# WITH REAL DATA WHEN CORRELATIONS AVAILABLE
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hyp
(S <- inputcov(hyp[c("sbp_se","dbp_se")], cor=hyp$rho))
# CHECK FIRST STUDY
cov2cor(xpndMat(S[1,]))

# USED INTERNALLY IN mixmeta
p53
inputcov(sqrt(p53[c("V1","V2")]), 0.5)
model <- mixmeta(cbind(y1,y2), S=cbind(V1,V2), data=p53, control=list(Scor=0.5))
model$S

inputna Input Missing Values

Description

This function augment data by replacing missing values. It can be used internally in mixmeta
through the control list.

Usage

inputna(y, S, inputvar=10^4)

Arguments

Assuming a meta-analysis or meta-regression based on n units and k outcomes:

a n-dimensional vector (for univariate models) or m×k matrix (for multivariate
models) of outcomes.

yS series of within-unit variances (or (co)variance matrices for multivariate mod-
els) of the estimated outcome(s). For univariate models, this is usually a n-
dimensional vector. For multivariate models, it can be provided as: a m-dimensional
list of k× k matrices; a tri-dimensional k× k×m array; a matrix or data frame
with n rows and k(k + 1)/2 or k columns, depending on the availability of the
within-unit correlations.

inputvar multiplier for inputting the missing variances in S.

Details

The function augments the data by replacing missing values in the outcomes and the associated
(co)variances. Specifically, it replaces missing outcomes and missing covariances (if provided)
with 0, and missing variances with the largest observed variance multiplied by inputvar. This
value is expected to be very high, by default 104, so that the corresponding observation contributes
only negligibly to the final estimate.

Value

A matrix with the first k column corresponding to the augmented outcomes, and the remaining k(k+
1)/2 or k columns (depending on the availability of the within-study covariances) corresponding to
vectorized entries of the lower triangle of the related (co)variance matrices.
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Note

Data augmentation used to be the approach to deal with missing values in the first implementation
of mixmeta. The current algorithms directly account for missing.

Inputting missing values can be useful when two or more outcomes are never observed jointly, and
the estimation is entirely based on indirect comparison. This method can be applied in network
meta-analysis, also called indirect treatment comparison.

This approach can produce different results than standard methods, especially when the occurrence
of missing is substantial. Preliminary analyses indicate that likelihood-based estimation methods
do not seem to be affected, while non-iterative estimators such as method of moments and variance
components are more sensitive. The user should be careful on the application of missing augmen-
tation.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Gasparrini A, Armstrong B, Kenward MG (2012). Multivariate meta-analysis for non-linear and
other multi-parameter associations. Statistics in Medicine. 31(29):3821–3839. [Freely available
here].

Jackson D, Riley R, White IR (2011). Multivariate meta-analysis: Potential and promise. Statistics
in Medicine. 30(20);2481–2498.

White IR (2009). Multivariate random-effects meta-analysis. Stata Journal. 9(1):40–56.

White IR (2011). Multivariate random-effects meta-regression: updates to mvmeta. Stata Journal.
11(2):255-270.

See Also

See inputcov for inputting (co)variance matrices.

Examples

# INSPECT THE DATA
head(smoking)

# STANDARD APPROACH TO MISSING DATA
y <- as.matrix(smoking[11:13])
S <- as.matrix(smoking[14:19])
mod1 <- mixmeta(y, S)
summary(mod1)

# WITH DATA AUGMENTATION
augdata <- inputna(y, S)
y <- augdata[,1:3]
S <- augdata[,-c(1:3)]
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mod2 <- mixmeta(y, S)
summary(mod2)
# NB: SAME PARAMETER ESTIMATES, BUT WRONG NYUMBER OF OBS

# USED INTERNALLY IN mixmeta
y <- as.matrix(smoking[11:13])
S <- as.matrix(smoking[14:19])
mod3 <- mixmeta(y, S, control=list(inputna=TRUE))
summary(mod3)
# NOW RIGHT NUMBER OF OBS

logLik.mixmeta Extract Log-Likelihood from mixmeta Objects

Description

This method function returns the (restricted) log-likelihood for fitted meta-analytical models repre-
sented in objects of class "mixmeta".

Usage

## S3 method for class 'mixmeta'
logLik(object, ...)

Arguments

object an object of class "mixmeta".

... further arguments passed to or from other methods.

Value

A numeric scalar of class "logLik" with attributes, providing the (restricted) log likelihood of
the model. Attributes correspond to the component df of mixmeta objects, namely the following
scalars: nall (number of observations used for estimation, excluding missing values), nobs (equal
to nall, minus the number of fixed-effects coefficients for REML models, fixed (number of esti-
mated fixed-effects coefficients), random (number of estimated (co)variance terms).

Note

This functions is called by AIC and BIC for computing the Akaike and Bayesian information criteria.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].
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See Also

See the default method logLik. See mixmeta-package for an overview of the package and mod-
elling framework.

Examples

# RUN THE MODEL
model <- mixmeta(cbind(PD,AL)~pubyear,S=berkey98[5:7],data=berkey98)

# LOG-LIKELIHOOD
ll <- logLik(model)
ll
attributes(ll)

# AIC and BIC
AIC(model)
BIC(model)

mixmeta Fitting Standard and Extended Meta-Analysis and Meta-Regression
Models

Description

The function mixmeta performs various meta-analytical models under a common mixed-effects
framework, including standard univariate fixed and random-effects meta-analysis and meta-regression,
and non-standard extensions such as multivariate, multilevel, longitudinal, and dose-response mod-
els. The function mixmeta.fit is a wrapper for actual fitting functions based on different estimation
methods, usually called internally. See mixmeta-package for an overview.

Usage

mixmeta(formula, S, data, random, method="reml", bscov="unstr", offset, subset,
contrasts=NULL, na.action, model=TRUE, control=list())

mixmeta.fit(X, Z, y, S, groups, method, bscov, control)

Arguments

Assuming a meta-analysis or meta-regression based on n units aggregated within
m (outer-level) groups, k outcomes, p fixed-effects predictors, and q random-
effects predictors:

an object of class "formula" (or one that can be coerced to that class) offering
a symbolic description of the linear predictor for the fixed-effects part of the
model. Alternatively, for meta-analysis with no fixed-effects predictors, a single
vector (for univariate models) or matrix-type object (for multivariate models).
Terms in formula must be vector or matrix-type objects, optionally provided in
the data argument below. See mixmetaFormula.
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formulaS series of within-unit variances (or (co)variance matrices for multivariate mod-
els) of the estimated outcome(s). For univariate models, this is usually a n-
dimensional vector. For multivariate models, it can be provided as: a m-dimensional
list of k× k matrices; a tri-dimensional k× k×m array; a matrix or data frame
with n rows and k(k + 1)/2 or k columns, depending on the availability of the
within-unit correlations. mixmeta.fit accepts only the last option. Option-
ally, for more complex error structures, this argument can be omitted and passed
through addSlist in control. See Details below.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in formula and random. If not found
in data, the variables are taken from environment(formula), typically the en-
vironment from which mixmeta is called.

random a one-sided formula (or a list of formulae for multilevel models) offering a
symbolic description of the linear predictor(s) and grouping structure for the
random-effects part of the model. The usual form is ~ z1 + ... + zq | g, with
the grouping factor separated from the linear predictor by the symbol '|'. Mul-
tiple levels with the same linear predictor can be defined by separating multiple
grouping factors using the symbol '/'. Alternatively, in a list form the grouping
factors can also be provided as list names. In both cases, the levels are consid-
ered nested (from outer to inner following the order). See mixmetaFormula and
Details below.

method estimation method: "fixed" for fixed-effects models, "ml" or "reml" for random-
effects models fitted through (restricted) maximum likelihood, "mm" for random-
effects models fitted through method of moments, and "vc" for random-effects
models fitted through variance components. See Details below. If "model.frame",
the model frame is returned, as in lm or glm.

bscov a character vector defining the structure of the random-effects (co)variance ma-
trices. Default to "unstr" (unstructured). Names corresponding to grouping
factors (see random above) can be used to refer to specific random-effects levels
for non-default values. If unnamed, the values can be recycled. Among various
(co)variance structures, the user can select "diag" (diagonal), "cs" (com-
pound symmetry), "hcs" (heterogeneous compound symmetry), "ar1" (autore-
gressive of first order), or "fixed" (fixed). See also Details.

offset optionally, a n-dimensional numeric vector used to specify an a priori known
component in the linear predictor. One or more offset terms can be included
in the formula instead or as well. See model.offset.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

contrasts an optional list. See the contrasts.arg of model.matrix.

na.action a function which indicates what should happen when the data contain NAs. De-
fault to na.action setting of options, usually na.omit. na.exclude can be
useful. See details on missing values in mixmeta.

model a logical value indicating whether the model frame should be included as a com-
ponent of the returned value. See the model.frame method function.

control list of parameters for controlling the fitting process. These are passed to mixmeta.control
to replace otherwise selected default values.
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X a n × p design matrix containing the p fixed-effects predictors, appropriately
ordered by groups. Usually produced internally by mixmeta from formula
above.

Z a n×q design matrix (or a list of design matrices for multilevel models) contain-
ing the q random-effects predictors, appropriately ordered by groups. Usually
produced internally by mixmeta from random above.

y a n-dimensional vector (for univariate models) or m × k matrix (for multivari-
ate models) of outcomes, appropriately ordered by groups. Usually produced
internally by mixmeta from formula above.

groups matrix with n rows, with each column identifying the groups for each level of
random-effects, appropriately ordered. Usually produced internally by mixmeta
from random above.

Details

The function mixmeta resembles standard regression functions in R. See lme in particular, or lm or
glm, for information on most of the arguments. Internally, this function assembles the data com-
ponents, defines the (potentially multiple) grouping levels and re-order the data accordingly, and
then pass them to mixmeta.fit. This is a wrapper for actual fitting functions that are automatically
selected. Functions other than mixmeta are not expected to be called directly for model fitting.

Fixed or random-effects models for meta-analysis are simply defined using y ~ 1 in formula, where
y is a response vector optionally stored in data. In meta-regression models, other terms are added in
the right-hand side of the formula as y ~ x1 + ... + xp, defining the linear meta-predictor. Factors,
variable transformations and interactions are allowed, following the usual formula specification (see
mixmetaFormula).

In this standard usage, each of the n rows is assumed to represent a single estimate of an outcome
from a set of independent studies. In random-effects models, the grouping structure is automati-
cally derived by assigning a group to each row of data (with m = n). Extensions to multivariate
models (k > 1) are straightforward, and only require using a matrix in the left-hand side, where
each of the k columns represents a different outcome, or the form cbind(y1,...,yk) ~ 1. See
mixmetaFormula.

Non-standard random-effects models can be specified through the optional argument random. This
is commonly represented by a one-sided formula, whose basic random-intercept form is ~ 1 | g,
where g is a grouping factor. A more complex linear meta-predictor for the random-effects part
can be also specified by ~ z1 + ... + zq | g. The argument random also accepts a list of one-sided
formulae referring to multiple random-effects levels (see mixmetaFormula). The use of random
extends the standard meta-analytical setting by relaxing the assumption of independence between
units, allowing multiple estimates from the same group (with m < n) and multiple nested grouping
levels. This provides the possibility to fit longitudinal, multilevel, and dose-response meta-analysis,
among other extensions. See the examples below.

The argument bscov allows the definition of specific structures for the random-effects (co)variance
matrices corresponding the each level. The default unstructured form requires kq(kq+1)/2 param-
eters for a single-level meta-analysis. The choice of other structures reduces the number of param-
eters, although requiring stronger assumptions. More information and complete list of options is
available at a specific help page (see mixmetaCovStruct).

The within-unit (co)variances are provided through the argument S, usually as a matrix. If the
correlations are available, each of the m row represents the k(k + 1)/2 vectorized entries of the
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lower triangle of the related (co)variance matrix, taken by column (see xpndMat). If correlations
are not available, each row represents the k variances, and the correlations are inputted internally
through the argument Scor of the control list (see inputcov). For more complex error structures
that span multiple units, the argument S can be omitted and passed through addSlist in control,
although requiring the observations to be re-ordered accordingly to groups (see mixmeta.control).

Different estimator are available in the package mixmeta and chosen through the argument method,
with related fitting functions called internally. In the current version, the options are:

• method="fixed": Fixed-effects estimator

• method="ml": Maximum likelihood (ML) estimator

• method="reml": Restricted maximum likelihood (REML) estimator

• method="mm": Method of moments estimator

• method="vc": Variance components estimator

Note that non-standard random-effects models and the use of structured (co)variance matrices are
only available for "ml" and "reml" methods. See their help pages for further details on the estima-
tion procedures, following the links above.

Missing values are allowed in both sides of formula. In the case of missing predictors (right-
hand side of formula), the related unit is entirely excluded from estimation. In contrast, a unit
still contributes to estimation if at least outcome is non-missing. This behaviour is different from
standard regression functions such as lm or glm. Before the call to mixmeta.fit, units matching
such stricter missing definition are removed from the the model frame. The missing pattern in S
must be consistent with that in y. See further details on handling missing values in mixmeta.

The fitting procedure can be controlled through the additional terms specified in control, which
are passed to the function mixmeta.control.

Value

The mixmeta function typically returns a list object of class "mixmeta" representing the meta-
analytical model fit, as described in mixmetaObject. When method="data.frame", the model
is not fitted and the model frame is returned, namely a data frame with special attributes (see the
default method model.frame) and, in this case, the additional class "data.frame.mixmeta".

The wrapper function mixmeta.fit is usually called internally in mixmeta, and returns an interme-
diate list object with some of the components expected in the "mixmeta" class.

Several method functions for regression objects are available, either default or specifically written
for the "mixmeta" class. See mixmetaObject for a complete list.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Sera F, Gasparrini A. (2019). An extended mixed-effects framework for meta-analysis.Statistics in
Medicine. 2019;38(29):5429-5444. [Freely available here].

Gasparrini A, Armstrong B, Kenward MG (2012). Multivariate meta-analysis for non-linear and
other multi-parameter associations. Statistics in Medicine. 31(29):3821–3839. [Freely available
here].
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See Also

See additional info on the estimation procedures at the related page of the fitting functions See
mixmetaFormula for the use of formulae to define the fixed and random parts of the model. See
alternative (co)variance structures for likelihood-based estimation methods. See handling of
missing values in mixmeta. See lme, lm or glm for standard regression functions. See mixmeta-package
for an overview of this modelling framework.

Examples

### STANDARD MODELS

# RANDOM-EFFECTS META-ANALYSIS, ESTIMATED WITH REML
model <- mixmeta(logor, logorvar, data=bcg)
summary(model)

# RANDOM-EFFECTS META-REGRESSION, ESTIMATED WITH ML
model <- mixmeta(logor~ablat, logorvar, data=bcg, method="ml")
summary(model)

### MAIN METHOD FUNCTIONS

# COEFFICIENTS AND (CO)VARIANCE MATRIX
coef(model)
vcov(model)

# RESIDUALS AND FITTED VALUES
residuals(model)
fitted(model)

# MODEL FRAME AND MODEL MATRIX
model.frame(model)
model.matrix(model)

# LOG-LIKELIHOOD AND AIC VALUE
logLik(model)
AIC(model)

# COCHRAN Q TEST FOR RESIDUAL HETEROGENEITY
qtest(model)

### PREDICTIONS

# PREDICTED EFFECTS
predict(model)
predict(model, se=TRUE)
predict(model, newdata=data.frame(ablat=2:5*10), ci=TRUE)

# BEST LINEAR UNBIASED PREDICTION
blup(model)
blup(model, pi=TRUE)
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# SEE help(predict.mixmeta) AND help(BLUP.mixmeta) FOR MORE INFO

### MULTIVARIATE MODELS

### BIVARIATE MODELS
model <- mixmeta(cbind(PD,AL) ~ pubyear, S=berkey98[5:7], data=berkey98)
summary(model)
residuals(model)

### MULTIVARIATE META-ANALYSIS WITH MORE THAN 2 OUTCOMES
y <- as.matrix(fibrinogen[2:5])
S <- as.matrix(fibrinogen[6:15])
model <- mixmeta(y, S)
summary(model)
predict(model, se=TRUE)
predict(model, se=TRUE, aggregate="outcome")

### OTHER EXTENSIONS

# MULTILEVEL META-ANALYSIS
model <- mixmeta(effect, var, random= ~ 1|district/study, data=school)
summary(model)
# SEE help(school) AND help(thrombolytic) FOR MORE EXAMPLES

# DOSE-RESPONSE META-ANALYSIS (SIMPLIFIED)
model <- mixmeta(logrr ~ 0 + dose, S=se^2, random= ~ 0 + dose|id, data=alcohol,
subset=!is.na(se))

summary(model)
# SEE help(alcohol) FOR MORE EXAMPLES

# LONGITUDINAL META-ANALYSIS
model <- mixmeta(logOR~time, S=logORvar, random=~I(time-15)|study, data=gliomas)
summary(model)
# SEE help(gliomas) AND help(dbs) FOR MORE EXAMPLES

### FIXED-EFFECTS MODELS AND ALTERNATIVE ESTIMATORS

# FIXED-EFFECTS MODEL
model <- mixmeta(sbp~ish, S=sbp_se^2, data=hyp, method="fixed")
summary(model)

# METHOD OF MOMENTS
S <- as.matrix(hsls[5:10])
model <- mixmeta(cbind(b1,b2,b3), S, data=hsls, method="mm")
summary(model)

# VARIANCE COMPONENTS ESTIMATOR
model <- mixmeta(cbind(PD,AL)~pubyear, S=berkey98[5:7], data=berkey98,

method="vc")
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summary(model)

### IN THE PRESENCE OF MISSING VALUES

# RUN THE MODEL
y <- as.matrix(smoking[11:13])
S <- as.matrix(smoking[14:19])
model <- mixmeta(y, S)
summary(model)
model.frame(model)

# SEE help(na.omit.data.frame.mixmeta) FOR MORE EXAMPLES

### WHEN WITHIN-STUDY COVIARIANCES ARE NOT AVAILABLE AND/OR NEED TO BE INPUTTED

# GENERATE S
(S <- inputcov(hyp[c("sbp_se","dbp_se")], cor=hyp$rho))

# RUN THE MODEL
model <- mixmeta(cbind(sbp,dbp), S=S, data=hyp)

# INPUTTING THE CORRELATION DIRECTLY IN THE MODEL
model <- mixmeta(cbind(y1,y2), cbind(V1,V2), data=p53, control=list(Scor=0.95))
summary(model)

# SEE help(hyp) AND help(p53) FOR MORE EXAMPLES

### STRUCTURING THE BETWEEN-STUDY (CO)VARIANCE

# DIAGONAL
S <- as.matrix(hsls[5:10])
model <- mixmeta(cbind(b1,b2,b3), S, data=hsls, bscov="diag")
summary(model)
model$Psi

# COMPOUND SYMMETRY
model <- mixmeta(cbind(b1,b2,b3), S, data=hsls, bscov="cs")
summary(model)
model$Psi

# SEE help(mixmetaCovStruct) FOR DETAILS AND ADDITIONAL EXAMPLES

### USE OF THE CONTROL LIST

# PRINT THE ITERATIONS AND CHANGE THE DEFAULT FOR STARTING VALUES
y <- as.matrix(smoking[11:13])
S <- as.matrix(smoking[14:19])
model <- mixmeta(y, S, control=list(showiter=TRUE, igls.inititer=20))
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# SEE help(mixmeta.control) FOR FURTHER DETAILS

mixmeta.control Ancillary Parameters for Controlling the Fit in mixmeta Models

Description

This internal function sets the parameter options used for fitting meta-analytical models, commonly
to pre-specified default values. It is usually internally called by mixmeta.

Usage

mixmeta.control(optim=list(), showiter=FALSE, maxiter=100, initPsi=NULL, Psifix=NULL,
Scor=NULL, addSlist=NULL, inputna=FALSE, inputvar=10^4, loglik.iter="hybrid",
igls.inititer=10, hessian=FALSE, vc.adj=TRUE, reltol=sqrt(.Machine$double.eps),
checkPD=NULL, set.negeigen=sqrt(.Machine$double.eps))

Arguments

optim list of parameters passed to the control argument of the function optim, which
performs the quasi-Newton optimization in likelihood-based random-effects
models. See optim for the list of arguments. See Details for additional info.

showiter logical. If TRUE, the progress of iterative optimization is shown.

maxiter positive interger value. Maximum number of iterations in methods involving
optimization procedures.

initPsi either a matrix or a vector of its lower triangular elements (with diagonal, taken
by column), or optionally a named list with one or more of such objects. Used
as starting values of random-effects parameters in likelihood-based optimization
routines. See Details.

Psifix either a matrix or a vector of its lower triangular elements (with diagonal, taken
by column), or optionally a named list with one or more of such objects. Used
to define fixed parts of the random-effects (co)variance structures. See De-
tails.

Scor either a scalar, vector or matrix representing the within-unit correlation(s) to
be inputted when the covariances are not provided in multivariate models, and
ignored if they are. See inputcov.

addSlist a list of m matrices for the (outer-level) groups of units defining the (known)
error (co)variance structure, when this cannot be passed through the argument S
of mixmeta. See Details.

inputna logical. If missing values must be internally inputted. To be used with caution.
See inputna.

inputvar multiplier for inputting the missing variances, to be passed as an argument to
inputna.

loglik.iter iterative scheme used in in likelihood-based optimization routines. Options are
"hybrid", "newton", and "igls" or "RIGLS". See mixmeta.ml.
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igls.inititer number of iterations of the (restricted) iterative generalized least square algo-
rithm when used in the initial phase of hybrid optimization procedure of likelihood-
based estimators. See mixmeta.ml.

hessian logical. If TRUE, the Hessian matrix of the parameters estimated in the opti-
mization process is computed and returned. Only applicable to likelihood-based
estimation methods. For details, see the info provided in the help pages of the
optimizations algorithms and (co)variance structures.

vc.adj logical. If TRUE, an adjustement to the way the marginal variance part is com-
puted in the (co)variance components estimator is applied in the variance com-
ponents estimator. See mixmeta.vc.

reltol relative convergence tolerance in methods involving optimization procedures.
The algorithm stops if it is unable to reduce the value by a factor of reltol *
(abs(val) + reltol) at a step.

checkPD logical. Determines if the semi-positiveness of within-unit error or random-
effects (co)variance matrices must be checked.

set.negeigen positive value. Value to which negative eigenvalues are to be set in estimators
where such method is used to force semi-positive definiteness of the estimated
between-study (co)variance matrix.

Details

This function has default values for most of the arguments, some of them set internally. Non-default
values are passed through the control argument of mixmeta. Many arguments refer to specific fitting
procedures. See the help page of the related estimator for details.

The function automatically sets non-default values for some control arguments for optim, unless
explicitly set in the list passed to it. Specifically, the function selects fnscale=-1, maxit=maxiter
and reltol=reltol, where the latter two are specified by other arguments of this function.

The arguments initPsi and Psifix are used to provide information for estimation procedures
of the random-effects parameters in likelihood-based methods. Specifically, the former is used to
choose non-default starting values (see mixmeta.ml), and the latter for defining the fixed (known)
part of specific (co)variance structures. In multilevel models, these arguments must be lists
with named components referring to one or more levels of grouping defined by the argument random
of mixmeta.

The argument addSlist can be used to define more complex (known) error structures of the out-
come(s) that are usually provided through the argument S of mixmeta as within-unit variances (or
(co)variance matrices for multivariate models). This can be useful when these error structures spans
multiple units (rows), and the between-unit correlation cannot be defined through S, for instance in
dose-response meta-analysis (see examples in mixmeta). Note that this information is passed inter-
nally after the data have be re-ordered following the grouping defined by random in mixmeta, and
this should be consistent in addSlist. Specifically, the grouping variables are assumed as factors
and therefore the groups are taken in alphabetical/numeric order. It is suggested to re-order the data
according to this order of the groups before fitting the model, so to ensure consistency between the
grouped data and addSlist.

Value

A list with components named as the arguments.
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Note

The function is expected to be extended and/or modified at every release of the package mixmeta.
It is strongly suggested to check the arguments of this function at every release.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

See Also

See mixmeta. See also glm.control. See the help pages of the related fitting functions for details
on each parameter. See mixmeta-package for an overview of this modelling framework.

Examples

# PRINT THE ITERATIONS (SEE ?optim) AND CHANGE THE DEFAULT FOR STARTING VALUES
mixmeta(cbind(PD,AL) ~ pubyear, S=berkey98[5:7], data=berkey98,

control=list(showiter=TRUE, igls.inititer=20))

# INPUT THE CORRELATION
mixmeta(cbind(y1,y2), S=cbind(V1,V2), data=p53, control=list(Scor=0.5))

# FIX (PARTS OF) THE RANDOM-EFFECTS (CO)VARIANCE MATRIX
y <- as.matrix(smoking[11:13])
S <- as.matrix(smoking[14:19])
mixmeta(y, S, bscov="prop", control=list(Psifix=diag(3)+1))

mixmeta.fixed Fixed-Effects Estimator for mixmeta Models

Description

This function implements a generalized least square estimator for fixed-effects meta-analysis and
meta-regression, including standard univariate models and non-standard multivariate extensions. It
is meant to be used internally and not directly run by the users.

Usage

mixmeta.fixed(Xlist, ylist, Slist, nall, control, ...)
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Arguments

Assuming a meta-analysis or meta-regression based on m independent groups
(usually studies) providing a single estimate (unit of analysis), k outcomes and
p fixed-effects predictors:

a m-dimensional list of group-specific design matrices for the fixed-effects part
of the model. Rows corresponding to missing outcomes have been excluded.

Xlistylist a m-dimensional list of group-specific vectors of estimated outcomes. Entries
corresponding to missing outcomes have been excluded.

Slist a m-dimensional list of within-group (co)variance matrices of estimated out-
comes. Rows and columns corresponding to missing outcomes have been ex-
cluded.

nall numeric scalar with the total number of observations (excluding missing).

control list of parameters for controlling the fitting process, usually internally set to
default values by mixmeta.control.

... further arguments passed to or from other methods. Currently not used.

Details

The estimation involves only the kp fixed-effects coefficients. Note that, in this fixed-effects es-
timator, each unit is assumed independent from the others, and therefore the number of groups
(the length of the lists) is identical to the number of units (m=n). However, this is not important in
fixed-effects models, where no random (and therefore grouping) structure is used.

The routine is based on a standard generalized least square (GLS) algorithm implemented in the
internal function glsfit. The between-study (co)variance matrix is set to zero, so the marginal
(co)variance matrix, composed only by elements of the within-unit component, is assumed as
completely known. Similarly to the likelihood-based estimators implemented in mixmeta.ml and
mixmeta.reml, the computation involves Cholesky and and QR decompositions for computational
stability and efficiency. The method is described in details in Gasparrini and collaborators (2012)
(see references below).

Value

These functions return an intermediate list object, with some components then processed and some
others added later within mixmeta.fit and mixmeta to finalize an object of class "mixmeta". See
mixmetaObject.

Note

As stated earlier, this function is called internally by mixmeta.fit, and is not meant to be used
directly. In particular, its code does not contain any check on the arguments provided, which are
expected in specific formats. The function is however exported in the namespace and documented
for completeness.

The arguments above are prepared by mixmeta.fit from its arguments X, y and S. The list structure,
although requiring more elaborate coding, is computationally more efficient, as it avoids the speci-
fication of sparse block-diagonal matrices, especially for meta-analysis involving a large number of
studies.
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Some parameters of the fitting procedures are determined by the control argument, with default
set by mixmeta.control. No missing values are accepted in the fitting functions. See details on
missing values.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Gasparrini A, Armstrong B, Kenward MG (2012). Multivariate meta-analysis for non-linear and
other multi-parameter associations. Statistics in Medicine. 31(29):3821–3839. [Freely available
here].

Berkey CS, Anderson JJ, Hoaglin DC (1996). Multiple-outcome meta-analysis of clinical trials.
Statistics in Medicine. 15(5):537–547.

Berkey CS, et al. (1998). Meta-analysis of multiple outcomes by regression with random effects.
Statistics in Medicine. 17(22):2537–2550.

See Also

See mixmeta for the general usage of the functions. See mixmeta.control to determine specific
parameters of the fitting procedures. Use the triple colon operator (’:::’) to access the code of
the internal functions, such as glsfit. See mixmeta-package for an overview of the package and
modelling framework.

Examples

# UNIVARIATE FIXED-EFFECTS MODEL
mod1 <- mixmeta(yC, S=SCC, data=smoking, method="fixed")
summary(mod1)

# MULTIVARIATE FIXED-EFFECTS MODEL
y <- as.matrix(smoking[11:13])
S <- as.matrix(smoking[14:19])
mod2 <- mixmeta(y, S, method="fixed")
summary(mod2)

# MULTIVARIATE FIXED-EFFECTS MODEL: REPLICATE THE RESULTS IN BERKEY ET AL. 1998
mod3 <- mixmeta(cbind(PD,AL) ~ I(pubyear-1983), S=berkey98[5:7], data=berkey98,

method="fixed")
summary(mod3)
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mixmeta.ml ML and REML Estimators for mixmeta Models

Description

These functions implement maximum likelihood (ML) and restricted maximum likelihood (REML)
estimators for random-effects meta-analysis and meta-regression, including standard univariate
models, and non-standard extensions such as multivariate, multilevel, longitudinal, and dose-response
models. These functions are meant to be used internally and not directly run by the users.

Usage

mixmeta.ml(Xlist, Zlist, ylist, Slist, nalist, rep, k, q, nall, bscov, control, ...)

mixmeta.reml(Xlist, Zlist, ylist, Slist, nalist, rep, k, q, nall, bscov, control, ...)

Arguments

Assuming a meta-analysis or meta-regression based on n units aggregated within
m (outer-level) groups, k outcomes, p fixed-effects predictors, and q random-
effects predictors:

a m-dimensional list of group-specific design matrices for the fixed-effects part
of the model. Rows corresponding to missing outcomes have been excluded.

XlistZlist a m-dimensional list of group-specific design matrices for the random-effects
part of the model. Each element of this list represents a list of matrices corre-
ponding to the (optionally multiple) grouping levels of random effects. In each
matrix, rows corresponding to missing outcomes have been excluded.

ylist a m-dimensional list of group-specific vectors of estimated outcomes. Entries
corresponding to missing outcomes have been excluded.

Slist a m-dimensional list of within-group (co)variance matrices of estimated out-
comes. Rows and columns corresponding to missing outcomes have been ex-
cluded.

nalist a m-dimensional list of group-specific logical vectors, identifying missing out-
comes.

rep matrix with m rows where each column identifies the number of repetitions
(number of groups) for each grouping level. The first column (outer level) is by
definition a vector of 1’s.

k, q, nall number of outcomes, number of random-effects predictors (including the in-
tercept), total number of observations (excluding missing), respectively. While
usually all are scalars, in the case of multilevel models q can be a numeric vector
representing the number of predictors for each level.

bscov a character vector defining the structure of the (co)variance matrix for each level
or random effects. See mixmeta.

control list of parameters for controlling the fitting process, usually internally set to
default values by mixmeta.control.

... further arguments passed to or from other methods. Currently not used.
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Details

The estimation involves kp fixed-effects coefficients and random-effects parameters, whose number
depends on the number of grouping levels and, for each of them, on the chosen (co)variance
structure for the between-study (co)variance matrices. A maximum of kq(kq + 1)/2 parameters
are needed in the case of or single-level models with unstructured form for the random-effects
(co)variance matrix.

(Restricted) maximum likelihood estimators implemented in mixmeta rely on two iterative algo-
rithms: (R)IGLS and quasi-Newton iterative methods. The former implements a (restricted) iter-
ative generalized least squares method, while the latter is based on a Newton-type maximization
routine using specific likelihood functions. The default estimation method is based on a hybrid
procedure, with few runs of of the (R)IGLS algorithm and then quasi-Newton iterations until con-
vergence. This approach is optimal in exploiting the properties of both algorithms, with (R)IGLS
being robust to the choice of initial values and quick in getting near the maximum, while the quasi-
Newton is fast to converge from that point. Full (R)IGLS or quasi-Newton methods can be alterna-
tively selected using the control argument of mixmeta (see mixmeta.control). Follow the links
above for details on each iterative algorithm.

Both estimation algorithms adopt a profiled (or concentrated) approach, where the optimization is
expressed only in terms of the random-effects parameters. Cholesky and and QR decompositions
are used for computational stability and efficiency, and for assuring the positive-definiteness of the
estimated between-study (co)variance matrix. The method is described in details in Gasparrini and
collaborators (2012) (see references below).

Value

These functions return an intermediate list object, with some components then processed and some
others added later within mixmeta.fit and mixmeta to finalize an object of class "mixmeta". See
mixmetaObject.

Note

As stated earlier, these functions are called internally by mixmeta.fit, and are not meant to be used
directly. In particular, their code does not contain any check on the arguments provided, which are
expected in specific formats. The functions are not exported in the namespace, and only documented
for completeness.

The arguments above are prepared by mixmeta.fit from its arguments X, Z, y, S, groups, and
bscov. The list structure, although requiring more elaborate coding, is computationally more effi-
cient, as it avoids the specification of sparse block-diagonal matrices, especially for meta-analysis
involving a large number of studies.

Some parameters of the fitting procedures are determined by the control argument, with default
set by mixmeta.control. No missing values are accepted in the fitting functions. See details on
missing values.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>
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See Also

See mixmeta for the general usage of the functions. See mixmeta.control to determine specific
parameters of the fitting procedures. Use the triple colon operator (’:::’) to access the code of
the internal functions, such as glsfit. See mixmeta-package for an overview of the package and
modelling framework.

Examples

# REML ESTIMATOR: UNIVARIATE MODEL
mod1 <- mixmeta(yC, S=SCC, data=smoking)
summary(mod1)

# ML ESTIMATOR: MULTIVARIATE MODEL
year <- berkey98$pubyear - 1983
mod2 <- mixmeta(cbind(PD,AL) ~ year, S=berkey98[5:7], data=berkey98,method="ml")
print(summary(mod2), digits=3)
round(mod2$Psi,3)

# STRUCTURED BETWEEN-STUDY (CO)VARIANCE
y <- as.matrix(fibrinogen[2:5])
S <- as.matrix(fibrinogen[6:15])
mod3 <- mixmeta(y, S, bscov="hcs")
summary(mod3)

# MULTILEVEL MODEL
mod4 <- mixmeta(effect, var, random= ~ 1|district/study, data=school)
summary(mod4)

# LONGITUDINAL MODEL
mod5 <- mixmeta(logOR~time, S=logORvar, random=~I(time-15)|study, bscov="diag",

method="ml", data=gliomas)
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summary(mod5)

mixmeta.mm Method of Moments Estimator for mixmeta Models

Description

This function implements a method of moments estimator for multivariate and univariate random-
effects meta-analysis and meta-regression. It is meant to be used internally and not directly run by
the users.

Usage

mixmeta.mm(Xlist, ylist, Slist, nalist, k, m, p, nall, control, ...)

Arguments

Assuming a meta-analysis or meta-regression based on m independent groups
(usually studies) providing a single estimate (unit of analysis), k outcomes and
p fixed-effects predictors:

a m-dimensional list of group-specific design matrices for the fixed-effects part
of the model. Rows corresponding to missing outcomes have been excluded.

Xlistylist a m-dimensional list of group-specific vectors of estimated outcomes. Entries
corresponding to missing outcomes have been excluded.

Slist a m-dimensional list of within-group (co)variance matrices of estimated out-
comes. Rows and columns corresponding to missing outcomes have been ex-
cluded.

nalist a m-dimensional list of group-specific logical vectors, identifying missing out-
comes.

k, m, p, nall numeric scalars: number of outcomes, number of groups included in estimation
(equal to the length of lists above), number of predictors (including the inter-
cept), total number of observations (excluding missing).

control list of parameters for controlling the fitting process, usually internally set to
default values by mixmeta.control.

... further arguments passed to or from other methods. Currently not used.

Details

In this method of moments estimator, only a basic random-effects structure is allowed, where each
group (usually corresponding to an independent study) provides a single estimate (unit of analysis)
for one or multiple outcomes. This implies that the number of groups (i.e., the length of the lists)
is identical to the number of units (m=n). In addition, only an unstructured form for the(co)variance
matrix of the single level of random effects is permitted. Therefore, the estimation involves kp
fixed-effects coefficients and k(k + 1)/2 random-effects parameters, corresponding to the lower
triangular entries of the between-study (co)variance matrix.
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The method of moment estimator implemented here represents a multivariate extension of the tradi-
tional estimator proposed by DerSimonian and Laird (1986), and simplifies to the standard method
in the univariate case. The estimator used here is described in Jackson and collaborators (2013) as
a generalization of that developed by Chen and collaborators (2012). However, this general version
is computationally more intensive, and may turn out to be slow when applied to meta-analysis of a
relatively high number of studies. An alternative and computationally faster method of moment es-
timator was previously proposed by Jackson and collaborators (2010), although it is not invariant to
reparameterization. This latter estimator is currently not implemented in mixmeta. See references
below.

This method of moments estimator is not bounded to provide a positive semi-definite random-
effects (co)variance matrix, as shown in the simulation study by Liu and colleagues (2009). Here
positive semi-definiteness is forced by setting the negative eigenvalues of the estimated matrix to
a positive value close to zero at each iteration (see control). Little is known about the impact of
such constraint.

Value

This function returns an intermediate list object, with some components then processed and some
others added later within mixmeta.fit and mixmeta to finalize an object of class "mixmeta". See
mixmetaObject.

Note

As stated earlier, this function is called internally by mixmeta.fit, and is not meant to be used
directly. In particular, its code does not contain any check on the arguments provided, which are
expected in specific formats. The function is however exported in the namespace and documented
for completeness.

The arguments above are prepared by mixmeta.fit from its arguments X, y and S. The list structure,
although requiring more elaborate coding, is computationally more efficient, as it avoids the speci-
fication of sparse block-diagonal matrices, especially for meta-analysis involving a large number of
studies.

Some parameters of the fitting procedures are determined by the control argument, with default
set by mixmeta.control. No missing values are accepted in the fitting functions. See details on
missing values.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Gasparrini A, Armstrong B, Kenward MG (2012). Multivariate meta-analysis for non-linear and
other multi-parameter associations. Statistics in Medicine. 31(29):3821–3839. [Freely available
here].
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Jackson D, White IR, Riley RD (2013). A matrix based method of moments for fitting the multivari-
ate random effects model for meta-analysis and meta-regression. Biometrical Journal. 55(2):231–
45.

See Also

See mixmeta for the general usage of the functions. See mixmeta.control to determine specific
parameters of the fitting procedures. Use the triple colon operator (’:::’) to access the code of
the internal functions, such as fbtr. See mixmeta-package for an overview of the package and
modelling framework.

Examples

# MM ESTIMATOR: UNIVARIATE MODEL
mod1 <- mixmeta(PD ~ pubyear, S=berkey98[,5], data=berkey98, method="mm")
summary(mod1)

# MULTIVARIATE MODEL: REPRODUCE THE RESULTS IN CHEN ET AL. (2012)
S <- as.matrix(hsls[5:10])
mod2 <- mixmeta(cbind(b1,b2,b3), S, data=hsls, method="mm")
summary(mod2)

# MULTIVARIATE MODEL: REPRODUCE THE RESULTS IN JACKSON ET AL. (2013)
S <- inputcov(hyp[c("sbp_se","dbp_se")], cor=hyp$rho)
mod3 <- mixmeta(cbind(sbp,dbp), S=S, data=hyp, method="mm")
summary(mod3)

mixmeta.vc Variance Components Estimator for mixmeta Models

Description

This function implements a variance components estimator for multivariate and univariate random-
effects meta-analysis and meta-regression. It is meant to be used internally and not directly run by
the users.

Usage

mixmeta.vc(Xlist, ylist, Slist, nalist, k, m, p, nall, control, ...)

Arguments

Assuming a meta-analysis or meta-regression based on m independent groups
(usually studies) providing a single estimate (unit of analysis), k outcomes and
p fixed-effects predictors:

a m-dimensional list of group-specific design matrices for the fixed-effects part
of the model. Rows corresponding to missing outcomes have been excluded.

Xlistylist a m-dimensional list of group-specific vectors of estimated outcomes. Entries
corresponding to missing outcomes have been excluded.
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Slist a m-dimensional list of within-group (co)variance matrices of estimated out-
comes. Rows and columns corresponding to missing outcomes have been ex-
cluded.

nalist a m-dimensional list of group-specific logical vectors, identifying missing out-
comes.

k, m, p, nall numeric scalars: number of outcomes, number of groups included in estimation
(equal to the length of lists above), number of predictors (including the inter-
cept), total number of observations (excluding missing).

control list of parameters for controlling the fitting process, usually internally set to
default values by mixmeta.control.

... further arguments passed to or from other methods. Currently not used.

Details

In this variance components estimator, only a basic random-effects structure is allowed, where each
group (usually corresponding to an independent study) provides a single estimate (unit of analysis)
for one or multiple outcomes. This implies that the number of groups (i.e., the length of the lists)
is identical to the number of units (m=n). In addition, only an unstructured form for the(co)variance
matrix of the single level of random effects is permitted. Therefore, the estimation involves kp
fixed-effects coefficients and k(k + 1)/2 random-effects parameters, corresponding to the lower
triangular entries of the between-study (co)variance matrix.

The procedure is based on the estimate of the between-group (co)variance as the difference be-
tween the marginal (co)variance and the average within-group (co)variance. This in turn requires
the estimate of the marginal (co)variance, obtained by the residuals of the fitted model. The pro-
cedure is iterative, with the current estimate of the between-group (co)variance plugged into a gen-
eralized least square (GLS) routine. Starting values are provided by a fixed-effects estimator (see
mixmeta.fixed). The algorithm is fast and generally converges with few iterations.

Similar versions of this estimator has been previously proposed. Berkey and collaborators (1998)
simply called it GLS method, and a non-iterative approach was proposed by Ritz and collaborators
(2008), referred to as MVEE3 in their article. A non-iterative version for univariate models is
discussed in Sidik and Jonkman (2007). The results from Berkey and collaborators (1998) are
reproduced in the example below.

In the original approach, the estimate of the marginal (co)variance is obtained from the sum of the
residual components using a denominator equal to m-p. Following the development proposed by
Kauermann and Carroll (2001) and Fay and Graubard (2001) in the context of sandwich (co)variance
estimators, then discussed by Lu and collaborators (2007), an adjusted denominator can be com-
puted as a quantity derived from the hat matrix. This method is expected to perform better in the
presence of missing values and small data sets. This alternative adjustment is chosen by default by
setting vc.adj=TRUE in the control argument.

This variance component estimator is not bounded to provide a positive semi-definite between-study
(co)variance matrix, as shown in the simulation study by Liu and colleagues (2009). Here positive
semi-definiteness is forced by setting the negative eigenvalues of the estimated matrix to a value
close to zero at each iteration (see control). Little is known about the impact of such constraint.
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Value

This function returns an intermediate list object, with some components then processed and some
others added later within mixmeta.fit and mixmeta to finalize an object of class "mixmeta". See
mixmetaObject.

Note

As stated earlier, this function is called internally by mixmeta.fit, and is not meant to be used
directly. In particular, its code does not contain any check on the arguments provided, which are
expected in specific formats. The function is however exported in the namespace and documented
for completeness.

The arguments above are prepared by mixmeta.fit from its arguments X, y and S. The list structure,
although requiring more elaborate coding, is computationally more efficient, as it avoids the speci-
fication of sparse block-diagonal matrices, especially for meta-analysis involving a large number of
studies.

Some parameters of the fitting procedures are determined by the control argument, with default
set by mixmeta.control. No missing values are accepted in the fitting functions. See details on
missing values.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Gasparrini A, Armstrong B, Kenward MG (2012). Multivariate meta-analysis for non-linear and
other multi-parameter associations. Statistics in Medicine. 31(29):3821–3839. [Freely available
here].

Ritz J, Demidenko E, Spiegelman G (2008). Multivariate meta-analysis for data consortia, indi-
vidual patient meta-analysis, and pooling projects. Journal of Statistical Planning and Inference.
139(7):1919–1933.

Berkey CS, et al. (1998). Meta-analysis of multiple outcomes by regression with random effects.
Statistics in Medicine. 17(22):2537–2550.

Liu Q, et al (2009). A two-stage hierarchical regression model for meta-analysis of epidemiologic
nonlinear dose-response data. Computational Statistics and Data Analysis. 53(12):4157–4167

Sidik K, Jonkman JN (2007). A comparison of heterogeneity variance estimators in combining
results of studies. Statistics in Medicine. 26(9):1964–81.

See Also

See mixmeta for the general usage of the functions. See mixmeta.control to determine specific
parameters of the fitting procedures. Use the triple colon operator (’:::’) to access the code of the
internal functions, such as sumlist. See mixmeta-package for an overview of the package and
modelling framework.
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Examples

# VC ESTIMATOR: UNIVARIATE MODEL
mod1 <- mixmeta(PD ~ pubyear, S=berkey98[,5], data=berkey98, method="vc")
summary(mod1)

# VC ESTIMATOR: MULTIVARIATE MODEL
mod2 <- mixmeta(cbind(PD,AL) ~ pubyear, S=berkey98[5:7], data=berkey98,

method="vc")
summary(mod2)

# VC ESTIMATOR: NON-ITERATIVE VERSION
mod3 <- mixmeta(cbind(PD,AL) ~ pubyear, S=berkey98[5:7], data=berkey98,

method="vc", control=list(maxiter=1))
summary(mod3)

# VARIANCE COMPONENTS ESTIMATOR: REPLICATE THE RESULTS IN BERKEY ET AL. (1998)
mod4 <- mixmeta(cbind(PD,AL) ~ I(pubyear-1983), S=berkey98[5:7], data=berkey98,

method="vc", control=list(vc.adj=FALSE))
summary(mod4)

mixmetaCovStruct (Co)variance Structures for mixmeta Models

Description

Alternative options for the (co)variance structure of the random effects random effects in meta-
analytical models, usually defined through the argument bscov of the function mixmeta.

Options

Assuming a meta-analysis or meta-regression based on k outcomes, for each grouping level with q
random-effects predictors the matrix can be specified in various forms listed below. For multivariate
models with multiple predictors, the order implies a sequence of q parameters for each k outcomes.
These are the options:

• unstr: an unstructured form for a general positive-definite matrix. The matrix is represented
by kq(kq+1)/2 unrestricted parameters defined as the upper triangular entries of its Cholesky
decomposition.

• diag: a diagonal positive-definite matrix. The matrix is represented by kq unrestricted param-
eters defined as the logarithm of the diagonal values.

• id: a multiple of the identity positive-definite matrix. The matrix is represented by a single
unrestricted parameter defined as the logarithm of the diagonal value.

• cs: a positive-definite matrix with compound symmetry structure. The matrix is represented
by 2 unrestricted parameters defined as the logarithm of the identical diagonal value and the
transformed correlation. The latter is parameterized so to obtain a correlation value between
−1/(kq − 1) and 1, in order to ensure positive-definiteness.
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• hcs: a positive-definite matrix with heterogeneous compound symmetry structure. The matrix
is represented by kq+1 unrestricted parameters defined as the logarithm of the diagonal values
and the transformed correlation. The latter is parameterized so to obtain a correlation value
between −1/(kq − 1) and 1, in order to ensure positive-definiteness.

• ar1: a positive-definite matrix with autoregressive structure of first order. The matrix is rep-
resented by 2 unrestricted parameters defined as the logarithm of the identical diagonal value
and the logistic transformed correlation. The latter is parameterized so to obtain a correlation
value between -1 and 1.

• har1: a positive-definite matrix with heterogeneous autoregressive structure of first order.
The matrix is represented by kq + 1 unrestricted parameters defined as the logarithm of the
diagonal value and the logistic transformed correlation. The latter is parameterized so to obtain
a correlation value between -1 and 1.

• prop: a positive-definite matrix proportional to that provided by the user through the argument
Psifix in the control list (see mixmeta.control). The matrix is represented by 1 unrestricted
parameter defined as the logarithm of the multiplier.

• cor: a positive-definite matrix with correlation structure provided by the user through the
argument Psifix (with cov2cor) in the control list (see mixmeta.control). The matrix is
represented by k unrestricted parameters defined as the logarithm of the diagonal values.

• fixed: a known matrix provided by the user through the argument Psifix in the control list
(see mixmeta.control). The matrix is known and no parameters are needed to represent it.

Details

Structures other than unstr are only available for models estimated through (restricted) maximum
likelihood.

The unrestricted parameters defining the random-effects (co)variance matrix (or matrices for multil-
vel models) are estimated in the iterative optimization algorithm (see mixmeta.ml). Although rarely
needed and not recommeded, the user can provided a starting value of the (co)variance matrix, from
which the parameters are derived (see mixmeta.control).

Note

The choice of structures can affect the performance of the optimization procedure, determining
forms of likelihood surfaces which induce convergence to local maxima. In particular, structures
such as multiple of identity or proportional to a fixed matrix are based on strong assumptions and
should be used with caution.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Pinheiro JC and Bates DM (2000). Mixed-Effects Models in S and S-PLUS. New York, Springer
Verlag.
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See Also

See mixmeta. See lm or glm for standard regression functions. See mixmeta-package for an
overview of this modelling framework.

Examples

# UNSTRUCTURED AND STRUCTURED BETWEEN-STUDY (CO)VARIANCE
y <- as.matrix(smoking[11:13])
S <- as.matrix(smoking[14:19])
mod1 <- mixmeta(y, S)
summary(mod1)
mod1$Psi

# DIAGONAL
mod2 <- mixmeta(y, S, bscov="diag")
summary(mod2)
mod2$Psi

# HETEROGENEOUS COMPOUND SYMMETRY
mod3 <- mixmeta(y, S, bscov="hcs")
summary(mod3)
mod3$Psi

# PROPORTIONAL
mod4 <- mixmeta(y, S, bscov="prop", control=list(Psifix=diag(3)+1))
summary(mod4)
mod4$Psi

# CORRELATION
Psicor <- matrix(0.2, 3, 3) ; diag(Psicor) <- 1
mod5 <- mixmeta(y, S, bscov="cor", control=list(Psifix=Psicor))
summary(mod5)
mod5$Psi

mixmetaFormula Formulae in mixmeta Models

Description

Meta-analytical models fitted with mixmeta are defined by specific formulae in its arguments formula
and random. The formulae offer compact symbolic expressions with form y ~ x + z, where the re-
sponse y in the left-hand side of the operator ~ is modelled in terms of meta-predictors x and z in the
right-hand side. Terms are separated by +, and additional syntactic operators and existing functions
can be used within a formula to specify transformations such as categorization and interactions,
among others, as in standard formula expressions (see formula for details). The usage of formulae
in mixmeta for the random-effects part follows closely the definition in the the nlme package.
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Fixed-effects formula

The argument formula of mixmeta defines the fixed-effects part. Models for meta-analysis with no
meta-predictors can be specified using the form y ~ 1, or alternatively including only the term y (in
this case, the formula is reconstructed internally). Multivariate models can be defined by using a
matrix-type y, with columns as multiple outcomes, or directly in the formula with form cbind(y1
+ y2) ~ 1. In meta-regression models, other terms are added in the right-hand side of the formula
as y ~ x1 + ... + xp, defining the linear meta-predictor. In multivariate meta-regression, the same
linear predictor is specified for each outcome.

Random-effects formula or formulae

The argument random of mixmeta defines the random-effects part. When this is not specified, it is
assumed that each row of data is from an independent study and assigned to a different group, as
in standard meta-analytical models. If provided, this is usually represented by a one-sided formula
whose basic random-intercept form is ~ 1 | g. The term g at the right-hand side of the special
operator | is the grouping factor, always required in a single random-effects formula. A more
complex random-effects part can be also specified by ~ z1 + ... + zq | g, where the terms in the
left-hand side defines a linear meta-predictor, with syntax identical to the usual formulae.

The argument random also accepts a list of one-sided formulae referring to multiple random-effects
levels in multilevel meta-analytical models. In this case, levels are assumed to be nested in the order
of the list, from the lowest (outer) to the highest (inner), consistently with the grouping factors.
These are usually defined by different terms in the right-hand side of the | operator, although in the
list form can also be provided as names of the list components. This information is used internally
to reconstruct the grouping structure and the random-effects design matrices. Each level can have
different linear predictors, but if these are identical across levels the random-effects part can be
defined by a single equation ~ z | g1 / g2, where the special operator / separates the grouping
factors g2 nested in g1.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

See Also

See mixmeta. See formula for standard regression formulae. See mixmeta-package for an overview
of this modelling framework.

Examples

# STANDARD RANDOM-EFFECTS META-ANALYSIS (WITH DIFFERENT SYNTAXES)
mixmeta(logor, logorvar, data=bcg)
mixmeta(logor ~ 1, logorvar, data=bcg)

# META-REGRESSION
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mixmeta(logor ~ ablat, logorvar, data=bcg)

# MULTIVARIATE MODEL
model <- mixmeta(cbind(PD,AL) ~ pubyear, S=berkey98[5:7], data=berkey98)

# NON-STANDARD MODEL: REPEATED MEASURED WITHING THE SAME GROUPS
mixmeta(effect, var, random= ~ 1|district, data=school)
mixmeta(absrisk, var, random= ~ 1|trial, data=thrombolytic)

# NON-STANDARD MODEL: MORE COMPLEX RANDOM-EFFECTS PREDICTOR
mixmeta(logOR~time, logORvar, random= ~ I(time-15)|study, data=gliomas)

# MULTILEVEL MODEL (WITH DIFFERENT SYNTAXES)
mixmeta(effect, var, random= ~ 1|district/study, data=school)
mixmeta(effect, var, random=list(~ 1|district, ~ 1|study), data=school)
mixmeta(effect, var, random=list(district = ~ 1, study = ~ 1), data=school)

mixmetaObject mixmeta Objects

Description

An object returned by the mixmeta function, inheriting from class "mixmeta", and representing a
fitted univariate or multivariate meta-analytical model.

Value

Objects of class "mixmeta" are lists with defined components. Dimensions of such components
may refer to k outcome parameters, p fixed-effects and q random-effects predictors, m groups and
n units used for fitting the model (the latter can be different from those originally selected due
to missing). Depending on the type of meta-analytical model, the following components can bu
included in a legitimate mixmeta object:

coefficients a kp-dimensional vector of the fixed-effects coefficients.

vcov estimated kp× kp (co)variance matrix of the fixed-effects coefficients.

Psi the estimated kq × kq random-effects (co)variance matrix, or a list of matrices
for multilevel models. Only for random-effects models.

residuals a n-dimensional vector (for univariate models) or n× k matrix (for multivariate
models) of residuals, that is observed minus fitted values.

fitted.values a n-dimensional vector (for univariate models) or n× k matrix (for multivariate
models) of fitted mean values.

df.residual the residual degrees of freedom.

rank the numeric rank of the fixed-effects part of the fitted model.

logLik the (restricted) log-likelihood of the fitted model. Set to NA for non-likelihood
models.
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converged, niter

for models with iterative estimation methods, logical scalar indicating if the
algorithm eventually converged and number or iterations, respectively.

par parameters estimated in the optimization process when using likelihood-based
estimators. These correspond to trasformations of entries of the random-effects
(co)variance matrix, dependent on chosen (co)variance structure. For mul-
tilevel models, the vector includes the parameters of multiple matrices. Re-
turned also for full (R)IGLS optimization, even if not directly used. See also the
mixmeta.ml for details.

hessian Hessian matrix of the estimated parameters in par above, only returned if hessian=TRUE
in mixmeta.control. See the related optimizations algorithms for details.

dim list with the following components: k (scalar, number of outcome parameters),
n (scalar, number of units included in estimation, which could be lower than the
total number in the presence of missing values), m (scalar, number of outer-level
groups), p (scalar, number of fixed-effects predictors), q (scalar or vector,number
of random-effects predictors).

df list with the following scalar components: nall (number of observations used
for estimation, excluding missing values), nobs (equal to nall, minus the num-
ber of fixed-effects coefficients in REML models), fixed (number of estimated
fixed-effects coefficients), random (number of estimated random-effects (co)variance
terms).

lab list with the following label vectors: k for the outcome parameters, and p and
q for the fixed and random-effects predictors, respectively (including intercept).
The last one can be a list for multilevel models.

S a n × k(k + 1)/2 matrix, where each row represents the vectorized entries of
the lower triangle of the related within-unit (co)variance error matrix, taken by
column. See mixmeta.

call the function call.

formula the formula for the fixed-effects part of the model. See mixmetaFormula.

model the model frame used for fitting. Reported if model=TRUE in mixmeta. See
model.frame.

terms the terms object representing the fixed-effects part of the fitted model.

contrasts (where relevant) the contrasts used.

xlevels (where relevant) a record of the levels of the factors used in fitting.

na.action (where relevant) information returned by model.frame on the special handling
of NAs. See info on missing values.

method the estimation method.

random the formula (or list of formulae for multilevel models) for the random-effects
part of the model. See mixmetaFormula.

bscov a string defining the random-effects (co)variance structure in likelihood based
models. See model.frame.mixmeta.

control a list with the values of the control arguments used, as returned by mixmeta.control.
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Methods

A number of methods functions are available for mixmeta objects, most of them common to other
regression functions.

Specifically-written method functions are defined for predict (standard predictions) and blup (best
linear unbiased predictions). The method function simulate produces simulated outcomes from a
fitted model, while qtest performs the Cochran Q test for heterogeneity. Other methods have been
produced for summary, logLik, coef, and vcov.

Specific methods are also available for model.frame and model.matrix. In particular, the former
produces the model frame (a data frame with special attributes storing the variables used for fitting)
with the additional class "data.frame.mixmeta". A method terms is also available for extracting
the terms object (only for fixed-effects or full). Methods na.omit and na.exclude for this class
are useful for the handling of missing values in mixmeta objects.

Printing functions for the objects of classes defined above are also provided. anova methods for
performing tests in mixmeta objects are in development.

All the methods above are visible (exported from the namespace) and documented. In additions,
several default method functions for regression are also applicable to objects of class "mixmeta",
such as fitted, residuals, AIC and BIC, drop1 and add1, or update, among others.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

See Also

See mixmeta. See lm or glm for standard regression functions. See mixmeta-package for an
overview of this modelling framework.

Examples

# RUN THE MODEL
model <- mixmeta(cbind(PD,AL)~pubyear, S=berkey98[5:7], data=berkey98)

# INSPECT THE OBJECT
names(model)

# LABELS
model$lab

# FORMULA
model$formula

# CONVERGED?
model$converged
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mixmetaSim Simulating Responses for mixmeta Models

Description

These functions simulate sets of responses (either univariate or multivariate) for a group of units, in
terms of their mean (expected) values and within and between-group (co)variances. These sets of
outcomes can be used in meta-analytical models for simulation purposes.

Usage

mixmetaSim(y, S, Psi, random, data, nsim=1, seed=NULL, ...)

## S3 method for class 'mixmeta'
simulate(object, nsim=1, seed=NULL, ...)

Arguments

In order to simulate k outcomes for n units:

a n-dimensional vector (for simulating univariate responses) or m × k matrix
(for simulating multivariate responses) of mean (expected) outcomes.

yS series of within-unit variances (or (co)variance matrices for multivariate models)
of the estimated outcome(s). For the list of accepted format, see the argument
with the same name in mixmeta. Covariances or more complex error structures
can be passed through additional arguments. See Details below.

Psi the random-effects (co)variance matrix (or a list of matrices for multilevel mod-
els) of the outcomes. Dimension must be consistent with the specification of the
random-effects structure in random.

random a one-sided formula (or a list of formulae for multilevel models) offering a
symbolic description of the linear predictor(s) and grouping structure for the
random-effects part of the model. See the argument with the same name in
mixmeta.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame), optionally containing the variables in y, S, and random.

nsim number of simulation sets.

seed an object specifying if and how the random number generator should be initial-
ized.

object an object of class "mixmeta".

... further optional arguments.
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Details

The set(s) of responses can be simulated either from a fitted model, using the method function
simulate for objects of class "mixmeta", or directly through the function mixmetaSim. In the for-
mer case, the fitted values from the model are used as mean (expected) outcomes, together with the
within-unit and estimated random-effects (co)variance structure. In the latter option, this informa-
tion need to be provided by the user in the correct dimensions and forms.

Additional arguments can be passed in '...'. Specifically, arguments Scor and addSlist can be
added to input missing within-unit error covariances, or to specify more complex within-unit error
structures, respectively. Another argument can be checkPD (logical), that checks the semi-positive
definiteness of the matrices). See mixmeta.control for details.

The functions simulate the responses for each study separately from a marginal multivariate normal
distribution with mean equal to the expected values and (co)variance equal to the sum of the within-
unit errors and random-effects components. The computation is identical to that implemented in
the function mvrnorm of the package MASS, involving a eigen decomposition of the marginal
(co)variance matrix. Numerical negative definiteness is checked, and positive semi-definiteness
then forced by truncating the eigenvalues at a value close to zero (see control).

Value

If nsim=1, a matrix or vector of simulated k outcomes for the n units. If more simulation sets are
required (nsim higher than 1), a list of matrices or vectors.

Note

Studies with missing values in the fitted values or in the components of the within (co)variances are
excluded by simulate. Missing values are instead not accepted in metaSim.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

See Also

See simulate for the general method function. See inputcov for inputting correlations. See
mixmeta-package for an overview of the package and modelling framework.

Examples

# RUN A MODEL
model <- mixmeta(cbind(PD,AL) ~ pubyear, S=berkey98[5:7], data=berkey98)

# SIMULATE A NEW SET OF OUTCOMES
simulate(model)
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# SIMULATE FROM SCRATCH: 3 OUTCOMES, 8 STUDIES
(y <- matrix(0, 8, 3))
(S <- inputcov(matrix(runif(8*3, 0.1, 2), 8, 3, dimnames=list(NULL,

c("V1","V2","V3"))), cor=c(0,0.5,0.7)))
(Psi <- inputcov(1:3, cor=0.3))
mixmetaSim(y, S, Psi)

# 2 SIMULATION SETS
mixmetaSim(y, S, Psi, nsim=2)

ml.igls IGLS and RIGLS Iterative Algorithms for mixmeta Models

Description

These functions implements (restricted) iterative generalized least squares (IGLS and RIGLS) algo-
rithms for (restricted) maximum likelihood estimators for random-effects meta-analytical models.
They are meant to be used internally and not directly run by the users.

Usage

ml.igls(Psi, Xlist, Zlist, ylist, Slist, nalist, rep, k, q, nall, const, bscov,
fix, control)

reml.rigls(Psi, Xlist, Zlist, ylist, Slist, nalist, rep, k, q, nall, const, bscov,
fix, control)

igls.iter(Psi, Qlist, Xlist, Zlist, ylist, Slist, nalist, rep, k, q, bscov,
fix, control)

rigls.iter(Psi, Qlist, Xlist, Zlist, ylist, Slist, nalist, rep, k, q, bscov,
fix, control)

Arguments

Assuming a meta-analysis or meta-regression based on n units aggregated within
m (outer-level) groups, k outcomes, p fixed-effects predictors, and q random-
effects predictors:

a matrix (or a list of matrices for multilevel models) representing the initial
estimate of the random-effects (co)variance matrix.

PsiXlist a m-dimensional list of group-specific design matrices for the fixed-effects part
of the model. Rows corresponding to missing outcomes have been excluded.

Zlist a m-dimensional list of group-specific design matrices for the random-effects
part of the model. Each element of this list represents a list of matrices corre-
ponding to the (optionally multiple) grouping levels of random effects. In each
matrix, rows corresponding to missing outcomes have been excluded.
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Qlist a m-dimensional list of group-specific design matrices mapping the random-
effects parameters to be estimated in Psi. See references below for details.

ylist a m-dimensional list of group-specific vectors of estimated outcomes. Entries
corresponding to missing outcomes have been excluded.

Slist a m-dimensional list of within-group (co)variance matrices of estimated out-
comes. Rows and columns corresponding to missing outcomes have been ex-
cluded.

nalist a m-dimensional list of group-specific logical vectors, identifying missing out-
comes.

rep matrix with m rows where each column identifies the number of repetitions
(number of groups) for each grouping level. The first column (outer level) is by
definition a vector of 1’s.

k, q, nall number of outcomes, number of random-effects predictors (including the in-
tercept), total number of observations (excluding missing), respectively. While
usually all are scalars, in the case of multilevel models q can be a numeric vector
representing the number of predictors for each level.

const value of the constant to be included in the (restricted) likelihood, therefore not
computed in the iterative algorithms.

bscov a character vector defining the structure of the (co)variance matrix for each level
or random effects. See mixmeta.

fix a matrix (or optionally a list of matrices for multilevel models) defining the fixed
components of the random-effects part of the model. See mixmeta.control for
details.

control list of parameters for controlling the fitting process, usually internally set to
default values by mixmeta.control.

Details

These functions are called internally by the fitting functions mixmeta.ml and mixmeta.reml to
perform (R)IGLS optimization algorithms for estimating random-effects meta-analytical models.

These estimators are not sensitive to the choice of the starting values, and quickly converge to the
vicinity of the (restricted) maximum likelihood. The starting values in Psi are therefore defined by
default as a matrix (or matrices) with a diagonal form and 0.001 variances, or otherwise selected by
the user in the control argument of mixmeta (see mixmeta.control).

The functions ml.igls and reml.rigls first produce a design matrix that maps the entries of Psi,
and then call iter.igls and iter.rigls, respectively, to obtain updated results at each iteration
following a (R)IGLS procedure described in Goldstein and colleagues (1992). Convergence is
assessed as (lack of) changes in Psi. Positive semi-definiteness is forced by setting the negative
eigenvalues of the estimated matrix to a value close to 0 at each iteration (see control).

Value

The functions ml.igls and reml.rigls return an intermediate list object, with components cor-
responding to the estimated random-effects (co)variance matrix (or list of matrices), its parame-
ters, the maximum (restricted) log-likelihood value, an indicator of convergence, and the number
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of iterations. These are then re-processed, with other components added later within other func-
tions to finalize an object of class "mixmeta" (see mixmetaObject). The functions iter.igls and
iter.rigls return an updated version of Psi.

Note

As stated earlier, these functions are called internally by mixmeta.ml and mixmeta.reml, and are
not meant to be used directly. In particular, their code does not contain any check on the arguments
provided, which are expected in specific formats. They are however exported in the namespace and
documented for completeness.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Goldstein H (1992). Efficient computational procedures for the estimation of parameters in multi-
level models based on iterative generalized least squares. Computational Statistics \& Data Analy-
sis. 13(1):63–71.

Goldstein H (1986). Multilevel mixed linear model analysis using iterative generalized least squares.
Biometrika. 73(1):43–56.

Goldstein H (1989). Restricted unbiased iterative generalized least-squares estimation. Biometrika.
76(3):622–623.

See Also

See mixmeta.fit and mixmeta.ml for additional info on the fitting procedures. See mixmeta.control
to determine specific parameters of the fitting procedures. See mixmetaCovStruct for (co)variance
structures. See mixmeta-package for an overview of the package and modelling framework.

ml.loglik.fn Likelihood Functions for mixmeta Models

Description

These functions compute the value of the log-likelihood and the related vectors of first partial deriva-
tives for random-effects meta-analytical models, in terms of model parameters. They are meant to
be used internally and not directly run by the users.
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Usage

ml.loglik.fn(par, Xlist, Zlist, ylist, Slist, nalist, rep, k, q, nall, const,
bscov, fix)

ml.loglik.gr(par, Xlist, Zlist, ylist, Slist, nalist, rep, k, q, nall, const,
bscov, fix)

reml.loglik.fn(par, Xlist, Zlist, ylist, Slist, nalist, rep, k, q, nall, const,
bscov, fix)

reml.loglik.gr(par, Xlist, Zlist, ylist, Slist, nalist, rep, k, q, nall, const,
bscov, fix)

Arguments

Assuming a meta-analysis or meta-regression based on n units aggregated within
m (outer-level) groups, k outcomes, p fixed-effects predictors, and q random-
effects predictors:

a vector representing the random-effects parameters defining the random-effects
(co)variance matrix (or multiple matrices for multilevel models).

parXlist a m-dimensional list of group-specific design matrices for the fixed-effects part
of the model. Rows corresponding to missing outcomes have been excluded.

Zlist a m-dimensional list of group-specific design matrices for the random-effects
part of the model. Each element of this list represents a list of matrices corre-
ponding to the (optionally multiple) grouping levels of random effects. In each
matrix, rows corresponding to missing outcomes have been excluded.

ylist a m-dimensional list of group-specific vectors of estimated outcomes. Entries
corresponding to missing outcomes have been excluded.

Slist a m-dimensional list of within-group (co)variance matrices of estimated out-
comes. Rows and columns corresponding to missing outcomes have been ex-
cluded.

nalist a m-dimensional list of group-specific logical vectors, identifying missing out-
comes.

rep matrix with m rows where each column identifies the number of repetitions
(number of groups) for each grouping level. The first column (outer level) is by
definition a vector of 1’s.

k, q, nall number of outcomes, number of random-effects predictors (including the in-
tercept), total number of observations (excluding missing), respectively. While
usually all are scalars, in the case of multilevel models q can be a numeric vector
representing the number of predictors for each level.

const value of the constant to be included in the (restricted) likelihood, therefore not
computed in the iterative algorithms.

bscov a character vector defining the structure of the (co)variance matrix for each level
or random effects. See mixmeta.

fix a matrix (or optionally a list of matrices for multilevel models) defining the fixed
components of the random-effects part of the model. See mixmeta.control for
details.
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Details

These functions are called internally by fitting functions, in particular ml.newton and reml.newton,
to compute the (restricted) log-likelihood and its first partial derivatives in terms of random-effects
parameters for meta-analytical models.

These functions actually specify the profiled version of the (restricted) likelihood, expressed only
in terms of random-effects parameters, while the estimate of the fixed-effects coefficients is com-
puted at each iteration using a generalized least squares estimator, based on the current value of the
between-study (co)variance matrix. At convergence, the value of this profiled version is identical to
the full (restricted) likelihood. This approach is computationally efficient, as it reduces the number
of parameters in the optimization routine, especially for meta-regression models.

The random-effects parameters in par depends on the chosen structure(s) for the random-effects
(co)variance matrix (or multiple matrices for multilevel models). The parameterization ensures
positive-definiteness. A Cholesky decomposition is then performed on the marginal (co)variance
matrix in order to re-express the problem as standard least square equations, an approach which
speeds up the computation of matrix inverses and determinants. These equations are finally solved
through a QR decomposition, which guarantees stability. More details are provided in the references
below.

Some parameters of the fitting procedures are determined through mixmeta.control. Specifically,
the user can obtain the Hessian matrix of the estimated parameters (appropriately transformed, see
mixmetaCovStruct) in the optimization function by setting hessian=TRUE, and specific settings of
the optimization process can be defined by the control list argument optim. These values are passed
to the optimization function optim.

Value

ml.loglik.fn and reml.loglik.fn return the value of the (restricted) log-likelihood for a given
set of parameters in par. ml.loglik.gr and reml.loglik.gr return instead the related vector of
first partial derivatives.

Note

As stated earlier, these functions are called internally by mixmeta.ml and mixmeta.reml, and are
not meant to be used directly. In particular, their code does not contain any check on the arguments
provided, which are expected in specific formats. They are however exported in the namespace and
documented for completeness.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Lindstrom MJ and Bates DM (1988). Newton-Raphson and EM algorithms for linear mixed-effects
models for repeated-measures data. Journal of the American Statistical Association. 83(404):1014–
1022.
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Harville DA (1977) Maximum likelihood approaches to variance component estimation and to re-
lated problems. Journal of the American Statistical Association. 72(358):320–338.

Pinheiro JC and Bates DM (2000). Mixed-Effects Models in S and S-PLUS. New York, Springer
Verlag.

See Also

See mixmeta.fit and mixmeta.ml for additional info on the fitting procedures. See mixmeta.control
to determine specific parameters of the fitting procedures. See mixmetaCovStruct for (co)variance
structures. See chol and qr for info on the Cholesky and QR decomposition. See mixmeta-package
for an overview of the package and modelling framework.

ml.newton Quasi-Newton Iterative Algorithms for mixmeta Models

Description

These functions implement quasi-Newton iterative algorithms for (restricted) maximum likelihood
estimators for random-effects meta-analytical models. They are meant to be used internally and not
directly run by the users.

Usage

ml.newton(Psi, Xlist, Zlist, ylist, Slist, nalist, rep, k, q, nall, const,
bscov, fix, control)

reml.newton(Psi, Xlist, Zlist, ylist, Slist, nalist, rep, k, q, nall, const,
bscov, fix, control)

Arguments

Assuming a meta-analysis or meta-regression based on n units aggregated within
m (outer-level) groups, k outcomes, p fixed-effects predictors, and q random-
effects predictors:

a matrix (or a list of matrices for multilevel models) representing the initial
estimate of the random-effects (co)variance matrix.

PsiXlist a m-dimensional list of group-specific design matrices for the fixed-effects part
of the model. Rows corresponding to missing outcomes have been excluded.

Zlist a m-dimensional list of group-specific design matrices for the random-effects
part of the model. Each element of this list represents a list of matrices corre-
ponding to the (optionally multiple) grouping levels of random effects. In each
matrix, rows corresponding to missing outcomes have been excluded.

ylist a m-dimensional list of group-specific vectors of estimated outcomes. Entries
corresponding to missing outcomes have been excluded.
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Slist a m-dimensional list of within-group (co)variance matrices of estimated out-
comes. Rows and columns corresponding to missing outcomes have been ex-
cluded.

nalist a m-dimensional list of group-specific logical vectors, identifying missing out-
comes.

rep matrix with m rows where each column identifies the number of repetitions
(number of groups) for each grouping level. The first column (outer level) is by
definition a vector of 1’s.

k, q, nall number of outcomes, number of random-effects predictors (including the in-
tercept), total number of observations (excluding missing), respectively. While
usually all are scalars, in the case of multilevel models q can be a numeric vector
representing the number of predictors for each level.

const value of the constant to be included in the (restricted) likelihood, therefore not
computed in the iterative algorithms.

bscov a character vector defining the structure of the (co)variance matrix for each level
or random effects. See mixmeta.

fix a matrix (or optionally a list of matrices for multilevel models) defining the fixed
components of the random-effects part of the model. See mixmeta.control for
details.

control list of parameters for controlling the fitting process, usually internally set to
default values by mixmeta.control.

Details

These functions are called internally by the fitting functions mixmeta.ml and mixmeta.reml to per-
form quasi-Newton iterative optimization algorithms for estimating random-effects meta-analytical
models.

Starting values for the iterations are defined by Psi, representing a random-effects (co)variance ma-
trix (or a list of matrices for multilevel models). In the default hybrid procedure (see mixmeta.ml),
these are provided using few iterations of a (R)IGLS algorithm. If a full quasi-Newton method is
used, the starting values are instead defined by default as a matrix (or matrices) with a diagonal
form and 0.001 variances, or otherwise selected by the user in the control argument of mixmeta
(see mixmeta.control).

The functions first re-define Psi as a set of random-effects parameters, depending on the chosen
structure(s), using parameterizations that ensure the positive-definiteness of the estimated ma-
trix (or matrices). Then, the function optim with method="BFGS" is called internally to perform
the quasi-Newton optimization, using specific likelihood functions that compute the value of
the (restricted) likelihood and (optionally) the vector of its first partial derivatives. The latter are
used only in the case of basic random-effects structures, or otherwise the derivatives are computed
numerically.

Some parameters of the optimization procedures are determined through mixmeta.control. Specif-
ically, the user can obtain the Hessian matrix of the estimated parameters (appropriately trans-
formed, see mixmetaCovStruct) in the optimization function by setting hessian=TRUE, and spe-
cific settings of the optimization process can be defined by the control list argument optim. These
values are passed to the optimization function optim.
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Value

These functions return an intermediate list object, with components corresponding to the estimated
random-effects (co)variance matrix (or list of matrices), the maximum (restricted) log-likelihood
value, an indicator of convergence, the number of iterations, and optionally the Hessian matrix.
These are then re-processed, with other components added later within other functions to finalize
an object of class "mixmeta". See mixmetaObject.

Note

As stated earlier, these functions are called internally by mixmeta.ml and mixmeta.reml, and are
not meant to be used directly. In particular, their code does not contain any check on the arguments
provided, which are expected in specific formats. They are however exported in the namespace and
documented for completeness.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Lindstrom MJ and Bates DM (1988). Newton-Raphson and EM algorithms for linear mixed-effects
models for repeated-measures data. Journal of the American Statistical Association. 83(404):1014–
1022.

Harville DA (1977) Maximum likelihood approaches to variance component estimation and to re-
lated problems. Journal of the American Statistical Association. 72(358):320–338.

Pinheiro JC and Bates DM (2000). Mixed-Effects Models in S and S-PLUS. New York, Springer
Verlag.

See Also

See mixmeta.fit and mixmeta.ml for additional info on the fitting procedures. See mixmeta.control
to determine specific parameters of the fitting procedures. See mixmetaCovStruct for (co)variance
structures. See chol and qr for info on the Cholesky and QR decomposition. See mixmeta-package
for an overview of the package and modelling framework.

model.frame.mixmeta Extract Model Frame and Design Matrix from mixmeta Objects

Description

These method functions return the model frame and design matrix for meta-analytical models rep-
resented in objects of class "mixmeta".
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Usage

## S3 method for class 'mixmeta'
model.frame(formula, ...)

## S3 method for class 'mixmeta'
model.matrix(object, ...)

Arguments

object, formula

an object of class "mixmeta".

... further arguments passed to or from other methods.

Details

The model frame is produced by mixmeta when fitting the meta-analytical model, and stored in the
mixmeta object if argument model=TRUE. Alternatively, the model frame is directly returned from
a call to mixmeta with argument method="model.frame". The method function model.frame
simply extracts the saved model frame if available, or otherwise evaluates a call to mixmeta when
method="model.frame".

The method function model.matrix extracts the design matrix for the fixed-effects part of a fitted
meta-analytical model. It first extract the model frame by calling model.frame, and then passes the
call to the default method.

Note that the model frame of mixmeta models consist of terms for both the fixed and random-effects
parts, the latter including also the grouping factors. This information can be used to reconstruct the
proper model frame or matrix for each part.

These methods functions are similar to those provided for regression objects lm and lm.

Value

For model.frame, a data.frame with special attributes (see the default method model.frame) and
the additional class "data.frame.mixmeta".

For model.matrix, the design matrix used to fit the model.

Note

The reason why these specific method functions are made available for class mixmeta, and in par-
ticular why a new class "data.frame.mixmeta" has been defined for model frames, lies in the
special handling of missing values in multivariate meta-analysis models fitted with mixmeta. Meth-
ods na.omit and na.exclude for class "data.frame.mixmeta" are useful for properly accounting
for missing values when fitting these models.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>>
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See Also

See the default methods model.frame and model.matrix. See na.omit and na.exclude on the
handling of missing values. See mixmeta-package for an overview of the package and modelling
framework.

Examples

# RUN THE MODEL AND SUMMARIZE THE RESULTS
model <- mixmeta(cbind(PD,AL) ~ pubyear, S=berkey98[5:7], data=berkey98,

method="ml")

# MODEL FRAME
model$model
model.frame(model)
update(model, method="model.frame")
class(model.frame(model))

# MODEL MATRIX
model.matrix(model)

na.omit.data.frame.mixmeta

Handling Missing Values in mixmeta Models

Description

These method functions exclude rows corresponding to units with invalid missing pattern from
model frames of class "data.frame.mixmeta". This guarantees the correct handling of missing
values while fitting meta-analytical models.

Usage

## S3 method for class 'data.frame.mixmeta'
na.omit(object, ...)

## S3 method for class 'data.frame.mixmeta'
na.exclude(object, ...)

Arguments

object an object of class "data.frame.mixmeta".

... further arguments passed to or from other methods.
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Details

A model frame of class "data.frame.mixmeta" is produced by mixmeta. A call to na.omit or
na.exclude removes from the model frame the rows corresponding to studies with invalid missing
pattern. In addition, a na.action attribute is added to the model frame, namely a numeric vector
corresponding to the removed rows and class "omit" or "exclude", respectively. This informa-
tion is used by naresid and napredict to deal with missing values in functions such as fitted,
residuals, predict and blup, among others.

The definition of missing, identifying an invalid missing pattern, is different in meta-analytical
models performed through mixmeta if compared to other regression functions such as lm or glm, in
particular for the multivariate case. Specifically, while a unit is removed if at least an observation for
one predictor is missing, partially missing outcomes do not prevent the unit to contribute to estima-
tion (see mixmeta). Specific methods na.omit and na.exclude for class "data.frame.mixmeta"
allow this different definition.

Value

These functions returns the model frame object with rows corresponding to units with invalid
missing pattern being removed. They also add the related na.action attribute as explained above.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>>

See Also

See na.action, naresid and napredict. See model.frame. See mixmeta-package for an overview
of the package and modelling framework.

Examples

# INPUT MISSING VALUES IN PREDICTOR AND ONE RESPONSE
data <- berkey98
data[2,1] <- data[4,3] <- NA
data

# RUN THE MODEL
model <- mixmeta(cbind(PD,AL) ~ pubyear, S=data[5:7], data=data, method="ml")

# SUMMARIZE: NOTE THE NUMBER OF STUDIES AND OBSERVATIONS
summary(model)
df.residual(model)

# EXTRACT THE MODEL FRAME WITH na.pass
model.frame(model, na.action="na.pass")
# EXTRACT THE MODEL FRAME WITH na.omit (DEFAULT)
model.frame(model, na.action="na.omit")

# COMPARE WITH DEFAULT METHOD FOR na.omit
frame <- model.frame(model, na.action="na.pass")
na.omit(frame)
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class(frame)
class(frame) <- "data.frame"
na.omit(frame)

# WITH na.exclude
residuals(model)
residuals(update(model, na.action="na.exclude"))

p53 Mutant p53 Gene and Squamous Cell Carcinoma

Description

The dataset includes studies providing evidence about whether the presence of mutant p53 tumour
suppressor gene is a prognostic factor for patients presenting with squamous cell carcinoma arising
from the oropharynx cavity. Unadjusted estimates of log hazard ratios of mutant p53 to normal p53
for disease-free and overall survival, together with the associated variances, are collected from 6
observational studies.

Usage

p53

Format

A data frame with 6 observations on the following 5 variables:

• study: study ID.

• y1,V1: estimate and associated variance of the log hazard ratio for disease-free survival.

• y2,V2: estimate and associated variance of the log hazard ratio for overall survival.

Details

Only 3 studies provide estimates for disease-free survival. The within-study correlations are not
reported in the original studies but are expected to be highly positively correlated. The original data
are described in Tandon and colleagues (2010) and used as an example by Jackson and colleagues
(2011).

Note

The data provide an example of application of multivariate meta-analysis when the within-study
correlations are not known. These correlations can be inputted directly in the mixmeta function
through the control argument. See mixmeta.control for details.
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Source

Jackson D, Riley R, White IR (2011). Multivariate meta-analysis: Potential and promise. Statistics
in Medicine. 30(20);2481–2498.

Tandon S, Tudur-Smith C, Riley RD, et al. (2010). A systematic review of p53 as a prognostic
factor of survival in squamous cell carcinoma of the four main anatomical subsites of the head and
neck. Cancer Epidemiology, Biomarkers and Prevention. 19(2):574–587.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Examples

### REPRODUCE THE RESULTS OF EXAMPLE 3 IN JACKSON ET AL. (2011)

# INSPECT THE DATA
p53

# REML MODEL WITH INPUTTED CORRELATION EQUAL TO 0.95
model <- mixmeta(cbind(y1,y2), cbind(V1,V2), data=p53, control=list(Scor=0.95))
print(summary(model), digits=2)

predict.mixmeta Predicted Values from mixmeta Models

Description

This method function computes predictions from fitted univariate or multivariate meta-analytical
models represented in objects of class "mixmeta", optionally for a new set of predictor values in
meta-regression models. Predictions are optionally accompanied by standard errors, confidence
intervals or the entire (co)variance matrix of the predicted outcomes.

Usage

## S3 method for class 'mixmeta'
predict(object, newdata, se=FALSE, ci=FALSE, vcov=FALSE, ci.level=0.95,

format, aggregate="stat", na.action=na.pass, ...)

Arguments

object an object of class "mixmeta".

newdata An optional data frame in which to look for variables values with which to pre-
dict from meta-regression models.

se logical switch indicating if standard errors must be included.

ci logical switch indicating if confidence intervals must be included.

vcov logical switch indicating if the (co)variance matrix must be included.

ci.level a numerical value between 0 and 1, specifying the confidence level for the com-
putation of confidence intervals.
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format the format for the returned results. See Value.

aggregate when format="matrix" and se or ci are required, the results may be aggre-
gated by statistic or by outcome. See Value

na.action a function which indicates what should happen when the data contain NAs. The
default to the value saved in object. See Note.

... further arguments passed to or from other methods.

Details

The method function predict produces predicted values from mixmeta objects, obtained by evalu-
ating the original call to mixmeta in the frame newdata. For both fixed and random-effects models,
estimated predictions are only based on the fixed part of the model, ignoring study-specific devia-
tions, differently from blup.

If newdata is omitted, the predictions are based on the data used for the fit. In that case how to
handle predictions for units removed from estimation due to invalid missing pattern is determined
by the na.action argument used in mixmeta to produce object. If na.action=na.omit, units
excluded from estimation will not appear, whereas if na.action=na.exclude they will appear,
with values set to NA for all the outcomes. This step is performed by napredict. See Notes.

Value

The results may be aggregated in matrices (the default), or returned as lists, depending on the
argument format. For multivariate models, the aggregation is ruled by the argument aggregate,
and the results may be grouped by statistic or by outcome. If vcov=TRUE, lists are always returned.

Note

The definition of missing in model frames used for estimation in mixmeta is different than that
commonly adopted in other regression models such as lm or glm. See info on missing values in
mixmeta.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

See Also

See blup for best linear unbiased predictions. See the default method predict. See mixmeta-package
for an overview of the package and modelling framework.
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Examples

# RUN THE MODEL
model <- mixmeta(cbind(PD,AL) ~ pubyear, S=berkey98[5:7], data=berkey98)

# PREDICTED FROM YEAR 1985 TO 1987, WITH LABELS
newdata <- data.frame(pubyear=1985:1987, row.names=1985:1987)

# AVERAGED OUTOCOMES AND SE
predict(model, newdata, se=TRUE)

# SAME AS ABOVE, AGGREGATED BY OUTCOME
predict(model, newdata, se=TRUE, aggregate="outcome")

# WITH VCOV, FORCED TO A LIST
predict(model, newdata, se=TRUE, vcov=TRUE, aggregate="outcome")

qtest Cochran Q Test of Heterogeneity

Description

This is a generic function to perform a Cochran Q test of (residual) heterogeneity. The function in-
vokes particular methods which depend on the class of the first argument. Currently, specific meth-
ods exist for several meta-analytical models in various packages: qtest.mixmeta, qtest.mvmeta,
and qtest.dosresmeta.

Usage

qtest(object, ...)

Arguments

object an object for which the test is desired

... further arguments passed to specific methods.

Details

The test assesses the null hypothesis that the variability in the distribution of the outcomes is ex-
plained only in terms of within-unit estimation errors. This corresponds to a test on the hypotesis
that there is no variation attributable to random-effects terms.

Value

Returned values depend on the specific class. Usually, the results of the test.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>>
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References

Cochran WG (1950). The comparison of percentages in matched samples". Biometrika. 37(3/4):256–
266.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

See Also

Specific methods for various classes: qtest.mixmeta, qtest.mvmeta, and qtest.dosresmeta.

qtest.mixmeta Cochran Q Test of Heterogeneity for mixmeta Models

Description

This method function performs a Cochran Q test of (residual) heterogeneity on fitted meta-analytical
models represented in objects of class "mixmeta".

Usage

## S3 method for class 'mixmeta'
qtest(object, ...)

## S3 method for class 'qtest.mixmeta'
print(x, digits=3, ...)

Arguments

object, x objects of classes "mixmeta" and "qtest.mixmeta", respectively.

digits an integer specifying the number of digits to which printed results must be
rounded.

... further arguments passed to or from other methods.

Details

The test assesses the null hypothesis that the variability in the distribution of the outcomes is ex-
plained only in terms of estimation error in each unit, measured by the within-unit (co)variance
matrices stored in the component S of mixmeta objects. This is equal to test the hypothesis that the
random-effects (co)variance matrix (or all matrices in multilevel models) is a zero matrix, and there
is no random deviation in unit-specific estimates. For multivariate models, tests for single outcome
parameters, comparable to estimates from multiple univariate meta-analysis, are also reported. This
test reduces to the standard Q test in univariate single-level models.

The function compute the statistics by actually fitting the related fixed-effects model, re-evaluating
the call of the model with method changed to "fixed".
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Value

A list object of class "qtest.mixmeta" with the following components:

Q the vector of test statistics for overall and outcome-specific tests, distributed
under the null hypothesis as a Chi-square with degrees of freedom df.

df the vector of degrees of freedom of the null distribution for overall and outcome-
specific tests. For the overall test, equal to the number of observations used for
estimation minus the number of coefficients in the fixed part of the model. For
outcome-specific test, equal to number of observed values minus the number of
coefficients.

pvalue the vector of p-values for overall and outcome-specific tests.

residual logical switch indicating if a meta-regression model is assessed, meaning that
the tested heterogeneity is residual.

k dimensionality of the overall test, that is the number of outcome parameters in
the model.

As usual, the print method function for class "qtest.mixmeta" does not return any value.

Note

In multivariate models, tests on single outcome parameters are performed by extracting the related
estimates and variances, but they do not account for the correlation between them, which never-
theless has been considered in estimation. These tests are not therefore comparable with those
performed by running a univariate model on each outcome parameter.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Cochran WG (1950). The comparison of percentages in matched samples". Biometrika. 37(3/4):256–
266.

See Also

See qtest for the generic method function. See mixmeta-package for an overview of the package
and modelling framework.

Examples

# RUN THE MODEL
model <- mixmeta(cbind(PD,AL) ~ 1, S=berkey98[5:7], data=berkey98)

# MULTIVARIATE COCHRAN Q TEST FOR HETEROGENEITY
test <- qtest(model)
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print(test, digits=2)
unclass(test)

school Studies on Modified School Calendar and Student Achievement

Description

The dataset contains the results of 56 studies that evaluate the effect of a modified school calendar
on student achievement. The studies assessed students from grade 1 to 9 and reported standardized
reading achievement differences between schools that follow a year-round versus the traditional
nine-month calendar. The studies were performed in separate school districts, with at least three
studies in each district.

Usage

school

Format

A data frame with 56 observations on the following 5 variables:

• district,study: numbers identifying the school district and study, respectively.

• effect: estimated standardized effect, reported as difference in reading achievement ex-
pressed in standard deviation units.

• var: within-study variance of the estimated effects.

• year: year when the study was performed.

Note

The data provide an example of application of multilevel meta-analysis with multiple nested random-
effects levels, where effect sizes are correlated between studies within school district. This more
complex correlation structure is modelled by two levels of random effects. Results can be com-
pared with the so-called three-level model in Kostantopoulos (2011), that is defined as a two-level
meta-analysis here.

Source

Kostantopoulos S (2011). Fixed effects and variance components estimation in three-level meta-
analysis. Research Synthesis Methods. 2(1):61–76.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].
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Examples

### REPRODUCE THE RESULTS IN KOSTANTOPOULOS (2011), TABLES 4 AND 5

# STANDARD META-ANALYSIS (NB: random NOT STRICTLY NEEDED HERE)
mod1 <- mixmeta(effect, var, random= ~ 1|study, data=school, method="ml")
print(summary(mod1), digits=3, report="var")

# STANDARD META-REGRESSION
yearcen <- school$year - mean(school$year)
mod2 <- mixmeta(effect ~ yearcen, var, random= ~ 1|study, data=school,

method="ml")
print(summary(mod2), digits=3, report="var")

# TWO-LEVEL META-ANALYSIS
mod3 <- mixmeta(effect, var, random= ~ 1|district/study, data=school,

method="ml")
print(summary(mod3), digits=3, report="var")

# TWO-LEVEL META-REGRESSION
yearcen2 <- with(school, year - mean(tapply(year, district, mean)))
mod4 <- mixmeta(effect ~ yearcen2, var, random= ~ 1|district/study, data=school,

method="ml")
print(summary(mod4), digits=3, report="var")

### SEE help(thrombolytic) FOR A COMPLEMENTARY EXAMPLE

smoking Meta-Analysis of Interventions to Promote Smoking Cessation

Description

The dataset contains the results of 24 trials comparing four alternative interventions to promote
smoking cessation. The trials have different designs, comparing two or three different interventions.
The data consist of the number of successes out of the total participants, and the estimated log-odds
ratio for arms B (self-help), C (individual counselling), and D (group counselling) relative to arm A
(no contact), as well as the (co)variance matrix of these three estimates.

Usage

smoking

Format

A data frame with 24 observations on the following 19 variables:

• study: study ID.

• design: design of the trial, reporting the interventions being compared.

• dA,dB,dC,dD: number of successes for each intervention.
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• nA,nB,nC,nD: number of participants for each intervention.

• yB,yC,yD: estimated log-odds ratios for interventions B, C and D versus intervention A.

• SBB,SBC,SBD,SCC,SCD,SDD: variances and co-variances of the estimated log-odds ratios for
interventions B, C and D versus intervention A. The order corresponds to the lower triangular
elements of the (co)variance matrix taken by column.

Details

Intervention A is chosen as the reference category. Trials without an arm A (trials 2 and 21-24) are
augmented with an arm A with 0.01 individuals and 0.001 successes. Trials containing zero cells
(trials 9 and 20) have 1 individual with 0.5 successes added to each intervention. Details on the data
augmentation and estimation of (co)variances of the log-odds ratios are provided by White (2011).

Note

The data provide an example of application of network meta-analysis, also referred to as indirect
mixed-treatment comparison. Additional information using examples based on these data are pro-
vided by Lu and Ades (2006), White (2011) and Higgins and colleagues (2012).

Source

Lu G and Ades AE (2006). Assessing evidence inconsistency in mixed treatment comparisons.
Journal of the American Statistical Association. 101:447–459.

Higgins JPT, et al. (2012). Consistency and inconsistency in network meta-analysis: concepts and
models for multi-arm studies. Research Synthesis Methods. 3(2):98–110.

White IR (2011). Multivariate random-effects meta-regression. The Stata Journal. 11:255–270.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Examples

### REPRODUCE THE RESULTS IN WHITE (2011)

# INSPECT THE DATA
head(smoking)
names(smoking)

# CONSISTENCY MODEL, UNSTRUCTURED BETWEEN-STUDY (CO)VARIANCE
y <- as.matrix(smoking[11:13])
S <- as.matrix(smoking[14:19])
mod1 <- mixmeta(y, S)
summary(mod1)

# CONSISTENCY MODEL, STRUCTURED BETWEEN-STUDY (CO)VARIANCE (PROPORTIONAL)
mod2 <- mixmeta(y, S, bscov="prop", control=list(Psifix=diag(3)+1))
summary(mod2)

# TRANSFORM IN LONG FORMAT, WITH S AS LIST (EXCLUDING MISSING)
long <- na.omit(reshape(smoking[,c(1,2,11:13)], varying=list(3:5), idvar="study",
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v.names="y", timevar="outcome", times=colnames(y), direction="long"))
Slist <- lapply(lapply(seq(nrow(S)), function(i) xpndMat(S[i,])), function(x)

x[!is.na(diag(x)), !is.na(diag(x)), drop=FALSE])

# THE MODELS ABOVE CAN BE REPLICATED IN THE LONG FORMAT
mod2b <- mixmeta(y ~ 0 + factor(outcome), random= ~ 0 + factor(outcome)|study,

data=long, bscov="prop", control=list(addS=Slist, Psifix=diag(3)+1))
summary(mod2b)

# DEFINE AND ADD INDICATORS FOR OUTCOME AND DESIGN
dummy <- cbind(model.matrix(~0+outcome, long), model.matrix(~0+design, long))
colnames(dummy) <- c(levels(factor(long$outcome)), levels(long$design))
long <- cbind(long, data.frame(dummy))

# INCONSISTENCY MODEL (SPECIAL PARAMETERIZATION OF OUTCOME-BY-DESIGN INTERACTION)
formula <- y ~ 0 + yB + yC + yC:acd + yC:bc + yC:bcd + yD + yD:acd + yD:bcd +

yD:bd + yD:cd
mod3 <- update(mod2b, formula=formula)
summary(mod3)

summary.mixmeta Summarizing mixmeta Models

Description

Print and summary method functions for fitted meta-analytical models represented in objects of
class "mixmeta".

Usage

## S3 method for class 'mixmeta'
summary(object, ci.level=0.95, ...)

## S3 method for class 'summary.mixmeta'
print(x, digits=4, report=c("sd","var"), ...)

## S3 method for class 'mixmeta'
print(x, digits=4, ...)

Arguments

object an object of class "mixmeta" produced by a call to mixmeta.

x an object of class "mixmeta" or "summary.mixmeta", produced by calls to
mixmeta or summary.mixmeta, respectively.

ci.level a numerical value between 0 and 1, specifying the confidence level for the com-
putation of confidence intervals.

digits an integer specifying the number of digits to which printed results must be
rounded.
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report if standard deviations (sd) or variances (var) must be reported for summarizing
the random-effects (co)variance structure.

... further arguments passed to or from other methods.

Details

The print method function for class "mixmeta" only returns basic information on the fitted model,
namely the call, estimated fixed-effects coefficients, dimensions and fit statistics (log-likelihood,
AIC, BIC).

The summary method function computes additional statistics and tests, and produces a list object of
class "summary.mixmeta". The print method function for this class shows additional information,
such as tables reporting the estimates for the fixed and random-effects parts of the model, Cochran
Q test for heterogeneity and I-squared.

Value

The summary method function for mixmeta objects produces a list of class "summary.mixmeta".
The components of the lists are some of those stored in the related mixmeta object, plus the follow-
ing:

coefficients a matrix reporting point estimates, standard errors, z statistics and related p-
values of the test, and confidence intervals for the kp fixed-effects coefficients.
Note this is different than the component with the same name stored in mixmeta
objects, simply reporting the point estimates (see mixmetaObject).

AIC the value of the Akaike information criterion for the fitted mixmeta model, ob-
tained through a call to AIC.

BIC the value of the Bayesian information criterion for the fitted mixmeta model,
obtained through a call to BIC.

corFixed the kp × kp correlation matrix of the fixed-effects coefficients, obtained from
the (co)variance matrix vcov (see mixmetaObject and vcov).

corRandom the kq×kq correlation matrix of the random effects, obtained from the random-
effects (co)variance matrix Psi, or a list of multiple matrices for multilevel mod-
els. See mixmetaObject.

qstat results from the Cochran Q test for heterogeneity, namely a list corresponding
to a qtest.mixmeta object without its class, obtained through qtest.

i2stat I-squared statistic for the meta-analytical model.

ci.level the confidence level used for defining the confidence intervals for the estimates
of the fixed-effects coefficients.

As usual, the print method functions for classes "mixmeta" and "summary.mixmeta" do not return
any value.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>> and Francesco Sera <<francesco.sera@lshtm.ac.uk>>



82 terms.mixmeta

References

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

See Also

See mixmeta and mixmetaObject.

Examples

# RUN THE MODEL
model <- mixmeta(cbind(PD,AL) ~ pubyear, S=berkey98[5:7], data=berkey98)

# SIMPLE PRINT
model

# DEFINE DIGITS
print(model, digit=2)

# SUMMARY WITH 80TH CONFIDENCE INTERVALS
summary(model, ci.level=0.80)

# REPORT RANDOM EFFECTS IN TERMS OF VARIANCES (USE print)
print(summary(model), report="var")

terms.mixmeta Extract Model Terms from mixmeta Objects

Description

These method function returns the terms object that defines meta-analytical models represented in
objects of class "mixmeta".

Usage

## S3 method for class 'mixmeta'
terms(x, type="fixed", ...)

Arguments

x an object of class "mixmeta".

type the type of terms. Either "fixed" or "full". See Details.

... further arguments passed to or from other methods.
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Details

The terms object is produced by mixmeta when fitting the meta-analytical model, and stored as
an attribute of the model.frame. Note that this object consists of terms for both the fixed and
random-effects parts, the latter including also the grouping factors.

By using the default type="fixed", this method function removes the random-effects terms. This
can then be used, for instance, for creating the model.matrix for the fixed effects. Otherwise with
type="full", the full set of terms is returned.

Value

An object of class c("terms","formula") which contains the terms representation of a symbolic
meta-analytical model. See terms.object for its structure.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>>

See Also

See the methods model.frame and model.matrix.

Examples

# RUN A MODEL
model <- mixmeta(effect, var, random= ~ 1|district/study, data=school)

# TERMS (FIXED AND FULL)
terms(model)
terms(model, "full")
attr(model.frame(model), "terms")

thrombolytic Randomized Trials of Thrombolytic Therapy

Description

The dataset contains the data on 20 randomized trials of thrombolytic therapy, which evaluated
effect on short-term mortality after a myocardial infarction (up to 35 days) in 50,246 patients in
relation to treatment delay. The hypothesis is that the thrombolytic therapy reduces the mortality
risk following the myocardial infarction, and that the benefit is particularly substantial for very
early treatment. Some of the trials report separate results according to treatment delay, generating
38 observations from full trials or subgroups of trials. Effect sizes were reported as absolute risk
reduction computed as the difference between treated and control groups in each trial or subgroup.

Usage

thrombolytic
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Format

A data frame with 38 observations on the following 10 variables:

• trial: label identifying the trial.

• time2treat: treatment delay after the onset of the symptoms of a myocardial infaction, re-
ported in hours.

• dtreat,ntreat: number of deaths and total patients in the treated group, respectively.

• dcontr,ncontr: number of deaths and total patients in the control group, respectively.

• risktreat,riskcontr: risk of death in the treatment and control groups, respectively.

• absrisk: absolute risk difference of death between the treatment and control groups. See
Details.

• var: variance of the absolute risk difference. See Details.

Details

The absolute risk is simply the difference in risk, which is computed empirically as ratio of the
number of deaths and the number of total patients in treated and control groups (p1 = d1/N1 and
p0 = d0/N0, respectively). The variance of the absolute risk difference is computed as p0(1 −
p0)/N0 + p1(1− p1)/N1. See Thompson and colleagues (2001) for details.

Note

The data provide an example of application of multilevel meta-analysis with repeated observations
in an inner level within an outer level, corresponding here to treatment subgroups within each trial.
This more complex correlation structure is modelled by two levels of random effects, including
meta-predictors that can explain part of the heterogeneity at each level. Results can be compared
with those reported by Thompson and colleagues (2001).

Source

Thompson SG, Turner RM, Warn DE (2001). Multilevel models for meta-analysis, and their appli-
cation to absolute risk differences. Statistical Methods in Medical Research. 10(6):375–392.

Sera F, Armstrong B, Blangiardo M, Gasparrini A (2019). An extended mixed-effects framework
for meta-analysis.Statistics in Medicine. 2019;38(29):5429-5444. [Freely available here].

Examples

### REPRODUCE THE RESULTS IN THOMPSON ET AL (2001), TABLES 2, 3, AND 4

# STANDARD FIXED-EFFECTS META-ANALYSIS
mod1 <- mixmeta(absrisk, var, data=thrombolytic, method="fixed")
print(summary(mod1), digits=5)

# STANDARD RANDOM-EFFECTS META-ANALYSIS
subtrial <- seq(nrow(thrombolytic))
mod2 <- mixmeta(absrisk, var, random= ~ 1|subtrial, data=thrombolytic)
print(summary(mod2), digits=5)
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# TWO-LEVEL RANDOM-EFFECTS META-ANALYSIS
mod3 <- mixmeta(absrisk, var, random= ~ 1|trial/subtrial, data=thrombolytic)
print(summary(mod3), digits=5)

# TWO-LEVEL RANDOM-EFFECTS META-REGRESSION
mod4 <- mixmeta(absrisk~time2treat, var, random= ~ 1|trial/subtrial,

data=thrombolytic)
print(summary(mod4), digits=5)

# TWO-LEVEL RANDOM-EFFECTS META-REGRESSION WITH NON-LINEAR TERM
mod5 <- mixmeta(absrisk ~ time2treat + I(1/time2treat), var,

random= ~ 1|trial/subtrial, data=thrombolytic)
print(summary(mod5), digits=5)

### SEE help(school) FOR A COMPLEMENTARY EXAMPLE

vechMat Vectorization and Expansion of Symmetric Matrices

Description

The function vechMat transforms a symmetric matrix in a vector containing its lower triangular
elements, taken by column. The function xpndMat reverses this transformation.

Usage

vechMat(mat, diag=TRUE)

xpndMat(vech)

Arguments

mat a square matrix.

vech a vector.

diag a logical switch indicating if the diagonal entries must be included.

Value

A vector for vechMat, a symmetric matrix for xnpdMat.

Author(s)

Antonio Gasparrini <<antonio.gasparrini@lshtm.ac.uk>>

See Also

See functions vech and xpnd in package MCMCpack.
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Examples

# GENERATE A POSITIVE-DEFINITE MATRIX, VECTORIZE IT AND THEN RE-EXPAND
(M <- crossprod(matrix(rnorm(9),3)))
(v <- vechMat(M))
xpndMat(v)

# EXTRACT VECTORIZED S, EXPAND TO A LIST, AND RE-VECTORIZE
(S <- as.matrix(berkey98[5:7]))
(Slist <- lapply(seq(nrow(S)), function(i) xpndMat(S[i,])))
t(sapply(Slist,vechMat))
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