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Abstract

Infectious disease risk depends on both individual risk factors as well as the infectious state
of the population, including current cases and immunity to disease from past exposure. For
zoonotic diseases, this risk also includes the infectious state of the animal hosts. This is further
complicated in diseases where there is an environmental disease reservoir, since external risk
factors, such as extreme climatic events (e.g., flooding), can influence transmission risk and the
timing and intensity of outbreaks. Furthermore, risk is influenced by behaviour of individuals
and public health control measures. Infectious disease models can be used to simplify complex
disease systems and help improve our understanding of transmission dynamics and population
risk, as well as explore drivers of transmission.

An example of a complex disease system is leptospirosis, a neglected zoonotic disease. It is
found in all regions of the world, but globally disease burden is highest in the Pacific region. The
transmission of leptospirosis is complex, with human infection occurring either as a result of
direct contact with infected animals (e.g., rodents and domestic animals), or indirectly via water
or soil contaminated with urine of infected animals. As such, many different risk factors can
shape the transmission dynamics. Leptospirosis is endemic in many Pacific island countries.
For example, Fiji has regular outbreaks, and the frequency and intensity of outbreaks has been
increasing in recent years. In this thesis, to explore the transmission of leptospirosis in Fiji,
I used two different datasets: surveillance data from 2006-2017, and data from a large cross-
sectional seroprevalence survey conducted in 2013.

Outbreaks of leptospirosis are often associated with heavy rainfall and flooding events. The cli-
mate in Fiji is also highly affected by El Niño-Southern Oscillation, which is a global climate
phenomenon arising from changes in sea surface temperatures in the central and eastern trop-
ical Pacific Ocean. However, the exact role of climate in driving outbreaks of leptospirosis has
not been well quantified, particularly in the South Pacific. Therefore, using a Bayesian hier-
archical mixed effects statistical modelling framework, I quantified the effects of different hy-
drometeorological indicators on leptospirosis incidence in Fiji, exploring these over both spa-
tial and temporal scales. I found that total rainfall over six weeks, periods of negative sea sur-
face temperature (i.e. La Niña events) and minimum temperature were all positively associated
with leptospirosis cases. These results are an essential first step towards the development of a
climate-based early warning system.

In addition, I used the cross-sectional seroprevalence study to estimate the duration of anti-
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body persistence to leptospirosis. This has important epidemiological and clinical implications
since it can provide insights into the frequency of reinfections and the level of under-reporting,
as well as allow for improved interpretation of serosurveys for leptospirosis. Using a reverse
catalytic model, I estimated the duration of antibody persistence to be around 7-8 years. Fur-
thermore, using additional data on antibody kinetics, I estimated the most likely timing of in-
fection. I found that most individuals who were seropositive in the 2013 serosurvey were likely
to have been infected within the previous two years, which is consistent with surveillance data.
This approach allows for richer, longitudinal information to be inferred from cross-sectional
studies.

Given the disruption to the project from COVID-19 in 2020-21, and the accompanying impor-
tance of understanding coronavirus dynamics in 2020-21, I applied similar serocatalytic mod-
elling methods to look at seasonal coronaviruses (CoV); my second disease case study. Seasonal
human coronaviruses (HCoVs) have very different transmission patterns from leptospires, with
human-human transmission being the primary transmission route. Using seroprevalence data
from six studies covering four different circulating season HCoVs, I extended the reverse cat-
alytic model to allow for a different force of infection (the rate at which susceptible individuals
acquire infection and seroconvert) by age. The duration of antibody persistence was estimated
to last around 1-4 years. This finding has clinical and epidemiological significance but was
largely unknown for SARS-CoV-2 at the beginning of the pandemic. Since seasonal HCoVs have
been circulating for longer than SARS-CoV-2, they may offer insights into the reinfection pat-
terns of this group of viruses.

Finally, I explored how compartmental mechanistic models could be used to bring together cli-
matic drivers and immunity dynamics within one disease framework, providing a more holistic
understanding of transmission dynamics. I was particularly interested in diseases such as lep-
tospirosis, which are zoonotic but also have an environmentally-persistent pathogen. There-
fore, I systematically reviewed studies detailing models for a suite of environmentally persistent
zoonotic diseases (20 diseases in total) and I identified model structures and methodologies
that had previously been used. My review highlighted the need for more data-driven modelling
of these diseases and for more models to include a holistic One Health approach which con-
siders the human-animal-environment interface of transmission to inform disease prevention
and control strategies.

Collectively, in this thesis, I show how a range of different data and methods can be used to
enhance our understanding of infectious disease dynamics using mathematical and statistical
modelling. I used a variety of methods specifically adapted to the setting and disease in ques-
tion to provide insights into drivers and dynamics of transmission.
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1
Introduction

1.1 Background

Infectious disease dynamics are typically non-linear since infection is a function of current
cases and immunity following past exposure to infection. Mathematical and statistical mod-
elling tools can be used to explore these drivers and dynamics of transmission and support
decision-makers in understanding these complex disease systems. Mathematical models, also
referred to as dynamic compartmental models, are a simplification of reality which uses math-
ematical language to describe the behaviour of disease transmission and can be used to test hy-
potheses and mechanisms of transmission. Traditionally, mathematical models have focused
on single host, demographically-driven immunising infections, such as measles. However, for
infectious diseases with more complex transmission pathways, for which infection confers non-
sterilising immunity and where external factors may influence transmission, different methods
must be used and adapted to account for this additional complexity. Statistical models de-
scribe the relationship between observed cases and explanatory variables, and are a useful tool
in cases where the underlying risk factors and causal drivers of transmission are not well un-
derstood. For example, they can be used to explore extrinsic drivers of transmission such as
climate variation and climate change.

Leptospirosis is an example of a disease with complex transmission pathways. It is a zoonotic
disease with multiple animal reservoirs and circulating serovars. Infection does not provide
life-long immunity, with reinfections known to occur. Furthermore, climatic factors, such as
flooding events, combined with socio-economic vulnerability, drive transmission patterns. The
burden of disease primarily occurs in resource-poor settings, and there remain many unan-
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Chapter 1: Introduction

swered questions regarding the drivers and dynamics of transmission. Human seasonal coron-
aviruses (HCoV) are another example of diseases with complex transmission pathways, which
are also understudied. As with leptospirosis, infection does not confer life-long immunity, with
evidence of reinfection. In addition, infection pathways differ from leptospirosis as transmis-
sion primarily occurs via close contact between people, and therefore social and age-related
patterns of transmission are important.

In this thesis, using both mathematical and statistical models, I explore the transmission dy-
namics of complex diseases, using leptospirosis and seasonal HCoVs as examples. This intro-
duction provides background on both of these diseases, and how different mathematical and
statistical modelling approaches can be used to address pertinent public health questions re-
lated to complex disease transmission dynamics.

1.2 Leptospirosis

Leptospirosis is a zoonotic bacterial disease found in all regions of the world with the highest
prevalence found in tropical and subtropical regions [1–3]. Leptospirosis has a particularly high
disease burden in resource-poor settings [4–7], and globally there are an estimated 1.03 million
cases of leptospirosis per year, with approximately 58,000 deaths [1]. Leptospires, the bacteria
that cause the clinical disease leptospirosis, are excreted through the urine of infected animals.
Animals can either be incidental hosts (where typically they experience acute clinical disease
and excrete bacteria via their urine for a limited amount of time) or reservoir hosts (where often
they experience no clinical disease, but continue to excrete bacteria for months or even years)
[2, 8]. The bacteria have been shown to survive and remain virulent in water and soil from a few
days to several months under certain conditions [2, 9–13]. Virtually all mammalian species have
been identified as hosts for leptospirosis, with notable examples including rodents, dogs and
cattle [2, 14, 15]. Humans can become infected, either directly through contact with infected
animals or tissue, or indirectly through water or soil contaminated by animal urine [6]; but
human to human transmission is extremely rare [14]. Leptospires can enter the body through
cuts and abrasions, or via mucous membranes (e.g., conjunctival or oral surfaces) [5, 8]. The
leptospirosis transmission cycle is summarised in Fig. 1.1.

1.2.1 Clinical manifestation

In humans, most leptospirosis infections result in asymptomatic infection or self-limiting acute
febrile illness, with the true frequency of asymptomatic infections being largely unknown. In
those instances where infection results in clinical manifestation, 5-10% of patients experience
severe or fatal disease, with multi-organ dysfunction [16]. The incubation period is usually 5-
14 days after exposure but can vary from 2-30 days [16]. Clinical symptoms range from non-
specific febrile illness, to jaundice, meningitis, and liver and renal failure [5, 6, 14, 17]. The
variability of clinical manifestation, along with the need for a laboratory test for confirmation
(discussed further below), means that cases of leptospirosis are often misdiagnosed and under-
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reported. While animals often have no symptoms, leptospirosis infection in livestock can lead
to reproductive failure (for example, abortion), decreased milk production, and systemic ill-
ness [2, 18]. This can cause significant economic losses. Therefore, this demonstrates that lep-
tospirosis control is important for both animals and humans.

1.2.2 Risk factors and transmission routes of leptospirosis

Leptospirosis has complex transmission pathways, with many different animal hosts involved
and environmental contamination occurring. As such, many different risk factors for infection
and clinical disease exist and these can be broadly classified into three groups [4, 19–21] (Fig.
1.1):

1. Individual demographic and behavioural risk factors

These include age, sex, occupation, recreational activity and contact with contaminated
fresh water. Occupational risk factors include abattoir, sewage, and farm work [4, 20, 22,
23].

2. Community and environmental risk factors

These include poor living conditions and limited access to sanitation (especially urban
slums), rodent populations, animals living in the community and land-use [4, 20, 22].

3. Climatic risk factors

Leptospirosis cases and outbreaks are more concentrated in tropical and subtropical re-
gions, where temperature and humidity is higher, as they provide favourable climatic con-
ditions for leptospire survival and transmission. In addition, outbreaks are often associ-
ated with heavy rainfall and flooding. This is discussed in more detail in section 1.2.3.

The factors driving transmission also vary considerably based on environmental setting. For
example, in high-income countries recreational and water sports are more commonly associ-
ated with infection risk, as well as returning travellers, whilst occupation is more important in
low-income settings [4, 19–21, 23]. Animal hosts are also likely to vary depending on setting,
with rodents considered to be more important drivers of transmission in urban areas, and farm
animals being more significant in rural areas. Over the past decade reported outbreaks of lep-
tospirosis have been on the rise [22, 24, 25], with outbreaks occurring in previously unaffected
areas [26, 27]. Evidence suggests that this is driven by climate change and an increase in ex-
treme weather events (particularly flooding), but also urbanisation, poverty and agricultural
intensification [4, 20].

1.2.3 Role of climate on leptospirosis transmission

Leptospirosis is a climate-sensitive disease, with outbreaks of leptospirosis often occurring fol-
lowing heavy rainfall and flooding [4, 19, 20, 24, 26, 27]. There are several different reasons
why extreme precipitation and flooding may increase leptospirosis risk. Firstly, heavy rainfall
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Figure 1.1: Transmission pathway and risk factors for leptospirosis. Leptospires are maintained in the
environment by a wide variety of mammalian reservoir hosts. Humans can acquire leptospirosis through
direct contact with infected animals or animal products, or by indirect contact with a contaminated en-
vironment. The cycle of transmission of leptospirosis is influenced by climatic risk factors (e.g., heavy
rainfall and flooding), community risk factors (e.g., access to sanitation, housing infrastructure and an-
imals in the community) environmental risk factors (e.g., land use) and individual risk factors (e.g., oc-
cupation and contact with contaminated water). This figure has been designed using resources from
Flaticon.com.

provides a suitable environment for leptospire survival [9–12]. Studies have shown that lep-
tospires are able to proliferate in water-logged soil, which mimics the post-flood environment,
but not in soil or water alone [13]. Secondly, heavy rainfall and flooding causes humans to have
more contact with contaminated water, and/or drinking water may become contaminated due
to disruption in sanitation networks. Finally, flooding may disturb the natural habitat of ro-
dents, resulting in closer contact with humans. Rainfall may also result in increased abundance
of rodents, due to increased food sources and optimal reproductive conditions [28]. Further-
more, a previous study in New Caledonia showed that under wet and warm conditions there
was a greater abundance of both rodent species and of Leptospira carriage, leading to increased
environmental contamination and human exposure [29].

Leptospirosis transmission may also be influenced by temperature. Higher temperatures and
humid environments have been shown to prolong Leptospira environmental survival [5, 10, 11].
Human behaviour also changes with temperature. Warmer temperatures may bring humans
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in closer contact with the environment, for example through increases in recreational water
activities or changes in agricultural activities.

Numerous studies have quantified the effect of climate on leptospirosis prevalence and inci-
dence from different regions of the world, including New Caledonia, Fiji, Reunion Island, Brazil,
Argentina, China and Thailand [30–40]. Many of these studies found that rainfall was associated
with increased leptospirosis cases. However, the lags ranged from two weeks to eight months
depending on setting. Several studies also identified a relationship with temperature, with in-
creases in cases associated with higher temperatures, including in Reunion island, Thailand,
Republic of Korea, and Santa Catarina state in Brazil [33, 34, 36, 39]. This association was not
ubiquitous and this relationship was no observed in other regions (New Caledonia, Sao Paulo
in Brazil, and India) [30, 32, 37].

A small number of studies also explored the role of inter-annual variation in climate, such as
El Niño Southern Oscillation (ENSO), on leptospirosis incidence [30, 38, 41]. ENSO is an inter-
annual cycle which arises from changes in sea-surface temperatures in the central and eastern
tropical Pacific Ocean (Fig. 1.2). There are two distinct phases, El Niño and La Niña, and ENSO
events occur every 2-7 years. ENSO influences the climate, including the timing and intensity
of rainfall, in tropical Pacific Islands and elsewhere. Since the effects of ENSO vary globally, the
relationship between leptospirosis incidence and ENSO is likely to vary depending on setting.
One study explored the effect of ENSO on outbreaks of leptospirosis in New Caledonia [30], and
found that La Niña phases were associated with leptospirosis outbreaks.

This climate sensitivity offers the opportunity for the development of climate-based early warn-
ing systems. This can allow public health practitioners to move away from passive disease
surveillance and response, to more active disease prediction and prevention [42]. However,
climate-based early warning systems require a good understanding of the climatic drivers and
transmission mechanisms, as well as robust surveillance data. A previous study demonstrated
how the sea surface temperature in El Niño Box 4 (a region in the Pacific Ocean) could be used
to forecast leptospirosis outbreaks four months in advance in New Caledonia [30]. However,
the implementation and real use of this model has not been documented.

1.2.4 Control measures

The complexity in transmission pathways for leptospirosis is a major challenge for control strate-
gies, especially in remote and poorly resourced endemic areas. As previously described, the
importance of risk factors varies based on setting, therefore, effective disease control relies on
identification and interruption of the main exposure pathways (see Fig. 1.1). Although many
control measures have been proposed, there is limited knowledge of their effectiveness, and
many of these measures are expensive and difficult to implement. The different control mea-
sures can be classified into three broad categories:

1. Reducing burden of disease and infection in humans

Increased public health messaging can reduce the risk of exposure and infection by high-
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Figure 1.2: Niño index regions. Monitoring of El Niño Southern Oscillation (ENSO) typically focuses on
anomalies in sea surface temperature (SST) in four regions of the equatorial Pacific Ocean (Niño 3.4,
Niño 3, Niño 4 and Niño 1+2). El Niño events are characterised by SST anomalies above the threshold of
+0.5°C, whilst La Niña events are characterised by SST anomalies below the threshold of -0.5°C. A three-
month running mean, where anomalies exceed +0.5°C or -0.5°C for at least five consecutive months in
the Niño 3.4 region is the Oceanic Niño Index (ONI), and this is the operational definition used by the
National Oceanic and Atmospheric Administration (NOAA) for an El Niño or La Niña event [43]. The
Niño 3.4 index and the ONI are the most commonly used indices to define an El Niño or La Niña event.

lighting risky behaviours (such as recreational activities in rivers, and keeping livestock
close to dwellings), recommending the use of personal protective equipment during high
risk activities, and the importance of seeking healthcare for symptoms [7, 44, 45]. Im-
proved awareness is also important for clinicians, so that they increase clinical index of
suspicion, have a low threshold for ordering laboratory tests, and start empirical treat-
ment early for clinically suspected cases. Vaccines can also reduce human susceptibility,
thus limiting effective transmission to humans. Current vaccines exist as killed whole-
cell vaccines, and they have been used in high-risk occupation groups, or in response to
floods and epidemics [14, 46], however, use of these vaccines is extremely limited. While
results from vaccine studies have shown a reduction in cases, there are associated side-
effects, and the vaccine only confers short-term serovar-specific prevention [46, 47]. Re-
cent efforts have focused on developing subunit vaccine candidates which may be more
efficacious [47]. Pre- and post-exposure antibiotic prophylaxis are also used to reduce
clinical infection in high-risk groups, however, while reported efficacy is variable and it
is not currently routinely recommended [7, 48, 49], it remains commonly used. Since no
effective vaccine programmes in humans exist, at present prevention is key for reducing
the burden of disease in humans.
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2. Reducing burden of disease and transmission in animals

Transmission in animals can either occur from the environment or from other animals.
Possible control options in animals include vaccination, antibiotic therapy and rodent
control [2]. Rodents are very difficult to control, in part due to their rapid reproduction
rates [50], and there is limited evidence on the efficacy of rodent control with regards to
reduction in leptospirosis cases. Furthermore, in countries such as Fiji where there are
a number of different animal reservoirs, it is unlikely to be as successful. Vaccination is
widely used in cattle, pigs, and dogs, particularly in high income countries. However, it is
limited by the cost, availability, and relevance to the country and animal species. As de-
scribed below, there is much heterogeneity in serovars, and the vaccine needs to include
serovars specific to the region and animal species being targeted. Immunity from vacci-
nation is thought to last up to one year [2]. Currently, due to the cost, animal vaccination
is not available in many Pacific Island countries [7].

3. Reducing environmental contamination

Environmental contamination by leptospires occurs from infected animals. Control op-
tions include limiting leptospire introduction into the environment by improved man-
agement of livestock and rodents; through improved drainage of animal waste and careful
placement of animal pens to avoid water and soil contamination. In addition, improved
flood control would reduce outbreak risk in residential and agricultural areas. Finally,
improved housing infrastructure and sanitation would reduce contamination by rodent
populations [7, 14]. However, these control options are expensive and can be difficult to
implement.

A key challenge for understanding and controlling leptospirosis disease transmission is iden-
tifying, accounting for, and attributing variation in disease risk to multiple interacting compo-
nents in a complex system. One Health recognises that there is an inter-connectedness between
the health of people, animals and the environment we share, and highlights that an integrated,
holistic approach is needed [51]. Therefore, effective control measures are likely to require a
combination of approaches targeting human, animal and environmental health, and involving
interdisciplinary collaborations [52].

1.2.5 Microbiology and classification of leptospires

The genus Leptospira is genetically highly heterogeneous, and knowledge of its genetic diversity
remains incomplete. As such, the taxonomic classification of the genus Leptospira is evolving
and changing. New methods in next generation sequencing have allowed for the identification
of 68 named species [53, 54]. These are proposed to be organised in two clades and four sub-
clades (P1, P2 (pathogenic group 1 and group 2) and S1, S2 (saprophytic group 1 and group 2))
which relates with the pathogenicity level of the species [53–55].

Historically, leptospires were classified into serovars based on the heterogeneity of surface ex-
pressed lipopolysaccharides (LPS). This led to the identification of 25 serogroups and more than
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300 serovars [8, 47]. However, this serological taxonomy does not correlate well with the genetic
taxonomy, and some serogroups contain many different bacterial species [21]. Nevertheless,
this serological taxonomy remains in use today. Different serovars have been found to be as-
sociated with certain animal species (e.g., Hardjo [Leptospira borgpetersenii serovar Hardjo and
Leptospira interrogans serovar Hardjo] is frequently associated with cattle, and Leptospira in-
terrogans serovar Icterohaemorrhagiae and Leptospira borgpetersenii serovar Ballum are fre-
quently associated with rodents), yet these distinctions are not definitive, and there is a lot of
heterogeneity in serovars, even in small island nations [15, 21, 47]. For example, American
Samoa, a small island nation with a population of approximately 55,000 people, has several
different circulating serovars [56]. Since the animal species that may carry these serovars are
different, the transmission routes to humans, and therefore risk factors may be different for
each serovar.

1.2.6 Host immune response following infection

The immune response following Leptospira infection is largely mediated by the humoural re-
sponse [46, 57]. The antibodies produced during infection are predominantly directed against
the surface exposed LPS. Therefore, the immunity generated during infection is limited to the
infecting serovar, or homologous serovars. The acute phase of infection typically lasts for 3-
8 days and is associated with leptospiraemia (Fig. 1.3). The immune stage then follows, and
levels of anti-Leptospira Immunoglobulin class M (IgM) antibodies are detectable, followed by
Immunoglobulin class G (IgG) antibodies [14, 58]. IgM and IgG can continue to be detected at
low levels for months, and even years following infection [17, 59]. Infection does not appear
to be fully immunising, with previous studies demonstrating that reinfection does occur [60–
63]. However, the duration of protective immunity conferred following Leptospira infection is
largely unknown. Typically, reinfections occur with a different Leptospira serogroup, and rein-
fection appears to result in milder clinical disease [60, 61]. This suggests some degree of cross-
reactive protective immunity between serovars. However, severe disease following reinfection
with the same serovar has been reported [63].

1.2.7 Diagnostic testing

There are numerous laboratory tests for the diagnosis of leptospirosis [5, 14, 16, 17, 64–68] and
these are summarised in Table 1.1. However, the diagnosis of leptospirosis remains a challenge,
particularly in low- and middle-income countries. Firstly, it requires clinicians to suspect lep-
tospirosis, and, since symptoms can resemble other acute febrile illnesses such as malaria and
dengue fever, it is often misdiagnosed or untreated. Secondly, the laboratory tests are not al-
ways available, and there is variable sensitivity and specificity, and so accurate and timely di-
agnosis remains a challenge. Together, these lead to an under-reporting of leptospirosis [1, 14].
Broadly, the diagnostic tests can be categorised into: (i) polymerase chain reaction (PCR), which
detects Leptospira DNA in the blood, (ii) isolation of leptospires in culture, and (iii) detection
of specific antibodies (for example, the microscopic agglutination test (MAT) or the enzyme-
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Figure 1.3: Schematic representation of the levels of Leptospira in the blood and titres of anti-Leptospira
Immunoglobulin class M (IgM) and Immunoglobulin class G (IgG) antibodies following Leptospira in-
fection, and the implications this has for the timing and suitability of diagnostic tests. The yellow line
indicates the presence of leptospiral antigen and DNA in the blood; the blue line indicates the titre of
anti-Leptospira IgG antibodies; the red line indicates the titre of the anti-Leptospira IgM antibodies. Fig-
ure developed using information from multiple sources [16, 58, 64].

linked immunosorbent assay (ELISA)). The time at which tests can be conducted varies, as
shown in Fig. 1.3. If the antibody-specific tests are done too early, this can lead to false-
negatives as antibody levels have not yet risen. If blood for the DNA or antigen-based tests
is taken too late, or following administration of antibiotics, this can also cause false negatives.
Cross-reactivity and previous infections can also lead to false positives from antibody-based
tests. Finally, there is considerable heterogeneity in the rise and timing of the peak antibody
titre between individuals [59, 69], as well as the waning of antibody response, making antibody
titres difficult to interpret.

1.2.8 Leptospirosis in Fiji and the South Pacific

Fiji, a nation in the South Pacific Ocean, comprises over 330 islands and is classified by the
United Nations as a small island developing state [74] (Fig. 1.4). The two biggest islands are Viti
Levu (where most of the population resides) and Vanua Levu, and together they make up 87% of
the total land area in Fiji. The population size in 2017 was 884,887 [75], and it is estimated that
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90% of the population in Fiji are coastal dwellers [76]. Indigenous Fijians (iTaukei) and Indo-
Fijians (Fijians of Indian descent) account for 57% and 35% of the population, respectively. The
largest administrative units are Divisions (Central, Western, Northern and Eastern) followed by
Provinces (14 in total).

A systematic review found that Oceania had the highest per capita leptospirosis morbidity (150.68
cases per 100,000 per year), mortality (9.61 deaths per 100,000 per year) [1], and disability-
adjusted life years (DALY) in the world [77]. This may be an under-estimate of the true burden
of disease, as access to testing is limited in Fiji and elsewhere in the Pacific, and cases are likely
to be misdiagnosed [4, 22], as discussed above. The case definitions for suspected, confirmed,
and probable cases in Fiji are shown in Fig. 1.5.

Leptospirosis is endemic in Fiji and has been identified as one of the four priority climate-
sensitive diseases of major public health concern [78]. In addition to endemic transmission,
frequent outbreaks of leptospirosis occur, usually following flooding events. The frequency and
intensity of outbreaks in Fiji appear to be increasing. In 2012, two severe flooding events led
to the largest outbreak of leptospirosis reported in the Pacific region at that time, with several
hundred cases and 44 deaths. There were 576 suspected cases in 2012, however, Togami et al.
[79] estimated the total suspected number of cases to be as high as 1,217 (314 probable or con-
firmed). More recently, outbreaks are larger in size with over 3,500 cases reported so far in 2022.
In addition, the number of reported deaths has increased, although case fatality is lower with
higher survival rates from intensive care reported (personal communication with local health
ministry).

Previous serosurveys conducted in Fiji have suggested that the number of reported cases is
likely to be much lower than the number of true infections occurring. A serological survey con-
ducted in Fiji in 2013 included 2,152 participants across 81 communities from the three main
islands, and the overall seroprevalence in Fiji was estimated to be 19.38% [22]. Leptospira inter-
rogans serovar Pohnpei was the most common serovar circulating in Fiji, accounting for 84.2%
of positive MAT tests. Another serosurvey conducted in 1982 [76] tested 300 individuals from
Fiji, and 55.3% of individuals were found positive using the MAT. In addition to human testing,
five animal serological surveys have been conducted in Fiji [15, 80–83]. In total, 11 different
animal species in Fiji have been identified as hosts for leptospirosis, with 19 different serovars
circulating. This shows that leptospirosis is common in a wide range of animals in Fiji, with
prevalence found to be as high as 85% in horses and 73% in cattle [81]. Given the number of
different animal hosts and circulating serovars, it is likely that there are a number of different
transmission routes, and these differ across the country depending on setting (e.g., urban, peri-
urban and rural).

A number of risk factors associated with leptospirosis infection have been identified in Fiji.
These include individual risk factors (e.g., working outdoors, male sex and iTaukei ethnicity),
community risk factors (e.g., lack of treated water at home, living in rural areas, high poverty
rate, living less than 100m from a major river, pigs in the community and high cattle density),
and climatic factors (high maximum rainfall in the wettest month) [22, 84]. Further analysis of
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the seroprevalence data showed there is significant heterogeneity in risk factors between eth-
nic groups and residential setting, and that multiple animal species are thought to be impor-
tant in Fiji [85]. For example, for iTaukei, contact with rodents and mongooses were strongly
associated with leptospirosis. While for Indo-Fijians household exposure to livestock was more
important with very few reported contact with rodents or mongooses. In urban settings, ex-
posure to livestock was associated with infection. This is hypothesised to be a result of closer
contact between animals and humans in urban areas compared with rural areas [85]. Further-
more, significant geographical variation in the relative importance of different environmental
and sociodemographic factors has been shown within Fiji, despite its small geographical size
[86].

Figure 1.4: Map of divisions within Fiji. There are four divisions in Fiji: Central, Eastern, Northern and
Western. The capital city Suva is located in the Central division. The two biggest islands are Viti Levu and
Vanua Levu.
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Figure 1.5: Case definitions for suspected, probable, and confirmed cases in Fiji. MAT, microscopic
agglutination tests; ELISA, enzyme-linked immunosorbent assay; PCR, polymerase chain reaction. As of
December 2015, none of the confirmatory tests were available in Fiji. Adapted from [66].
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Table 1.1: Summary, advantages and disadvantages of the various diagnostic techniques used for the
detection of leptospirosis [14, 16, 58, 64, 68, 70–72]. Partially reproduced from [73]. MAT, microscopic
agglutination test; ELISA, enzyme-linked immunosorbent assay; PCR, polymerase chain reaction; IgG,
Immunoglobulin class G; IgM, Immunoglobulin class M; CSF, cerebrospinal fluid.

Diagnostic
test

Description Advantages Disadvantages

MAT Patient serum is incubated
with live antigen leptospires.
Agglutination then occurs,
which is detected using dark-
field microscopy. Live antigen
leptospires are diluted se-
quentially, and the highest
dilution in which 50% agglu-
tination occurs is recorded.
IgG and IgM antibodies can
be detected using dark field
microscopy.

• ‘Gold standard’ test,
due to high speci-
ficity and ability to
distinguish between
serogroups

• Requires maintenance of a
panel of live leptospires

• It can be time consuming and
difficult to interpret the results

• Requires the correct selection
of Leptospira serovars on the
panel

• Cross-reaction between differ-
ent serogroups may occur

• It can only be performed at
certain reference laboratories

• May be negative in the first 5-7
days

ELISA Detection of antibodies (usu-
ally IgM) in patient serum us-
ing a broad-spectrum of anti-
gens expressed by pathogenic
Leptospira spp..

• More sensitive than
MAT during the acute
phase of the illness,
and therefore may
detect infection earlier
than the MAT

• It is easy to perform
and results are rapidly
available

• Not serovar-specific and de-
tects both pathogenic and
non-pathogenic Leptospira
spp.

• Sensitivity and specificity vari-
able

• May still get negative results
during the early stages of in-
fection

PCR Amplification of specific
parts of Leptospira DNA from
serum, plasma or urine.

• Provides rapid diagno-
sis before antibodies
have risen to detectable
levels

• Expensive to perform and may
provide false positives

• Not serogroup specific

Culture Blood, CSF, urine or tissue are
inoculated in culture medium,
and leptospire growth is mea-
sured using dark field mi-
croscopy.

• Provides definitive di-
agnosis

• Leptospires are slow growing,
and so long turn around times

• Low sensitivity

Rapid
diag-
nostic
test

Several different tests, which
provide rapid detection of IgM
(such as indirect hemaggluti-
nation test, latex agglutination
assays, lateral flow assays and
IgM Dipstick assays).

• Easy to perform and re-
quires minimal equip-
ment

• Cost-effective
• Provides rapid results

• Not serogroup specific
• Variable sensitivity and speci-

ficity
• Requires confirmation via a

reference test such as MAT for
definitive diagnosis

13



Chapter 1: Introduction

1.3 Seasonal human coronaviruses (HCoVs)

The second disease case study in this thesis is Seasonal human coronaviruses (HCoVs), another
example of a complex disease system. Seasonal HCoVs are a common cause of acute respiratory
infections. Infection usually results in mild or asymptomatic disease; although infection has
been shown to be associated with more severe outcomes (such as pneumonia, bronchiolitis
and croup), particularly in the very young, the elderly and immunocompromised individuals
[87, 88]. They tend to be co-detected with other respiratory infections and are thought to be
responsible for 15-30% of respiratory infections each year [89, 90]. Globally, approximately 10%
of upper and lower respiratory tract infections in hospitalised children are caused by seasonal
HCoVs [91–93].

Coronaviruses are enveloped viruses with a single-strand RNA genome [89]. There are four
circulating seasonal human coronaviruses: two alpha coronaviruses (HCoV-NL63 and HCoV-
229E) and two beta coronaviruses (HCoV-OC43 and HCoV-HKU1). HCoV-OC43 and HCoV-
229E were first identified in the 1960s, but HCoV-NL63 and HCov-HKU1 were not identified
until 2004 and 2005 respectively, as a result of heightened interest in HCoVs following the emer-
gence of Severe Acute Respiratory Syndrome Coronavirus 1 (SARS-CoV-1) in 2002 [89, 93–96].
Coronaviruses are composed of four structural proteins, including spike, envelope, membrane
and nucleocapsid proteins. The spike protein is composed of two subunits: S1 which contains
the receptor-binding domain and is responsible for binding to host cell receptors, and S2 which
mediates viral and host cell membrane fusion and cell entry [97, 98].

Seasonal HCoVs are endemic in human populations and have a global distribution. There is
marked seasonality in temperate sites (with the exception of China), with cases more com-
monly occurring in winter months, whilst in tropical sites and China transmission tends to be
less seasonal [99, 100]. Seasonal HCoVs are primarily transmitted from human to human via
respiratory particles, close personal contact, and indirect transmission through fomite contact.
Transmission is higher in children and adolescents [101], most likely due to the close social con-
tact patterns between these groups and lack of pre-existing immunity [98]. First infection with
seasonal HCoVs has been found to occur in early childhood, with HCoV-NL63 and HCoV-229E
seroconversion occurring on average before 3.5 years [102].

1.3.1 Emerging human Coronaviruses

Three human beta coronaviruses have emerged in the last 20 years which can cause much more
severe disease in humans. SARS-CoV-1 emerged in 2002 and spread rapidly before being con-
tained in 2003, resulting in over 8,000 cases and 774 deaths [103]. Conversely, Middle Eastern
Respiratory Syndrome Coronavirus (MERS-CoV) emerged in 2012, and continues to cause spo-
radic outbreaks, but has not shown sustained community transmission [104]. Finally Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged in 2019 [89]. SARS-CoV-2
was declared a pandemic by the World Health Organization (WHO) on 11th March 2020 [105],
and has had a devastating impact, resulting in over 500 million cases and 6.2 million reported
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deaths globally as of June 2022 [106].

1.3.2 Host immune response following seasonal HCoV infection

Given the mild clinical disease and low case fatality rate, relatively little research has been con-
ducted on seasonal HCoVs, and as such relatively little is known about the adaptive and innate
immune response following seasonal HCov infection. Following exposure to seasonal HCoVs,
naive B-cells specific to the spike protein differentiate either into plasma cells that produce
strain-specific cross-reactive antibodies, or memory B-cells. Upon subsequent exposure to
HCoVs or SARS-CoV-2, these memory B-cells generate antibodies to mitigate infection [98].
Experimental and natural infection studies have shown that approximately one week post in-
fection antibodies begin to rise rapidly, reaching a peak after two weeks, and then returning
to baseline levels by four months to one year [107–109]. Furthermore, a positive correlation
was found between antibody levels following infection and severity of clinical manifestation
and viral shedding, with more severe cases associated with substantial rises in antibody titres
post-infection [108]. There is some evidence that cellular immunity may also have a role in
SARS-CoV-1, MERS-CoV and SARS-CoV-2 infection, and therefore it may also be involved in
seasonal HCoVs, however questions remain regarding the exact role and importance [110–113].
Together, the antibody-mediated immunity and cell-mediated immunity form the adaptive im-
mune response, which ideally results in longer term protection.

1.3.3 The duration of immunity following seasonal HCoV infection

The duration of immunity to seasonal coronaviruses is largely unknown. Two human challenge
studies found evidence that reinfection could occur within a year [107, 114]. Evidence from co-
hort and community-based surveillance studies are mixed. Several studies found evidence that
reinfections occur within one year [115–118]. Two of these studies also observed reinfections
with the same strain within one year [117, 118], and this usually resulted in less severe symp-
toms with the second infection [117]. In contrast, a three-year cohort study found that reinfec-
tion within a year only occurred with a different strain [116]. This study also found that there
were only eight reinfection events (from 216 confirmed first infections), which may suggest
longer lasting immunity. Finally, although Edridge et al. [115] reported reinfection within one
year, the average reinfection time was found to be 30 months. However, care should be taken
with the interpretation of cohort and community-based surveillance studies as background ex-
posure rates are not known and this will influence the reinfection patterns observed.

1.3.4 Cross-reactivity and cross-protection between HCoVs and SARS-CoV-2

A systematic review found some evidence of cross-reactivity that occurred within alpha strains
(HCoV-229E and HCoV-NL63) and beta strains (HCoV-OC43 and HCoV-HKU1), but minimal
reactivity between alpha coronaviruses and beta coronaviruses [94]. However, it is not clear
how cross-reactivity equates to cross-protection. In addition, there is evidence of the presence

15



Chapter 1: Introduction

of pre-existing antibodies against SARS-CoV-2 in uninfected individuals, suggesting cross re-
activity between SARS-CoV-2 and other HCoVs, particularly in children and adolescents [119,
120]. This has been proposed as a hypothesis to explain why in general children, who have
higher HCoV infection rates, experience less severe disease as a result of COVID-19 infection
[98].

1.4 Tools for investigating infection transmission drivers and
dynamics

There are many different types of computational models that can be used to understand the
drivers and transmission dynamics of infectious diseases. It is possible to distinguish between
phenomenological (i.e. statistical) and mechanistic (i.e. transmission dynamic), and the deci-
sion regarding which model to use depends upon the question of interest. Statistical models
aim to understand how variables are associated with each other, not why they behave that way.
These models can be particularly useful when the causal relationships underlying disease trans-
mission are not yet fully understood [121]. In contrast, mechanistic models aim to understand
how parameters and variables impact other variables, and they can allow for the inclusion of ex-
plicit hypotheses about the biological mechanisms driving transmission [122, 123]. Keeling and
Rohani [122] defined a good model to be both suited to its purpose (that is, as simple as possible,
but no simpler) and parameterizable by available data. Models are limited by a balance between
predictive accuracy (ability to reproduce observed patterns of infection), transparency (clarity
of the role and impact of the model and its components) and flexibility (ability to be adapted to
new situations) [122]. In this thesis I explore two types of infectious disease models, statistical
models and compartmental mechanistic models (including both “SIR” (“Susceptible Infected
Recovered”) compartmental models and catalytic models), and further details regarding these
models is provided below.

1.4.1 Statistical models

Statistical models can be used to describe the relationship between observed cases (response
variable) and explanatory variables and this can allow for extrinsic drivers of disease transmis-
sion to be explored. For climate-sensitive diseases, such as leptospirosis, these models can
be particularly useful to investigate climate drivers and can be used to explore multiple differ-
ent risk factors and quantify the risk. Statistical models can either be classified as fixed effect,
where all the parameters are fixed, or mixed effect, which contain both fixed and random effects
[124]. These random effects can account for unobserved or unaccounted for heterogeneity in
the model. An example of a statistical model is the generalised linear model (GLM), which is
a flexible generalisation of ordinary linear regression, and its extension, the generalised linear
mixed model (GLMM) which includes both fixed and random effects. These models can be for-
mulated within a Bayesian framework, which can quantify the uncertainty (discussed further
below).
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1.4.2 Application of statistical models for leptospirosis

Numerous previous studies have used statistical models to understand leptospirosis epidemi-
ology and risk factors, and in particular, the role of climate on leptospirosis cases. The results
of many of these studies have been discussed in section 1.2.3, “Role of climate on leptospirosis
transmission”.

There have been a range of different models used, including spatial, temporal and spatio-temporal
models. A recent systematic review published in 2018 identified 51 studies which modelled
the relationship between various risk factors (i.e. environmental risk factors such as land use
and flood risk, and climatic risk factors such as precipitation) and leptospirosis incidence and
prevalence in humans, animals, or both [35]. Many different data sources were used in these
models. Several spatial models used cross-sectional seroprevalence data [31, 35]. The advan-
tage of seroprevalence data is the provision of a cross-sectional representation of the spatial risk
factors, which can be useful for understanding the role of environmental risk factors, such as
the presence of floodplains. However, it does not capture temporal risk factors, and so is less
suited to exploring the role of climate and acute events (e.g., flooding) on leptospirosis cases.
Other models use routine surveillance data, which is limited by the surveillance systems and
testing and reporting practices established in the given setting and is subject to fluctuations in
these practices over time. Since leptospirosis burden is often high in under-resourced settings,
surveillance data in many countries can be limited, particularly given these countries may also
experience coinciding outbreaks of other diseases such as dengue, which have similar clinical
manifestations. To avoid the limitations with surveillance data, some studies instead focussed
on hospital admissions [125], which is likely to accurately capture the most severe cases. How-
ever, given that leptospirosis is often asymptomatic or mildly symptomatic, hospital admissions
will only capture a fraction of the true cases. It is known that some serovars are associated with
higher pathogenicity, and that the transmission processes may likely vary due to animal host as-
sociations. Therefore hospital admissions may not be representative of all risk factors. Finally,
one study instead explored the syndromic surveillance system [126], the early warning, alert,
and response system (EWARS), which was developed by the WHO to improve disease outbreak
detection. The study demonstrated an association between six EWARS syndromic conditions
that are commonly associated with leptospirosis, typhoid and/or dengue, and meteorological
data (seasonality and rainfall). They suggest that it may be possible to predict outbreaks of
climate-sensitive diseases using EWARS data, allowing time to adjust diagnostic capabilities
and treatments.

1.4.3 Compartmental mechanistic models

Compartmental “SIR” models

One of the most common dynamic transmission models is the mechanistic compartmental
“SIR” model, where a population is divided up into compartments based on their transmission
status [123, 127]. One of the simplest forms of this model is the “”SIR” model (Fig. 1.6). These
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models are often deterministic, in which the same results are always obtained from a given set
of parameters, and the rate of flow between these compartments is typically determined by a
series of ordinary differential equations.

dS(t )
d t

=°∏(t )S(t ) =°ØS(t )I (t ) (1.1)

dT (t )
d t

=∏(t )S(t )°∞I (t ) (1.2)

dR(t )
d t

= ∞I (t ) (1.3)

The number of susceptible individuals who are newly infected per unit time is the product of
the force of infection (∏) and the number of susceptible individuals at time t, S(t). If we assume
random mixing, the force of infection (∏) can be replaced by the product of Ø, which is the
rate at which two individuals come into effective contact per unit time, and I(t), which is the
number of infectious individuals at time t. Individuals are assumed to remain infectious for a
constant amount of time, and ∞ is the rate at which individuals recover and become immune.
This simple model makes several simplifying assumptions, such as that random mixing occurs,
that individuals are infected for the same duration of time, and that they are equally infectious.
These models can be extended to address these assumptions.

Depending on the disease system, compartmental models can be divided into further com-
partments, for example, including a latent period (time between the infection event and in-
fectiousness) or additional age categories, or in the case of zoonotic diseases, the inclusion of
both humans and animal reservoirs [128, 129]. A schematic representation of a leptospirosis
compartmental is shown in Fig. 1.7, which includes humans, animals and the environmental
leptospires.

Figure 1.6: Schematic of a Susceptible (S) - Infected (I) - Recovered (R) compartmental model. ∏: force
of infection; ∞: rate at which individuals move from the infected to recovered compartment.

Application of compartmental “SIR” models for leptospirosis

There have been a number of compartmental “SIR” models developed and used to explore lep-
tospirosis transmission dynamics. These have been systematically reviewed in Chapter 5 and so
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will only briefly be discussed here. The majority of previous compartmental leptospirosis mod-
els have been theoretical (i.e. exploring thresholds for disease elimination or endemic equilib-
rium), with only a handful of studies calibrating or fitting their model to data [130–136]. Most
studies chose to focus on particular elements of the transmission pathway, and only two stud-
ies considered the whole transmission system [133, 137]. Chadsuthi et al. [133] fitted their
transmission model to human case data from Thailand, along with local climate information.
They found that a model in which the transmission rate depended on both flooding and tem-
perature best explained the human data observed. This study highlights that by incorporating
information on the transmission processes, as well as the role of climate, can allow for a greater
understanding of the transmission dynamics. This can allow for more accurate predictions of
outbreaks and an improved understanding of the interventions most likely to be successful.
Overall, however, most of the studies did not consider the environmental reservoir within their
models despite being a major source of transmission to humans. Furthermore, the role of cli-
mate on transmission was rarely considered. This highlights the need for more data-driven
modelling, and for more models which consider the full transmissions process within a One
Health framework.

Catalytic models

Another type of compartmental model is the catalytic model [123, 138]. The catalytic model
differs from the mechanistic compartmental “SIR” model as instead of explicitly describing the
transmission between individuals (i.e. expressing the force of infection in terms of the number
of infectious individuals and a transmission parameter), the catalytic model assumes that indi-
viduals are infected at a constant rate. They were first proposed by Muench [139], and the term
catalytic stems from the similarity to the processes that drive chemical reactions. In its simplest
form, the catalytic model assumes that the population is divided into two states, “susceptible”,
s(a) and “infected”, z(a), and individuals are infected at a given rate per year, the force of in-
fection (FOI), ∏. Once infected, individuals recover and remain immune. If a disease is fully
immunising, as is the case for pathogens like measles, then seroprevalence would be expected
to accumulate over time, and therefore with age. However, for diseases which are not fully im-
munising, such as leptospirosis and seasonal HCoVs, individuals serorevert, and this is marked
by the progressive loss of protective antibodies over time. The catalytic model can be extended
to allow for waning immunity and for previously infected individuals to become susceptible
once more (reverse catalytic model; Fig. 1.8). The rate at which antibody prevalence declines
over time can be estimated as the waning rate, !. The expressions for both the catalytic and
reverse catalytic model are shown below.

The catalytic model follows individuals from birth and assumes that there is a life-long constant
FOI, ∏, which is independent of age (a) and calendar year.

The differential equations for the catalytic model are as follows:

d s
d a

=°∏s(a) (1.4)
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d z
d a

=∏s(a) (1.5)

Where a is age, s(a) is the proportion susceptible and z(a) is the proportion ever infected.

The differential equations can then be solved, and the rate of change in the proportion of indi-
viduals who are infected z(a) with age can be written as follows:

z(a) = 1°e°∏a (1.6)

where ∏ is the FOI and a is age and assumes that all individuals are born susceptible, z(0) =
0.

The reverse catalytic model assumes that antibody prevalence declines over time, at a rate !.
The expression for the proportion of individuals age a who are seropositive, z(a), in the reverse
catalytic model is as follows:

z(a) = ∏

∏+! (1°e°a(∏+!)) (1.7)

where∏ is the FOI,! is seropositivity waning rate and a is age, and z(0) = 0. Both models assume
the mortality rates for susceptible and infected individuals are the same.

The assumption that the FOI is the same for all age groups and over time may not always hold
true. For example, for respiratory infections, the FOI may be higher in younger age groups due
to increased intensity in social contacts in these age groups. Likewise, the FOI may change
over time, either due to large outbreaks or the introduction to interventions such as vaccina-
tion. Therefore, to account for these, numerous studies have adapted the catalytic model to
allow for age and time-varying FOI [123, 140, 141]. Generally, catalytic models are fitted to
cross-sectional seroprevalence data broken down by age, as this can provide information on
the populations who have evidence of prior exposure.

Application of catalytic models for leptospirosis and seasonal HCoV

Although there are many examples of catalytic models applied to infectious diseases (including
measles [142], rubella [143], malaria [140], trachoma [141] and dengue [144]), a literature search
did not reveal any previous studies applying this class of model to leptospirosis. Furthermore,
to the best of my knowledge, there has been one previous study which applied catalytic models
to seasonal HCoV. Huang et al. [94] presented a simple catalytic model combining data from six
seroprevalence studies, which assumed no waning immunity and a constant FOI. This model
was the starting basis of the analysis I present in Chapter 4.
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1.4.4 Fitting models to data

Advances in computational capabilities and the field of infectious disease modelling have en-
abled the development of more complex models, and for these models to be fitted and informed
with real world data. Model parameters can be estimated from data using a wide range of tech-
niques. Bayesian methods are commonly used for model fitting, such as Markov chain Monte-
Carlo (MCMC) [140,141], and these allow for the inclusion of external information from previ-
ous studies using prior distributions. This relies on Bayes theorem, where the posterior distri-
bution, p(µ|data), is proportionate to the likelihood of the data given the model parameters µ
(p(data|µ)) multiplied by the prior information on µ (p(µ)):

p(µ|d at a) / p(d at a|µ)p(µ) (1.8)

In this thesis I have assumed that surveillance data follows a Negative Binomial distribution.
The Negative Binomial distribution can be used for count data which exhibit overdispersion
as it relaxes the assumption of the Poisson distribution that the mean and variance are equal
[145]. When fitting models to seroprevalence data I assumed that this data followed a Binomial
distribution.

MCMC is a commonly used method to sample from the posterior distribution when the analyt-
ical form of that distribution is not known, and generates estimates of the parameter distribu-
tions. MCMC methods involve proposing initial parameter values and drawing samples from
the approximate distribution. The parameters are updated based on the sample and accepted
or rejected based on the likelihood. These parameters are then updated using an iterative pro-
cess until the parameter estimates converge. Two of the most common MCMC sampling algo-
rithms are Metropolis-Hastings and Gibbs sampling. An example of the Metropolis-Hastings is
presented below:

1. An initial value of µ is chosen (µ0 = µt°1 ) as the "current" sample

2. A new sample µ’ is proposed from the “proposal distribution” g (µ0|µt°1)

3. Accept or reject the proposed sample µ’ with a probability:

P Accept = mi n(1,
p(µ0|d at a)/g (µ0|µt°1)

p(µt°1|d at a)/g (µt°1|µ0)

If µ’ is rejected, use the current sample as a new sample instead.

4. Steps 2 and 3 are repeated until convergence.

Gibbs sampling is a special case of the Metropolis-Hastings algorithm where proposals are al-
ways accepted with a probability of one. The Gibbs sampler draws iteratively from posterior
conditional distributions, with each current draw depending on the previous draw [146]. One
of the challenges with MCMC is assessing when the MCMC chains have converged, as one
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needs to ensure that the full parameter space has been sampled. There are a number of dif-
ferent convergence diagnostics that can be used, such as the effective sample size (ESS) and the
Gelman-Rubin diagnostic [147].

An alternative approach for Bayesian inferences is Integrated Nested Laplace approximation
(INLA) [148]. INLA provides a computationally more efficient alternative to MCMC methods,
by using numerical approximations of model parameters. This can be particularly useful when
comparing multiple models, for example a range of different climatic variables with different
lags.

When there are multiple candidate models, model selection criteria can be used to distinguish
between different models. Information criterion aim to balance goodness of fit of the model
with model complexity (number of parameters), and therefore aims to balance the risks of over-
fitting and underfitting [149]. The Akaike information criterion (AIC) is the most widespread
information criterion, and is defined as,

AIC =°2L+2k

Where k is the number of parameters within the model and L is the log-likelihood. The Widely
Applicable information criterion (WAIC) is a generalised version of the AIC and is a Bayesian
approach for estimating the out of sample expectation which uses the full posterior distribution
[149, 150]. The WAIC is defined as,

W AIC (y,µ) =°2(l ppd °
X

i
varµl og p(yi |µ)

Where y is the observations, µ is the posterior distribution and lppd is the log-posterior-predictive-
density.

Model performance can also be assessed using cross-validation. Cross-validation leaves out
small chunks of observations, and then assesses the model’s ability to accurately predict the
observations that were left out, after training on all the other data. This is repeated with all the
data, to obtain an estimate of out of sample accuracy. Often, only a single observation is left
out, and this is referred to as the leave-one-out cross-validation (LOO-CV). However, this pro-
cess can be computationally intensive, and therefore approximations exist, such as the Pareto-
smoothed importance sampling (PSIS) cross-validation, also known as PSIS-LOO.
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Figure 1.7: Schematic representation of a leptospirosis compartmental model. Humans can become in-
fected either indirectly via the environment (L) or directly via an infected animal (S A). Once infected,
humans move from susceptible (SH ) to latently infected (EH ), to infected (IH ) and finally to recovered
(RH ). Once recovered they lose immunity at a waning rate and return to the susceptible compartment,
where they can once more become infected. Animals are infected either from the environment (indirect)
or from another infectious animal (direct). Once infected they move from susceptible (S A), to infected
(I A) and finally to recovered (RA). This model assumes that there is no waning immunity due to the
shorter animal lifespan. Infected animals release leptospires (L) into the environment. Once in the en-
vironment they decay based on a decay rate. While in reality there are many different animal hosts,
this theoretical model is based on cattle given they are thought to be one of the predominant sources of
infection to humans in Fiji.

Figure 1.8: Schematic of a reverse catalytic model. ∏, force of infection; !, waning of immunity.
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1.5 Aim

The overall aim of this thesis is to understand the complex drivers of infectious disease trans-
mission dynamics using two different diseases as case studies, leptospirosis and seasonal HCoV.

This aim will be addressed with the following objectives:

1. Identify hydrometeorological indicators influencing leptospirosis incidence in Fiji and
how these vary over geographical space and temporal scale, moving towards a climate-
based early warning system for leptospirosis.

2. Understand the infection dynamics of leptospirosis by estimating the duration of anti-
body persistence from a large cross-sectional serosurvey, and estimate the most likely
timing of infection.

3. Estimate the duration of antibody persistence and age-varying infection risk using sero-
catalytic models with data from six seroprevalence studies covering four seasonal HCoVs.

4. Identify existing compartmental models of zoonotic diseases with environmentally per-
sistent pathogens to provide insights for the future development of compartmental trans-
mission models which include the transmission process within a One Health framework.

1.6 Structure of this thesis

This thesis is written in a research paper style, where each analysis chapter takes the form of a
scientific paper that has been published or is in the process of submission. This introductory
chapter provides the relevant background for leptospirosis, seasonal HCoV, and the different
mathematical models that can be applied to understand transmission drivers and dynamics.
The thesis then contains four results chapters, which are described below, followed by an overall
discussion. A summary of leptospirosis transmission and how Chapters Two and Three relate
to this, is described in the schematic diagram Fig. 1.9.

Chapter One: Quantifying the relationship between hydrometeorological indicators and lep-
tospirosis incidence in Fiji: a modelling study.

This chapter addresses objective one. It uses a Bayesian mixed-effects model to explore dif-
ferent climatic drivers (including rainfall, temperature and ENSO indicators) of leptospirosis
outbreaks in Fiji from 2006-2017 using surveillance data. This paper also explores how these
climatic drivers vary over temporal scale and over geographic space. The results provide a
greater understanding of the role of climate in Fiji, allowing for more targeted public health
approaches, as well as moving towards the development of a climate-based early warning sys-
tem.

Chapter Two: Estimating the duration of antibody positivity and likely timing of Leptospira
infection using data from a cross-sectional serological study in Fiji.
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This chapter was published in PLOS NTD in 2022, Rees et al. [73], and addresses objective
two. It describes a reverse catalytic model used to estimate the duration of Leptospira antibody
persistence from a cross-sectional seroprevalence survey. This has important epidemiological
and clinical significance since it can provide insights into the frequency of reinfections and the
level of under-reporting, and allow for improved interpretation of leptospirosis serosurveys.
In addition, this paper also estimates the most likely timing of infection from the serosurvey
by bringing in longitudinal information on antibody kinetics. This provides new insights from
serology data, and may be particularly useful in resource-limited settings.

Chapter Three: Estimating the duration of seropositivity of human seasonal coronaviruses
using seroprevalence studies.

This chapter was published in Wellcome Open Research in 2021, Rees et al. [151], and addresses
objective three. It describes a reverse catalytic model used to estimate the duration of seropos-
itivity of seasonal HCoVs from six cross-sectional seroprevalence surveys covering the four dif-
ferent circulating seasonal HCoVs. This model was extended to allow for age-variation in risk.
The results from this study provide insights into the transmission dynamics of seasonal HCoVs.
Furthermore, the duration of antibody persistence and reinfection was largely unknown for
SARS-CoV-2 at the beginning of the pandemic, therefore, since seasonal HCoVs have been cir-
culating for much longer, they offered insights into the reinfection patterns of this group of
diseases.

Chapter Four: Transmission modelling of environmentally persistent zoonotic diseases: a
systematic review.

This chapter was published in Lancet Planetary Health in 2021, Rees et al. [152], and addresses
objective four. This chapter details the results from a systematic review which critically ap-
praises compartmental transmission models of zoonotic diseases with environmentally persis-
tent pathogens. Previous studies that had modelled these complex pathogens were reviewed,
with a particular focus on how the environmental reservoir was included and accounted for.
In addition, the different model structures and the data that was used were highlighted. Key
themes and best practices were identified, as well as areas for improvement.
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Figure 1.9: Schematic of transmission pathways and risk factors for leptospirosis including the way in
which climate impacts transmission. Climatic factors (including rain, flooding and temperature) impact
both the survival of the pathogen in the environment and indirect contact of humans with contaminated
water or soil (e.g., flooding leads to disruption of sanitation networks). The role of climate on leptospiro-
sis transmission is explored in Chapter two. Humans can also become infected by direct contact with
a contaminated animal. Once infected, humans may be symptomatic or asymptomatic. Of those that
are symptomatic, approximately 10% will develop severe disease and/or hospitalisation. Symptomatic
individuals may be captured by the surveillance system, and this is dependent on whether someone re-
ports to health care (which will depend on disease severity) and the diagnostic capabilities of the setting
(including whether or not leptospirosis is clinically suspected). Leptospirosis surveillance data is used in
Chapter two. Seroprevalence data instead captures individuals who have evidence of a past Leptospira
infection, and so captures both asymptomatic and symptomatic individuals, and this data was used in
Chapter three.
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2
Quantifying the relationship between

hydrometeorological indicators and
leptospirosis incidence in Fiji: a

modelling study

Climate variables, such as precipitation and temperature, can modulate and increase the risk of
leptospirosis transmission via multiple pathways [1, 2]. Climate can impact the pathogen itself,
(i.e. providing suitable temperatures for survival in the environment) [3], but also can affect hu-
man exposure to infection [4]. This may be through heavy rainfall and flooding events bringing
people and animals into contact with contaminated water, or due to human behavioural fac-
tors, such as heat-related changes in recreational and agricultural activities. In Fiji, leptospirosis
is endemic, with outbreaks often occurring following heavy rainfall and flooding events. How-
ever, the relationship between climate and cases has not been well quantified. Therefore, the
aim of this study was to explore the role of climate on leptospirosis incidence in Fiji using a
Bayesian hierarchical mixed model framework. I also explored how these climate indicators
varied over geographical space and temporal scale. I had access to daily case data and this of-
fered the opportunity to explore the impact of aggregating cases to different temporal scales.
Studies often use monthly case data since publicly available surveillance data and gridded cli-
mate products are often only available at this resolution. I explored the impact of using aggre-
gated data on model outputs, and the implications of this for public health policy. Furthermore,
understanding the climatic drivers of leptospirosis cases is a necessary first step towards the de-
velopment of a climate-based early warning system, which could allow for more targeted public
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health approaches.

The supplementary material of the paper is included as Appendix B.
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2.1 Abstract

Background

Leptospirosis is a zoonotic disease which occurs globally, particularly in tropical and subtrop-
ical regions. Leptospirosis is endemic in Fiji, with cases occurring year round and frequent
sporadic outbreaks. These outbreaks often coincide with periods of heavy rainfall and flooding.
However, the relationship has not yet been well characterised in the South Pacific. In this study,
we quantify the effects of different hydrometeorological indicators on leptospirosis incidence
in Fiji, using a time series of weekly case data between 2006 and 2017 by division.

Methods and Findings

We used a Bayesian hierarchical mixed-model framework to explore the impact of different pre-
cipitation, temperature, and El Niño Southern Oscillation (ENSO) indicators on leptospirosis
cases in Fiji over a 12-year period. We found that total precipitation from the previous six weeks
was the best precipitation indicator, with increased total precipitation leading to increased lep-
tospirosis incidence. La Niña periods (i.e., prolonged negative Sea Surface Temperature anoma-
lies) were associated with increased leptospirosis risk. Finally, minimum temperature when in-
cluded with the other variables was moderately associated with leptospirosis risk, with warmer
temperatures resulting in increased risk. We found that the final model was better able to cap-
ture the outbreak peaks compared with the baseline model (which included seasonal and inter-
annual random effects), particularly in the Western and Northern division, with climate indica-
tors improving predictions 58.1% of the time.

Discussion

The results from this study identified key hydrometeorological and climatic factors influencing
leptospirosis risk in Fiji. This information, combined with data on demographic and spatial risk
factors of leptospirosis, could allow for a precision public health framework. This may allow for
more effective public health preparedness and response, targeting interventions to the right
population, place, and time. This study further highlights the need for enhanced surveillance
data, and this study is a necessary first step and moves us towards the development of a climate-
based early warning system.

44



Chapter 2: Role of hydrometeorological indicators on leptospirosis incidence

2.2 Introduction

Leptospirosis is a zoonotic disease with an estimated 1.03 million cases, and 58,000 deaths re-
ported globally each year [1]. It is found in all regions of the world, but the burden of disease is
particularly high in Oceania and other resource-limited settings [2–4], and it is a major public
health concern in many countries. It is caused by pathogenic spirochaete bacteria, of the genus
Leptospira [5]. Leptospirosis typically presents as an acute febrile illness and symptoms can
resemble other diseases, such as dengue and malaria, which often leads to misdiagnosis or un-
derdiagnosis [5–9]. In some patients, more severe disease can occur and the case fatality rate of
leptospirosis is estimated to be approximately 7% [1], although in settings with limited access
to treatment and diagnosis it can be higher. Surveillance of leptospirosis is often limited, and
many countries have limited capacity for diagnostic testing. Furthermore, the laboratory diag-
nosis of leptospirosis is challenging, and there is a lack of adequate diagnostic tests available
for accurate and early diagnosis of leptospirosis [10, 11].

Leptospirosis transmission is driven by complex interactions between animals, humans and
their environment. Hundreds of animal species have been identified as hosts for leptospirosis,
including rodents, livestock, and domestic and wild animals [7, 12, 13]. Humans can become
infected, either directly through contact with infected animals or tissue, or indirectly through
water or soil contaminated by animal urine; but human-to-human transmission is extremely
rare [5, 7, 8]. Once in the environment, bacteria can survive for weeks or even months in water
or moist soil [5, 14–16]. As such, there are many different risk factors for leptospirosis, and these
are context specific. Risk factors include occupational (such as agricultural workers and abat-
toir workers), lack of sanitation, poor living conditions, animals in the community and recre-
ational exposures [4, 17–19].

Climatic factors have also been shown to increase leptospirosis risk, with outbreaks of lep-
tospirosis often associated with extreme precipitation and flooding events [4, 18, 19]. Extreme
precipitation and flooding bring humans into increased contact with the bacteria and their an-
imal hosts, as well as disrupting public health infrastructure and sanitation networks. Further-
more, Leptospira can survive for longer periods in water and moist soil, and flooding prevents
animal urine from being absorbed into the soil or evaporation. These outbreaks have been re-
ported worldwide in geographically diverse areas, although they appear to be more common
in tropical island nations and resource-poor settings [4, 19]. Temperature may also have a role
in leptospirosis transmission since higher temperatures and humid environments have been
shown to prolong Leptospira environmental survival [5, 13, 14]. Human interaction with the
environment also increases with higher temperatures, leading to more exposure risk [4].

Large-scale climate patterns, such as the El Niño Southern Oscillation (ENSO), which is an
inter-annual cycle involving changes in sea-surface temperatures in the central and eastern
tropical Pacific Ocean, influences the timing and intensity of rainfall in the tropical Pacific is-
lands and elsewhere. El Niño and La Niña are opposite phases of the ENSO, and on average
ENSO events occur every four years. In Fiji, El Niño tends to be associated with drier and cooler
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conditions than normal and can be associated with droughts in some parts of the country,
whilst La Niña is associated with wetter than normal conditions. This leads to increased inci-
dence of flooding, particularly if the La Niña event coincides with the wet season [20]. However,
since Fiji lies in the transition zone, the impacts of ENSO are not always uniform and no two
ENSO events are quite the same, although they tend to share typical characteristics. ENSO has
been shown to be associated with leptospirosis outbreaks in New Caledonia [21]. The authors
found that La Niña phases (cool Sea surface temperature (SST) anomalies in the Pacific Ocean)
were associated with leptospirosis outbreaks, and they demonstrated how SST anomalies (a
measure of ENSO) may be used as an early warning system in this setting. Tropical cyclones
regularly occur in Fiji, usually during the wet season (November to April), and these can cause
extensive damage and flooding [20, 22]. On average, 1-2 cyclones affect Fiji every season, and
tropical cyclone activity has been shown to increase during El Niño phases, compensated by
a decrease during La Niña phases [20, 22]. Due to climate change, Fiji is expected to experi-
ence more extreme rainfall events and rising temperatures. Furthermore, tropical cyclones are
expected to be less frequent, but more intense in the future [23].

Leptospirosis disease burden is particularly high in Oceania, and a systematic review found
that Oceania had the largest per capita leptospirosis morbidity (150.68 cases per 100,000 per
year) and mortality (9.61 deaths per 100,000 per year) globally [2]. Leptospirosis is endemic in
Fiji, with cases reported throughout the year. However, outbreaks of leptospirosis are reported
most frequently during the rainy season (between January and March) [24]. In recent years the
number of reported cases has been increasing, with large outbreaks occurring more frequently.
This could either be due to a real increase in the number of cases, or improvements in testing
capabilities and increased health awareness, particularly since the release of new leptospirosis
guidelines in 2016. A previous seroprevalence study conducted in 2013 identified risk factors
associated with leptospirosis cases in Fiji, including individual risk factors (working outdoors,
male sex and iTaukei ethnicity) and community risk factors (lack of treated water at home, living
in rural areas, high poverty rate, living less than 100m from a major river, pigs in the community
and high cattle density) [17]. The seroprevalence study was further analysed and it was found
that there was significant geographical variation in these sociodemographic and environmental
drivers [25].

Despite the substantial disease burden, there still is limited quantitative evidence about the
effects of precipitation, temperature and ENSO on leptospirosis cases in the Pacific region. This
study aims to identify the most relevant hydrometeorological indicators and quantify the effect
of these indicators at different spatial and temporal scales on leptospirosis incidence in Fiji.
Together with the knowledge of demographic and spatial factors, this can support a precision
public health approach, efficiently targeting interventions to the right populations at the most
appropriate time and place. This will become increasingly important in the future as extreme
weather events are expected to increase in frequency as a result of climate change, the effects
of which are already being felt in this region.
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2.3 Methods

2.3.1 Study location and setting

Fiji is an island nation in the South Pacific Ocean and is made up of over 330 islands. It is clas-
sified by the United Nations as a small island developing state [26] (Fig. 2.1). The population
size was 884,887 in 2017 [27], and it is estimated that 90% of the population in Fiji are coastal
dwellers [28]. Fiji is divided into four administrative divisions (Central, Western, Northern and
Eastern). There are two main islands in Fiji, Viti Levu which is split between the Central and
Western division and where approximately 80% of the population resides, and Vanua Levu in
the Northern division. The capital, Suva, is located in the South East of the Central division, and
has a population size of 94,088.

Figure 2.1: A. Map of divisions within Fiji. The location of the three meteorological stations used are
labelled (Laucola Bay, Nadi Airport and Labasa Airfield). B. Monthly reported leptospirosis cases by divi-
sion between 2006 and 2017 in Fiji.
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2.3.2 Leptospirosis surveillance data

Leptospirosis is a notifiable disease in Fiji, and cases are reported through the Notifiable Dis-
eases Surveillance System. Cases are defined as suspected, probable, and confirmed. Suspected
cases are based entirely on clinical assessment and epidemiological risk factors. Probable and
confirmed cases are based on a combination of clinical assessment, epidemiological risk fac-
tors and the results from diagnostic testing. The two most common diagnostic tests performed
in Fiji are the anti-Leptospira immunoglobulin M (IgM) enzyme-linked immunosorbent assay
(ELISA), which is only available from Mataika house in Suva, and rapid diagnostic tests, which
are available in laboratories across Fiji. Cases which are positive using these tests are consid-
ered probable cases. Very few cases in Fiji are confirmed using confirmatory diagnostic tests.
Further information can be found in the clinical guidelines [29]. Once an outbreak has been
declared, it recommended that diagnosis is performed based on case definitions and clinical
assessment to conserve testing capabilities [30].

In this analysis, ELISA-positive cases of leptospirosis reported between 2006 and 2017 were in-
cluded. Where possible, date of sample collection was used. For 225 cases, the date of sample
collection was unavailable, and the date received or date tested were used instead. These dates
were then adjusted by the median number of days between date of sample collection and date
received (four days) and the date of sample collection and date tested (16 days). Cases were
aggregated into weekly (by ISO weeks) and monthly cases.

2.3.3 Demographic data

Population estimates for each division were obtained from the Fiji Bureau of Statistics from the
2007 and 2017 Population and Housing Census [27]. Linear interpolation was used to estimate
the population size between these two time periods for each division.

2.3.4 Meteorological data

The analysis was performed at both the weekly and monthly time scale, therefore daily climatic
data was aggregated to both time scales. Daily precipitation, minimum daily temperature and
maximum daily temperature were obtained from the Fiji meteorological services. Exploratory
analysis was performed to select one meteorological station in each division, based on data
completeness for the study period. These were Laucala Bay (Central division; latitude: -18.13,
longitude: 178.45), Nadi Airport (Western division; latitude: -17.75, longitude: 177.43) and
Labasa Airfield (Northern division; latitude: -16.47, longitude: 179.33; Fig. 2.1). We also ex-
plored using averages over all meteorological stations in a division and found that there was
little impact on the results obtained, therefore for simplicity we selected one station per di-
vision. Weekly and monthly Optimum Interpolation SST version 2.1 (OISSTV2.1) anomalies in
region 3.4 (Niño 3.4 index) and region 4 (Niño 4 index) were obtained from the NOAA [31].

To capture extreme precipitation, five precipitation indicators were chosen based on descrip-
tive indices defined by the World Meteorological Organisation Expert Team on Climate Change
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Detection and Indices [32]. These five indicators are described in Table 2.1. Different durations
of the time period (j) were tested, (two, four, six and eight weeks for the weekly surveillance
data, and one, two and three months for the monthly surveillance data).

Long-term periods of abnormal wetness can also be captured using the Standardised Precipi-
tation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI) [33, 34].
Positive values of SPI and SPEI correspond to wet periods, whilst negative values correspond
to dry periods. SPI and SPEI were calculated using the SPEI package in R [35]. SPI was cal-
culated for each division using daily precipitation from 1990 to 2018 from three meteorological
stations in Fiji (Laucala Bay, Nadi Airport and Labasa Airfield). To calculate SPEI, first minimum
and maximum daily temperature, as well as latitude coordinates of the meteorological stations,
were used to calculate monthly reference evapotranspiration (ETO) according to Hargreaves
equation. Then the climatic water balance (di , j ), which provides a measure of the water surplus
or deficit for a specific month ‘i’ in the year ‘j’, was calculated as precipitation minus reference
evapotranspiration:

di , j = Pi , j °ET Oi , j (2.1)

SPI and SPEI were calculated for different time scales, one, three and six months.

To account for the time between infection to symptom onset, as well as the delayed effects of cli-
mate indicators on disease, different time lags for temperature, precipitation indicators, SPI and
SPEI were tested, from 1-12 weeks (weekly surveillance data) and 1-3 months (monthly surveil-
lance data). Changes in SST anomalies can take longer to impact the local climate; therefore,
longer time lags were used to assess the effect of Niño 3.4 and Niño 4 indices on leptospirosis
transmission, from 1-20 weeks (and 1-4 months).

2.3.5 Meteorological events

In Fiji, between 2007 and 2017 (the study period) there were six tropical cyclones and five ma-
jor flooding events (with an additional five flooding events triggered by the tropical cyclones)
recorded by the Emergency Events Database [EM-DAT [36]; Supplementary Table 1]. Data on
disasters were obtained from the EM-DAT database, which includes events if either there have
been 10 or more deaths; more than 100 people affected, injured or homeless; or a declaration
by the country of a state of emergency and/or an appeal for international assistance. The pri-
mary disaster may trigger another event (i.e., a tropical cyclone may trigger a flooding event),
and this is recorded in Supplementary Table 1. The timing of the tropical cyclones and flooding
events is displayed in Supplementary Fig. 1, along with weekly precipitation data.

2.3.6 Statistical analysis

First, we formulated a hierarchical mixed-effects model using counts of leptospirosis cases per
week over 12 years (January 2006 to December 2017) in Fiji. Counts of leptospirosis cases, yst,
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Table 2.1: Definition of precipitation indicators defined and adapted from the Expert Team on Climate
Change Detection and Indices [32]

Precipitation indicator Definition
Total precipitation (TP) Total precipitation (TP) on wet days (∏ 1mm).

Let Pw j be the daily precipitation amount on a wet day w (P ∏ 1 mm) in period j. Then,
Total precipitation j =sum(Pw j )

Heavy precipitation days
(P10)

Count of days where daily precipitation amount ∏ 10 mm.
Let Pi j be the daily precipitation amount on day i in period j. Count the number of
days where Pi j∏ 10 mm.

Very heavy precipitation
days (P20)

Count of days where daily precipitation amount (P) ∏ 20 mm.
Let Pi j be the daily precipitation amount on day i in period j. Count the number of
days where Pi j∏ 20 mm.

Number of wet days
(WD)

Count of days where daily precipitation amount (P) ∏ 1 mm
Let Pi j be the daily precipitation amount on day i in period j. Count the number of
days where Pi j∏ 1 mm.

Mean consecutive wet
days (CWD)

Mean number of CWD (consecutive wet days) (∏ 1mm) in period j.
Let Pi j be the daily precipitation amount on day i in period j. Count the largest num-
ber of consecutive days where Pi j∏ 1 mm. Then,
Mean consecutive wet days j = mean(CWD j )

(where s is division and t is time), were assumed to follow a negative binomial distribution
to account for the overdispersion within the data, with mean µ and overdispersion parameter
∑,

yst |µst ª Neg Bi n(µst ,∑) (2.2)

which we modelled using the linear predictor,

log (µst ) = log (Pst )+Æ+
X
Øi xi st +±sa(t ) +∞w(t ) (2.3)

whereÆ is the model intercept and log (Pst ) is the population size per 100,000 per year per divi-
sion, which we inputted as an offset.

P
Øi xi st is a vector of covariate climatic coefficients. To ac-

count for the seasonality of leptospirosis cases, a weekly random effect, ∞w(t ), where w(t ) = 1, ...,52.
This was modelled using a first-order random walk, which allows leptospirosis incidence rates
in one week to depend on the previous week. Independent random effects for each year (±sa(t )),
2006–2017 replicated by division were included to allow for additional sources of variation due
to unobserved confounding factors such as variations in healthcare access, case reporting and
changes in diagnostic capacity over time and between divisions.

Model parameters were estimated using Integrated Nested Laplace Approximation (INLA). Model
selection was performed using the widely applicable information criterion (WAIC), which bal-
ances model fit with model complexity, and therefore aims to balance the risks of overfitting and
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underfitting. Models with a lower WAIC indicate a more parsimonious model [37]. The cross-
validated logarithmic score (CV log score) was also used to assess model fit. This is based on
the conditional predictive ordinate (CPO) leave-one-out cross-validation score, where smaller
values indicate greater predictive power of the model [38]. An R2

LR statistic was also calculated
based on a likelihood ratio test between the candidate model and the baseline model (seasonal
and interannual random effects). R2

LR is useful as a measure of goodness-of-fit and provides
an intuitive measure of the ability of the model to account for the variation in the dependent
variable.

A baseline model was first developed, which included weekly and yearly random effects. Ex-
ploratory analysis and selection criteria were used to select the most appropriate time lags for
the climate covariates, and a subset of covariates were chosen for further analysis. We then ex-
plored combining the different precipitation indicators with different temperature and ENSO
measures. The final model was selected using the model selection criteria described above and
comparing models of increasing complexity (with regard to input variables and model struc-
ture) to the baseline model. We were also interested in the differences between the divisions;
therefore, the final model was fitted separately for each division.

To check for correlation and collinearity between variables, we calculated Pearson’s rank corre-
lation index using the “corrplot” package in R [39]. A Pearson’s correlation r > 0.6 was consid-
ered to be high correlation. We also calculate the variance inflation factor (VIF) using the “car”
package in R [40]. A VIF > 5 was considered to be indicative of high variance inflation.

Given the potential for heterogeneity in weekly data, we performed a sensitivity analysis to test
how the model results changed at different spatial and temporal scales. We repeated the model
formulation and selection, using counts of leptospirosis cases per month. Instead of using a
weekly random effect, a monthly random effect was used, again using first order random walk.
Independent random effects for each year (±sa(t )), 2006–2017 replicated by division were in-
cluded as before. Finally, we repeated the analysis for the whole country, instead of by division.
As before we repeated the model formulation and selection, using counts of leptospirosis cases
per month. Again, a monthly random effect was used, using first order random walk. This time,
independent random effects for each year (±a(t )), 2006–2017 were included, not replicated by
division.

2.3.7 Ethics statement

Ethical approval for this study was granted by the London School of Hygiene and Tropical Medicine
(reference number 16171) and by the Fiji National Health Research and Ethics Review Commit-
tee (reference number 2019.72.NW).
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2.4 Results

2.4.1 Leptospirosis incidence in Fiji

Between 2006 and 2017, a total of 3,485 ELISA-positive cases of leptospirosis were reported in
Fiji (979 in the Central division, 1,481 cases in the Western division, 1,019 cases in the Northern
division and six in the Eastern division; Fig. 2.1). Since only six cases were reported in the
Eastern division over the study period, the Eastern division was excluded from the analysis.
Over this time period, the Northern division reported the highest case rates (759.9 cases per
100,000) followed by the Western division (452.0 cases per 100,000) and the Central division
(272.8 per 100,000). The majority of leptospirosis cases were reported between February and
May.

2.4.2 Weekly leptospirosis model

Using the weekly cases data a final model was selected (Model 6, Table 2.2), comprising of
weekly random effects and yearly random effects replicated by division (to account for season-
ality and unmeasured inter-annual variability by division), minimum temperature lagged by
one week (Tmin.1), Niño 3.4 lagged by four weeks (Niño34.4) and total precipitation from the
previous six weeks lagged by one week (TotPrcp6.1). Table 2.2 shows the model goodness of
fit results for a series of models with increasing complexity. When minimum temperature was
included alone in the model it did not improve model fit (Model 3), however, when included
in combination with Niño 3.4 index and total precipitation it did improve model fit (Model 6).
We identified total precipitation from the previous six weeks (with a one-week lag) as the best
precipitation indicator to capture leptospirosis cases in Fiji (Supplementary Table 2.2). How-
ever, there was only a small improvement compared with other indicators such as the number
of very heavy rainfall days (P20). Increased levels of precipitation (TotPrcp6.1) was associated
with increased leptospirosis risk (0.24 [95% CrI 0.15 – 0.33]; Fig. 2.2). In addition, we found
negative Niño 3.4 (Niño34.4) to be associated with increased leptospirosis incidence rates (-0.2
[95% CrI -0.29 – -0.11]; Fig. 2.2). Finally, we identified minimum temperature (Tmin.1) to be
slightly associated with increases in leptospirosis incidence rates (0.15 [95% CrI 0.01 – 0.30]; Fig.
2.2).

The time series of observed cases and model fit is shown in Fig. 2.3. The final model is bet-
ter able to capture the outbreak peaks (e.g. in 2012 and 2013 in the Western division, in 2016
in the Central, Northern and Western division, and in 2017 in the Western and Northern divi-
sion) compared with the baseline model (Model 1; which includes only random effects). This is
highlighted in Supplementary Fig. 2, which shows the relative difference between the baseline
and final model. In 58.1% (362 out of 623) of weeks the full model performed better than the
random effects model (256 out of 623; 41.1%). However, the model does not appear to capture
the peaks in the Central division as well as in the Northern and Western division. The posterior
marginal contribution of the seasonal random effects decreased with the inclusion of the hy-
drometeorological variables (Supplementary Fig. 3), demonstrating that climate is accounting
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for some of the seasonal variation that is observed. However, overall, the posterior marginal
contribution of the inter-annual random effects did not appear to shrink towards zero with the
inclusion of hydrometeorological variables, indicating that there are other non-climatic factors
influencing interannual variability in leptospirosis incidence (Supplementary Fig. 4). Using the
parameter estimates associated with the climate variables from the best performing model, we
extracted the variation in leptospirosis incidence accounted for by the combined impact of to-
tal precipitation, minimum temperature, and the Niño 3.4 index (Supplementary Fig. 5). This
plot suggests that before 2012, the climatic conditions may have been suitable for a leptospiro-
sis outbreak, particularly in the Western and Northern division in 2008 and 2009, but this is not
reflected in the case data. It also shows that in the Central division the role of climate appears
to be more consistent compared with the other two divisions.

Table 2.2: Model goodness of fit results for models of ELISA-positive leptospirosis cases per week re-
ported in Fiji from 2007 to 2017. The widely applicable information criterion (WAIC), the cross-validated
(CV) mean logarithmic score and the likelihood ratio RLR2 statistic are shown for models of increasing
complexity.

Model WAIC CV log score R2
LR (%) RE

Æ+±sa(t ) +∞w(t )
1 Baseline model (seasonal and interannual random effects) 5328 1.426 0

Æ+±sa(t ) +∞w(t ) +Ø1xst
2 Baseline + Tmin.1 5325 1.425 0.1

Æ+±sa(t ) +∞w(t ) +Ø2xst
3 Baseline + Niño34.4 5302 1.419 1.8

Æ+±sa(t ) +∞w(t ) +Ø3xst
4 Baseline + TotPrcp6.1 5298 1.418 1.4

Æ+±sa(t ) +∞w(t ) +Ø2xst +Ø3xst
5 Baseline + Niño34.4 + TotPrcp6.1 5279 1.413 2.8

Æ+±sa(t ) +∞w(t ) +Ø1xst +Ø2xst +Ø3xst
6 Baseline + Tmin.1 + Niño34.4 + TotPrcp6.1) 5276 1.412 2.9

Tmin.1: Minimum temperature (lagged by one week); Niño34.4: Niño 3.4 (lagged by four weeks); TotPrcp6.1: Total
precipitation from the previous six weeks (lagged by one week).

2.4.3 Weekly leptospirosis model by division

To understand differences in parameter estimates between the divisions, we explored three sep-
arate models for each division. We found that minimum temperature was still weakly posi-
tively associated with leptospirosis cases, but not significant in each division. In addition, we
found that negative Niño 3.4 anomalies were still associated with increased cases in all divi-
sions (although not significant in the Northern division). Total precipitation was found to be
more strongly associated with leptospirosis cases in the Western division, compared with the
Northern and Central divisions, and not statistically significant in the Central division. The
R2

LR for each division model indicates that the climate covariates better account for leptospiro-
sis variation in the Western division compared with the Northern and Central divisions. In the
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Figure 2.2: Parameter estimates for explanatory variables for models of ELISA-positive leptospirosis
cases per week reported in Fiji from 2007 to 2017 for all divisions (black) and separately by division.
Posterior mean and 95% credible intervals are shown for minimum temperature (lagged by one week),
total precipitation from the previous six weeks (lagged by one week), and Niño 3.4 (lagged by four weeks).

Western division the R2
LR explained an additional 6.7% of the variation compared with the base-

line model, whilst for the Central and Northern division the R2
LR was 1.6% and -1.2%, respec-

tively (Supplementary Table 3). The negative values indicate that for the Northern division, the
baseline model explained more of the variation than the full model.

2.4.4 Monthly leptospirosis model

As a sensitivity analysis we explored how the model estimates differed by changing temporal
scale. We aggregated cases to the monthly scale and performed model selection and evalu-
ation for climate covariates. At the monthly scale, we found that the best performing model
included total precipitation from the previous two months (no lag), and Niño 3.4 index (two-
month lag; Supplementary Table 4; Supplementary Fig. 6). These are similar to the climate
covariates identified at the weekly scale. However, minimum temperature was no longer found
to increase model fit, and there was no positive association between minimum temperature
and leptospirosis cases at the monthly scale. The time series for observed and modelled cases
is shown in Supplementary Fig. 7. Once again, the final model is better able to capture the
outbreak peaks compared to the baseline model (random effects only). However, it does not
appear to capture the variability as well in the Central division. The monthly model is bet-
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Figure 2.3: Model posterior estimates for models of ELISA-positive leptospirosis cases per week reported
in Fiji from 2007 to 2017 by division. Observed ELISA-positive cases (grey line), posterior model mean
(green line) and 95% credible intervals (green shading) are shown for the best performing model which
included total precipitation, minimum temperature and Niño 3.4. The random effect only model is
shown as an orange dashed line.)

ter able to capture the variability in the data compared with the weekly data (R2
LR for the final

weekly model was 2.9%, compared with 7.4% for the monthly model; supplementary Table 3),
which may be due to the increased heterogeneity in the data at the weekly scale. Again, looking
at the model goodness of fit results, the difference in R2

LR for each division model shows that
climate information in the Western division better explains the variability compared with the
Northern and Central division. In the Western division the R2

LR explained an additional 19.8%
of the variation compared with the baseline model, whilst for the Central and Northern division
this was 5.8% and -3.0% respectively (Supplementary Table 3). Finally, we also explored how the
modelling results changed if we moved from a division level to the whole country. We identi-
fied that the same climate covariates at the country level as the division level and saw very little
difference in the parameter estimates (Supplementary Fig. 6).
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2.5 Discussion

Climate is known to influence the timing and size of leptospirosis outbreaks. However, the role
of specific climate factors has not been well quantified in Fiji. In the present study, we explored
the role of different hydrometeorological indicators, including precipitation, temperature and
ENSO, on leptospirosis risk. The results from this study further our understanding of the effect
of hydrometeorological variables on leptospirosis outbreaks in Fiji, which may allow for a more
targeted public health approach in the future.

In this study we found total precipitation in the preceding six weeks, lagged by one week, was
the best precipitation indicator for this setting, and was positively associated with leptospirosis
cases. This supports previous studies that showed precipitation was an important driver of
leptospirosis outbreaks, in Fiji and elsewhere [4, 18, 19, 24]. We identified six weeks as the best
time period, suggesting that cumulative precipitation is important - rather than a few days of
sudden heavy rain. In addition to total precipitation, we also found that the number of very
heavy rainfall days (number of days in a period where rainfall exceeded 20mm), also over six
weeks, was strongly associated with leptospirosis cases, indicating the importance of exploring
different hydrometeorological indicators in different settings. Minimum temperature, lagged
by one week, was also found to be positively associated with leptospirosis risk. Several studies
have previously identified that temperature may have a role in leptospirosis outbreaks [41–44],
although this appears to be context specific, as other studies have not found this association
in different settings [21, 45, 46]. The short lag time observed in the present study suggests that
temperature may play a role by changing human behaviour and how humans interact with the
environment (i.e., in warmer conditions there is more recreational water activity and changes
in agricultural activity). In addition, we found that the Niño 3.4 index was negatively associated
with leptospirosis outbreaks. This suggests that La Niña phases are associated with increased
leptospirosis risk in Fiji, and a similar result was observed in New Caledonia [21]. In Fiji, La
Niña is associated with increased rainfall and flooding events. However, given ENSO events
occur on average every four years, a longer time series is required to be able to fully understand
the relationship between ENSO and leptospirosis risk.

We found that the role of climate appears to vary by division, with the model better able to cap-
ture cases in the Western division compared with the Northern and Central divisions. Flooding
events and tropical cyclones appear to be correlated with increased rainfall in the Western and
Northern divisions, however, in the Central division rainfall appeared to be more consistent
and less correlated with these events. This suggests that the role of climate on leptospirosis
risk may differ by division, or that tropical cyclones and flooding events are not well captured
with the precipitation data in the Central division. In the present study, we only had case in-
formation by division. By aggregating by division we assume that risk is homogenous across
this region, however, these are large areas which encompass many different environmental and
socio-demographic settings. There are likely large differences in the transmission pathways,
risk factors and environment between the divisions, therefore, climate may be acting differ-
ently in each division, and within each division. For example, risk factors are known to differ in
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urban, peri-urban, and rural settings, and this was not known for cases [17, 25, 47]. Addition-
ally, natural environmental factors, such as the proximity of rivers and floodplains, influence
the likelihood of experiencing a leptospirosis outbreak in a community. Inadequate sanita-
tion and waste disposal are also risk factors for leptospirosis, and these are linked to poverty.
Poverty, particularly in urban areas in Fiji, is known to be associated with a high seroprevalence
of leptospirosis [48]. In addition to environmental and socio-economic differences between
divisions, the importance of different animal hosts, and therefore transmission pathways and
risk factors, has been shown to vary geographically and by ethnic group [25, 47]. For example,
in urban settings, exposure to livestock was associated with a high risk of infection, which is
hypothesised to be a result of closer contact between animals and humans. Furthermore, as
many as 19 different serovars and 11 different animal hosts have been identified in Fiji [12, 49].
Certain serovars are more commonly associated with certain animal hosts, and serovars also
have different pathogenicity associated with them, and disease severity may also vary as a re-
sult. Finally, it is known that control practices, for example, rodent control, have taken place in
Fiji, although the timing and exact location are not known, and so these are not accounted for
in the model. Therefore, due to the complex process driving the transmission of leptospirosis in
Fiji, it is likely that the importance and influence of the climatic factors vary depending on geo-
graphic and environmental settings. To untangle these differences, enhanced spatial resolution
of surveillance data, along with detailed case and serovar information, would be required. De-
spite this, we were still able to identify significant climatic drivers of leptospirosis variation in
Fiji.

As is common for studies of leptospirosis using routine data streams, the results from our anal-
ysis are limited by the surveillance data available. In this study, we used surveillance data for
leptospirosis over 12 years and only included ELISA-positive cases. This requires individuals to
be unwell, report to healthcare, and for samples to be sent for diagnostic testing. It is known that
the majority of leptospirosis infections result in mild or asymptomatic infection. In addition,
to conserve testing capability, once an outbreak has been declared, it is recommended that di-
agnosis is done based on case definitions and clinical judgement [30]. Therefore, the cases and
the outbreaks reported by the ELISA-positive data are likely to be a small fraction of the true
cases occurring in Fiji [50]. Furthermore, changes in case detection, case reporting and diag-
nostic capabilities have occurred over time. The number of cases has been increasing in recent
years, with several large outbreaks occurring. This may be due to real increases in the num-
ber of cases, or due to enhanced surveillance and testing capabilities over time, or enhanced
clinical suspicion following the release of new leptospirosis guidelines in 2016. Furthermore,
case detection and reporting are likely to vary by division, due to differences in healthcare ac-
cess, health-seeking behaviours, access to laboratory diagnosis, and clinical and public health
capacity. This may have contributed to the differences observed between divisions on the im-
portance of the different climate factors.

We found that the inclusion of climate covariates within the model better captured the out-
break peaks than the random effects only model (e.g., in 2012 and 2013 in the Western divi-
sion, in 2016 in the Central, Northern and Western division, and in 2017 in the Western and
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Northern division). We also found that the full model performed better overall than the ran-
dom effects only model. This suggests that climate information explains some of the seasonal
and inter-annual variation in leptospirosis cases and demonstrates the potential use of climate
information within an early warning system for leptospirosis. However, looking at the overall
yearly random effects, the interannual variation changed very little with the inclusion of cli-
mate covariates. This suggests other non-climatic or unknown factors were important in driv-
ing interannual variation in cases. To help understand both seasonal and interannual drivers
of leptospirosis transmission, improved surveillance and spatially explicit case data is needed,
along with spatially resolved climatic, environmental, and socio-economic variables. While cli-
mate may be a significant environmental driver of transmission, the model’s current capacity
for prediction is limited. This poses a challenge for the development of any climate-based early
warning system for leptospirosis in Fiji and highlights the need for enhanced surveillance. The
development of a climate-based early warning system would allow for enhanced knowledge of
the timing and the severity of outbreaks which would enable public health responses to miti-
gate outbreaks.

The results from the present study can be interpreted together with the results from previous
studies which have explored socio-demographic and environmental risk factors, to form a more
complete view of leptospirosis risk in Fiji. In 2013, a seroprevalence study was conducted in Fiji
which identified individual demographic risk factors for leptospirosis [17]. This data was further
analysed to understand how these risk factors varied geographically [25, 48]. Seroprevalence
studies have the advantage that they can capture the prevalence of previous infections, includ-
ing asymptomatic and mildly symptomatic cases. However, they are a snapshot at one point
in time, and are unable to explore how these risk factors vary over time or at different times of
the year. Despite the limitations associated with surveillance data, it is longitudinal data which
allows for the effect of climate on leptospirosis risk to be explored over time, as was done in the
present study. Together, these studies can be thought of as moving towards a precision public
health approach, providing more specific insights into differences in incidence between “pop-
ulations”, “place” and “time”, and a more complete picture of leptospirosis risk in Fiji. Precision
public health can be defined as using the best available data to target interventions more ef-
ficiently and effectively [51]. This is particularly important in resource-limited settings such
as Fiji, as being able to accurately target interventions can provide a cost-effective strategy. In
this study, we show how quantifying the effect of climate on weekly surveillance data, combined
with the knowledge of those individuals who are most at risk [17], and those “hotspot” locations
where prevalence is particularly high [48], can be used to target interventions to those most vul-
nerable and at risk. These measures could include targeted health promotion and awareness
(i.e., encouraging the use of personal protective equipment and covering cuts and abrasions),
raising awareness and clinical suspicion, hospital preparedness and ensuring diagnostic capa-
bilities.

Weekly case data is more sensitive to collection processes and reporting delays, and we ob-
served a lot of heterogeneity in the reported weekly cases. Therefore, as a sensitivity analysis,
we aggregated the weekly case data into monthly case data and explored how the temporal scale
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affected our results. We found very similar results, suggesting that there was good agreement
between the models. However, minimum temperature was no longer found to be associated
with leptospirosis cases at the monthly scale. In the weekly model, we identified that minimum
temperature was associated with a one-week lag, suggesting that the effect of temperature oc-
curred on a short time scale, and therefore, it may no longer be observed at a monthly time
scale. This suggests that using weekly case data may allow the detection of climatic drivers
within short timeframes. However, the choice of temporal scale depends on the research ques-
tion and the data available. Using weekly case data is more computationally intensive, and
many climate covariates are not readily available at the weekly scale. Using a monthly time
scale may reduce the heterogeneity in the data as it will be less sensitive to small fluctuations
in sample collection and reporting delays. This may allow long-term trends to be more eas-
ily identified, and a monthly time scale may be better suited for the development of an early
warning system, particularly for neglected zoonotic diseases where surveillance is limited. A
summary of the advantages and disadvantages is shown in Table 2.3.

In summary, we were able to quantify the association between different climate variables and
leptospirosis incidence in Fiji. This study furthers our understanding of how climate affects
leptospirosis outbreaks and combined with previous studies exploring the geographical distri-
bution and sociodemographic risk factors, allows us to move towards a precision public health
framework. This contributes to our understanding of the climatic risk factors and may allow
for more targeted public health interventions in the future. This study also highlights that en-
hanced surveillance in the future may allow for further studies which untangle the spatial ef-
fects of climate on leptospirosis risk, and this is a necessary first step to allow for the develop-
ment of an early warning system in the future. This will be increasingly important given that
climate change in Fiji is predicted to lead to increased rainfall and extreme weather events, and
leptospirosis will likely continue to pose a significant burden in this region.
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Table 2.3: Summary of the advantages and disadvantages of fitting a climate-driven statistical model to
weekly and monthly surveillance data.

Advantages Disadvantages
Weekly
case
data

• Finer temporal resolution, which allows
for the effects of climate on disease to
be detected at finer time scales, which
may be more reflective of disease trans-
mission processes.

• Often not available.
• Climatic indicators are often available at

monthly scales.
• More computationally intensive.
• More heterogeneity and uncertainty in the

data (“noise”). For diseases and settings
where surveillance is very thorough and com-
plete, weekly case data is preferable. How-
ever, for diseases such as leptospirosis, where
there are varying reporting delays, changes in
reporting over time and space, trends may be
more apparent at monthly time scales.

• Shorter time scales are not always useful, one
week does not enable enough time to react
and anticipate outbreaks.

Monthly
case
data

• More readily available.
• Aggregated data may allow for trends

to be more apparent and stronger and
therefore may be easier to identify long-
term trends.

• More computationally efficient – par-
ticularly important if you have high
spatial resolution

• May be more useful for early warn-
ing systems, as the associations may be
more robust.

• May hide real patterns and trends.
• Short term effects of climate on infection may

not be apparent in the data.
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3
Estimating the duration of antibody

positivity and likely time of Leptospira
infection using data from a

cross-sectional serological study in Fiji

The timing and the magnitude of infectious disease outbreaks can be determined by numer-
ous factors, including climate (which was discussed in the previous chapter), and the level of
population immunity to a pathogen, which is the focus here. Population immunity changes
over time as new susceptibles enter the population (either through births or through human
movement), and as protective immunity wanes. Reinfection is known to occur with Leptospira
[1, 2], but the duration of protective immunity is not well understood. This has epidemiologi-
cal and clinical implications since it can provide insights into the frequency of reinfections and
the level of under-reporting of a disease, as well as allow for improved interpretation of sero-
surveys for leptospirosis. Serological studies of healthy populations have been used to study
population dynamics. However, they can be difficult to interpret and compare to surveillance
data in cases where antibodies wane. In fully immunising infections seroprevalence studies
provide a population estimate of any past exposure to infection. For diseases which are not
fully immunising, more historic infections become undetectable due to antibody levels waning
over time, and this leads to an underestimation of population exposure. Instead, serocatalytic
models can be used, as they estimate the force of infection (FOI), which is the rate at which sus-
ceptible individuals acquire infection and seroconvert, whilst accounting for antibody waning.
Therefore, the aim of this study was to estimate the FOI and antibody persistence (as a proxy
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for antibody-mediated immunity) from a large population-proportionate seroprevalence sur-
vey of Leptospira infection conducted in 2013 in Fiji [3]. Furthermore, I explored whether it was
possible to reconstruct the most likely timing of Leptospira infection. This provided new in-
sights into population-level serology data, and may be particularly relevant in resource-limited
settings where financial constraints can limit longitudinal studies.

This paper was published in PLOS Neglected Tropical Diseases in June 2022 [4]. The Supple-
mentary material of the paper is included as Appendix C.
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Abstract

Background

Leptospirosis is a zoonotic disease prevalent throughout the world, but with particularly high

burden in Oceania (including the Pacific Island Countries and Territories). Leptospirosis is

endemic in Fiji, with outbreaks often occurring following heavy rainfall and flooding. As a

result of non-specific clinical manifestation and diagnostic challenges, cases are often mis-

diagnosed or under-ascertained. Furthermore, little is known about the duration of persis-

tence of antibodies to leptospirosis, which has important clinical and epidemiological

implications.

Methodology and principal findings

Using the results from a serosurvey conducted in Fiji in 2013, we fitted serocatalytic models

to estimate the duration of antibody positivity and the force of infection (FOI, the rate at

which susceptible individuals acquire infection or seroconversion), whilst accounting for ser-

oreversion. Additionally, we estimated the most likely timing of infection.

Using the reverse catalytic model, we estimated the duration of antibody persistence to

be 8.33 years (4.76–12.50; assuming constant FOI) and 7.25 years (3.36–11.36; assuming

time-varying FOI), which is longer than previous estimates. Using population age-structured

seroprevalence data alone, we were not able to distinguish between these two models.

However, by bringing in additional longitudinal data on antibody kinetics we were able to

estimate the most likely time of infection, lending support to the time-varying FOI model. We

found that most individuals who were antibody-positive in the 2013 serosurvey were likely to

have been infected within the previous two years, and this finding is consistent with surveil-

lance data showing high numbers of cases reported in 2012 and 2013.
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Conclusions

This is the first study to use serocatalytic models to estimate the FOI and seroreversion rate

for Leptospira infection. As well as providing an estimate for the duration of antibody positiv-

ity, we also present a novel method to estimate the most likely time of infection from sero-

prevalence data. These approaches can allow for richer, longitudinal information to be

inferred from cross-sectional studies, and could be applied to other endemic diseases

where antibody waning occurs.

Author summary

Leptospirosis is a bacterial zoonotic disease that occurs in almost all regions of the world,
with a particularly high burden of disease in Oceania. It is widely considered to be a
Neglected Zoonotic Disease, and it is often mis-diagnosed and under-ascertained. Very
little information exists about the persistence of antibodies to leptospirosis, which is
important for understanding how long individuals may have partial protection against
reinfection. In this study, we show how data collected from a large population survey of
leptospirosis antibodies can be used to estimate the duration of antibody persistence.
Knowledge of the duration of antibody persistence enables an estimation of the duration
of immunity to re-infection, which is most likely antibody-mediated. We also estimate the
rate at which susceptible individuals acquire infection (force of infection), whilst account-
ing for antibody waning. This provides more accurate estimates of population-wide dis-
ease burden. Finally, we show how the results from a cross-sectional population survey
can be used to estimate when infections may have occurred. This is particularly useful in
areas with limited surveillance. This approach could be applied to other neglected diseases
for which data are limited and where antibody waning occurs.

Introduction

Leptospirosis, a zoonotic bacterial disease, is found throughout the world, but is particularly
prevalent in tropical and subtropical regions [1–3]. It is widely considered to be a Neglected
Zoonotic Disease [4], with an estimated 1.03 million leptospirosis cases and 58,000 deaths
reported worldwide each year [1], and the disease disproportionately affects resource-limited
populations [5–8]. In humans, Leptospira infection produces a wide range of clinical symp-
toms, ranging from nonspecific febrile illness to jaundice, meningitis, and liver and renal fail-
ure [6,7,9]. Recent laboratory advances isolating novel species of the genus Leptospira from the
environment using Next-Generation Sequencing has expanded the number of named species
to 68, which includes both pathogenic and non-pathogenic species, and these have been pro-
posed to be organised into two clades, and four subclades [10–12]. Leptospira can also be sero-
logically classified into serogroups and serovars, and serotyping based on the heterogeneity of
the surface lipopolysaccharide (LPS) has led to the identification of 25 serogroups and over
300 serovars [11,13–16]. Certain serovars are more commonly associated with particular hosts,
for example Leptospira interrogans serovar Hardjo is frequently associated with cattle, and Lep-
tospira interrogans serovar Canicola with dogs [16,17]. However, these associations are not
absolute, and there is considerable heterogeneity in the dominant serovars in both animals
and humans each country, even in remote islands [3].
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Accurate diagnosis of leptospirosis remains a challenge, particularly in low and middle-
income countries. Firstly, it requires clinicians to suspect leptospirosis, and since symptoms
can resemble other more prevalent acute febrile illnesses, such as dengue fever, it is often mis-
diagnosed or underdiagnosed. Secondly, the laboratory tests are not always available, and
there are several limitations associated with each test [18–20]. The gold-standard test for diag-
nosing leptospirosis infection is the microscopic agglutination test (MAT), which has a high
specificity and can distinguish between serogroups. However, this test has complex technical
requirements. The enzyme-linked immunosorbent assay (ELISA) test is most commonly used
in this context as it is easier to perform and is more sensitive than the MAT test during the
acute phase of the illness, but it is not serogroup or serovar-specific. A summary table of the
advantages and disadvantages of both tests is shown in S1 Table. Since both of these tests detect
specific antibodies, it is important to consider the timing of testing in relation to onset of ill-
ness, as there needs to be sufficient time for the immune response to occur, and IgG or IgM
antibodies to be detectable (from five to seven days post-infection) [19].

Immunity against Leptospira infection appears to be mediated by humoral responses
[13,21], with the antibodies produced mainly targeting the surface-exposed leptospiral LPS.
Anti-LPS antibodies appear to provide immunity to homologous serovars [22,23]. In addition,
IgG and IgM antibody titres remain serologically detectable three to six years following infec-
tion [24,25]. The duration of protective immunity conferred following Leptospira infection is
uncertain, and there is evidence that reinfection does occur [17,23,26,27]. Most commonly,
reinfection occurs with a different Leptospira serogroup, and appears to result in a milder clini-
cal disease. This suggests some degree of cross-reactive protective immunity [17,23]. However,
severe disease following reinfection with the same serovar has been observed [27]. Current
understanding of leptospirosis immunity is incomplete and there are gaps in the knowledge
regarding leptospiral antibody dynamics, including the duration of antibody persistence, the
relationship between antibody titre and reinfection, and the peak antibody levels that occur
following infection.

A systematic review found that Oceania suffers the largest per capita leptospirosis morbidity
(150.68 cases per 100,000 per year), mortality (9.61 deaths per 100,000 per year) [1], and dis-
ability-adjusted life years [28]. This may be an under-estimate of the true burden of disease, as
access to testing is limited in the Pacific Islands, and cases are likely to be under-diagnosed
[8,29]. This was evidenced by a large population-representative serological survey conducted
in Fiji in 2013, which found that 19.2% of individuals sampled had evidence of a past infection
[29], yet the total number of cases reported for the five years prior to the survey was around
1,200 [30] [with Fiji population size reported to be 884,887 in 2017 Census [31]]. Leptospirosis
is endemic in Fiji and has been identified as one of the four priority climate-sensitive diseases
of major public health concern [32]. In addition to endemic transmission, outbreaks of lepto-
spirosis frequently occur, usually following flooding events [33].

Serological studies of healthy individuals have been used to study the population dynamics
of leptospirosis [29]. However, these studies can be problematic to interpret because antibody
levels wane, and therefore it is difficult to directly compare case data to seroprevalence. Seroca-
talytic models can be used to overcome these limitations, as they estimate the annual force of
infection (FOI, the rate at which susceptible individuals acquire infection or seroconversion)
whilst accounting for antibody waning (seroreversion), thus providing a better estimate of dis-
ease burden [34]. These models have been used previously for many other diseases, including
infections such as measles and rubella which induce life-long immunity, as well as infections
like malaria where immunity wanes [34–36]. The aim of this study is to use seroprevalence
data from Fiji to estimate the FOI and the duration of antibody persistence in Fiji. Further-
more, this paper aims to demonstrate how serological data can be used to estimate the most
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likely time of infection, providing additional information to enhance the analysis and interpre-
tation of seroprevalence studies.

Methods

Ethics statement

Ethical approval for this study was granted by the London School of Hygiene and Tropical
Medicine (reference number 16171) and by the Fiji National Health Research and Ethics
Review Committee (reference number 2019.72.NW). Informed written or thumb-printed con-
sent was obtained from adult participants, and informed written or thumb-printed parental/
guardian consent and informed assent was obtained for child participants for the 2013 Fiji
seroprevalence survey data [29]. Secondary analysis of an anonymised subset of this data was
used in the present study.

Study setting

Fiji, a nation in the South Pacific Ocean, comprises of 323 islands and is classified by the
United Nations as a small island developing state [37]. The two biggest islands are Viti Levu,
where most of the population resides, and Vanua Levu, and together they make up 87% of the
total land area in Fiji. The population size was 837,217 in 2007 [31], and it is estimated that
90% of the population in Fiji are coastal dwellers [38]. The largest administrative units are
Divisions (Central, Western, Northern and Eastern) followed by Provinces (14 in total).

Data

2012–2013 suspected clinical leptospirosis cases in Fiji. We used a serum bank of 199
individuals with clinical suspected leptospirosis and positive IgM-ELISA, collected from April
2012 to November 2013 tested positive using an IgM-ELISA following an outbreak in Fiji
[29,33]. MATs were conducted on serum from these patients, and 66 had detectable antibodies
using MAT. The MAT tests were conducted on samples collected approximately two weeks
following infection, although exact time lag between the onset of illness and testing were not
known.

2013 Fiji seroprevalence survey. A total of 2,152 participants were included in the
human serosurvey conducted in Fiji from September to December 2013 [29]. The population-
representative survey included healthy community members across the Central Administra-
tive Division (on the eastern side of Viti Levu), the Western Division (on the western side of
Viti Levu), and the Northern Division (the islands of Vanua Levu and Taveuni). The age of
participants ranged from 1 to 90 years (mean 33.6 years, standard deviation 19.8 years) and
45.8% were males. The presence of anti-Leptospira antibodies in sera collected from partici-
pants was determined using the MAT with a panel of six serovars, Leptospira interrogans sero-
vars Pohnpei (serogroup Australis), Australis (serogroup Australis), Canicola (serogroup
Canicola), Copenhageni (serogroup Icterohaemorrhagiae), Hardjo (serogroup Sejroe), and
Leptospira borgpetersenii serovar Ballum (serogroup Ballum). An initial panel of 21 pathogenic
serovars was used on a random selection of ~10% of the total samples. In addition, this 21 sero-
var panel was used on 199 Leptospira ELISA-positive samples collected from patients with sus-
pected clinical leptospirosis in Fiji in 2012 and 2013. The serogroups most commonly detected
in the clinical and serosurvey samples were then chosen and included in the final panel of six
serovars. Further details on selection of the serovars for the MAT panel have been previously
described by Lau et al. [29]. Samples were tested at titre dilutions from 1:50 to 1:3200, and
MAT titres of�1:50 were defined as seropositive. A higher antibody titre dilution is usually
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considered indicative of a more recent infection (i.e. MAT�1:400), whilst a lower antibody
titre of a past infection. MATs were conducted at the WHO Collaborating Centre for Refer-
ence and Research on Leptospirosis in Brisbane, Australia.

Of the 2,152 individuals included within the study, 417 were seropositive to at least one ser-
ovar (19.4%). The age distribution of individuals included in the study by five-year age groups
is shown in S1 Fig. A total of 351 individuals were seropositive to serovar Pohnpei (84.2%), 56
to serovar Copenhageni (13.4%), 49 to serovar Canicola (11.8%), 43 to serovar Australis
(10.3%), 18 to serovar Ballum (4.3%) and three to serovar Hardjo (0.7%). Of these, 89 individu-
als were seropositive for more than one serovar. The ages of 12 individuals were missing, and
they were excluded from the analysis. The age distribution of seropositive individuals by ten-
year age group by serovar is shown in S2 Fig. The distribution of MAT titres by serovar is
shown in S3 Fig.

Lupidi point-source outbreak. A point source outbreak of leptospirosis occurred in Italy
in 1984 that involved 18 individuals who drank water from a common source that was con-
taminated with infected animal urine [25]. They were followed up over a five-year period, with
MAT tests conducted at five different time points.

Serocatalytic models. Serocatalytic models can be used to reconstruct the annual force of
infection (FOI, defined as the per capita rate at which susceptible individuals are infected each
year) from cross-sectional serological surveys [34]. If an infection provides long-term immu-
nity (e.g. measles), then we would expect seroprevalence to accumulate with time, and there-
fore increase with age. These dynamics can be captured using a catalytic model which assumes
that susceptible individuals are infected at a given rate per year (i.e. FOI), and once infected,
individuals recover and remain immune. An extension of this is the reverse catalytic model,
which allows for antibody decline over time, and for previously infected individuals to become
susceptible again. These simple models assume a constant FOI, however, variation in FOI with
age and/or over time may lead to more complicated dynamics. Examples of different seroprev-
alence profiles that may be observed are shown in Fig 1.

The catalytic model follows individuals from birth and assumes that there is a life-long con-
stant FOI (�), which is independent of age (a) and calendar year. The rate of change in the pro-
portion of individuals who are infected z(a) with age is as follows:

zÖaÜ à 1� e�la

where � is the FOI and a is age.

Fig 1. Schematic representations of different possible seroprevalence profiles by age that could be observed,
depending on underlying epidemic and immunological dynamics.

https://doi.org/10.1371/journal.pntd.0010506.g001
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The reverse catalytic model assumes that antibody prevalence declines over time, at a rate
ω. The expression for the proportion of individuals aged a who are seropositive, z(a), in the
reverse catalytic model is as follows:

z aÖ Ü à l
lá o 1� e�aÖláoÜ

� �

where � is the FOI, ω is seropositivity waning rate and a is age. Both models assume the mor-
tality rates for susceptible and infected individuals are the same. 1/ω is the duration of antibody
persistence (years). Annual attack rates were calculated after estimating the FOI using the fol-
lowing expression,

Attack rate à 1� e�l

To reflect uncertainty in knowledge of the transmission dynamics of leptospirosis in Fiji
uninformative priors were chosen for the FOI and rate of waning over time. Specifically, a uni-
form distribution between 0 and 0.5 was chosen for the FOI (corresponding to a yearly attack
rate between 0 and 39%) and a uniform distribution between 0 and 10 for the rate of waning
(S2 Table).

We then fitted the reverse catalytic model by sex, administrative division and serovar. In all
models, waning was held constant and FOI was allowed to vary. For the serovar-specific analy-
ses, 89 individuals were seropositive for more than one serovar. If the titre was higher for one
serovar, this serovar was used for the analyses. For 18 individuals, the titres were the same for
more than one serovar, and these were labelled as “mixed”. Only a small number of individuals
were considered seropositive for serovar Hardjo (n = 3) and serovar Australis (n = 1), and so
were excluded from the analysis. For the analysis by sex and administrative division, the same
priors were used as above, a uniform distribution between 0 and 0.5 for FOI, and a uniform
distribution between 0 and 10 for the rate of waning. For the analysis by serovar, the FOI was
allowed to vary by serovar, whilst waning was held constant across serovars. A narrower uni-
form distribution between 0 and 0.1 was used for the FOI instead, whilst the rate of waning
was the same (uniform between 0 and 10; S2 Table).

Waning was held constant across serovars as when the FOI is lower, FOI and waning can
be more challenging to estimate. This is because there are fewer infection events over time and
hence greater uncertainty. To highlight this, we did a simulation recovery study where we
recovered the FOI and waning estimates from two settings, a high FOI and low FOI setting.
Using the reverse catalytic model we generated two models, a high FOI model (FOI, 0.05 and
waning 0.1) and low FOI model (FOI 0.005 and waning 0.1). We then sampled 50 times from
each 5-year age group using a binomial distribution to generate seropositive and seronegative
individuals (S4 Fig). We then re-fitted a reverse catalytic model to both datasets to estimate the
FOI and waning in both settings. In the high FOI setting we were able to get similar estimates
for both FOI and waning, with the input parameter estimates included within the 95% credible
intervals. However, in the low FOI setting, although the true parameter values were included
within the 95% credible intervals, there was much greater uncertainty in the parameter esti-
mates (S3 Table and S5 Fig).

Bayesian inference was used to fit the serocatalytic models to empirical data, using Markov
chain Monte Carlo (MCMC) with the Gibbs sampling algorithm to estimate model parame-
ters. The models were implemented in RJags (version 4–10) [39]. The Gelman-Rubin statistic
was used to evaluate MCMC convergence, and a threshold of<1.1 was chosen. The effective
sample size (ESS), which is the estimated number of independent samples accounting for auto-
correlations generated by the MCMC run, was checked, and an ESS>200 was used. Model
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selection was based on the lowest value of the widely applicable information criterion (WAIC),
which balances the goodness of fit of the model with model complexity, and therefore aims to
balance the risks of overfitting and underfitting [40,41]. WAIC was estimated using the R
package Loo (version 2.4.1) [42]. All analysis and calculations were performed using R version
4.1.1. All R code is available on Github (https://github.com/erees/leptoSerology).

Time-varying FOI

The models described above assumed that the FOI was constant over time. We also considered
exceptions to this assumption by exploring models which allow outbreaks to occur, where the
FOI was instead given as a sum of Gaussian distributions, as described in the Rsero package
[43]. The timing of the outbreak and the infection probability were estimated. A model with
only one outbreak was compared with models which combined a constant FOI with an out-
break. A uniform distribution between 0 and 10 was chosen for the FOI and a uniform distri-
bution between 0 and 10 for the rate of waning. Two different priors were tested for the timing
of the outbreaks based on the earlier calculated duration of antibody persistence (S2 Table).

Analysis of time-varying FOI was performed using the Rsero package [43]. Parameter esti-
mation was performed using MCMC using the No-U-Turn sampler (NUTS) sampling algo-
rithm. Convergence was assessed by ensuring Gelman-Rubin statistic <1.1 and effective
sample size >200. WAIC was estimated using the R package Loo (version 2.4.1) [42].

Reconstructing timing of historic infections

Using the MAT antibody titres from the 2013 Fiji seroprevalence survey, we estimated the tim-
ing of infection of participants. Due to uncertainty associated with individual titre estimates–
and hence timings–the dynamics of infection was aggregated and reported as the population
level expectation. Firstly, we estimated the rate at which individual responses wane by one anti-
body dilution titre. This was done using data from the point source outbreak in Italy reported
by Lupidi et al. [25]. Since leptospirosis is not endemic in Italy, this presented an opportunity
to look at antibody decay, in a setting where reinfection is unlikely. Using these data, decline
in antibody titres for each individual was assumed to follow exponential decay, so that the log
antibody titre decays linearly with time. A linear mixed effects model was used, with a random
effect for the intercept as described below:

titre ⇠ timeá Ö1jidÜ á �

We implemented this model in R using the lme4 package [44]. Three serovars were identi-
fied by the MAT in the Lupidi et al. [25] point source outbreak, however, it was not clear
which was the infecting serovar (likely due to cross-reactivity of the MAT). Therefore, all three
serovars were analysed individually, and the results pooled.

To reconstruct the timing of infection from the 2013 seroprevalence survey we combined
the 2012 Fiji clinically suspected cases with the estimated rate at which individual responses
wane by one antibody dilution titre. First, using the 2012 Fiji clinically suspected cases
(n = 199), we estimated the geometric mean antibody titre from the MAT-positive cases
(n = 66). We then used the MAT antibody distribution of the 2012 Fiji clinically suspected
cases, combined with the antibody decay estimates from Lupidi et al. [25], to analyse the 2013
seroprevalence data. For each titre level from the 2013 seroprevalence survey, the possible ini-
tial titre levels were estimated, based on the proportions from the 2012 Fiji clinically suspected
case distribution results. Using the rate of decline of antibody titres, the initial titre levels were
transformed into an estimated time since infection, reconstructing the potential timing of
infection at the population level. An example for one titre is shown in Fig 2. As individuals
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could be seropositive for more than one serovar, two separate analyses were conducted, one
where infections with different serovars were assumed to be independent events (n = 520), and
one where only the highest titre was used (n = 417).

Since samples were obtained approximately two weeks post-infection from recently
infected individuals, we hypothesised that antibody titres may not have peaked. We compared
the geometric mean antibody titres to the peak antibody titres reported in Lupidi et al. [25]
and found a 1–3 fold difference in geometric mean antibody titres. Therefore, we conducted a
sensitivity analysis where the distribution of recently infected individuals was shifted, corre-
sponding to a higher overall geometric mean, and estimated a new distribution for time of
infection.

Results

Serocatalytic models

When catalytic and reverse catalytic models were fitted to the 2013 Fiji seroprevalence data, we
found that the reverse catalytic model, which allows for seroreversion, fitted the data better

Fig 2. Schematic representation of the methods used for estimating the historic time of infection from the seroprevalence survey data. Firstly, we have the titre
distributions from the 2013 seroprevalence survey (Data panel). Then we have the titre distribution of recent infections (Inference panel, upper plot) and the estimated
antibody titre decay rate (Inference panel, lower plot). These are both used to estimate the possible time of infection based on the initial titre level (Estimate panel). As an
example, individuals who had a titre level of 1:400 in the 2013 seroprevalence survey (Data panel) could have a titre level of 1:400 or higher (upper panel “Inference”) ~ two
weeks post-infection. If the initial titre level was higher than 1:400, the antibody titre must have waned to reach 1:400. The proportion of initial titre levels was obtained
from 2012 clinically suspected cases, and in this case, 56% were likely to have had an infecting titre of 1:400 while 44% were likely to have had a higher infecting titre. Then,
transforming this using the antibody decay rate from a point source outbreak in Italy (lower panel “Inference”), we can say that 56% are likely to have been infected<8
months ago (Estimate panel). This was repeated for each dilution level.

https://doi.org/10.1371/journal.pntd.0010506.g002
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(Table 1; Fig 3), with a lower estimated widely applicable information criterion (WAIC differ-
ence = 124). The WAIC is an information criterion used for model selection, that aims to bal-
ance model complexity with fit to the data. The reverse catalytic model estimated the duration
of antibody persistence to be 8.33 years (95% CrI: 4.76–12.50 years), and the force of infection,
FOI, to be 0.032 (95% CrI: 0.022–0.053) (Table 1), which corresponds to an annual attack rate
3.15% (95% CrI: 2.18% - 5.16%).

FOI and waning by serovar, sex and administrative division

The reverse catalytic model was also extended to explore whether sex, administrative division
and serovar affected the estimated rate of seroreversion (Table 2). Overall, the estimates of ser-
oreversion for all three models were consistent with the previous estimate of the reverse cata-
lytic model using aggregated data. The differences in FOI estimated between the groups in the
model correspond to the observed variation in seroprevalence measured in the serosurvey.
When analysed by sex, a higher FOI was observed in males compared with females, and this is
in accordance with the results from the serosurvey, where it was found that the seroprevalence
in males was higher than females. When analysed by administrative division, the Western
Division was found to have the highest FOI compared with the Central and Western Divisions,
although the credible interval was large. Finally, the results by serovar were also in accordance

Table 1. Parameter estimates for the force of infection (FOI) and waning rate from the catalytic and reverse cata-
lytic model (median [95% CrI]).

Model FOI (95% CrI) Waning rate (95% CrI) WAIC

Catalytic Model 0.007 (0.006–0.007) - 2215

Reverse catalytic model 0.032 (0.022–0.053) 0.12 (0.08–0.21) 2091

FOI, force of infection; WAIC, widely applicable information criterion; CrI, credible interval.

https://doi.org/10.1371/journal.pntd.0010506.t001

Fig 3. Proportion of seropositive individuals by age (black points represent the mean and the error bars represent the binomial 95% confidence intervals), from
national serosurvey conducted in Fiji in 2013 (n = 2,152). Results from the catalytic model is shown in red (A) and reverse catalytic model is shown in blue (B),
including model 95% credible intervals (darker shading) and the sampling uncertainty (binomial, lighter shading).

https://doi.org/10.1371/journal.pntd.0010506.g003
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with the serosurvey (S6 Fig). Serovar Pohnpei was found to have the highest FOI, which was
also the most commonly identified serovar in the serosurvey.

Time-varying FOI

Our baseline catalytic and reverse catalytic models assumed a constant FOI. Therefore, we also
assessed whether varying the FOI over time impacted the estimate for seroreversion (Table 3).
Firstly, a constant FOI was assumed, but with the addition of one recent outbreak (allowed to
occur two years prior to the seroprevalence survey). This approach was then extended, allowing
for the outbreak to have occurred anytime in the five years preceding the seroprevalence survey.
These models had similar estimates of seroreversion [7.25 years (3.36–11.36), for the constant
FOI with one outbreak in the last five years], which were comparable with the estimate from the
simple reverse catalytic model. There was little difference in WAIC between the two models
which included a constant FOI and an outbreak, indicating both models performed equivalently
well. Furthermore, the estimates of WAIC were similar to the reverse catalytic model (Table 3).
The timing of the outbreak, when allowed to occur in the preceding five years, estimated the out-
break to be in April 2013 (95% CrI: September 2009—December 2013; S7 Fig), albeit with wide
credible intervals and there was a lot of uncertainty regarding the height of the peak. Finally, a
subsequent model assessed the effects of having no constant FOI and one outbreak (outbreak
only scenario) occurring in the 10 years preceding the survey. This model estimated a higher rate
of seroreversion, and a higher WAIC (WAIC difference: 13, compared with constant FOI with an
outbreak in the previous five years), indicating that the model did not have as much support.

Reconstructing historic time of infection

Our above modelling analysis used population level seroprevalence data to estimate the most
likely timing of the outbreak. The model estimated a recent outbreak, however the credible

Table 2. Parameter estimates for the FOI and waning for the reverse catalytic model by sex, by administrative
division and by serovar (median [95% CrI]).

Model FOI (95% CrI) Waning (95% CrI)

Reverse catalytic model by sex Female: 0.025 (0.017–0.040)
Male: 0.042 (0.029–0.067)

0.120 (0.078–0.200)

Reverse catalytic model by administrative Division Central: 0.033 (0.022–0.058)
North: 0.035 (0.022–0.065)
West: 0.038 (0.025–0.068)

0.135 (0.085–0.250)

FOI allowed to vary by serovar, waning held constant Ballum: 0.0009 (0.0004–0.003)
Canicola: 0.0028 (0.0015–0.0070)
Copenhageni: 0.0021 (0.0011–0.0053)
Pohnpei: 0.0340 (0.0208–0.0830)

0.175 (0.101–0.449)

FOI, force of infection; CrI, credible interval.

https://doi.org/10.1371/journal.pntd.0010506.t002

Table 3. Time-varying FOI models. Parameter estimates for the constant FOI, outbreak timing and waning for the reverse catalytic model with a constant FOI and one
outbreak in the last two years, the reverse catalytic model with a constant FOI and one outbreak in the last five years, and the reverse catalytic model with no constant FOI
and one outbreak in the last ten years (outbreak only model).

Model Constant FOI estimate (95% CrI) Outbreak timing (95% CrI) Waning (95% CrI) WAIC

Constant FOI with 1 outbreak (2 years) 0.036 (0.024–0.060) 2013–05 (2012–08–2013–12) 0.139 (0.089–0.241) 2089

Constant FOI with 1 outbreak (5 years) 0.036 (0.022–0.061) 2013–04 (2009–09–2013–12) 0.138 (0.088–0.298) 2090

No constant FOI & 1 Outbreak (10 years) - 2009–02 (2008-05- 2010–03) 0.492 (0.095–0.779) 2103

FOI, force of infection; WAIC, widely applicable information criterion; CrI, credible interval.

https://doi.org/10.1371/journal.pntd.0010506.t003
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intervals surrounding the estimated timing were large. Therefore, we also conducted a comple-
mentary analysis to estimate the timing of infection at the individual level, using the MAT
titres by serovar instead of aggregated binary seropositivity. First, using a mixed-effects linear
model and data from the point-source outbreak from Lupidi et al. [25], the rate that antibody
titres drop by one dilution level was estimated to be 7.92 (6.30–11.08) months. The time taken
to reach undetectable levels was estimated as 6.57 years following infection (S4 Table). These
results were pooled across all three serovars reported by Lupidi et al. [25] since there was no
clear infecting serovar identified in the study. The antibody decay rate, along with the titre dis-
tribution of recently infected individuals sampled in 2012 and 2013, were then used to estimate
when individuals included in the seroprevalence survey might have become infected (sche-
matic representation shown in Fig 2). The results indicate that a recent outbreak most likely
caused the majority of infections, with estimated time of infection predominantly in 2012 and
2013 (Fig 4). This was true under both assumptions of infection; firstly, where infections were
assumed to be independent events, and an individual can be seropositive for more than one
serovar (Fig 4A); and secondly where only the highest antibody titre was used, and we assumed
individuals could not be infected with more than one serovar (Fig 4B). These results corre-
spond with what is known from surveillance data reported by the Fiji Ministry of Health and
Medical Services, which show large outbreaks in 2012 and 2013, with 563 and 453 cases
reported respectively [30,33]. In comparison, an annual mean of 72 cases were reported
between 2008 and 2011 (although data were known to be less accurate for 2010, where only
five cases were reported). A breakdown by serovar is shown in S8 Fig.

The samples from individuals with clinically suspected leptospirosis from 2012 were col-
lected approximately two weeks following infection. There may not have been sufficient time
for antibody levels to peak, therefore the geometric mean antibody titres were compared to the

Fig 4. Estimating the most likely time of infection from leptospirosis seroprevalence data from Fiji. (A) assumes that individuals can be seropositive for more than one
serovar at different times (n = 520), whilst (B) using results of the serovar associated with the highest titre (n = 417).

https://doi.org/10.1371/journal.pntd.0010506.g004
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peak antibody titres from Lupidi et al.. The mean antibody titre in Lupidi et al. was found to
be 1–3 dilutions higher than in the clinically suspected individuals from Fiji, so a sensitivity
analysis was conducted. The 2012 titre profiles were shifted so that the mean geometric titre
corresponded to those observed in Lupidi et al. [25]. This placed the peak of the infection fur-
ther in the past, but still within the last three years (S9 Fig).

Discussion

Serocatalytic models can be used to estimate time-dependent values such as the rate of infec-
tion and duration of seropositivity from cross-sectional seroprevalence studies [34]. They are
particularly useful tools in serological studies on diseases where seroreversion occurs, as we
can make comparisons between seroprevalence and surveillance data, whilst accounting for
waning of antibodies, and this has important public health implications. For example, in a set-
ting where there is a high force of infection, FOI, and rapid seroreversion, it could be wrongly
concluded from an overall low seroprevalence estimate that little transmission is occurring. In
our analysis, the estimated annual attack rate for Leptospira infection in Fiji (3.15%, 2.18% -
5.16%) using the reverse catalytic model would suggest that there may be as many as 28,000
(19,000–46,000) infections in Fiji per year, using the 2017 population census. Annually
reported cases in Fiji have typically varied from a couple of hundred cases to over a thousand,
but our findings quantify the potential extent of unascertained community infection. Reasons
for this under-ascertainment could be due to clinical misclassification (e.g. misdiagnosis as
dengue fever), limited access to laboratory diagnosis, individuals with mild symptoms not
seeking health care, or asymptomatic infections [45]. While the data supports evidence that
there is under-reporting, it is worth noting that the serosurvey was conducted during a period
of high incidence, and the FOI may have been estimated to be lower in other years.

Using the reverse catalytic model we also estimated the persistence of detectable anti-Lep-
tospira antibodies to be 8.33 years (4.76–12.50 years). Similar estimates were obtained when
analysed by sex, administrative division and serovar. Furthermore, since large seasonal out-
breaks of leptospirosis are known to occur in Fiji, we explored how a time-varying FOI influ-
enced our estimates of the duration of seropositivity and found that our estimates remained
similar [7.25 years (3.36–11.36), for the constant FOI with one outbreak in the last five years].
There was little difference between the WAIC estimates of the reverse catalytic model and the
time-varying FOI model, indicating that both models performed equivalently using the sero-
positivity data. Therefore, using the seroprevalence study alone, we were not able to identify
which scenario had the most support. The duration of antibody persistence estimated in this
study is longer than that found by previous studies, which estimated it to be between 3–6 years
[24,25]. However, the follow up duration in previous studies was between 5 and 6 years, and
some individuals remained seropositive at the conclusion of the study in both Lupidi et al. [25]
(follow up duration of five years) and in Cumberland et al. [24] (follow up time of six years).
This indicates a longer period of follow-up may be required to accurately measure the duration
of antibody persistence. We estimated (using a linear mixed effects model) that in Lupidi et al.
the time taken to reach undetectable levels was 6.57 years, which extended beyond the follow-
up period, and this is in accordance with our estimate of the duration of antibody persistence
from the Fiji serosurvey, suggesting that antibody decay rates are comparable across settings.
However, care needs to be taken when comparing the duration of immunity in different con-
texts. Fiji is an endemic setting where repeated infections are more likely. These may boost
antibody responses, resulting in longer persistence of measurable antibodies [6,46]. In a differ-
ent, non-endemic setting, antibody persistence may be estimated to be shorter. Therefore,
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additional longitudinal datasets from settings with high prevalence would be useful to validate
our results.

In our study, we focus on antibody responses that provide a correlate of Leptospira infec-
tion. However, understanding the dynamics of infection more fully would require more
detailed analysis of the relationship between seropositivity, development of symptomatic dis-
ease and protective immunity. One of the most accurate ways to assess the duration of immu-
nity is to conduct longitudinal reinfection studies. Reinfection generally occurs with a
different infecting serovar and appears more likely to result in asymptomatic infection or mild
clinical disease, suggesting protective specific-immunity but also cross-reactive protection fol-
lowing initial infection. However, severe disease following a second infection [17,27], and
repeat infections with the same serovar have also been observed [26,27]. The exact timing of
prior infection was often not known in these studies and many only had short follow-up peri-
ods, highlighting the need for prospective studies in well characterised populations with suffi-
cient follow up periods. These studies would address many unanswered questions, including
the nature and duration of immunity to Leptospira in terms of whether it is serovar or ser-
ogroup specific, whether it results in milder clinical disease, and finally, whether it is correlated
with antibody titre levels. These questions could have implications for the successful develop-
ment and deployment of a vaccine in humans.

In the absence of more detailed prospective studies, antibodies may act as a correlate for
protective immunity, however, care needs to be taken in interpretation. Despite low and possi-
bly un-detectable levels of antibodies, immunity may persist. Memory B-cells can reside out-
side serum and are therefore difficult to detect from blood samples, but can rapidly produce
antibodies following an infection. Furthermore, immunity is not driven solely by antibody-
mediated processes, as cell-mediated immunity may also play a role [13,14]. Therefore, anti-
body titres may under-estimate immunity against pathogens. Leptospires are extracellular
pathogens, and as such humoral-mediated immunity is thought to play a central role [13,21].
Previous studies have shown that protective immunity can be transferred via the serum
[47,48], demonstrating the role of antibodies, and suggesting that immunity to leptospirosis is
driven primarily via the humoral immune response. Therefore, the duration of antibody per-
sistence is likely to be a good correlate for immunity.

Since antibodies can act as a marker of exposure to infection, we explored two complemen-
tary approaches to estimate the timing of infection at the population level. In the first, we used
the population seroprevalence data, and allowed for a time-varying FOI, which inferred that
there was endemic transmission occurring, and a large outbreak in 2013. However, there was a
lot of uncertainty regarding the timing and the size of the peak, with large credible intervals,
when only the binary seroprevalence data was used. In the second approach, we used the MAT
antibody titres by serovar, MAT antibody titres from clinically suspected leptospirosis cases
and longitudinal information on antibody decay rates from Lupidi et al. [25] to estimate the
most likely timing of infection, fully utilising the available seroprevalence data. From this, we
found that most individuals included in the 2013 seroprevalence study were likely to have had
a recent infection within the last two years. These results appear to correspond with what is
known from surveillance data collected by the Fiji Ministry of Health, which show high num-
bers of cases in 2012 and 2013 [30,33]. We demonstrate that by incorporating additional
sources of data, including longitudinal information on antibody kinetics, we were able to iden-
tify the timing of infection. Identifying a time window when infection may have occurred
could be useful when analysing results from serosurveys, as this would allow for data to be cho-
sen based on temporal proximity to the likely infection period. This may increase the accuracy
of analyses and reduce confounding that may occur through the combination of disparate
datasets. We did not observe any patterns of infection by serovar, suggesting that there may be
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simultaneous circulation of multiple serovars in Fiji, rather than multiple outbreaks with dif-
ferent serovars. A previous study describing the human serosurvey in Fiji found that there
were differences in serovar distribution by age and location, suggesting that there are different
risk factors of disease transmission between sub-groups [29]. For example, livestock could be
more important drivers in rural areas, with rodents being more important in urban areas.
However, in this setting there was one dominant serovar (serovar Pohnpei), limiting the ability
to identify serovar-specific risk factors. Since Leptospira exposure does not induce lifelong
immunity (i.e antibodies wane following Leptospira infection), it was not possible to estimate
infection beyond the time it takes for seropositivity to wane. Therefore, such data cannot pro-
vide insights further back in time than the duration of antibody waning.

The results from our analysis are to some extent limited by the quality of the data available.
We used MAT titres from recently infected individuals from Fiji, however, the exact timing of
infection was not known, and it is possible that individuals may not have reached their peak
antibody titre levels yet [18]. In addition, standardisation of the MAT test is challenging, and
the results may not be fully comparable across settings [46]. Finally, very little data exist on
antibody profiles following infection with leptospirosis, and the available evidence demon-
strates high levels of inter-individual heterogeneity. This is highlighted by Lupidi et al. [25],
who reported a point source outbreak in Italy, where leptospirosis is not endemic. Each indi-
vidual followed up over time in their study showed distinct antibody profiles. Despite these
limitations in data quality and uncertainties in antibody dynamics, our methods were able to
identify a time window in which transmission was most likely to have occurred, and which
corresponds to known outbreaks in Fiji. This provides a novel way of using seroprevalence
data to gain longitudinal information and insight into more recent transmission dynamics. A
better understanding of antibody waning, and antibody profiles following infection, particu-
larly given the level of inter-individual heterogeneity, would allow for this method to be further
developed for leptospirosis and also other diseases.

By using serocatalytic models, we showed that it is possible to obtain insights into the
underlying dynamics of leptospirosis transmission from cross-sectional data as well as provid-
ing an estimate for the duration of seropositivity. We also provide a novel method for extrapo-
lating seroprevalence data to estimate when individuals may have become infected, showing
how evidence synthesis can allow for richer, longitudinal information to be inferred from
cross-sectional studies.

Supporting information

S1 Table. Summary, advantages and disadvantages of MAT and ELISA test used for the
diagnosis of leptospirosis.
(PDF)

S2 Table. Description of the different models fitted and priors used.
(PDF)

S3 Table. Simulation recovery study. Estimating the FOI and waning from a high FOI and
low FOI setting.
(PDF)

S4 Table. Results from the mixed-effects linear model from the point source outbreak in
Italy (Lupidi et al.). Antibody drop time was defined as the time taken in months for antibod-
ies to drop one antibody titre level (e.g. from 1:100 to 1:50).
(PDF)

PLOS NEGLECTED TROPICAL DISEASES Estimating antibody positivity and time of Leptospira infection from seroloprevalence data

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010506 June 13, 2022 14 / 18

Chapter 3: Estimating antibody positivity and likely time of Leptospira infection

83



S1 Fig. Number of individuals included within the 2013 leptospirosis serosurvey by five-
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S9 Fig. Sensitivity analysis for estimating the most likely time of infection from the sero-
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4
Estimating the duration of seropositivity of

human seasonal coronaviruses using
seroprevalence studies

SARS-CoV-2 emerged in December 2019, and had a devastating impact, resulting in 500 mil-
lion cases and 6.2 million reported deaths globally as of June 2022 [1]. Due to the inevitable
right censoring of data during an emerging infectious disease pandemic, at the end of 2020 and
the beginning of 2021 there were many unanswered questions regarding the likely duration of
protective immunity and the risk of reinfection. In September 2020 Huang et al. [2] presented
a comprehensive systematic review of seasonal human coronaviruses (HCoVs), including data
which they extracted from a number of different seroprevalence studies. The authors fitted
a catalytic model to do this data by strain, however, they did not allow for waning immunity
within their model. Given that reinfection by the same strain is known to occur within seasonal
HCoVs [2], and the observed age profile of the seropositivity, this offered an opportunity to ex-
tend the methodology developed for leptospirosis in Chapter 3 and adapt it to seasonal HCoVs
to help understand an unravelling public health emergency. I aimed to estimate the duration of
antibody persistence using a reverse catalytic model (accounting for waning immunity). Fur-
thermore, I explored how the infection rate varied by age and combined age-stratified sero-
prevalence data within an age-varying FOI reverse catalytic model to investigate how waning
immunity and age-variation infection risk could shape population level seroprevalence.

This paper was published in Wellcome Open Research in June 2021 [3], with a final version
accepted in December 2021. The Supplementary material of the paper is included as Appendix
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Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
a novel beta coronavirus, was first detected in December  
2019 and has since spread globally causing high morbidity 
and mortality. There is evidence of some short-term sterilising  
immunity (protection against reinfection and symptoms) fol-
lowing infection with SARS-CoV-21, but also some reports of  
reinfection2. However, there is currently limited evidence on 
the duration of immunity conferred by SARS-CoV-2 infection. 
Given the limited duration of SARS-CoV-2 circulation to date,  
the dynamics of antibody responses of seasonal human  
coronaviruses (HCoV) could provide insights into the possible  
long-term potential for reinfections3. The duration of immunity  
following infection is of both clinical and epidemiological  
importance, as it provides information as to how long previously  
infected individuals may no longer be at risk of infection and 
disease, as well as influencing the long-term dynamics of  
epidemics4 and enabling the interpretation of population-wide  
serological data5.

There are four circulating HCoVs: HCoV-NL63 and HCoV-
229E (alpha coronaviruses), HCoV-OC43 and HCoV-HKU1  
(beta coronaviruses). HCoV-OC43 and HCoV-229E were first 
identified in the 1960s, but HCoV-NL63 and HCov-HKU1 
were not identified until 2004 and 2005 respectively6,7. Like  
SARS-CoV-2, these typically cause respiratory tract infections. 
A small number of human challenge studies have looked at 
the duration of immunity to these viruses. Callow et al.8 found  
that six out of nine participants were reinfected when chal-
lenged with HCoV-229E again one year later, as measured by a 
rise in IgG antibodies and viral shedding. However, the period of  
viral shedding was shorter following the second inocula-
tion, and none of the participants developed symptoms. Reed9 
found that reinfection did not occur when participants were  
re-inoculated with a homologous strain approximately one 
year following infection, but participants had partial immunity 
against reinfection with a heterologous strain. Taken together 
these results suggest that immunity against infection with a  
homologous strain could last at least one year8,9.

There are also a small number of cohort and community-based  
surveillance studies which have looked at reinfection of  
seasonal HCoV. One study looked at HCoV reinfection in a 
small cohort of ten individuals over 35 years and found the  
median reinfection times to be 30 months, but with reinfection  
often occurring at 12 months10. A larger study looking at data 
from Flu Watch, a community cohort study which measures the 
incidence and transmission of respiratory viruses, found that  
between 2006 and 2011, eight subjects were reinfected with 

a seasonal HCoV (of 216 with confirmed first infection), and 
the time between reinfection ranged from 7 to 56 weeks. None  
of these reinfections were with the same strain, providing some 
evidence of lasting immunity11. However, a community surveil-
lance study of 483 participants conducted in Kenya in 2010 
over six months found evidence of high numbers of repeat 
infections of HCoV-NL63 (20.9%), HCoV-OC43 (5.7%), and 
HCoV-229E (4.0%). The majority of these reinfections showed 
reduced virus replication in the second infection, and a lower 
proportion of individuals had symptoms following the second  
infection12. Furthermore, another study conducted in New 
York City which included 191 participants found that rein-
fections with the same strain can occur within one year13. 
Care should be taken with the interpretation of these studies 
since we do not know the background exposure rates, and  
this will influence the estimates of duration of immunity.

If infections are fully immunising – as is the case for patho-
gens like measles and varicella zoster – then seroprevalence 
would be expected to accumulate over time14, and hence with 
age, with little waning of responses. The dynamics can therefore  
be captured with catalytic models of seroconversion15, which 
enables estimation of the force of infection (FOI, the rate at 
which susceptible individuals acquire infection and seroconvert).  
In contrast, when individuals serorevert, i.e. their immunity 
wanes by the progressive loss of protective antibodies against a 
disease over time, ‘reverse catalytic models’ can jointly estimate  
FOI and waning of immunity16. Variation in FOI with age may 
further complicate the dynamics, particularly if a high infec-
tion rate in children is followed by a lower rate in adults as  
well as waning of seroprevalence. To understand how serocon-
version, waning and age-variation in infection risk could shape 
population-level seroprevalence, we combine age-stratified  
data with age-structured reverse catalytic models, and estimate 
the likely duration of seropositivity following seroconversion  
for the four seasonal coronaviruses.

Methods
Human seroprevalence from four different human coronavirus 
strains (229E, HKU1, NL63, and OC43) were identified in a  
recent systematic review7. Studies which did not include esti-
mates for individuals under 10 years old17 were excluded, as  
well as studies with which only reported two age groups18. 
A total of six different studies were included, covering the 
four seasonal HCoVs, with some studies reporting on multi-
ple strains19–24. Two studies were reported separately for two  
different strains, but the overall study population was the 
same21,22. A summary of these studies is presented in Table 1. 
The different assays used in each study for the different 
strains is shown, and where the antibody detected was speci-
fied this is included in the table. To account for maternal immu-
nity individuals aged �1 year were excluded. The full dataset  
used for this analysis can be found as underlying data25.

To explore the duration of antibody persistence for different  
seasonal coronaviruses, where detectable antibodies is defined  
as seropositivity, we developed age-structured reverse catalytic  
models. The basic reverse catalytic model follows individuals  
from birth and assumes that there is a constant FOI (Ȝ), 
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which is independent of age (a) and calendar year, and that 
immunity (as measured by serological status) wanes over  
time, at a rate Ȧ. This model also assumes that the mortal-
ity rate for susceptible and infectious individuals is the same. 
The expression for the proportion of individuals age a who are  
seropositive, z(a), in the reverse catalytic model is as follows:

( )( ) (1 )az a e λ ωλ
λ ω

− += −
+

where Ȝ is the FOI, Ȧ is seropositivity waning rate and a is age.  
The duration of antibody persistence was estimated as follows:

Duration of antibody persistence = 1/Ȧ

We then extended the reverse catalytic model to allow for a dif-
ferent FOI by age. The expressions for seroprevalence in  
the reverse catalytic model with age-varying FOI are as follows:
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Where z(a) is those who are seropositive at age a, Ȝ1 is the 
FOI in young age groups, Ȝ2 is FOI in the old age group, Ȧ is  
waning, a is age, a0 is the age cut-off used to define the young  
and old group, and the relative change in FOI, Į, is the change 
in FOI in the older age group. In our analysis, we allowed Ȝ1 to 

vary by study and strain, to account for local differences in  
population-level transmission dynamics, while the average rate 
of waning within a given individual was assumed to be universal  
and was jointly estimated across all studies and strains. This 
means that one overall estimate of waning was obtained. Some 
of the studies occurred in the same setting, and so the under-
lying contact patterns were presumed to be the same (in total 
we identified five settings). Therefore, the relative change in 
FOI (Į) and the age at cut-off (a0) were jointly estimated across 
settings. This model assumes no cross-protection between 
strains. Annual attack rates were calculated after estimating the  
FOI using the following expression,

1 .Attack rate e λ−= −  

To reflect uncertainty in current knowledge about the transmis-
sion dynamics of HCoVs, weakly informative distributions 
were chosen as priors for Ȧ, the rate of waning over time. Spe-
cifically uniform priors from 0 to 5 years. For the FOI, there 
is little information on the attack rate of HCoVs. However, 
there have been several systematic reviews and meta-analyses  
looking at influenza in unvaccinated individuals which have 
reported the attack rates to range between 15.2% – 22.5% 
in children and 3.5% – 10.7% in adults26–28. Modelling stud-
ies using serological influenza data predicted estimates from  
20 – 60%29,30. Based on the epidemiology of these viruses in 
children31, we expect the attack rate for HCoV may be lower. 
Therefore, we selected a Gamma distribution, with a mean of  
0.3 (shape = 1.2 and scale = 0.25) and this corresponds to 
an attack rate of 26% and covers a range of plausible values. 

Table 1. &KDUDFWHULVWLFV�RI�VWXGLHV�XVHG�WRࢉ�W�WKH�PRGHO�

Strain Author (year 
published)

Pubmed ID Sample 
size

Country/ 
region

Years 
sampled

Assay Antigen $VVD\�FXW�Rࢆ

HCoV-HKU1 Chan (2009) 19342289 709 Hong Kong 1RW�VSHFLࢉHG ELISA (IgG) S protein Mean + 3SD 
(OD>0.495)

Zhou (2013)a 24040960 789 China 1999 – 2011 IFA (IgG) S protein >1:20

HCoV-OC43 Zhou (2013)a 24040960 789 China 1999 – 2011 IFA (IgG) S protein >1:20

Monto (1974)c 4816305 910 USA 1965 – 1969 CF or HI Whole virus <1:8 to >1:8 or 
4-fold rise

Sarateanu (1980) 6248465 3,016 Germany 1974 – 1976 HI Whole virus >1:8

HCoV-NL63 Shao (2007)b 17889596 243 USA 2003 – 2004 ELISA (IgG) N protein OD>0.2 at 
dilution of 1:80 
or greater

Zhou (2013)a 24040960 789 China 1999 – 2011 IFA (IgG) S protein >1:20

HCoV-229E Shao (2007)b 17889596 243 USA 2003 – 2004 ELISA (IgG) N protein OD>0.2 at 
dilution of 1:80 
or greater

Zhou (2013)a 24040960 789 China 1999 – 2011 IFA (IgG) S protein >1:20

Cavallaro (1970)c 5504709 307 USA 1966 Neutralization Whole virus >1:4
+XPDQ�FRURQDYLUXV��+&R9���(Q]\PH�OLQNHG�LPPXQRVRUEHQW�DVVD\V��(/,6$���LPPXQRࢊXRUHVFHQFH�DVVD\V��,)$���FRPSOHPHQWࢉ�[DWLRQ��&)���KHPDJJOXWLQDWLRQ�
inhibition assays (HI), Immunoglobulin G (IgG), standard deviation (SD), optical density (OD). Studies which occurred in the same setting are denoted by the 
superscripts, a, b and c.
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For the age at cut-off (a0), uniform priors from 0 to 20 years 
were chosen as we were interested in the difference in FOI in  
children and young adults. For the relative change in FOI (Į) 
we did not have any prior information. Therefore, we selected 
a prior with median 1, which presumes no difference between 
FOI in young compared with FOI in old and allowed for a range 
of plausible values using a gamma distribution (shape = 5,  
scale = 0.2).

Several sensitivity analyses were conducted to assess the robust-
ness of these results. First, the choice of priors for the FOI was 
explored, and a less informed prior was tested (FOI ~ Normal  
(mean 0.3, standard deviation 0.5)). Second, waning was estimated  
by strain, instead of being jointly fitted across all studies.  
The relative change in FOI (Į) and age at cut-off (a0)  
were then held across all studies (instead of allowing them 
to vary by setting) to explore the impact on the estimate for 
waning. The impact of excluding the youngest age groups  
(�1 year) was also explored, and a model was run which 

included individuals �1 year. The impact of the assay used in 
the study on the estimate of waning was also explored, where 
FOI was allowed to vary by study, alpha and the age at cut-off 
varied by setting and waning varied by assay (ELISA, IFA, HI 
and neutralisation). Finally, the primary model (age-varying 
FOI model) was fitted using only half the data (seropreva-
lence studies from two strains), to explore whether the results  
from one study was heavily influencing the results. For this 
model, waning, the relative change in FOI (Į) and age at  
cut-off (a0) were held across all studies. A description of these  
models is presented in Table 2.

Bayesian inference was used to fit the sero-catalytic models 
to the seroprevalence data, using Markov chain Monte Carlo  
(MCMC) with the Gibbs sampling algorithm to estimate model 
parameters. To do so, we used the following binomial likelihood 
representing seropositivity by age (a), study (i) and strain (j)

~ ( , ),ija ija ijay Binomial P N

Table 2. Description of models explored.

Model Priors Number of 
parameters

Main model: 
Reverse catalytic model with 
DJH�YDU\LQJ�)2,��DOSKD�DQG�FXW�Rࢆ�YDU\LQJ�DFURVV�VHWWLQJV��
- More informed priors

FOI ~ gamma(shape = 1.2, scale = 0.25) 
Waning ~ uniform(0,5) 
Alpha ~ gamma(shape = 5, scale = 0.2) 
&XW�Rࢆ�a�XQLIRUP������

21

Reverse catalytic model with 
DJH�YDU\LQJ�)2,��DOSKD�DQG�FXW�Rࢆ�YDU\LQJ�DFURVV�VHWWLQJV��
- less informed priors

FOI ~ normal(0.3,0.5) 
Waning ~ uniform(0,5) 
Alpha ~ gamma(shape = 5, scale = 0.2) 
&XW�Rࢆ�a�XQLIRUP������

21

Reverse catalytic model with 
DJH�YDU\LQJ�)2,��DOSKD�DQG�FXW�Rࢆ�YDU\LQJ�DFURVV�VHWWLQJV��
waning varying by strain) 

FOI ~ gamma(shape = 1.2, scale = 0.25) 
Waning ~ uniform(0,5) 
Alpha ~ gamma(shape = 5, scale = 0.2) 
&XW�Rࢆ�a�XQLIRUP������

24

Reverse catalytic model with 
DJH�YDU\LQJ�)2,��DOSKD�DQG�FXW�Rࢆ�KHOG�DFURVV�VHWWLQJV�

FOI ~ gamma(shape = 1.2, scale = 0.25) 
Waning ~ uniform(0,5) 
Alpha ~ gamma(shape = 5, scale = 0.2) 
&XW�Rࢆ�a�XQLIRUP������

13

Reverse catalytic model with 
DJH�YDU\LQJ�)2,��DOSKD�DQG�FXW�Rࢆ�YDU\LQJ�DFURVV�VHWWLQJV��
including data <1 year

FOI ~ gamma(shape = 1.2, scale = 0.25) 
Waning ~ uniform(0,5) 
Alpha ~ gamma(shape = 5, scale = 0.2) 
&XW�Rࢆ�a�XQLIRUP������

21

Reverse catalytic model with 
DJH�YDU\LQJ�)2,��DOSKD�DQG�FXW�Rࢆ�YDU\LQJ�DFURVV�VHWWLQJV��
waning varying by assay)

FOI ~ gamma(shape = 1.2, scale = 0.25)  
Waning ~ uniform(0,5)  
Alpha ~ gamma(shape = 5, scale = 0.2)  
&XW�Rࢆ�a�XQLIRUP������

24

Reverse catalytic model FOI ~ gamma(shape = 1.2, scale = 0.25) 
Waning ~ uniform(0,5)

11

)RUFH�RI�LQIHFWLRQ��)2,���UHODWLYH�FKDQJH�LQ�)2,��$OSKD�Ž���DJH�DW�ZKLFK�WKH�)2,�FKDQJHV��&XW�Rࢆ��
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where Nija is total number of individuals by age group, strain 
and study, and Pija is the proportion of individuals who are  
seropositive. The inference was implemented in RJags  
(version 4–10)32. The Gelman-Rubin statistic was used to  
evaluate MCMC convergence, and a threshold of <1.1 was  
chosen. The effective sample size (ESS), which is the esti-
mated number of independent samples accounting for autocor-
relations generated by the MCMC run, was checked, and an  
ESS >200 was used. All analysis and calculations were per-
formed using R version 3.6.1. Model selection was based on the  
lowest value of the widely applicable information criterion 
(WAIC) and the leave-one-out cross validation (LOO) using 
Pareto-smoothed importance sampling33,34. WAIC and LOO were 
estimated using the R package Loo (version 2.4.1)34. All code  
is available here at GitHub25.

Results
Using a reverse catalytic model, which allowed the FOI to 
change in individuals by age, we estimated the duration of  
antibody persistence for the four seasonal HCoVs. Despite  

having only four parameters by study, our model could capture 
the overall trends in most studies (Figure 1). Waning was jointly  
fitted across all studies and strains to obtain one overall esti-
mate, and the duration of antibody persistence was estimated 
to be 3.75 (95% credible interval [CrI]: 1.96 – 7.38) years  
(Table 3). The FOI across all studies and strains in the young 
age group ranged from 0.02 (95% CrI: 0.01 – 0.05) to 1.06 
(95% CrI: 0.57 – 1.68). The cut-off (age at which the FOI 
changes) ranged between 2.35 (95% CrI: 0.31 – 17.51) to 16.58  
(95% CrI: 7.71 – 19.81) years. The relative change in FOI 
(Alpha) which measures the relative value of FOI in the young 
age group compared with the older age group ranged from  
0.72 (95% CrI: 0.3 – 1.17) to 2.48 (95% CrI: 1.96 – 2.99).  
For three of the study settings, the FOI in the older age group 
was higher (Figure 2). A sensitivity analysis was conducted  
using less informative priors for the FOI parameters, where a  
normal distribution was used (extended data Figure 1,  
Table 135). This model estimated a shorter duration of anti-
body persistence [0.93 (95% CrI: 0.60 – 1.64) years]. The FOI 
across all studies and strains were higher, ranging from 0.09  

Figure 1. Reverse catalytic model with age-varying FOI. The points are the observed proportion of seropositive individuals from each 
VWXG\��ZLWK�FRQࢉGHQFH�LQWHUYDOV���L�H��WKH�GDWD�WKDW�ZDVࢉ�W�WR��7KH�OLQHV�DUH�WKH�VHURSUHYDOHQFH�FXUYHV��VDPSOHG�IURP�WKHࢉ�WWHG�PRGHO��ZKHUH�
the shaded region represents the 95% credible interval of the predictive posterior distribution. FOI was allowed to vary by study, whilst the 
UHODWLYH�FKDQJH�LQ�)2,��$OSKD��DQG�FXW�Rࢆ�ZHUH�DOORZHG�WR�YDU\�E\�VHWWLQJ��:DQLQJ�ZDV�MRLQWO\ࢉ�W�DFURVV�DOO�VWXGLHV�DQG�VWUDLQV�
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Table 3. Parameter estimates from the age-varying FOI reverse catalytic model (median [95% CrI]). 
FOI was allowed to vary across study, while waning was simultaneously estimated across all studies. The relative 
FKDQJH�LQ�)2,��$OSKD��DQG�WKH�FXW�Rࢆ�ZHUH�DOORZHG�WR�YDU\�DFURVV�VWXG\�VHWWLQJV�

Strain First Author FOI (youngest 
age group)

Relative change 
in FOI (Alpha)

Age at which 
the FOI changes 
�FXW�Rࢆ�

Waning

HCoV-229E Shao 0.40 (0.26 – 0.64) 0.78 (0.35 – 1.68) 9.5 (0.59 – 19.47)

0.27 (0.14 - 0.51)

Zhou 1.06 (0.57 – 1.68) 1.57 (0.8 – 2.65) 2.35 (0.31 – 17.51)

Cavallaro 0.11 (0.06 – 0.3) 0.72 (0.3 - 1.17) 9.14 (0.57 - 19.28)

HCoV-HKU1 Chan 0.02 (0.01 - 0.05) 2.27 (1.44 – 3.45) 16.58 (7.71 – 19.81)

Zhou 0.59 (0.32 – 0.89) 1.57 (0.8 – 2.65) 2.35 (0.31 – 17.51)

HCoV-OC43 Zhou 0.64 (0.35 – 0.96) 1.57 (0.8 – 2.65) 2.35 (0.31 – 17.51)

Monto 0.07 (0.04 – 0.19) 0.72 (0.3 – 1.17) 9.14 (0.57 – 19.28)

Sarateanu 0.19 (0.11 – 0.35) 2.48 (1.96 – 2.99) 9.93 (7.34 – 14.84)

HCoV-NL63 Zhou 0.50 (0.27 – 0.74) 1.57 (0.8 – 2.65) 2.35 (0.31 – 17.51)

Shao 0.41 (0.26 – 0.67) 0.78 (0.35 – 1.68) 9.5 (0.59 – 19.47)
Human coronavirus (HCoV), force of infection (FOI).

Figure 2. Posterior estimates for the relative change in FOI (alpha) from the age-varying reverse catalytic model for each 
study setting. 7KH� DOSKD� HVWLPDWH� IURP� WKH�PRGHO� ZKHUH� DOSKD� DQG� FXW�Rࢆ�ZHUH� VLPXOWDQHRXVO\� HVWLPDWHG� DFURVV� VWXGLHV� LV� VKRZQ� 
in grey as “combined”. The prior is shown as a dashed line.
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(95% CrI: 0.04 - 0.16) to 3.22 (95% CrI: 1.95 - 4.85), with six 
studies reporting FOI estimates > one, which is equivalent to 
an attack rate of >63%. The relative change in FOI and cut-off 
were similar for both models. This model had a lower WAIC 
(536.4 compared with 545.9) and LOO (546.0 compared with 
557.8), which suggests that this model may have an improved 
fit compared with the model with more informed priors, how-
ever, large standard errors (SE) were reported for both WAIC 
and LOO. Furthermore, the high FOI estimates indicate that 
this model may be less plausible (Table 4). As an additional  
sensitivity we allowed the waning estimate to vary by strain 
(extended data Table 235). This model estimated the duration of 
antibody persistence to be similar for all strains, ranging from 
2.26 (1.06 – 5.07) years for HCoV-OC43 to 4.09 (1.91 – 9.60)  
years for HCoV-229E.

When the relative change in FOI and cut-off parameters were 
simultaneously estimated by setting (extended data Figure 2,  
Table 335) the duration of antibody persistence was estimated 
to be shorter, 2.20 (95% CrI: 1.57 - 3.08) years, although the  
confidence intervals overlap with the main model. The FOI 
ranged from 0.04 (95% CrI: 0.03 - 0.06) to 0.88 (95% CrI:  
0.67 - 1.19). The overall model WAIC (622.1 compared with 
545.9) and LOO (632.5 compared with 557.8) were higher, indi-
cating that this model did not have as much support, although  
the SEs reported were large for WAIC and LOO (Table 4).

We also tested a basic reverse catalytic model, where the  
FOI was not allowed to vary by age, and this model estimated 
a longer duration of antibody persistence (7.69 [95% CrI:  
6.25 - 9.09] years; extended data Table 4, Figure 335). The 
WAIC (717.2) and LOO (718.5) values for the basic reverse 
catalytic model were higher compared with the other models, 
indicating that this basic model did not have strong support  
among the models considered (Table 4).

To explore the effect of excluding the youngest ages (�1 year), 
a sensitivity analysis was done where these individuals were  
included within the analysis. The duration of antibody per-
sistence was found to be slightly shorter (2.04 [95% CrI: 
0.1.28 -1.4.76] years) and the FOI was found to be higher for 

all studies, ranging from 0.04 (95% CrI: 0.02 - 0.07) to 2.92 
(95% CrI: 2.08 - 4.01); extended data Table 5, Figure 435). 
The estimates for the relative change in FOI were found to  
be very similar to the model which excluded this age group.

As an additional sensitivity analysis, we refit the models using 
data for only two strains at a time, and estimated the FOI,  
waning and the relative change in FOI (extended data Table 635). 
We found that although the results varied, the overall trends 
were the same, indicating that the model did not rely heavily  
on one dataset. The duration of antibody persistence varied  
from 1.80 years (95% CrI: 1.17 - 2.67) to 5.26 years  
(95% CrI: 2.53 - 13.56).

Finally, we explored the impact of the different assays used in 
the studies on the waning estimates. We allowed the waning 
estimate to vary by assay (extended data Table 7, Figure 535), 
whilst allowing FOI to vary by study, and alpha and cut-off 
to vary by setting. This model estimated the duration of anti-
body persistence to be similar for ELISA (2.63 [95% CrI:  
0.94-9.09] years), HI (1.08 [95% CrI: 0.44-3.33] years) and  
neutralisation (1.28 [95% CrI: 0.25-50.0] years) assays, but 
longer for IFA (7.69 [95% CrI: 3.03-14.29] years). The credible 
intervals were wide, likely due to the small number of studies  
by assay.

To demonstrate the relationship between FOI and seropositivity 
at age 30, we created simulated scenarios under different sero-
catalytic models. Using the parameters for the relative change 
in FOI and waning estimated from the age-varying reverse  
catalytic model (where the relative change in FOI and the age 
at cut-off were simultaneously estimated across settings), we 
simulated the proportion of individuals aged 30 years that  
would be seropositive using a range of FOI estimates to  
show how the proportion changes using the different models. 
The catalytic model, which does not allow for seroreversion, 
results in the highest estimates of seropositivity at age 30 
with increasing FOI. The age-varying FOI model results in  
higher estimates of seropositivity at age 30 compared with 
the reverse catalytic model. This is due to the FOI which was  
estimated to be almost twice as high in the older age 

Table 4. &RPSDULVRQ�RI�GXUDWLRQ�RI�DQWLERG\�SHUVLVWHQFH�HVWLPDWHV�IURP�WKH�GLࢆHUHQW�PRGHOV�H[SORUHG�

Model Reverse catalytic model with 
age-varying FOI (alpha 
DQG�FXW�Rࢆ�YDU\LQJ�DFURVV�
settings) - More informed 
priors

Reverse catalytic model 
with 
age-varying FOI (alpha 
DQG�FXW�Rࢆ�YDU\LQJ�DFURVV�
settings) - less informed 
priors

Reverse catalytic model 
with 
age-varying FOI (alpha 
DQG�FXW�Rࢆ�KHOG�DFURVV�
settings)

Reverse catalytic 
model

Duration of antibody 
persistence (years)

3.75 (95% CrI: 1.96 – 7.38) 0.93 (95% CrI: 0.60 – 1.64) 2.20 (95% CrI: 1.57 – 3.08) 7.69 (95% CrI: 
6.25 – 9.09)

WAIC 545.9 (SE: 100.2) 536.4 (SE: 99.6) 622.1 (SE: 103.3) 717.2 (SE: 156.8)

LOO 557.8 (SE: 102.3) 546.0 (SE: 100.6) 632.5 (SE: 105.6) 718.5 (SE: 151.8)
)RUFH�RI�LQIHFWLRQ��)2,���UHODWLYH�FKDQJH�LQ�)2,��$OSKD���DJH�DW�ZKLFK�WKH�)2,�FKDQJHV��&XW�Rࢆ���ZLGHO\�DSSOLFDEOH�LQIRUPDWLRQ�FULWHULRQ��:$,&���OHDYH�RQH�RXW�
cross validation (LOO), Standard Error (SE).
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group (with age at cut-off 8.49 [7.52 – 9.94] years) in the  
age-varying FOI model (Figure 3A). We further explored the  
relationship between FOI, attack rates and the estimated 
number of infections by age. We used the pooled estimate 
across all studies of FOI to estimate the proportion exposed at 
a given age to provide an indication of how many infections we 
might expect to see by age under our modelling assumptions  
(Figure 3B). We estimate that by two years, over 50% of the 
population will have at least one infection, and by age ten  
over 75% will have had more than four infections.

Discussion
To date, there has been limited evidence about the duration 
of immunity to SARS-CoV-2. Given the inevitable right  
censoring of data during an emerging infectious disease  
pandemic, understanding the duration of protection following  
infection with HCoV could help provide insights which will 
be relevant to SARS-CoV-2. Using an age-varying reverse  
catalytic model, we estimated the overall duration of immunity,  
as measured by seropositivity, to be between 0.9 (95%  
CrI: 0.6 - 1.6) years and 3.8 (95% CrI: 2.0 - 7.4) years for 
HCoV’s. When waning was estimated by strain, we found  
comparable estimates of the duration of seropositivity, indicating  
that the assumption that waning is similar across strains holds 
true. Previous studies have produced varied estimates for the 
duration of immunity for HCoVs. One study estimated the 
median duration of immunity to be 2.5 years10, and Reed found  
immunity lasts at least one year9. However, several studies 
have reported reinfection occurring in less than one year8,11–13.  
Aldridge et al.11 found that reinfection with HCoV did not 
occur with the same strain, but Kiyuka et al.12 found reinfec-
tion frequently occurred with the same strain within a six  

month period. The reverse catalytic model assumes that waning 
occurs at a constant rate, however, individuals may become 
reinfected within a shorter time period than average, and  
conversely some will take longer. Some evidence also exists  
for the duration of immunity to SARS-CoV-2. A recent  
survey of health care workers in Oxford, UK, found that pro-
tection against reinfection with SARS-CoV-2 lasts at least six  
months36, whilst another study of health care workers from 
across the UK conducted by Public Health England found that 
immunity lasts for at least five months2. This seems to align  
with what is known about reinfection in seasonal HCoVs.  
However, these studies only followed up individuals for six 
months and five months respectively, and longer follow-up 
times are needed. Future studies could also work to untangle the  
relationship between seroreversion as a result of waning homo-
typic antibody responses and antigenic evolution leading to a  
mismatch between prior immunity and circulating viruses37.

More informed priors for the FOI based on attack rates for 
influenza, resulted in higher estimates for the duration of  
seropositivity. When we used less informed priors for the FOI, 
a lower estimate of duration of seropositivity was obtained. 
However, this model produced higher estimates of FOI, with 
six studies reported FOI estimates in the young age group  
greater than one (attack rate >63%). There is limited infor-
mation on the attack rate of seasonal HCoV, however there 
have been numerous studies looking at influenza. Previous  
systematic reviews have estimated the attack rate of influenza 
to be between 3.5% and 22.5%26–28, whilst modelling studies  
have estimated this to be higher, 20 – 60%29,30. Based on  
reporting rates of seasonal HCoV we would expect the attack 
rate to be lower than influenza. Therefore, this suggests that 

Figure 3. (A��3URSRUWLRQ�RI�LQGLYLGXDOV�DJH����ZKR�DUH�VHURSRVLWLYH�IRU�GLࢆHUHQW�HVWLPDWHV�RI�IRUFH�RI�LQIHFWLRQ��)2,���7KH�FDWDO\WLF�PRGHO�LV�
shown in red, the reverse catalytic model in green, and the reverse catalytic model with age-varying FOI is shown in blue. Model estimates 
ZHUH�XVHG�IRU�WKH�SDUDPHWHU�YDOXHV��UHODWLYH�FKDQJH�LQ�)2,��DOSKD�������>�����ȁ�����@��ZDQLQJ�������>�����ȁ�����@��FXW�Rࢆ�������>�����ȁ�����@����B) 
(VWLPDWHG�SURSRUWLRQ�RI�LQGLYLGXDOV�H[SHULHQFLQJ�LQIHFWLRQV�E\�DJH�HVWLPDWHG�IURP�WKH�DJH�YDU\LQJ�UHYHUVH�FDWDO\WLF�PRGHO��PRUH�LQIRUPHG�
SULRUV��XVLQJ�WKH�SRROHG�PHGLDQ�HVWLPDWH�DFURVV�VWXGLHV�IRU�)2,���������DQG�PHGLDQ�HVWLPDWHV�IRU�ZDQLQJ���������DOSKD��������DQG�FXW�Rࢆ�
(8.49).
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the results from the model with less informative priors are  
less plausible. Maternally derived immunity may also have a 
role, protecting young infants from infection38. We tested this 
with a model which included individuals �1 year. This resulted  
in a shorter estimate of the duration of antibody persistence, 
and a higher FOI, suggesting that maternal immunity may  
be important.

A wide range of different assays were used in the studies  
we considered in our analysis, including enzyme-linked immu-
nosorbent assays (ELISA), immunofluorescence assays (IFA), 
western blots, and complement fixation (CF), hemagglutination 
inhibition assays (HAI) and neutralisation assays. Neutrali-
sation assays are considered to be the gold standard as they  
measure the ability of the sera to inhibit viral processes7,39. 
Only Cavallaro and Monto22 used a neutralisation assay. Other 
assays, such as ELISA and IFA, do not assess the functionality 
of the antigen, but instead detect the presence of antibodies 
in a sample. Zhou et al.19 used IFA to detect levels of IgG anti-
bodies. When we allowed the waning estimate to vary by 
assay, we found a similar estimates of antibody persistence for  
ELISA, HI and neutralisation assays, ranging from 1.1 years 
to 2.6 years, and these are comparable to the estimates from 
the main model. However, for IFA, we observed a longer  
estimate of 7.7 years (CrI: 3.0-14.3). Due to the small number 
of studies, the credible intervals were large, particularly for  
the IFA and neutralisation assay, which only had one study  
setting for each assay. This highlights the need for more  
studies, and better standardisation of assays. A recent study  
provided evidence that IgG antibodies in SARS-CoV-2 are  
correlated with neutralising antibodies, and may therefore act  
as a correlate of sterilising immunity40, whilst another study 
suggested that neutralizing antibodies may be correlated with  
protection against reinfection1. Therefore, although antibody 
prevalence does not equate to immunity for seasonal HCoVs, 
prevalence of IgG antibody may be a good correlate of immu-
nity. However, all of these assays only assess humoural 
immunity, and it is thought that cellular immunity also has a  
role SARS-CoV-2, and so it is likely to be also important in  
seasonal HCoVs41–43.

The seroprevalence surveys included in this study were  
conducted in different countries and settings (USA, China,  
Germany and Hong Kong), as well as in different time- 
periods (ranging from 1965–2011). It is likely that there are  
differences in social structure and contact patterns between these 
settings. Furthermore, individual level data was not available  
for these studies, and instead aggregated data was used. Finer 
resolution, particularly for the younger age groups, would  
have helped to provide more certainty with these estimates. In  
addition, we did not take into consideration cross-protection 
between seasonal coronavirus strains. There is some evidence 
of cross protective immunity between seasonal coronavirus 
strains, and in settings where there is co-circulating HCoV 
strains, this may lead to a higher prevalence. There is also  
evidence that there is cross-reactivity between different  
coronaviruses, which may lead to false positive results. A recent  
systematic review found that there was some cross-reactivity  
that occurred within alpha (HCoV-229E and HCoV-NL63) 

and beta (HCoV-OC43 and HCoV-HKU1) coronaviruses, but 
minimal reactivity between alpha and beta coronaviruses7.  
However, it is not clear whether cross-reactivity equates to  
cross-protection. False positives due to cross-reactivity would  
lead to an over-estimation of seroprevalence in a setting.  
This would lead to a higher plateau in older ages, and therefore 
generally lead to an over-estimation of both the FOI and the  
duration of antibody persistence. We also did not account for  
seasonality within this model, which may have under-estimated 
our FOI. Ferrari et al.44 found that ignoring seasonality may  
overemphasize the role of adults in the transmission, however, 
this was observed in measles in Niger, with outbreak peaks  
ranging over severalorders of magnitude, and long periods 
between epidemics. Theepidemic profile is different for seasonal  
coronaviruses, and therefore, this is unlikely to apply in this  
context. Whitaker & Farrington45 found that accounting for  
seasonality resultingfrom past epidemics only had a marginal 
effect on the estimates, and that regular epidemic dynamics 
do not strongly bias the catalytic model. The time of year data  
collection occurred may influence seropositivity estimates,  
particularly given that the duration of antibody persistence is 
estimated to range between 0.9 (95% CrI: 0.6 - 1.6) years and 
3.8 (95% CrI: 2.0 - 7.4) years. Data collection during high  
transmission periods would lead to an overestimate of both 
the FOI and the duration of antibody persistence. All the 
studies (except for Chan et al.23 who did not report this  
information), included within this analysis collected data 
over at least a six-month period. For this reason, the timing of 
data collection is unlikely to have biased our results. We also  
assume an overall FOI by age, and we do not account for  
differences in population susceptibility, for example health care 
workers or immunocompromised individuals. Despite these  
limitations, the duration of immunity estimated in this study  
is in line with literature estimates, suggesting the age-varying 
reverse catalytic model was able to capture overall dynamics.

Numerous studies have looked at the age pattern of HCoV  
patients presenting to hospital and healthcare settings, and 
predominantly found that the burden of disease is higher in  
younger children and the elderly46–48. However, it is likely that 
these age groups may have more severe symptoms and are  
therefore more likely to be reported. In contrast, seroprevalence  
data makes it possible to examine the whole population for 
evidence of past exposure, and hence can provide a clearer 
understanding of the underlying transmission dynamics of  
disease, rather than just the resulting burden.

In this study, when the relative change in FOI and the age of  
cut-off were simultaneously estimated across studies, we found 
that the FOI was estimated to be twice as high in the older age 
group (in this case, those over 8.49 [CrI: 7.52 - 9.94] years),  
compared with the younger age group. A similar pattern was 
observed for three of five settings when the relative change 
in FOI and the cut-off age were allowed to vary by setting. 
This suggests that older children and adults may be important  
for the transmission of seasonal HCoVs in some settings. A 
previous study looking at social mixing patterns in Europe49  
found that children are expected to have the highest inci-
dence during the initial stages of an epidemic as a result of 
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their social mixing patterns, and this is what is found for some  
diseases, such as seasonal influenza, where there is evidence 
young children drive transmission50,51. However, a more recent 
study looking at a large scale dataset of movement and contact  
patterns in the United Kingdom data found contact inten-
sity was highest in the 18–30 year age group when looking 
at all types of contacts (conversational, which was defined as  
face-to-face conversation of three or more words, and physi-
cal), although for physical alone, those aged 5–9 years had the 
highest contact52. Therefore, any association between contact  
intensity and transmission will depend on the contacts consid-
ered, particularly if a pathogen is more commonly spread via 
conversational contacts or via prolonged physical contacts. One 
possible explanation for the higher FOI we estimate in older 
age groups is that conversational contacts – which are typically 
higher in volume but lower in duration and intensity – could be  
more important for the transmission of seasonal HCoVs.

The results from this study are in accordance with what studies 
have observed in children during the coronavirus disease 2019  
(COVID-19) pandemic, with low numbers of cases reported 
in young age groups, and several large seroprevalence studies 
have reported lower seroprevalence in children compared with  
adults53,54. As well as differences in contact structure, this 
could be explained in part by reduced susceptibility to acqui-
sition of infection; a meta-analysis of contact tracing studies  
found that children had 56% (31% – 71%) lower odds of  
becoming an infected contact compared with adults55.

The duration of immunity to SARS-CoV-2 is still largely 
unknown and is of significance for the interpretation of population  
wide serological data, the understanding of the long-term  
dynamics of the epidemic, as well as of clinical importance. 
Given the long-term circulation of seasonal HCoVs, data on 
these related coronaviruses could provide indications of the  
possible future dynamics of SARS-CoV-2. With infection 
likely to become endemic in parts of the world, the duration of  
antibody-mediated immune responses will be particularly impor-
tant in shaping transmission patterns in years to come. Using  
seroprevalence data, in this study we estimated the duration 
of seropositivity to seasonal HCoVs following seroconver-
sion to be between 0.9 (95% CrI: 0.6 - 1.6) years and 3.8 (95% 
CrI: 2.0 - 7.4) years. We allowed the FOI to vary by age group 
and found it to be lower in young children (�8.5 years) compared  
with older children and adults, which is corroborated 
with what has been observed in the COVID-19 pandemic.  
This suggests individuals in settings with endemic HCoVs  
accumulate multiple infections over the course of their  
lifetime, punctuated by periods of waning seropositivity against  
circulating viruses.
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5
Transmission modelling of environmentally

persistent zoonotic diseases: a
systematic review

Following on from Chapter 2 where I explore the role of climate on leptospirosis incidence,
and Chapter 3 where I explored antibody dynamics following Leptospira infection, this chap-
ter was motivated by a desire to explore how these could be brought together more holistically
within a single modelling framework. Mechanistic transmission models are a natural tool for
this as they allow for the inclusion of explicit assumptions regarding the biological mechanisms
driving transmission, compared with statistical models which aim to quantify (rather than ex-
plain) associations between explanatory and response variables. Very few studies consider the
full transmission pathway of leptospirosis within a transmission model, therefore, I identified
other zoonotic diseases with environmentally persistent pathogens which share similarities in
their transmission dynamics. The aim of this study was to systematically review and critically
appraise transmission models of environmentally persistent zoonotic diseases in order to iden-
tify key themes and best practices, as well as areas for improvement in the future. This may
allow for shared knowledge across these diseases, and be of particular benefit to diseases such
as leptospirosis which have a limited knowledge base.

The results from this study were published as a systematic review in The Lancet Planetary
Health in July 2021 [1]. The Supplementary material of the paper is included as Appendix
E.
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Transmission modelling of environmentally persistent 
zoonotic diseases: a systematic review 
Eleanor M Rees, Amanda Minter, W John Edmunds, Colleen L Lau, Adam J Kucharski, Rachel Lowe

Transmission of many infectious diseases depends on interactions between humans, animals, and the environment. 
Incorporating these complex processes in transmission dynamic models can help inform policy and disease control 
interventions. We identified 20 diseases involving environmentally persistent pathogens (ie, pathogens that survive 
for more than 48 h in the environment and can cause subsequent human infections), of which indirect transmission 
can occur from animals to humans via the environment. Using a systematic approach, we critically appraised dynamic 
transmission models for environmentally persistent zoonotic diseases to quantify traits of models across diseases. 
210 transmission modelling studies were identified and most studies considered diseases of domestic animals or 
high-income settings, or both. We found that less than half of studies validated their models to real-world data, and 
environmental data on pathogen persistence was rarely incorporated. Model structures varied, with few studies 
considering the animal–human–environment interface of transmission in the context of a One Health framework. 
This Review highlights the need for more data-driven modelling of these diseases and a holistic One Health approach 
to model these pathogens to inform disease prevention and control strategies.

Introduction 
WHO defines zoonotic diseases as diseases that can 
transmit naturally between vertebrate animals and 
humans.1 Such zoonoses can be transmitted either 
directly from animals to humans, or indirectly via food or 
the environment. Diseases that can be transmitted 
indirectly via the environment, such as leptospirosis and 
hantavirus disease, are particularly challenging to control 
as the natural environment also acts as a reservoir. For 
this reason, it is important to consider this additional 
dimension of the transmission process within a 
One Health framework, which accounts for inter-
connectedness between the health of humans, animals 
and their environment.2–4 These diseases at the animal–
human–environment interface are the focus of this 
Review.

Understanding disease transmission processes at the 
animal–human–environment interface is an increasingly 
important issue, especially because climate change, loss 
of biodiversity, land use, and land-cover change alter and 
often increase pathogen transfer to, and from, the 
environment. The multihost and environmental persis-
tence of such pathogens can lead to complex disease 
dynamics.5 For example, many different factors drive the 
transmission of leptospirosis; there are numerous 
exposure routes (ie, occupational, recreational, and 
socioeconomic circumstances) and many animals are 
known to be involved, including both rodents and 
domestic animals.6 Understanding the underlying 
disease dynamics can enable insight into how anthro-
pogenic change will affect transmission. Furthermore, 
because of these complex transmission dynamics, these 
diseases can be difficult to control, with several possible 
interventions. Many of these diseases will not be 
controlled using just one intervention, but instead with 
multimodal control programmes, targeting vaccination, 
health education and disease awareness, and improved 
sanitation and environmental hygiene. Dynamic models 

can be used to explore the underlying transmission 
dynamics, answer questions as to the effect of 
environmental change on transmission and provide 
insight into the most effective interventions. Further-
more, formulating models within a One Health frame-
work provides an integrated approach for understanding 
these transmission processes.3,4

Dynamic disease transmission models can be used to 
improve understanding of the disease transmission 
process, predict the risk of disease outbreaks, and inform 
the development of effective control policies. In a basic 
dynamic transmission model, a population is divided into 
epidemiological classifications (eg, susceptible, infected, 
and recovered) and populations can be tracked over 
time.7,8 Unlike non-communicable diseases, the risk of 
infectious disease transmission depends not only on 
individual risk factors, but also on the infectious state of 
others in the population. Because of this epidemiology, it 
is important to understand how the infectious state of the 
population changes over time. Compartmental models 

Key messages

• We identified a group of environmentally persistent zoonotic diseases, which share 
similarities in their transmission dynamics and appraised the methodological 
approaches used to develop transmission dynamic models

• We highlight the need for more data-driven modelling for this class of diseases, 
particularly neglected tropical diseases and diseases with a wildlife host

• The full transmission process was often not considered, and models were rarely 
formulated using a One Health framework, including interactions between humans, 
animals, and the environment

• We identified gaps in our knowledge about the environmental pathogen burden, 
despite it being a major source of transmission to humans for many of these diseases

• Moving forward, it will become increasingly important to consider the effect of 
environmental change and global heating, particularly because of the environmental 
pathogen burden many of these diseases are climate sensitive and expected to 
increase their range in the future
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Pathogen species Pathogen 
class

Animal reservoirs 
or hosts

Primary 
animal 
reservoir or 
host

Climate 
sensitive

Human–
human 
transmission

Primary 
transmission 
route

Environmental 
transmission 
pathway

Duration 
environmental 
persistence

Considered 
to be an 
NTD*

Anthrax18–21 Bacillus anthracis Bacteria Domestic and wild 
animals, including 
cattle, sheep, 
goats, antelope, 
and deer

Domestic 
and wild 
animals

Changing 
range as a 
result of 
climate 
change

No Direct 
transmission 
with infected 
animal, or 
environmental 
transmission

Inhalation Up to 48 years No

Brucellosis22–24 Brucella abortus, 
B melitensus, B suis, 
B neotomae, B ovis, 
and B canis

Bacteria Domestic and wild 
animals, including 
cattle, swine, 
goats, dogs, and 
bison

Domestic 
animals

Yes Rare Multiple routes; 
primary route 
unknown

Inhalation 21 days– 
8 months

No

Campylo-
bacteriosis25–27

Campylobacter jejuni 
and C fetus

Bacteria Domestic and wild 
animals (eg, 
cattle, poultry, 
and rodents)

Domestic 
animals

Yes Rare Foodborne Ingestion via 
contaminated 
water

2–14 days No

Crypto-
sporidiosis28–30

Cryptosporidum 
parvum (most 
common zoonotic 
species, but many 
others exist)31

Protozoan Mammals Domestic 
and wild 
animals

Yes Yes Multiple routes; 
primary route 
unknown

Ingestion of 
contaminated 
water and food

Several months Yes (by 
PLoS)†

Echinococcosis31,32 Echinococcus 
granulosus and 
E multilocularis

Helminth 
(cestode) 

Dogs, sheep, and 
foxes

Domestic 
and wild 
animals

Yes No Direct 
transmission 
from an infected 
animal, or 
environmental 
transmission

Ingestion food, 
water or soil

Up to 1 year Yes (by 
WHO and 
PLoS)

E coli33,34 Escherichia coli Bacteria Predominantly 
cattle, but also 
other mammals 
and birds

Domestic 
animals

Yes Rare Foodborne Ingestion via 
contaminated 
water or food

1 day–1 year Yes (by 
PLoS)

Erysipeloid35–37 Erysipelothrix 
rhusiopathiae

Bacteria Predominantly 
pigs, but also 
turkeys, chickens, 
ducks, emus, and 
sheep

Domestic 
animals

Some 
evidence‡

No Direct 
transmission 
from an infected 
animal

Environmental 
transmission 
from 
contaminated 
animal waste 
and soil

2–35 days No

Fascioliasis38–41 Fasciola hepatica 
and Fasciola 
gigantica

Helminth 
(trematode) 

Domestic and wild 
ruminants, 
including cattle, 
sheep, buffaloes, 
donkeys, and pigs

Domestic 
and wild 
animals

Yes No Environmental 
transmission

Environmental 
transmission 
via ingestion of 
contaminated 
aquatic plants 
or water

Several months Yes (by 
WHO and 
PLoS)

Giardiasis42–44 Giardia duodenalis Protozoan Cats and dogs Domestic 
animals

Yes Yes Multiple routes; 
primary route 
unknown

Ingestion 
contaminated 
water and food

Several months Yes (by 
PLoS)

Glanders45–47 Burkholderia mallei Bacteria Primarily horses, 
but also donkeys, 
mules, goats, 
dogs, and cats

Domestic 
animals

No Rare Direct 
transmission 
from an infected 
animal, or 
inhalation of the 
bacteria from 
the environment

Inhalation of 
the bacteria 
from the 
environment

2–6 weeks No

Hantavirus48–52 Puumala spp, Seoul 
spp, and Sin Nombre 
spp

Virus Rodents Wild 
animals

Yes Rare Environmental 
transmission

Inhalation Up to 18 days Yes (by 
PLoS)

Leptospirosis6,12,53 Leptospira spp Bacteria Domestic and wild 
animals including 
rodents, cattle, 
sheep, and dogs.

Domestic 
and wild 
animals

Yes No Multiple routes; 
primary route 
unknown

Ingestion or via 
cuts and 
abrasions in the 
skin from 
contaminated 
water or soil

1–12 months Yes (by 
PLoS)

(Table 1 contines on next page)
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can include more than one population, or in the case of 
zoonotic diseases, models can include both humans and 
animal reservoirs.9 Additionally, individual-based models 
can be formulated to track individuals, rather than 
populations, over time. We can further distinguish 
between models, describing them as deterministic, in 
which the same results are always obtained from a given 
set of parameters, and stochastic, in which chance has a 
role in governing events.7,8,10,11

In their simplest form, models can be used theoretically 
to understand observed patterns and behaviours in 
different systems, for example, they can be used to find 
theoretical thresholds for disease elimination or the 
existence of an endemic equilibrium. Modelling also 
allows exploration of different scenarios, such as the 

comparative effectiveness of different control measures, 
a comparison that can be ethically or logistically 
unfeasible during a real-world outbreak.7,8,10,11 Advances 
of computational capabilities and advances in statistical 
software has enabled the development of more complex 
models, and for real-world data to be used to validate or 
calibrate models, allowing these models to predict 
disease outbreaks and directly inform policy 
and interventions.7,9 Because of these advancements, 
methods of analysis and fitting models to data have 
improved, becoming more refined and better able to 
incorporate real-life complexity.8 In this Review we 
define model validation as the comparison of model 
simulations with observed data, even qualitatively, 
whereas model calibration takes this definition further 

Pathogen species Pathogen 
class

Animal reservoirs 
or hosts

Primary 
animal 
reservoir or 
host

Climate 
sensitive

Human–
human 
transmission

Primary 
transmission 
route

Environmental 
transmission 
pathway

Duration 
environmental 
persistence

Considered 
to be an 
NTD*

(Continued from previous page)

Melioidosis54,55 Burkholderia 
pseudomallei

Bacteria Domestic and wild 
animals, including 
sheep, goats, 
swine, cattle, and 
rodents

Domestic 
and wild 
animals

Yes No Multiple routes; 
primary route 
unknown

Contact, 
inhalation, or 
ingestion

Up to 7 days Yes (by 
PLoS)

Nipah virus56,57 Nipah virus Virus Pigs, dogs, goats, 
cats, horses, and 
sheep; the virus is 
thought to be 
maintained in 
nature by bats

Domestic 
and wild 
animals

Some 
evidence‡

Yes Direct 
transmission 
from an infected 
animal

Environmental 
transmission as 
a result of 
ingesting food 
contaminated 
with bat saliva 
and urine

Several days Yes (by 
PLoS)

Q fever58–60 Coxiella burnetii Bacteria Predominantly 
cattle, sheep, and 
goats

Domestic 
animals

Some 
evidence‡

Rare Multiple routes; 
primary route 
unknown

Inhalation Up to 3 years Yes (by 
PLoS)

Salmonellosis61–63 Salmonella enterica 
Dublin, S enterica 
Enteritidis, 
S enterica 
Typhimurium, 
S enterica 
choleraesuis

Bacteria Domestic and wild 
animals, including 
poultry, pigs, 
cattle, and cats

Domestic 
animals

Yes Yes Foodborne Ingestion of 
contaminated 
water or food

7 weeks Yes (by 
PLoS)

Toxoplasmosis64–66 Toxoplasma gondii Protozoan Domestic animals 
and wild animals 
(eg, cats, pigs, 
sheep, and goats)

Domestic 
and wild 
animals

Climate 
change 
might 
increase 
cases

Yes Foodborne Ingestion of 
contaminated 
soil, water, or 
food

Up to 24 months Yes (by 
PLoS)† 

Toxocariasis67,68 Toxocara canis and 
T cati

Helminth 
(nematode) 

Cats and dogs Domestic 
animals

No No Multiple routes; 
primary route 
unknown

Ingestion 
contaminated 
soil

Several months Yes (by 
PLoS)

Tularaemia69,70 Francisella tularensis Bacteria Rabbits, rodents, 
squirrels, and 
other small 
mammals

Wild 
animals

Climate 
change 
might 
increase 
cases

No Multiple routes; 
primary route 
unknown

Inhalation or 
ingestion of 
contaminated 
water and soil

Several weeks No

Yersinosis71,72 Yersinia
 enterocolitica and 
Y pseudotuberculosis

Bacteria Predominantly 
rodents, but also 
sheep and pigs

Wild 
animals

No Rare Foodborne and 
contaminated 
water

Ingestion of 
contaminated 
water or food

7–36 days No

NTD=neglected tropical disease. PLoS=Public Library of Science. *Based on the WHO list of NTDs73 and PLoS list of major Neglected Tropical Diseases.74 †Classed as on the cusp; which is defined by PLoS as diseases 
that could be classed as NTD’s depending on the availability of disease estimates for that condition, and whether they occur in resource-poor settings.74 ‡Some available studies suggesting the disease might be 
climate-sensitive, but the link has not yet been clearly established. 

Table 1: Summary of diseases included within the systematic review
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and fits models to observed data to estimate key 
unknown biological parameters (eg, by using methods 
such as Markov chain Monte Carlo to estimate 
parameters).7 Studies will have different aims and 
purposes, and the model should only be as complex as 
needed to fulfil the intended objective.

In this Review, we critically appraise studies that have 
attempted to model infectious diseases at the animal–
human–environment interface to quantify traits of 
models across diseases and identify studies that have 
adequately accounted for these three One Health 
components. Previous reviews of modelling studies have 
focussed on vector-borne diseases or zoonotic diseases 
generally9,12,13 and, to the best of our knowledge, this is the 
first review that focusses specifically on environmentally 
persistent pathogens. Of particular interest is the way by 
which models are validated or calibrated, and the data 
that have been used to do so. First, we identified diseases 
in which indirect transmission can occur from animals, 
more specifically land mammals, to humans via the 

environment. This human–environment transmission 
could be the only transmission route, or there might be 
multiple transmission routes to humans, of which 
environmental transmission is just one. Second, we 
reviewed modelling studies using a systematic approach. 
For each paper, we extracted information on the type of 
model, the data used, and the quality of model validation 
and calibration attempts. Finally, using this information, 
we evaluated the current state of transmission modelling 
studies and identified key themes and best practices, 
which could be incorporated in future disease trans-
mission analyses and shared between different diseases.

Methods 
Disease selection 
Two criteria were used to select diseases for inclusion in 
the study: the disease must be zoonotic (transmissible 
from animals to humans, specifically affecting land 
mammals), and the pathogen must persist in the 
environment for at least 48 h and then remain able to 
cause subsequent human infections.

Vector-borne diseases and fungi were excluded. Lists of 
zoonotic diseases were obtained from Public Health 
England,14 the European Centre for Disease Control,15 
and WHO.1 Following these criteria, 20 diseases that had 
free-living pathogens were identified. We considered free 
living to mean the pathogen could survive in the 
environment for more than 48 h outside of a host. We 
focussed on land mammals as we were particularly 
interested in animals that live alongside humans in the 
same environment, and as a result of our criteria very 
few diseases were excluded (appendix pp 1–3). For 
example, rabies was excluded because transmission to 
humans occurs via direct contact with an infected animal 
or human, and there is no evidence of environmental 
transmission to humans. Ebola was excluded as, 
although there is some evidence of environmental 
persistence, transmission to humans occurs via an 
infected animal, or human–human transmission, and 
not via the environment. Although Lassa fever and 
Bolivian haemorrhagic fever anecdotally have the ability 
to survive in the environment, no evidence was found of 
this, and so these diseases were also excluded from this 
Review.16,17 A summary of each disease is presented in 
table 1 and a generalised schematic representation of the 
transmission pathways for the diseases is shown in 
figure 1A.

There are many different serovars of Salmonella enterica 
subspecies enterica, not all of which are zoonotic. 
Therefore, four common zoonotic serovars were selected 
for the study, S enterica serotype Dublin, S enterica 
serotype Enteritidis, S enterica serotype Typhimurium, 
and S serotype Choleraesuis. Melioidosis is not always 
considered a zoonotic disease because transmission to 
humans occurs primarily via the contaminated 
environment;75 animals can be the source of the 
environmental contamination, but not necessarily so. 

Figure 1: Transmission pathways and studies included in the systematic 
review
(A) Transmission pathways of the diseases included within this study; solid 
arrows show shared transmission routes across all diseases, dashed arrows show 
transmission routes that only occur in some diseases. (B) Number of studies 
(n=208) identified in the systematic review from 1980 to 2019, studies which 
present models on more than one disease are only included once.
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However, because environmental transmission to 
humans is of key interest for this Review, this disease 
matched our inclusion criteria and was included.

Inclusion and exclusion criteria 
To qualify for inclusion, studies had to model one of the 
20 diseases described (table 1) and include a dynamic 
population model (ie, models that track populations over 
time), both compartmental and individual-based models 
were included.

The following studies were excluded from the review: 
PhD theses, grey literature (including conference 
abstracts), statistical models (including time-series analy-
sis, regression, and ARIMA [Auto Regressive Integrated 
Moving Average] models), within-host models, models 
using cellular automata, and review articles (unless new 
models were presented).

Search strategy 
In June, 2019, we searched Embase, MEDLINE, and Web 
of Science for articles published between January, 1970, 
and June, 2019. Only articles in English were included. 
We used disease specific and model-specific search terms 
(appendix pp 4–5). An example search strategy used in 
the database Embase for leptospirosis is shown 
(appendix p 6). We aimed to identify all published articles 
that included population dynamic models of the 
20 diseases. To ensure all relevant papers were captured, 
EMR examined the title, abstract and keywords of known 
modelling studies to identify relevant search terms, and 
these were discussed and finalised with other coauthors 
(AM, AKJ, and RL). Each disease was included as a search 
term and as a keyword.

We combined and stored the results from database 
searches using Mendeley reference manager, and 
duplicates were removed manually. We screened the 
titles and abstracts of all papers to remove irrelevant 
studies (eg, experimental animal models). Subsequently, 
abstracts and full texts of potentially relevant papers were 
independently reviewed by two reviewers (EMR and 
AM), and any conflicts were resolved through discussion. 
Any additional studies identified from the reference lists 
of these studies were also included (appendix p 7).

Data extraction 
To compare studies, we extracted information (including 
model structure, model type, and model features) from 
each study (table 2). For studies including models for 
more than one relevant pathogen, we extracted infor-
mation separately for each disease.

Results 
Overall, 20 different diseases were identified that 
matched the disease inclusions criteria (table 1). After 
removal of duplicates, a total of 13 420 studies were 
identified using the search terms, and these were 
screened by title and abstract. A further full-text screen 

was done for 504 studies, and in total 208 studies were 
found as meeting all inclusion criteria (table 3; 
appendix pp 9–33). For papers that included multiple 
models of relevant diseases, data extraction was done for 
each disease individually, resulting in 210 models being 
included in this Review. As expected, the number of 
published studies has increased over time (figure 1B), 
with an average of 0·7 studies published per year 
between 1990 and 2000, rising to 6·8 studies per year 
from 2000 to 2009 and 13·5 studies per year from 2010 
to 2019. Although the overall number of studies has 
increased over time, the proportion of studies that have 
included model validation has not changed (figure 2b). 
The number of studies that had model validation varies 
considerably by disease and is more common in diseases 
where domestic animals are the predominant host 
(figure 2B). When interrogated by study region, model 
validation is more common for diseases studied in 
Europe and Asia (figure 2C).

There were no modelling studies identified for 
Glanders, Nipah virus, erysipeloid, yersinosis, and 
toxocariasis. Overall, more studies (n=96) were identified 
for diseases for which domestic animals are the 
predominant host species (eg, brucellosis, echinococcosis, 
and Escherichia coli) rather than wild animals (n=27; 
figure 2A). Five diseases were found to have fewer than 
five studies identified: Q fever, tularaemia, melioidosis, 
giardiasis, and fascioliasis. 165 (79%) of 210 studies were 
deterministic, compartmental based models (table 3), 
with only 55 (26%) of 210 studies using stochastic 

Description

Components

Animals Animals included in the model

Environment Environmental pathogens included in the model

Humans Humans included in the model

Structure of the model

Deterministic or stochastic Model structure of the model was deterministic or stochastic

Compartmental or IBM Model structure of the model was ODE-based or an IBM

Model Features

Data-driven parameters Parameters informed by empirical data

Model validation Model outputs compared with data in any way, even qualitatively

Model calibration Model fitted to data to estimate parameters

Prediction Model used to generate predictions about future cases (limited to studies that 
compared their model with data)

Control measures Were any control measures included within the model, examples include 
vaccination and culling

Climate factors If applicable, were any climate factors (eg, temperature and rainfall) included 
within the model

Data sources

Data used What data was used for model validation (if applicable), including information 
on type of data, time period, and whether data was for animals, humans, the 
environment, or a combination of these three factors

Country Country the study was done in (if applicable)

IBM=individual-based model. ODE=ordinary differential equation.

Table 2: Summary of information recorded from all studies
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models, and 24 (11%) studies using stochastic or 
individual-based models, or both.

93 (44%) of the 210 included studies validated their 
models against real-world data, 65 (30%) calibrated their 
models to data, and 17 (8%) used the model to predict 
future disease transmission (figure 2A; table 3).

Of the 93 studies validated against real-world data, 
62 (67%) used animal data, with 28 (30%) studies using 
human case data (figure 2D). Of the 62 studies with 
animal data, 41 (66%) concerned domestic animals. 
Five (5%) of the 93 validated studies included data on the 
environmental pathogen prevalence (table 3). Data on 
the environmental prevalence was only considered for 
fascioliasis and E Coli; including field studies that 
investigated cow pat sampling (E Coli) and faecal egg 
counts from dairy cows (fascioliasis).

While similarities exist, many of the selected diseases 
have unique transmission pathways. For example, 
campylobacter and E coli infections are usually a result 
of food borne transmission,25,76 whereas leptospirosis trans-
mission can occur either by contaminated water or soil, or 
through direct contact with the urine of an infected 
animal.77 Therefore, differing modelling structures have 
been chosen to model these diseases, with varying degrees 
of complexity (table 3; figure 3A; appendix p 8). For most 
diseases, animals were included within the models 
(191 [901%] of 210 studies). The environmental reservoir, 
was included within the model less often (109 [52%] of 
210 studies), and humans less frequently still (64 [31%] 
of 210 studies). Looking specifically at the inclusion of 
the environmental reservoir, we found five diseases 
(brucellosis, lepto spirosis, campylobacteriosis, Hanta 
virus, and tularaemia) by which less than half of published 
models did not include the environmental component 
(figure 3B). Regarding the proportion of studies that 
validated and calibrated their models to data by the number 
of components included (ie, animal, human and, environ-
mental components), there was little difference in model 
validation by number of components, but a slightly higher 
proportion of model calibration in modelling studies that 
included all three components (figure 3C). In total, 17 (8%) 
of the studies included all three modelling components; of 
these studies, nine (4%) validated their models to data, and 
six (3%) calibrated their models to data.

Of the diseases that are climate sensitive, very few 
models considered the climatic factors within their 
models (22 [12%] of 178 studies; figure 3D).

Approximately half of studies included control 
measures within their models (94 [44%] of 210 studies). 
Control measures investigated included vaccination 
strategies, disposal of infectious carcasses and contam-
inated material, livestock movement restrictions, and 
environmental controls such as water treatment.

Discussion 
This Review provides biological and epidemiological 
insights into modelling approaches used to study 

Figure 2: Summary of model validation and calibration for all included studies
(A) Number of studies by disease (n=210). Theoretical studies had neither model validation nor calibration; all 
studies that include model calibration also include model validation. (B) Proportion of studies that include model 
validation for all diseases, between 2000 and 2019 (n=195). (C) The number of studies by case study region 
(n=114). (D) Types of data used for model validation by disease (n=93).
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diseases at the human–animal–environment interface, 
and highlights best practice methodological approaches, 
which can be applied to lesser studied diseases that 
have similar transmission dynamics. Environmentally 
persistent zoonotic diseases vary considerably, occurring 
in different regions in the world, with different animal 
hosts and different transmission pathways. However, two 
key similarities link them together: being a zoonosis, and 
the capacity of pathogens to survive in the environment 
for extended periods of time. By contrast with directly 
transmitted human infections, such as measles, different 
approaches are required to model this class of human–
animal–environment diseases to fully capture the 
biological processes involved, which could have hindered 
technical progress. Furthermore, the persistence of 
pathogens in the environment provides an additional 
layer of complexity that needs to be considered when 
studying these diseases. There are many different 
potential transmission routes; therefore, interventions 
need to be formulated using a One Health framework to 
develop effective control programmes, but first this 

requires a good understanding of the underlying trans-
mission dynamics. The problem is further compounded 
by the fact that many diseases included in this category 
are considered to be neglected tropical diseases (NTDs),73 
which typically receive less funding and resources. The 
transmission process of NTDs is often ambiguous, and, 
particularly for diseases with wild animal hosts, little is 
known about the behaviours and environmental 
interactions exhibited by these animals.

We identified several key areas for progress in the 
modelling of zoonotic environmental diseases. First, 
there was substantial variation in the extent of model 
validation and calibration across pathogens and studies. 
Overall, less than half of all studies included in this 
review undertook any kind of model validation 
(ie, comparing model outputs to observed data), a trend 
that has not changed over time. This trend can be partly 
explained by the inclusion of theoretical models in this 
Review. The aim of such models is to explore transmission 
dynamics and generate hypotheses, and these models are 
the foundation for the development of data-driven 
models. Validating and calibrating models to data is an 
important step to ensure adequate realism, not only 
to estimate biological parameters and understand 
transmission, but also to predict disease outbreaks.7,8 
However, model validation and calibration is a necessary 
but not sufficient criteria for model realism; the specific 
choice of data, the implementation methods used, and 
the model structure are also key decisions. There is 
substantial future work to be done in this regard, 
including making testable predictions about real-life 
epidemics that later be assessed. Additionally, engaging 
with multidisciplinary and local experts to ensure that 
the model adequately captures the local environment and 
situation is an important consideration. The main reason 
for the lack of extensive model validation is likely to be 
one of complexity. Some of these diseases have very 
complex transmission pathways, which means little data 
exist to understand the full transmission process and, 
historically, modelling studies have tended to focus on 
diseases with simpler transmission pathways that are 
easier to calibrate and validate. In this systematic review, 
models that included two or three components 
(ie, animal, human, or environmental) generally included 
a similar quality of model validation or calibration 
compared with simpler, and intuitively easier to fit, 
models that just included one component. Nevertheless, 
the number of studies validating and calibrating their 
models was still low, and this highlights the need for 
more research into these pathogens to provide data to 
inform models, policy, and important planetary health 
questions related to landscape change and environmental 
degradation. This research is likely to require increased 
transdisciplinary collaboration and coordination between 
policy makers, mathematical modellers, epidemiologists, 
ecologists, and veterinarians to overcome the shortfalls 
of studies to date.

Figure 3: Models included in systematic review
(A) Studies by transmission (ie, human, animal, and environmental) factors. The different triangles represent the 
different components included within the model, with 17 studies including all three components. (B) Proportion 
of studies that included the environment in their models, by disease (n=210). (C) Proportion of models that 
validated or calibrated their models by the number of components included within the study (n=210). 
(D) Proportion of studies that included climate information within their studies (n=178; three diseases excluded 
because they are not considered to be climate sensitive).
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We found that model validation was more common 
for diseases that affect high-income countries (eg, for 
example, E Coli infection and salmonellosis), and for 
diseases by which domestic animals are the predominant 
host. By contrast, fewer models exist for diseases that 
affect predominantly low and middle-income countries 
(eg, melioidosis, fascioliasis, giardiasis, and yersinosis) 
despite a high global burden of disease. This validation 
discrepancy likely reflects a focus on global research and 
public health, which in turn means an absence of 
epidemiological data on the precise number of human 
cases. Few diseases included within this Review occur 
primarily in wild animals, most diseases occur in both 
wild and domestic animals. However, diseases that occur 
in wild animals (eg, tularaemia and yersinosis), which 
have low spillover into human populations, tend to be 
less studied, or do not have model validation and 
calibration.9 It is known that wildlife hosts act as major 
reservoirs of disease, and more effort should be placed 
on understanding their behaviour and disease trans-
mission potential. However, there are some exceptions. 
Hantavirus is a disease that is only found in wild animal 
reservoirs, but there have been a number of outbreaks of 
hantavirus in Europe, and this is reflected in the number 
of studies that exist for this disease.78,79 Additionally, 
wildlife in national parks are often closely monitored—eg, 
brucellosis transmission in bison (Bison bison) and elk 
(Cervus canadensis) in Yellowstone National Park, USA,80 

and anthrax transmission in Kruger National Park, South 
Africa.81,82 A study published in 2020 (ie, after our search 
was completed), investigated Nipah virus in bats in 
Bangladesh.83 Bats were sampled over a 6-year period and 
a model developed and fitted to seroprevalence data. This 
study provides a good example of repeated monitoring of 
a wildlife population and combining this data along with 
a compartmental model to understand transmission 
dynamics.

Ideally, data for model validation would be obtained 
from experiments or field studies specifically designed 
with modelling as a potential application, with modellers 
working as part of an interdisciplinary team. There are 
examples of this collaboration in livestock, such as 
studies of Campylobacter in broiler chickens,84 E coli in 
pigs85,86 and cattle,87,88 Salmonella in cattle,89,90 and examples 
from wildlife populations, such as echinococcosis in fox 
populations.91,92 An illustrative example is a study that 
originally aimed to look at breeding strategies in female 
mice.93 In 2012, there was an outbreak of tularaemia in 
this study population, allowing for optimal monitoring of 
this outbreak and a model was subsequently developed 
using this data. However, often model validation is 
limited by the data available, and it is not always possible 
or practical to do experimental studies. For many of these 
diseases surveillance systems exist, particularly in high-
income countries, which monitor the numbers of 
reported cases in both animals and humans, and these 
data can then be used to inform and parameterise 

models. Nevertheless, the existence of surveillance 
systems varies extensively, not only by disease but also by 
setting. These surveillance systems tend to focus on 
human and animal cases, with very little focus on 
surveillance of the natural environment.

The vast majority of studies that validated their models 
to data used animal or human data, with few studies 
including data on the environmental reservoir, which 
could be explained by the difficulties in collecting such 
data. Only two diseases included data on the environ-
mental pathogen prevalence, E coli and fascioliasis. Some 
of these studies necessary qualitatively compared their 
model outputs to environmental data; however, other 
studies took this further by comparing or fitting their 
models to observational data. For example, Turner and 
colleagues94 compared their model with Fasciola hepatica 
faecal egg counts sampled from dairy cows. Similarly, 
Mathews and colleagues95 fitted their model to the 
prevalence of E coli O157 in cow faeces sampled monthly 
over 1 year. However, transmission to animals and 
humans is affected by the duration of pathogen survival 
outside of its host and the extent of spatial dispersal, and 
for many of these pathogens this is not well understood, 
highlighting the need for further research and empirical 
data. For disease systems with little observational 
epidemic data, experimental estimates (eg, from in vitro 
or in vivo studies) can be used to parameterise models, 
which in turn can be used to explore dynamics. There are 
many examples, but a useful example is Bontje and 
colleagues96 who modelled Q fever in Dutch dairy goat 
herds. The parameters used a wide range of studies, 
particularly those parameters relating to Coxiella burnetii.

By including multiple sources of data within models, it 
can be possible to estimate the relative contribution and 
importance of these different transmission routes. For 
example, Zinstagg and colleagues97 used demographic 
and livestock field data from cattle and sheep, and human 
case data over 9 years, to build a transmission model of 
brucellosis in Mongolia. This is one of only two examples 
where human and animal data are used together. The 
other study, Waters and colleagues,98 did not fit their 
model formally, instead they qualitatively compared the 
model results to the data. Other examples include 
Gautam and colleagues99 who combined experimental 
data in cattle with environmental contamination in 
faeces, and Ebinger and colleagues80 who used both bison 
and elk field data to model brucellosis in Yellowstone 
National Park.

Another key area for future progress will be consid-
eration of these diseases within a One Health framework, 
with models exploring the disease transmission system 
as a whole. Only a small proportion of studies (11%) 
accounted for the full transmission process (human, 
animal, and environmental com ponents) within their 
models, including studies examining the long-term 
trends of echinococcosis, brucellosis,100,101 and hanta-
virus.78,102 However, including the full transmission 
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process might not be required for particular research 
questions, and model parsimony should be considered. 
Detail and model complexity should not be mistaken for 
realism; a simple model that explains the data well and 
answers the question of interest is preferred.8 There are a 
number of reasons why some studies have chosen to 
focus on one element of transmission—eg, it can allow 
models to focus on particular aspects of transmission for 
which they have detailed data and a comprehensive 
understanding. Many of the studies included within this 
Review did not include the environmental reservoir and 
the decision to include the environment depends on the 
context. For example, for Campylobacter3 and hantavirus, 
the duration of environmental persistence is relatively 
short (2–14 days for Campylobacter and 1–18 days for 
hantavirus)19,48 and, depending on the timescale of the 
model, might not require consideration. Furthermore, 
although all of these diseases have pathogens that survive 
in the environment, the importance of the environmental 
reservoir as a transmission route varies considerably, and 
in many cases, is unknown. For example, foodborne 
transmission by Campylobacter and E coli is considered to 
be the main transmission route, with environmental 
transmission a secondary transmission route.76 The 
decision of whether or not to include the environment 
can also be due to the difficulty in understanding the 
environmental reservoir. For many of these diseases, 
very little is known about the exact duration of 
environmental persistence of these pathogens, or the 
effect of environmental factors on pathogens survival.

However, for some diseases the importance of 
enviro nmental transmission is well established. For 
example, transmission of leptospirosis to humans 
primarily occurs via contaminated water and soil with 
leptospires surviving long periods in the environment, 
yet most of the models included humans and animals, 
without considering the role of the environment (only 
four of 23 models of leptospirosis considered the 
environmental reservoir). A better representation of the 
environmental persistence within these models, 
particularly with the use of empirical data, would allow 
for a better understanding and management of these 
diseases systems, particularly because the environmental 
burden can pose substantial issues when it comes to 
control strategies and interventions. Inclusion of 
environmental data would then lay the groundwork for 
the development of models that address how 
environmental change will shape transmission. Many 
studies also excluded humans from their transmission 
models, with differences observed between diseases. In 
diseases with only sporadic human cases (eg, anthrax), 
human cases provide very little information on the 
underlying dynamics of transmission. However, when 
there are outbreaks or endemic transmission in humans, 
data on humans can help understand the transmission 
dynamics in the animal hosts even if they are not 
contributing to transmission directly. Additionally, data 

collection is usually focussed on human cases, which 
could aid parameterisation of models that have little or 
no animal data.

Although there are many valid reasons to focus on 
particular aspects of transmission when modelling 
these diseases, there is a need for more models that 
explore the system as a whole. This approach would 
allow the transmission dynamics and the effect of 
climate and anthropogenic change on transmission to 
be fully explored. Diseases rarely occur in closed, 
isolated populations and failure to take this complexity 
into account could result in models being unable to 
replicate the observed transmission dynamics. This is 
particularly true for diseases that have an environmental 
component; failure to take this into account can lead 
to overestimation of the importance of particular 
transmission pathways over others, and result in the 
effect of anthropogenic and climate change being 
underestimated and unexplored. Furthermore, many of 
these diseases are climate sensitive, with an increase in 
cases observed as a result of extreme climatic events. 
For example, outbreaks of leptospirosis are often 
associated with heavy rainfall and flooding.6 The 
inclusion of climatic data can help to explain observed 
outbreak dynamics, which was done for hantavirus78 
and brucellosis,103 and this inclusion can be particularly 
useful when little is known about the animal population. 
Furthermore, many of these diseases (eg, anthrax, 
campylobacteriosis, cryptosporidiosis, and leptospirosis) 
are expected to expand their range as a result of climate 
and land-use change and modelling studies 
incorporating climatic data can help identify the effect 
of climate change on these diseases, such as 
campylobacter and cryptosporidium in New Zealand.104 

However, only a small number of models considered 
the effect of climate variables within their models. It is 
also important to take into consideration spatially 
varying covariates, which was done for E coli,105 
hantavirus,79 and echinoccosis.106 An obvious next step is 
to combine these dynamic transmission models with 
other tools, such as ecological niche modelling and 
geospatial approaches.107

Conclusions 
This systematic review identified four areas for 
development in the modelling of zoonotic environmental 
diseases. First, there is a need for more model validation 
and calibration for many of these diseases, particularly 
for models of diseases with wildlife hosts and NTDs 
that often did not have this important component of the 
model fitting process. It is known that wildlife hosts act 
as major reservoirs of diseases; therefore, more effort 
should be placed on understanding their behaviour and 
disease transmission potential. Furthermore, most 
emerging pathogens are zoonotic, with the majority 
emerging from wildlife reservoirs that then spillover to 
domestic animals and humans.2,5,108,109 Second, it is 
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important for more models to be developed that capture 
the full transmission process. In particular, the 
environment as a source of transmission was rarely 
considered, despite being a major source of transmission 
to humans for many diseases. This environmental 
pathogen burden can pose substantial issues when it 
comes to control strategies and interventions and 
should be included in more of these disease models 
using a One Health framework. Third, this Review 
highlighted how little data exists for the environmental 
pathogen burden of disease, and often little is known 
about the environmental burden of these diseases. 
Finally, it is important to consider the effect of climate 
variability and climate change on these diseases. 
Because of the environmental burden, many of these 
diseases (eg, leptospirosis and melioidosis) are climate 
sensitive and they are predicted to increase their range 
in the future.110 It is essential that we combine these 
considerations to generate robust models using a One 
Health approach that are capable of predicting outbreak 
dynamics and changes in disease risk to inform 
planning and control.
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6
Discussion

In this thesis I have explored the complex drivers of infectious disease dynamics. I looked at two
different disease case studies, leptospirosis and seasonal HCoVs, both of which have complex
infection pathways. Understanding the transmission dynamics and quantifying the strength
of transmission drivers requires tools to test these mechanisms, for which mathematical and
statistical modelling techniques are ideally suited. Leptospirosis has multiple different animal
hosts and leptospires can survive in the environment for long periods of time and go on to
cause subsequent human infection. In addition, climate is known to influence the timing and
the magnitude of outbreaks in many settings, and this was the focus of Chapter 2. I identified
key hydrometeorological and climatic factors influencing leptospirosis risk in Fiji. I found that
a climate-driven model was better able to capture the outbreak peaks compared with a base-
line random-effects only model, and this is an essential first step towards the development of
a climate-driven early warning system in Fiji. Furthermore, infection with Leptospira does not
confer life-long protection, and the duration of antibody persistence was the focus of Chapter
3. Using serocatalytic models I was able to estimate the duration of antibody persistence fol-
lowing Leptospira infection. In addition, I incorporated further data on longitudinal antibody
dynamics providing a novel way to estimate the most likely time of infection. Reinfection also
occurs with seasonal HCoVs, and due to it being a respiratory virus spread by close contact, so-
cial and age mixing patterns are important considerations. Therefore, in Chapter 4 I extended
the serocatalytic model to allow for an age-varying FOI, estimating the most likely duration of
antibody persistence whilst accounting for differences in FOI by age. The duration of immunity
is of key epidemiological importance, as it influences the long-term dynamics of epidemics, but
also aids the interpretation of population-wide seroprevalence studies. It is also of clinical im-
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Chapter 6: Discussion

portance as it provides information as to how long previously infected individuals may remain
immune to reinfection. Finally, in Chapter 5, I explored how climatic drivers and antibody dy-
namics could be included within a single transmission modelling framework, and provide a
more holistic understanding of transmission dynamics.

In this final chapter, I synthesise research from this thesis to show how knowledge from mul-
tiple methods (statistical and mathematical models) can provide a greater understanding of
transmission dynamics, using leptospirosis and seasonal HCoV as examples. I also highlight
the implications of this research, and the remaining challenges that exist.

6.1 Summary of key findings

Quantifying the relationship between hydrometeorological indicators and lep-
tospirosis incidence in Fiji: a modelling study

In Chapter 2 I explored the relationship between different hydrometeorological indicators and
leptospirosis incidence in Fiji. Leptospirosis is a neglected zoonotic disease, and there is a high
burden of disease in this region. Leptospirosis is a climate-sensitive disease and outbreaks are
often reported following heavy rainfall and flooding. However, the relationship between cli-
mate factors and leptospirosis incidence has not been well quantified in Fiji or the wider Pacific
region. I developed a Bayesian mixed-effect statistical model to explore the role of different
hydrometeorological indicators on leptospirosis cases reported in Fiji over 12 years (2006 to
2017) at varying spatial and temporal scales. I also explored different precipitation indicators
and identified those that were best able to explain variation in cases. Looking at weekly cases,
I found that total rainfall over six weeks, periods of negative SST (i.e. La Niña events) and min-
imum temperature were all positively associated with leptospirosis cases. Overall, I found that
a weekly model which included the climate covariates was better able to capture the seasonal
and interannual variation than a model which only included random effects for week and year.
These results highlight the potential for creating a climate-based early warning system for lep-
tospirosis in Fiji, and provide a necessary first step. In addition, the results from this study,
along with previous studies conducted in Fiji exploring demographic and spatial risk factors [1,
2], bring us closer to a precision public health approach in Fiji by allowing public health inter-
ventions to be targeted to the right person, place and time, which is particularly important in
settings with limited resources.

Furthermore, in this study I was able to explore the impact of aggregating data to different tem-
poral scales. Statistical-based models exploring climatic factors often use monthly case data.
Publicly available surveillance data, gridded climate products and climate forecasts are often
only available at the monthly scale. Understanding the implications of aggregating case data
was an important addition in this study. With the exception of temperature, I found very lit-
tle difference in the results between the models using monthly and weekly case data, however,
at the monthly scale. However, at the weekly scale minimum temperature was weakly associ-
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ated with increased cases, and a short time lag of one week was observed, but this relationship
was lost at the monthly scale. These findings demonstrate that higher resolution data may be
required to infer relationships that affect cases on short time scales.

Estimating the duration of antibody positivity and likely time of Leptospira
infection using data from a cross-sectional serological study in Fiji

In Chapter 3, I used data from a large cross-sectional seroprevalence study conducted in Fiji
in 2013 [1] to estimate the duration of Leptospira-specific antibody persistence (as a proxy for
protective immunity). The duration of protective immunity is epidemiologically and clinically
important since it was largely unknown for leptospirosis andcan provide insight into the fre-
quency of reinfections, as well as allow for improved interpretation of serosurveys. I used a re-
verse catalytic model, which allows for comparisons between surveillance and seroprevalence
data as it allows estimation of the FOI whilst accounting for waning antibody levels.

I estimated the annual attack rate in Fiji to be 3.15% (2.18% - 5.16%), which suggests there may
be as many as 28,000 (19,000 - 46,000) infections annually, assuming a constant FOI. In the five
years prior to the seroprevalence survey being conducted there were approximately 1,200 cases
reported in total [3] These results highlight the potential extent of unascertained community
infections. Possible explanations for this include asymptomatic or mildly symptomatic infec-
tions, limited laboratory capacity, and clinical misclassification. I also estimated the duration
of antibody persistence to be 8.33 years (4.76–12.50; assuming a constant FOI) and 7.25 years
(3.36–11.36; assuming a time-varying FOI). This is longer than previous studies, which esti-
mated antibody persistence to be between three and six years [4, 5]. It is worth noting that in
both these previous studies individuals remained seropositive at the conclusion of the follow-
up period.

Furthermore, in this study I explored two complementary approaches to estimate the most
likely timing of infection at the population level. The first was an extension to the reverse cat-
alytic model which allowed a time-varying FOI, and estimated a large outbreak in 2013. How-
ever, there was a lot of uncertainty in this estimate. The second approach combined additional
data sources, including longitudinal information on antibody kinetics (from Lupidi et al. [4]),
to identify the most likely timing of infection. This method estimated that the majority of indi-
viduals included within the 2013 serosurvey were most likely the result of a recent infection in
the previous two years, and this corresponds to known outbreaks that have occurred in Fiji in
2012 and 2013 [3, 6]. This novel approach estimating the most likely timing of infection allows
for richer, longitudinal information to be inferred from cross-sectional studies, and could be
applied to other endemic diseases where antibody waning occurs.
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Estimating the duration of seropositivity of human seasonal coronaviruses
using seroprevalence studies

In Chapter 4, I applied and extended the model I used in Chapter 3 to another disease, seasonal
HCoVs. In late 2020 little was known regarding the duration of immunity of SARS-CoV-2. Sea-
sonal HCoVs have been circulating for much longer, and therefore could provide potential in-
sights into SARS-CoV-2 dynamics. I fitted reverse catalytic models to seroprevalence data from
six studies covering four different circulating seasonal HCoVs. Due to the differing transmission
patterns in children and adults, I extended the reverse catalytic model to allow for a varying FOI
(the rate at which susceptible individuals acquire infection and seroconvert) by age.

The results estimated the duration of antibody persistence to last around 1-4 years. This result is
in line with the literature from seasonal HCoVs, suggesting that the age-varying reverse catalytic
model was able to capture the overall transmission dynamics of seasonal HCoVs. I also found
that the FOI in older children (over 8.5 years) and adults was almost twice as high compared
with the younger age groups (although there was heterogeneity between studies). This finding
has been corroborated with what has been observed during the COVID-19 pandemic [7, 8].
Overall, the results presented in this chapter provide insights into the long-term transmission
dynamics of seasonal HCoVs and how these vary by age.

Transmission modelling of environmentally persistent zoonotic diseases: a
systematic review.

Finally, in Chapter 5, I explored how compartmental mechanistic transmission models could be
used to bring together climatic drivers and immunity dynamics within a single disease frame-
work, providing a more holistic understanding of transmission dynamics. I identified zoonotic
diseases that had environmentally persistent pathogens, where indirect transmission can occur
from animals to humans via a contaminated environment. I was particularly interested in how
previous studies had included and accounted for these complex transmission processes and
environmental reservoirs. I identified 20 diseases and systematically reviewed the literature of
compartmental transmission models to describe and highlight key themes and best practices,
as well as areas for further development. I found that very few studies considered the full trans-
mission process within their models. In particular, the environmental component was often not
considered, despite this being a major source of infection for humans for some diseases consid-
ered (e.g. leptospirosis). Failure to account for the full transmission framework may result in an
overestimation of the importance of particular transmission pathways, and therefore, impact
the likely success of different control strategies. I also found that very few studies validated and
calibrated their models to data, likely due to the complexity of the transmission systems and
the fact that many of these diseases are understudied and neglected. Historically, modelling
studies have focused on diseases with simpler transmission pathways (e.g. measles) which are
more straightforward to validate and calibrate to data. Due to the environmental burden of
disease, many of these diseases are also climate sensitive, yet few studies considered the im-
pact of climate on transmission. Overall, this review highlighted the need for more data-driven
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transmission models which consider the full transmission system within a holistic One Health
framework, and use this to inform disease prevention and control strategies.

6.2 Progress towards a leptospirosis mechanistic transmission
model

Leptospirosis is an example of a zoonotic disease with an environmentally persistent pathogen.
It has multiple different animal hosts and numerous circulating serovars. Leptospires can sur-
vive in the environment for weeks or months, and transmission is influenced by climatic fac-
tors. The complex disease dynamics of leptospirosis, in part, motivated the systematic review
I conducted in Chapter 5. Mechanistic transmission models can be used as a tool to study and
test theories regarding the transmission dynamics of a pathogen. However, when considering
a pathogen as complex as leptospirosis, it can be useful to break down the overall transmission
model, and to think about it in smaller sub-component parts.

In Chapter 1 I introduced a leptospirosis compartmental transmission model and in this thesis
I have made progress towards understanding some of the sub-component parts that could then
be used to inform the development of a more complete transmission model. I have updated and
expanded the transmission model introduced in Chapter 1, highlighting the new knowledge
gained from this thesis (Fig. 6.1).

In Chapter 2 I sought to understand the seasonal and inter-annual climatic drivers of leptospiro-
sis in Fiji. This information could be incorporated within the FOI (∏H and ∏A) from the envi-
ronmental reservoir (L) to humans and to animals, via the parameter Ω (Fig. 6.1), as previously
described by Henderson et al. 2021 [9]. In Chapter 3 I estimated the duration of antibody per-
sistence, which can act as a proxy for waning immunity, and therefore can inform the rate at
which humans move from the recovered to susceptible compartment. Finally, in Chapter 5 I
reviewed the literature to identify transmission models that share similar transmission charac-
teristics. This highlighted the challenges associated with developing models for diseases with
such complex transmission pathways, and particularly highlighted the gaps in our knowledge
regarding leptospirosis transmission.

6.3 Contribution to the field and strengths of this research

6.3.1 Adapting methodology to more complex disease dynamics and overall
contribution to the literature

One of the strengths of this work is that leptospirosis is an under-studied disease and there re-
main many unanswered questions regarding the transmission dynamics. As such, this thesis
has made a distinct contribution to furthering our understanding of disease transmission dy-
namics and drivers of leptospirosis, by adapting and bringing together disparate datasets and
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methods for this purpose. In addition, I was able to apply the methodology from Chapter 3 to
another understudied disease, seasonal HCoVs.

For example, in Chapter 2 I brought together multiple datasets from different sources, includ-
ing national Fiji leptospirosis surveillance case data, meteorological data obtained from the Fiji
Meterological Office, and data on Sea Surface Temperatures from the National Oceanic and At-
mospheric Administration (NOAA) [10]. Given the close association between rainfall, flooding,
and leptospirosis cases, I explored five different extreme precipitation indicators defined by the
World Meteorological Organisation Expert Team on Climate Change Detection and Indices [11],
as well as standardisation measures such as the Standardised Precipitation Index (SPI), and the
Standardised Precipitation Evapotranspiration Index (SPEI) [12]. I explored these precipitation
indicators in terms of the time period that the indicator measures, and also at different lags to
account for the lagged relationship between climate and the observed effect on leptospirosis
cases. Many previous studies have only considered total precipitation (usually over one month)
within a model, without considering whether there may be better precipitation indicators or
time periods to use. In addition, I had access to individual case data, which enabled me to
explore the impact of aggregating case data to the monthly or the weekly level. Many studies
which explore spatio-temporal risk factors only have monthly data available, and the data used
here provides a unique opportunity to explore the advantages and disadvantages of aggregat-
ing data to different temporal scales. In this study, as well as precipitation indicators, I explored
the role of ENSO and temperature on leptospirosis incidence in Fiji. There are very few studies
which have aimed to quantify the relationship between climate and leptospirosis in the South
Pacific region, and this study adds to our understanding of the role of climate. Such work is of
benefit as it may allow for the development of a clinically useful climate-based early warning
system in Fiji in the future.

In Chapter 3 I explored the antibody duration of Leptospira infection using serocatalytic mod-
els fitted to a large seroprevalence dataset. A literature search did not reveal any serocatalytic
models for leptospirosis and therefore this research makes an important contribution to the
understanding of the duration of antibody persistence. I also estimated the most likely timing
of infection from the seroprevalence study by bringing together longitudinal data on antibody
kinetics. This study proposes a novel method for obtaining longitudinal information from sero-
prevalence surveys, and could be applied to other endemic diseases where antibody waning
occurs. This may allow for richer data to be gained from studies of neglected and under-studied
diseases where resources are often limited. In Chapter 4, I applied a similar method to seasonal
HCoVs, and to my knowledge this is the only study to estimate the duration of antibody per-
sistence for seasonal HCoVs using serocatalytic models. Seasonal HCoVs are transmitted via
direct human-to-human contact, and because of this, social networks are considered to be im-
portant. Given that there are differences in social mixing by age, I extended the reverse catalytic
model to allow for an age-varying FOI. This allowed us to explore assumptions regarding the
transmission dynamics by age. In addition to providing new insights into seasonal HCoVs dy-
namics, this study also demonstrates the transferability of the model I developed to understand
leptospirosis in Chapter 2 and its application to a different disease framework.

127



Chapter 6: Discussion

Finally, in Chapter 5, I conducted a systematic review of transmission models of zoonotic dis-
eases with environmentally persistent pathogens. This provides a novel way of grouping these
diseases and brings a new perspective on how information and knowledge can be shared across
environmentally persistent zoonotic diseases. Previous transmission modelling reviews have
focused on vector-borne diseases or zoonotic disease more generally [13–15], but in this review
I was able to focus specifically on the environmental burden of disease, and how this had been
included and accounted for within models. Furthermore, this approach allows the sharing of
knowledge between well-studied zoonoses affecting domestic animals in high income coun-
tries, and less studied neglected diseases in resource-poor settings, particularly those affecting
wild animals. This framework will become more important as climate change increases the
significance of the environment as a driver of many of these diseases.

6.3.2 Data

Another of the key strengths of this thesis is the data used to inform and fit the models in Chap-
ters 2, 3 and 4. The seroprevalence survey data used in Chapter 3 was a particularly compre-
hensive dataset. Population proportionate sampling was used and this is a real strength of this
data as it aims to be representative of the whole population, and differs from many other sero-
prevalence studies which use convenience sampling. In addition, a large number of children
were included in this study (566 individuals ∑ 18 out of 2152 total individuals). The inclu-
sion of children allows for the inference of the FOI in this population as children have been
exposed for a fewer number of years, thus showing how seroprevalence accumulates over time,
and therefore age, in a population. However, due to ethical considerations and difficulties with
sampling, many seroprevalence studies choose not to include children, and therefore lack this
ability.

In Chapter 4, I was able to bring together data covering the four different seasonal HCoV strains,
from six different seroprevalence studies. The studies varied in both the time they were car-
ried out, but also the geographical setting. Combining information from six different studies
strengthens the estimates of antibody persistence allows for greater generalisability of our re-
sults. It also allows the comparison of how the estimates of antibody persistence vary by strain
and the impact of assay and geographical setting on our results.

6.3.3 Reproducibility and replicability

Finally, throughout this PhD thesis I have endeavoured to make my research as reproducible
and replicable as possible. Reproducibility refers to the ability for the results of a study to be
duplicated using the same materials as the original investigator and obtain the same results
[16, 17]. For epidemiological studies, this requires code and analytical data to be made pub-
licly available, and for the use of open source software [17, 18]. However, these data sharing
processes must respect individual anonymity and ethical considerations. Replicability refers
to the ability of a researcher to use new data to duplicate the results of a prior study following
the same procedures [16, 17]. In Chapters 3 and 4 I have shared my code in publicly available
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Github repositories in order to be transparent and enable replicability, and to make extensions
and adaptations to the code as easy as possible. This is planned following submission for pub-
lication of Chapter 2. In Chapter 4, the data used was publicly available, and this allowed me
to share all the raw data, allowing for this chapter to be fully reproducible. In order to respect
the anonymity of study participants, in Chapter 3, I publicly shared de-identified data aggre-
gated by five-year age groups. The full dataset is available on request with appropriate ethical
approval. This does not allow the full results to be reproduced by sex, division and serovar, but
did allow the main reverse catalytic model to be reproduced, albeit with slight differences in
the results due to the use of aggregate data. I also created simulated individual-level MAT data
which allowed users to replicate the most likely time of infection using simulated data. Chapter
5 was different, as it described a systematic review, and did not have any data analysis associ-
ated with it. However, I set out my search criteria and databases used as clearly as possible, so
that someone could repeat or replicate the search.

6.4 Limitations and challenges

6.4.1 Data

Whilst this thesis benefits from the data used, it is not without its limitations. The conclusions
from this thesis rely heavily on the quality of the seroprevalence and surveillance data used
throughout this research, and the models are only as good at the available data used to inform
them.

The leptospirosis seroprevalence data is a rich dataset, which included many participants and
used population-proportionate sampling [1]. However, there are still limitations associated
with this data. Seropositivity was determined using the MAT diagnostic test. The MAT is expen-
sive and difficult to perform, and as such only six serovars were included in the final panel used
in the seroprevalence study. Given that there are known to be over 15 different serogroups circu-
lating in Fiji in animals and humans [19, 20], the seroprevalence of leptospirosis in Fiji may have
been under-estimated. However, every effort was made to limit this in the original study design.
An initial panel of 21 serovars was used on a randomly selected 10% of samples collected in the
seroprevalence survey, and the most common serovars included in the panel. In addition, dur-
ing outbreaks of leptospirosis in Fiji in 2012 and 2013, this same 21 serovar panel was used on
approximately 200 Leptospira ELISA-positive samples collected from patients with suspected
clinical leptospirosis. This will have ensured that both commonly circulating serovars, as well as
those serovars responsible for more severe disease (as evidenced by hospitalisation), will have
been included in the final panel. In addition, although the MAT is considered to be the gold-
standard test for the diagnosis of leptospirosis, it is not without limitations. The results can be
difficult to interpret and there is a lack of standardisation between laboratories [21]. While the
MAT is able to distinguish between serogroups, cross-reaction between serogroups is common
[21]. Finally, the catalytic model requires a cut-off titre to be selected. In the seroprevalence
study a low cut-off titre of 1:50 was chosen, as we were interested in any evidence of past infec-
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tion, however, depending on the research question, different cut-offs may be chosen. Since we
only had seven dilution titres, this did not allow for the use of a mixture model to inform the
cut off point [22, 23]; nor did it allow for the use of an antibody acquisition model which fully
utilises the antibody titre data and has previously been used for other diseases such as malaria
and trachoma [24, 25].

Seroprevalence studies were also used to estimate the duration of antibody persistence for sea-
sonal HCoV. Six studies were used in this analysis [26–31], and although we were able to com-
pare and pool results across multiple settings, there were limitations. The seroprevalence stud-
ies were conducted at different points in time, in different settings, using different diagnostic
tests. These diagnostic tests had different cut-off points. We attempted to understand the im-
pact of this by conducting a number of different sensitivities (e.g. looking at the results by the
type of diagnostic test used). We were also limited by the age brackets authors chose to re-
port.

A further limitation with the interpretation of seroprevalence studies is how well antibody re-
sponse correlates with protective immunity, and this applies to both leptospirosis and seasonal
HCoVs. Relating the seroprevalence level in a population to population immunity is compli-
cated. Therefore, I have been careful throughout this thesis not to equate the duration of an-
tibody persistence with the duration of immunity. However, antibodies can act as a marker of
protection, and in the absence of longitudinal reinfection studies they can be a useful strategy
to understand infection dynamics.

There are also limitations with the leptospirosis surveillance data. In Chapter 2 we only had
reported ELISA-positive cases, and had no information on the underlying infection patterns.
ELISA-positive cases are only ascertained if individuals feel unwell enough to report to health-
care, the clinician suspects leptospirosis, and there is diagnostic capacity for testing. Given that
many cases are asymptomatic and mildly symptomatic, the cases reported to surveillance are
likely to be a small fraction of the true cases. During declared outbreaks, it is recommended that
diagnosis is performed based on case definitions and clinical assessment to conserve testing
capabilities [32]. Therefore, there is variation in the case definition over time and the surveil-
lance data may not capture the true scale of the outbreaks. In addition, it is known that testing
strategies have also changed over the study time period. There was a large outbreak in 2012 in
the Western division [6] which resulted in a number of deaths, and it is likely that this brought
renewed attention to the disease, and as a result, may have increased clinical suspicion and
awareness. Furthermore, in 2016 new guidelines were released [33], which raised the index of
suspicion and recommendations of when to test. There is also thought to have been an increase
in laboratory capacity over time. Whilst this is all likely to have led to an increase in reported
cases, there is evidence that the number of cases of leptospirosis admitted to intensive care
units in Fiji is increasing. This implies there is a true increase in the burden of disease and this
is not just an artefact of the data reporting and laboratory capacity.

Limitations associated with the ELISA test may have also impacted our results [21, 34, 35].
Firstly, the timing of the test is very important. During the early stages of infection (5-7 days),
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antibody titres may have not yet risen, and if samples are taken too early following onset of
disease they may be falsely declared as Leptospira-negative. Secondly, if the ELISA test is con-
ducted too late following the administration of antibiotics, individuals may also be falsely de-
clared as Leptospira-negative. Finally, the ELISA test does not differentiate between serovars.
Different animals are known to be associated with certain serovars [36] and that pathogenicity
can vary by serovar. Therefore, transmission mechanisms may differ by serovar, and this could
not be accounted for within the model.

6.4.2 Limited research interest and investment

Leptospirosis is under-studied, and there remain large gaps in our knowledge of the transmis-
sion dynamics. A study by Costa et al. [37] estimated the annual global burden of disease to be
1.03 million cases and 58,900 deaths, and this estimate puts leptospirosis as a leading zoonotic
cause of morbidity and mortality. However, despite this, research interest in leptospirosis is
minimal, and it is not considered by the WHO to be one of the key neglected tropical diseases.
The cycle of neglect was highlighted by Goarant et al. [38] who found evidence of insufficient
research attention in relation to burden of disease, demonstrating that leptospirosis research
is significantly under-resourced. As a consequence of this, there remain large gaps in our cur-
rent knowledge and understanding of leptospirosis transmission dynamics, and progress in lep-
tospirosis research is slow. The body of work presented here enhances the knowledge base in
the field, but is also limited by the lack of prior studies to inform model design. There are a lim-
ited number of researchers with whom it is possible to discuss ideas. Moreover, leptospirosis is
often not discussed at conferences, and leptospirosis papers tend to be published in less high
impact journals, and therefore may reach a smaller audience. This lack of peer-to-peer discus-
sion and research interest compounds challenges in interpretation of the results and compar-
isons to other settings.

Despite seasonal HCoVs first being identified in the 1960’s [39], they are also little studied. Sea-
sonal HCoVs were traditionally not deemed to be clinically important, as they predominantly
cause mild or asymptomatic disease. Therefore, many unanswered questions remain regarding
the transmission dynamics of seasonal HCoVs. Following the emergence of SARS-CoV-1 and
MERS-CoV there was renewed interest, which led to the identification of two new strains. Once
again, the emergence of SARS-CoV-2 renewed interest in seasonal HCoVs, but there are still
many unknowns and gaps in our knowledge, and this limits the interpretation and contextuali-
sation of these results.

6.4.3 Model limitations

Infectious disease dynamics are hugely complex and inter-woven, and we cannot aim to include
every element of transmission as the complexity and detail required would be vast. Further-
more, the limited prior knowledge and understanding of the disease system, as well as the lim-
itations with the data available, can result in the development of simpler models, as the knowl-
edge or data to support a more complex model is absent. For example, during the emergence
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and global spread of SARS-CoV-2, a wealth of knowledge and data was generated very quickly,
aided by the development of accurate and rapid diagnostic tests. This enabled the develop-
ment of much more complex and detailed models, and a greater understanding of the under-
lying transmission dynamics. However, for other diseases such as leptospirosis, the knowledge
base, diagnostic capability and data lag behind, often necessitating simplifying assumptions.
This was highlighted in Chapters 3 and 4, where I used serocatalytic models to estimate the
duration of antibody persistence in leptospirosis and seasonal HCoVs and made several sim-
plifying assumptions. Firstly, I did not consider seasonality within the model. Previous studies
had found that regular epidemics do not strongly bias the catalytic model, which suggests that
the effect of not considering seasonality may have been marginal. Secondly, I did not consider
the role of cross-protection and cross-reactivity between strains (seasonal HCoVs) and serovars
(leptospirosis). Cross-reactivity may result in false-positives, and this would lead to a higher
plateau in older ages and result in an over-estimation of both the FOI and waning rate. How-
ever, the role of cross-protection and cross-reactivity is not well understood, particularly for
leptospirosis, and a greater understanding or improved data is required before this may be con-
sidered within models. Furthermore, in Chapter 2, model complexity was limited by the data
that was available. Therefore it was not possible to include more spatially-explicit data, nor any
information on socio-economic factors such as access to sanitation or poverty indicators, and
this is discussed further in Section 6.5.

6.4.4 Generalisability

A final limitation is how generalisable these findings are. Leptospirosis transmission appears
to show strong heterogeneity around the world, with different risk factors identified. Whilst the
methods themselves are generalisable, the variation in transmission of leptospirosis in differ-
ent settings limits the generalisability of these results. As such, these results may be context-
specific. In particular, the seroprevalence study was conducted in an endemic context, and
re-infections are likely to have occurred. Therefore, the estimated duration of antibody persis-
tence may be longer than in a setting with no re-infections. To the best of my knowledge, this is
the first study that aimed to estimate the duration of antibody persistence from seroprevalence
studies in this way, and it would be useful for future studies to explore this in other settings.
However, seroprevalence studies are expensive and time-consuming to implement, and if ex-
pected prevalence is low, large sample sizes are required. In addition, this requires sampling
of children, and often seroprevalence studies choose to include only adults. Because of their
limited natural exposure times, children are invaluable to understanding the FOI of different
diseases, and should be considered for inclusion within future seroprevalence studies.

In addition, the results from Chapter 2 exploring the role of the climate in Fiji may not be gener-
alisable to other settings. Other settings have been found to have one predominant serovar and
one primary animal host driving transmission [40]. Conversely, in Fiji there are many differ-
ent animal hosts, multiple circulating serovars, and various transmission pathways influencing
infection. Therefore, climate may contribute to transmission differently in other settings. For
example, the climatic factors influencing transmission in urban slum environments may be
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different than in rural agricultural settings. However, other Pacific Island Countries also have a
large number of circulating serovars and animal hosts [20, 41], and this study may help inform
studies in these settings. Care must be taken however to account for different laboratory diag-
nostic capabilities between settings. Furthermore, in Chapter 4, I combined data from multiple
different settings. This is at once a strength and a limitation. Pooling data from across settings
may allow for the results to be more generalisable. However, this study used data from a number
of different settings across a range of times. Seasonal HCoV transmission is strongly influenced
by social contact patterns. These can differ across settings, but also have changed over time
due to changes in household structure. For example, the data used spans 43 years from 1970 to
2013, during which time, community structures have changed and multi-generational house-
holds are less common in some settings [42].

6.5 Implications, remaining challenges and future work

The results from Chapter 2 demonstrate the important role that climate plays on leptospirosis
incidence in Fiji. Outbreaks in Fiji have been increasing in size and frequency in recent years,
and it is not clear what is driving this, but it is likely that climate has an important role. However,
there remain questions regarding the role of climate on leptospirosis in Fiji. In order to begin
to address some of these questions, additional years of surveillance data are required, particu-
larly when considering events such as ENSO which only occur on average every four years. In
addition, more spatially-explicit surveillance data is required, which currently is not routinely
collected in Fiji. Transmission appears to differ by setting in Fiji, and it is likely that the way
that climate influences transmission also differs according to the local socio-ecological context.
Spatially-explicit data would enable the development of models which could be used to explore
socio-economic factors driving transmission, such as poverty, access to sanitation and hous-
ing infrastructure, and these are likely to be inter-connected with climate. Local environmental
drivers of transmission could also be explored, such as proximity to rivers and floodplains. Fur-
thermore, in Fiji there are numerous animal hosts and many different circulating serovars, and
it is likely that the importance of animal hosts varies geographically, and therefore climate may
impact these differently.

In addition, Chapter 2 highlights the potential for the development of a climate-based early
warning system for leptospirosis. This is of key importance for Fiji given the effects of climate
change are already being felt, and it is thought that this will further increase the number of out-
breaks going forward. Early warning systems have been developed for other climate-sensitive
diseases such as dengue and malaria [43–45], however, these require a good understanding of
the climatic drivers and transmission mechanisms, as well as robust surveillance data. An early
warning system would be of benefit to policy makers as it would enable the deployment of
preventative interventions. When developing an early warning system care must be taken to
minimise false alarms (predicting an outbreak that does not occur) and missed events (failing
to predict an outbreak).
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In Chapters 3 and 4 I estimated the duration of antibody persistence for both leptospirosis and
seasonal HCoVs. This is important as the duration of antibody persistence may influence the
timing and likelihood of outbreaks. Knowledge of whether immunity is life-long or of short
duration is also important for planning and preparedness as it can provide insight as to the
likelihood of re-infection as well as inform vaccine development. In addition, it can help deter-
mine if a disease will become a seasonal epidemic, or more likely, have longer periods between
epidemics (e.g. if the duration of protective immunity is long-lasting, it can take a while for a
build-up of susceptible individuals in the population); although this does not consider other
driving factors of epidemics, such as climate. Moreover, there remain questions regarding an-
tibody dynamics, and how antibodies correlate with protection against infection. In addition,
the role of cross-protection between serovars (leptospirosis) and strains (seasonal HCoVs) is
not well understood. Further work exploring antibody persistence in other settings would be of
benefit, as well as more longitudinal studies following individuals up over time.

In Chapter 5 I highlighted the challenges of developing a mechanistic transmission model for
zoonotic environmentally persistent pathogens, however, the development of such a model
would allow for disease transmission to be considered within a holistic disease framework.
The review highlighted that there was a need for more data-driven modelling. In particular
it was found that little is known about the pathogen disease burden of many environmentally-
persistent diseases, despite this being an important source of transmission to humans for many
of these diseases. Although there has been an increase in studies recently which have started
exploring the duration of Leptospira survival in the environment [46, 47], there are still many
gaps in our knowledge and understanding.

Due to the complex pathways driving leptospirosis transmission in Fiji, with multiple interact-
ing and interconnected components, future work, which combines knowledge and data from
multiple sources and sectors, will be key. Specifically, a multi-pronged approach, which brings
together enhanced surveillance case data, seroprevalence data in humans, and seroprevalence
data in animal hosts would allow for an improved understanding of leptospirosis transmis-
sion dynamics. Repeated seroprevalence sampling during outbreak and non-outbreak periods,
across different geographical settings in Fiji, would provide population level data of the serovars
driving transmission, and how these change over time. Furthermore, seroprevalence studies of
animals may help untangle the importance of different animal hosts across geographical set-
tings, and identify which animal hosts may be driving large outbreaks. Moreover, multi-sectoral
control strategies have been proposed for the control of leptospirosis, but there is limited ev-
idence regarding the effectiveness of such interventions. There is a need for data and mod-
els which can assess not only the effectiveness of these control strategies, but also the envi-
ronmental and human impact. This would require the development of cross-sectoral models
to synergise decision making between sectors (e.g. health and environment) [48]. Enhanced
data collection and cross-sectoral work would provide a greater understanding of leptospiro-
sis transmission, allowing for the development of models which consider the full transmission
pathway within a One Health framework.
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6.6 Concluding remarks

This thesis brings together diverse modelling approaches, which aimed to understand the com-
plex drivers of disease transmission dynamics applied to two diseases, leptospirosis and sea-
sonal HCoVs. Despite the many limitations and challenges associated with studying these dis-
eases, this research highlights the importance of conducting epidemiological research, and par-
ticularly for leptospirosis, bringing attention and better evidence base to this understudied ne-
glected zoonotic disease.
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Figure 6.1: Schematic representation of a theoretical leptospirosis mechanistic transmission model. The
force of infection (FOI) to humans (∏H ) includes both infection via the environment (L) or via an in-
fected animal (I A). In humans, transmission can occur via indirect transmission from the environment,
with coefficient ØL!H , where the risk of infection increases linearly with the number of free-living lep-
tospires. Climate is considered to impact environmental transmission, and therefore can be incorpo-
rated via a seasonality coefficient (Ω), informed by the results from Chapter 2. Transmission can also
occur via direct transmission from an infected animal (I A), at an effective contact rate ØA!H . Once in-
fected, humans move from susceptible (SH ) to latently infected (EH ), to infected (IH , at a rate of ±H ) and
finally to recovered (RH , at a rate of UH ). Once recovered they lose immunity at a waning rate and re-
turn to the susceptible compartment(SH ), where they can once more become infected. This waning rate
is informed by the results from Chapter 3. Animals are infected either indirectly via the environment,
ΩØL!A , or directly from another infectious animal, ØA!A . No vertical transmission is included within
this model framework. Once infected, animals move from susceptible (S A), to infected (I A) and finally
to recovered (RA , at a rate of UA). It is assumed that there is no waning immunity due to the shorter
animal lifespan. Infected animals release leptospires (L) into the environment. Once in the environment
leptospires decay based on a decay rate. While in reality there are many different animal hosts, this theo-
retical model is based on cattle given they are thought to be one of the predominant sources of infection
to humans in Fiji. The statistical model developed in Chapter 2 is shown below the transmission model.
Ø1Tmi nst +Ø2E N SOst +Ø3Rai n f al lst are the climatic coefficients from the statistical model, which can
be incorporated within the transmission model via the Ω parameter.
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6XSSOHPHQWDU\�PDWHULDO

6XSSOHPHQWDU\ 7DEOH �� )ORRGLQJ DQG 7URSLFDO &\FORQHV UHFRUGHG LQ )LML �&HQWUDO� :HVWHUQ
DQG�1RUWKHUQ�'LYLVLRQ��E\�WKH�(PHUJHQF\�(YHQWV�'DWDEDVH��(0�'$7��

<HDU 'DWH 'LVDVWHU�7\SH 'LYLVLRQ

���� ���������������������� 5LYHULQH�IORRG��RULJLQ�KHDY\
UDLQ�

&HQWUDO�
1RUWKHUQ�
:HVWHUQ
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6XSSOHPHQWDU\ )LJXUH �� :HHNO\ UDLQIDOO IURP /DXFDOD %D\ �&HQWUDO GLYLVLRQ�� 1DGL $LUSRUW
�:HVWHUQ 'LYLVLRQ� DQG /DEDVD $LUILHOG �1RUWKHUQ 'LYLVLRQ� EHWZHHQ ���������� 5HG DUURZV
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Model Variable TimePeriod Lag Mean LCI UCI WAIC CVLogScore RsqNull
0 RE - - - - - 5328 1.426 0.458
1 prcp - 0 0.073 0.003 0.144 5327 1.426 0.46
2 prcp - 1 0.081 0.01 0.153 5326 1.425 0.459
3 prcp - 2 0.147 0.079 0.219 5314 1.422 0.462
4 prcp - 3 0.093 0.028 0.16 5323 1.425 0.46
5 prcp - 4 0.09 0.026 0.156 5323 1.425 0.46
6 prcp - 5 0.047 -0.017 0.112 5329 1.426 0.459
7 prcp - 6 0.082 0.013 0.153 5326 1.425 0.459
8 prcp - 7 -0.009 -0.076 0.06 5330 1.426 0.458
9 prcp - 8 0.007 -0.062 0.078 5330 1.426 0.458
10 prcp - 9 0.024 -0.044 0.093 5330 1.426 0.458
11 prcp - 10 0.04 -0.029 0.11 5330 1.426 0.458
12 prcp - 11 0.005 -0.063 0.074 5330 1.426 0.458
13 prcp - 12 0.118 0.052 0.185 5318 1.423 0.462
14 prcp - 13 0.067 -0.002 0.138 5327 1.426 0.459
15 prcp - 14 0.014 -0.053 0.083 5330 1.426 0.458
16 prcp - 15 0.02 -0.049 0.09 5330 1.427 0.458
17 prcp - 16 0.019 -0.053 0.092 5330 1.426 0.458
18 tmin - 0 0.006 -0.138 0.15 5330 1.427 0.458
19 tmin - 1 0.172 0.022 0.321 5325 1.425 0.459
20 tmin - 2 -0.023 -0.171 0.123 5330 1.426 0.458
21 tmin - 3 -0.055 -0.204 0.094 5329 1.426 0.459
22 tmin - 4 0.017 -0.137 0.17 5331 1.427 0.458
23 tmin - 5 -0.029 -0.181 0.123 5330 1.426 0.458
24 tmin - 6 -0.053 -0.198 0.092 5329 1.426 0.459
25 tmin - 7 -0.046 -0.192 0.099 5330 1.426 0.459
26 tmin - 8 0.056 -0.095 0.207 5330 1.426 0.458
27 tmin - 9 -0.126 -0.275 0.022 5326 1.425 0.46
28 tmin - 10 -0.185 -0.332 -0.038 5322 1.424 0.462
29 tmin - 11 -0.045 -0.195 0.104 5330 1.426 0.459
30 tmin - 12 -0.081 -0.228 0.065 5329 1.426 0.459
31 tmin - 13 0.012 -0.135 0.159 5330 1.427 0.458
32 tmin - 14 0.016 -0.134 0.164 5330 1.427 0.458
33 tmin - 15 -0.065 -0.211 0.08 5329 1.426 0.459
34 tmin - 16 -0.111 -0.254 0.032 5327 1.426 0.459
35 tmax - 0 -0.094 -0.211 0.022 5326 1.425 0.46
36 tmax - 1 0.04 -0.076 0.156 5330 1.427 0.458
37 tmax - 2 -0.096 -0.212 0.019 5326 1.425 0.46
38 tmax - 3 -0.018 -0.133 0.096 5330 1.426 0.459
39 tmax - 4 -0.067 -0.183 0.049 5327 1.426 0.459
40 tmax - 5 0.071 -0.043 0.185 5330 1.426 0.458
41 tmax - 6 -0.002 -0.118 0.113 5330 1.426 0.458
42 tmax - 7 -0.004 -0.119 0.11 5330 1.426 0.458
43 tmax - 8 0.001 -0.114 0.116 5330 1.427 0.458
44 tmax - 9 0.104 -0.014 0.222 5330 1.426 0.458
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45 tmax - 10 0.096 -0.019 0.211 5330 1.426 0.458
46 tmax - 11 0.006 -0.109 0.12 5330 1.427 0.458
47 tmax - 12 -0.028 -0.143 0.086 5329 1.426 0.459
48 tmax - 13 0.116 0.005 0.227 5328 1.426 0.458
49 tmax - 14 0.179 0.067 0.291 5324 1.425 0.458
50 tmax - 15 0.051 -0.06 0.161 5330 1.426 0.458
51 tmax - 16 0.068 -0.044 0.181 5330 1.426 0.458
52 sst.34 - 0 -0.252 -0.346 -0.158 5302 1.419 0.468
53 sst.34 - 1 -0.272 -0.364 -0.179 5297 1.418 0.469
54 sst.34 - 2 -0.263 -0.355 -0.171 5298 1.418 0.469
55 sst.34 - 3 -0.249 -0.34 -0.158 5301 1.419 0.468
56 sst.34 - 4 -0.238 -0.328 -0.148 5302 1.419 0.468
57 sst.34 - 5 -0.238 -0.326 -0.149 5301 1.419 0.468
58 sst.34 - 6 -0.232 -0.32 -0.144 5302 1.419 0.468
59 sst.34 - 7 -0.204 -0.292 -0.116 5309 1.421 0.465
60 sst.34 - 8 -0.202 -0.29 -0.114 5309 1.421 0.465
61 sst.34 - 9 -0.205 -0.292 -0.118 5308 1.421 0.465
62 sst.34 - 10 -0.222 -0.31 -0.134 5304 1.42 0.466
63 sst.34 - 11 -0.243 -0.331 -0.154 5299 1.418 0.468
64 sst.34 - 12 -0.211 -0.302 -0.121 5307 1.42 0.466
65 sst.34 - 13 -0.194 -0.285 -0.102 5311 1.421 0.465
66 sst.34 - 14 -0.207 -0.298 -0.117 5307 1.42 0.466
67 sst.34 - 15 -0.193 -0.282 -0.103 5310 1.421 0.465
68 sst.34 - 16 -0.139 -0.231 -0.047 5320 1.424 0.462
69 sst.34 - 17 -0.112 -0.206 -0.019 5323 1.425 0.461
70 sst.34 - 18 -0.13 -0.223 -0.036 5321 1.424 0.461
71 sst.34 - 19 -0.138 -0.233 -0.043 5320 1.424 0.462
72 sst.34 - 20 -0.103 -0.2 -0.007 5324 1.425 0.46
73 sst.4 - 0 -0.292 -0.402 -0.182 5300 1.419 0.469
74 sst.4 - 1 -0.321 -0.43 -0.212 5294 1.417 0.47
75 sst.4 - 2 -0.259 -0.367 -0.15 5307 1.42 0.467
76 sst.4 - 3 -0.212 -0.32 -0.105 5314 1.422 0.464
77 sst.4 - 4 -0.189 -0.296 -0.082 5317 1.423 0.463
78 sst.4 - 5 -0.209 -0.316 -0.103 5314 1.422 0.464
79 sst.4 - 6 -0.23 -0.337 -0.122 5310 1.421 0.465
80 sst.4 - 7 -0.188 -0.296 -0.08 5317 1.423 0.463
81 sst.4 - 8 -0.175 -0.284 -0.065 5319 1.423 0.462
82 sst.4 - 9 -0.164 -0.275 -0.054 5321 1.424 0.462
83 sst.4 - 10 -0.176 -0.289 -0.063 5319 1.424 0.462
84 sst.4 - 11 -0.218 -0.331 -0.104 5314 1.422 0.464
85 sst.4 - 12 -0.2 -0.315 -0.084 5317 1.423 0.463
86 sst.4 - 13 -0.091 -0.211 0.029 5327 1.426 0.46
87 sst.4 - 14 -0.097 -0.217 0.023 5327 1.426 0.46
88 sst.4 - 15 -0.12 -0.239 -0.001 5325 1.425 0.46
89 sst.4 - 16 -0.083 -0.204 0.038 5328 1.426 0.459
90 sst.4 - 17 -0.048 -0.171 0.075 5329 1.426 0.459
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91 sst.4 - 18 -0.063 -0.187 0.061 5329 1.426 0.459
92 sst.4 - 19 -0.047 -0.173 0.079 5330 1.426 0.458
93 sst.4 - 20 -0.016 -0.144 0.112 5330 1.427 0.458
94 totalPrcp 2 0 0.114 0.037 0.192 5322 1.424 0.46
95 totalPrcp 2 1 0.164 0.09 0.24 5313 1.422 0.462
96 totalPrcp 2 2 0.168 0.098 0.241 5311 1.421 0.463
97 totalPrcp 2 3 0.131 0.062 0.202 5318 1.423 0.461
98 totalPrcp 2 4 0.098 0.03 0.167 5324 1.425 0.46
99 totalPrcp 2 5 0.087 0.017 0.158 5326 1.425 0.459
100 totalPrcp 2 6 0.05 -0.022 0.122 5329 1.426 0.458
101 totalPrcp 2 7 -0.001 -0.074 0.073 5330 1.426 0.458
102 totalPrcp 2 8 0.022 -0.05 0.095 5330 1.426 0.458
103 totalPrcp 4 0 0.227 0.144 0.311 5303 1.419 0.465
104 totalPrcp 4 1 0.236 0.155 0.318 5301 1.419 0.465
105 totalPrcp 4 2 0.218 0.138 0.299 5306 1.42 0.464
106 totalPrcp 4 3 0.176 0.097 0.256 5315 1.422 0.462
107 totalPrcp 4 4 0.12 0.041 0.201 5324 1.425 0.46
108 totalPrcp 4 5 0.072 -0.009 0.153 5329 1.426 0.458
109 totalPrcp 4 6 0.057 -0.025 0.14 5329 1.426 0.458
110 totalPrcp 4 7 0.036 -0.048 0.12 5330 1.426 0.458
111 totalPrcp 4 8 0.043 -0.04 0.127 5330 1.426 0.458
112 totalPrcp 6 0 0.286 0.195 0.378 5296 1.417 0.467
113 totalPrcp 6 1 0.283 0.193 0.373 5298 1.418 0.466
114 totalPrcp 6 2 0.239 0.15 0.329 5309 1.421 0.463
115 totalPrcp 6 3 0.165 0.076 0.255 5322 1.424 0.46
116 totalPrcp 6 4 0.128 0.038 0.218 5325 1.425 0.459
117 totalPrcp 6 5 0.097 0.007 0.188 5328 1.426 0.458
118 totalPrcp 6 6 0.077 -0.016 0.17 5329 1.426 0.458
119 totalPrcp 6 7 0.102 0.01 0.195 5327 1.426 0.458
120 totalPrcp 6 8 0.138 0.047 0.23 5323 1.425 0.46
121 totalPrcp 8 0 0.318 0.218 0.418 5298 1.418 0.466
122 totalPrcp 8 1 0.286 0.186 0.387 5307 1.42 0.463
123 totalPrcp 8 2 0.258 0.158 0.358 5312 1.422 0.462
124 totalPrcp 8 3 0.195 0.096 0.295 5321 1.424 0.46
125 totalPrcp 8 4 0.153 0.052 0.254 5325 1.425 0.459
126 totalPrcp 8 5 0.169 0.068 0.272 5323 1.424 0.459
127 totalPrcp 8 6 0.177 0.075 0.28 5321 1.424 0.46
128 totalPrcp 8 7 0.14 0.039 0.241 5325 1.425 0.459
129 totalPrcp 8 8 0.149 0.05 0.249 5324 1.425 0.459
130 totalPrcp 12 0 0.355 0.24 0.471 5303 1.419 0.463
131 totalPrcp 12 1 0.379 0.264 0.493 5298 1.418 0.464
132 totalPrcp 12 2 0.374 0.259 0.489 5298 1.418 0.465
133 totalPrcp 12 3 0.306 0.192 0.421 5311 1.421 0.462
134 totalPrcp 12 4 0.266 0.151 0.381 5316 1.423 0.461
135 totalPrcp 12 5 0.223 0.107 0.339 5321 1.424 0.46
136 totalPrcp 12 6 0.177 0.062 0.293 5324 1.425 0.459
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137 totalPrcp 12 7 0.119 0.005 0.233 5328 1.426 0.458
138 totalPrcp 12 8 0.111 -0.002 0.225 5328 1.426 0.458
139 totalPrcp 16 0 0.508 0.366 0.625 5296 1.417 0.463
140 totalPrcp 16 1 0.455 0.325 0.58 5296 1.417 0.464
141 totalPrcp 16 2 0.393 0.266 0.519 5304 1.419 0.463
142 totalPrcp 16 3 0.296 0.169 0.422 5316 1.423 0.461
143 totalPrcp 16 4 0.233 0.106 0.361 5322 1.424 0.459
144 totalPrcp 16 5 0.148 0.019 0.276 5328 1.426 0.458
145 totalPrcp 16 6 0.113 -0.014 0.241 5329 1.426 0.458
146 totalPrcp 16 7 0.064 -0.062 0.191 5330 1.426 0.458
147 totalPrcp 16 8 0.069 -0.058 0.195 5330 1.426 0.458
148 RR10 2 0 0.123 0.039 0.208 5322 1.424 0.46
149 RR10 2 1 0.189 0.107 0.273 5312 1.422 0.462
150 RR10 2 2 0.186 0.105 0.269 5313 1.422 0.462
151 RR10 2 3 0.131 0.051 0.213 5322 1.424 0.46
152 RR10 2 4 0.085 0.006 0.164 5327 1.426 0.459
153 RR10 2 5 0.06 -0.018 0.137 5330 1.426 0.458
154 RR10 2 6 0.024 -0.056 0.104 5330 1.427 0.458
155 RR10 2 7 -0.005 -0.086 0.076 5330 1.426 0.458
156 RR10 2 8 0.02 -0.061 0.1 5330 1.426 0.458
157 RR10 4 0 0.245 0.149 0.342 5307 1.42 0.463
158 RR10 4 1 0.251 0.157 0.345 5307 1.42 0.463
159 RR10 4 2 0.211 0.119 0.305 5314 1.422 0.461
160 RR10 4 3 0.147 0.057 0.239 5324 1.425 0.459
161 RR10 4 4 0.086 -0.005 0.177 5329 1.426 0.458
162 RR10 4 5 0.044 -0.046 0.135 5331 1.427 0.458
163 RR10 4 6 0.034 -0.058 0.126 5331 1.427 0.458
164 RR10 4 7 0.03 -0.063 0.124 5330 1.427 0.458
165 RR10 4 8 0.058 -0.036 0.152 5330 1.426 0.458
166 RR10 6 0 0.273 0.169 0.377 5308 1.42 0.463
167 RR10 6 1 0.256 0.155 0.358 5312 1.421 0.461
168 RR10 6 2 0.201 0.099 0.303 5321 1.424 0.46
169 RR10 6 3 0.125 0.025 0.225 5328 1.426 0.458
170 RR10 6 4 0.087 -0.013 0.187 5330 1.426 0.458
171 RR10 6 5 0.068 -0.032 0.169 5330 1.427 0.458
172 RR10 6 6 0.067 -0.036 0.17 5330 1.426 0.458
173 RR10 6 7 0.078 -0.026 0.182 5329 1.426 0.458
174 RR10 6 8 0.141 0.038 0.245 5325 1.425 0.459
175 RR10 8 0 0.271 0.158 0.384 5314 1.422 0.461
176 RR10 8 1 0.236 0.126 0.347 5319 1.423 0.46
177 RR10 8 2 0.199 0.089 0.309 5323 1.425 0.459
178 RR10 8 3 0.148 0.038 0.259 5328 1.426 0.458
179 RR10 8 4 0.12 0.009 0.232 5329 1.426 0.458
180 RR10 8 5 0.114 0.002 0.226 5329 1.426 0.458
181 RR10 8 6 0.151 0.038 0.265 5327 1.425 0.459
182 RR10 8 7 0.13 0.017 0.242 5327 1.426 0.458
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183 RR10 8 8 0.142 0.03 0.253 5327 1.426 0.458
184 RR10 12 0 0.298 0.17 0.425 5317 1.423 0.459
185 RR10 12 1 0.296 0.17 0.422 5317 1.423 0.46
186 RR10 12 2 0.307 0.18 0.433 5317 1.423 0.46
187 RR10 12 3 0.24 0.114 0.365 5323 1.424 0.459
188 RR10 12 4 0.203 0.077 0.329 5326 1.425 0.458
189 RR10 12 5 0.188 0.061 0.314 5326 1.425 0.458
190 RR10 12 6 0.172 0.046 0.298 5326 1.425 0.459
191 RR10 12 7 0.139 0.014 0.264 5327 1.426 0.459
192 RR10 12 8 0.153 0.028 0.278 5326 1.425 0.459
193 RR10 16 0 0.399 0.252 0.545 5313 1.422 0.459
194 RR10 16 1 0.384 0.241 0.525 5313 1.422 0.46
195 RR10 16 2 0.34 0.201 0.477 5317 1.423 0.46
196 RR10 16 3 0.258 0.121 0.395 5323 1.424 0.459
197 RR10 16 4 0.223 0.085 0.361 5325 1.425 0.459
198 RR10 16 5 0.167 0.029 0.304 5328 1.426 0.458
199 RR10 16 6 0.148 0.01 0.285 5328 1.426 0.458
200 RR10 16 7 0.115 -0.023 0.253 5329 1.426 0.458
201 RR10 16 8 0.093 -0.045 0.231 5329 1.426 0.458
202 RR20 2 0 0.077 0 0.156 5327 1.426 0.459
203 RR20 2 1 0.146 0.071 0.222 5318 1.423 0.461
204 RR20 2 2 0.148 0.074 0.223 5317 1.423 0.462
205 RR20 2 3 0.131 0.057 0.205 5320 1.424 0.461
206 RR20 2 4 0.127 0.057 0.199 5320 1.424 0.461
207 RR20 2 5 0.121 0.051 0.193 5321 1.424 0.461
208 RR20 2 6 0.08 0.008 0.153 5327 1.426 0.459
209 RR20 2 7 0.028 -0.046 0.103 5330 1.426 0.458
210 RR20 2 8 0.044 -0.029 0.118 5329 1.426 0.458
211 RR20 4 0 0.174 0.089 0.26 5316 1.423 0.461
212 RR20 4 1 0.21 0.127 0.294 5309 1.421 0.463
213 RR20 4 2 0.208 0.127 0.29 5308 1.421 0.464
214 RR20 4 3 0.187 0.107 0.268 5312 1.422 0.463
215 RR20 4 4 0.16 0.08 0.242 5318 1.423 0.461
216 RR20 4 5 0.116 0.036 0.198 5325 1.425 0.459
217 RR20 4 6 0.095 0.013 0.178 5327 1.426 0.459
218 RR20 4 7 0.057 -0.026 0.14 5330 1.426 0.458
219 RR20 4 8 0.059 -0.025 0.143 5329 1.426 0.458
220 RR20 6 0 0.235 0.145 0.325 5307 1.42 0.463
221 RR20 6 1 0.254 0.167 0.343 5302 1.419 0.465
222 RR20 6 2 0.232 0.144 0.32 5308 1.421 0.464
223 RR20 6 3 0.183 0.096 0.271 5317 1.423 0.461
224 RR20 6 4 0.169 0.081 0.258 5320 1.424 0.46
225 RR20 6 5 0.134 0.045 0.223 5325 1.425 0.459
226 RR20 6 6 0.107 0.016 0.199 5327 1.426 0.458
227 RR20 6 7 0.097 0.005 0.189 5327 1.426 0.458
228 RR20 6 8 0.13 0.039 0.221 5324 1.425 0.459
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229 RR20 8 0 0.27 0.174 0.368 5305 1.42 0.464
230 RR20 8 1 0.263 0.167 0.36 5308 1.42 0.463
231 RR20 8 2 0.248 0.153 0.345 5310 1.421 0.463
232 RR20 8 3 0.207 0.111 0.303 5318 1.423 0.46
233 RR20 8 4 0.19 0.092 0.289 5321 1.424 0.46
234 RR20 8 5 0.179 0.079 0.279 5322 1.424 0.46
235 RR20 8 6 0.179 0.08 0.28 5321 1.424 0.46
236 RR20 8 7 0.129 0.031 0.228 5326 1.425 0.459
237 RR20 8 8 0.124 0.027 0.221 5326 1.425 0.459
238 RR20 12 0 0.315 0.204 0.427 5308 1.42 0.462
239 RR20 12 1 0.335 0.223 0.447 5304 1.419 0.463
240 RR20 12 2 0.341 0.23 0.453 5303 1.419 0.464
241 RR20 12 3 0.284 0.174 0.394 5312 1.422 0.461
242 RR20 12 4 0.255 0.145 0.365 5316 1.423 0.461
243 RR20 12 5 0.224 0.113 0.334 5319 1.423 0.46
244 RR20 12 6 0.181 0.072 0.291 5323 1.425 0.459
245 RR20 12 7 0.11 0.003 0.218 5328 1.426 0.459
246 RR20 12 8 0.104 -0.004 0.212 5328 1.426 0.459
247 RR20 16 0 0.406 0.278 0.533 5302 1.419 0.463
248 RR20 16 1 0.399 0.275 0.523 5301 1.419 0.463
249 RR20 16 2 0.36 0.239 0.48 5305 1.42 0.463
250 RR20 16 3 0.273 0.153 0.392 5316 1.423 0.461
251 RR20 16 4 0.241 0.121 0.361 5319 1.424 0.46
252 RR20 16 5 0.178 0.058 0.298 5325 1.425 0.459
253 RR20 16 6 0.147 0.028 0.267 5326 1.425 0.459
254 RR20 16 7 0.096 -0.023 0.216 5329 1.426 0.458
255 RR20 16 8 0.082 -0.038 0.202 5329 1.426 0.458
256 wetDays 2 0 0.151 0.055 0.248 5320 1.424 0.461
257 wetDays 2 1 0.239 0.142 0.335 5308 1.42 0.464
258 wetDays 2 2 0.219 0.124 0.314 5311 1.421 0.462
259 wetDays 2 3 0.155 0.06 0.249 5321 1.424 0.461
260 wetDays 2 4 0.061 -0.034 0.155 5329 1.426 0.458
261 wetDays 2 5 0.021 -0.073 0.114 5331 1.427 0.458
262 wetDays 2 6 0.091 -0.003 0.186 5328 1.426 0.459
263 wetDays 2 7 0.053 -0.042 0.149 5330 1.426 0.458
264 wetDays 2 8 0.033 -0.062 0.129 5330 1.426 0.458
265 wetDays 4 0 0.301 0.186 0.416 5304 1.419 0.465
266 wetDays 4 1 0.314 0.2 0.428 5302 1.419 0.465
267 wetDays 4 2 0.223 0.11 0.336 5317 1.423 0.461
268 wetDays 4 3 0.139 0.027 0.251 5326 1.425 0.459
269 wetDays 4 4 0.12 0.008 0.231 5328 1.426 0.459
270 wetDays 4 5 0.057 -0.054 0.168 5331 1.427 0.458
271 wetDays 4 6 0.1 -0.013 0.214 5329 1.426 0.458
272 wetDays 4 7 0.141 0.026 0.256 5326 1.425 0.458
273 wetDays 4 8 0.147 0.031 0.263 5326 1.425 0.458
274 wetDays 6 0 0.308 0.18 0.436 5309 1.421 0.464
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275 wetDays 6 1 0.29 0.164 0.417 5313 1.422 0.462
276 wetDays 6 2 0.257 0.132 0.382 5317 1.423 0.461
277 wetDays 6 3 0.154 0.031 0.278 5326 1.425 0.459
278 wetDays 6 4 0.125 0.001 0.248 5328 1.426 0.459
279 wetDays 6 5 0.132 0.007 0.257 5329 1.426 0.458
280 wetDays 6 6 0.192 0.064 0.319 5325 1.425 0.459
281 wetDays 6 7 0.185 0.057 0.313 5325 1.425 0.459
282 wetDays 6 8 0.207 0.078 0.336 5323 1.424 0.459
283 wetDays 8 0 0.342 0.204 0.48 5309 1.421 0.464
284 wetDays 8 1 0.295 0.159 0.43 5316 1.422 0.461
285 wetDays 8 2 0.253 0.118 0.388 5320 1.424 0.46
286 wetDays 8 3 0.218 0.083 0.354 5324 1.425 0.459
287 wetDays 8 4 0.21 0.073 0.346 5325 1.425 0.459
288 wetDays 8 5 0.181 0.043 0.319 5327 1.425 0.458
289 wetDays 8 6 0.252 0.112 0.392 5321 1.424 0.46
290 wetDays 8 7 0.215 0.075 0.355 5324 1.425 0.459
291 wetDays 8 8 0.211 0.069 0.353 5325 1.425 0.458
292 wetDays 12 0 0.417 0.262 0.571 5308 1.42 0.462
293 wetDays 12 1 0.4 0.244 0.554 5311 1.421 0.462
294 wetDays 12 2 0.397 0.24 0.552 5312 1.421 0.461
295 wetDays 12 3 0.302 0.145 0.459 5322 1.424 0.459
296 wetDays 12 4 0.284 0.125 0.441 5324 1.425 0.458
297 wetDays 12 5 0.233 0.073 0.393 5326 1.425 0.458
298 wetDays 12 6 0.264 0.103 0.425 5323 1.425 0.459
299 wetDays 12 7 0.249 0.087 0.411 5323 1.425 0.459
300 wetDays 12 8 0.255 0.092 0.418 5323 1.425 0.459
301 wetDays 16 0 0.501 0.324 0.671 5307 1.42 0.462
302 wetDays 16 1 0.466 0.287 0.64 5311 1.421 0.461
303 wetDays 16 2 0.424 0.246 0.598 5314 1.422 0.46
304 wetDays 16 3 0.346 0.17 0.52 5321 1.424 0.459
305 wetDays 16 4 0.335 0.158 0.511 5321 1.424 0.459
306 wetDays 16 5 0.277 0.1 0.453 5324 1.425 0.459
307 wetDays 16 6 0.283 0.105 0.461 5322 1.424 0.459
308 wetDays 16 7 0.242 0.063 0.421 5325 1.425 0.459
309 wetDays 16 8 0.182 0.002 0.362 5327 1.426 0.458
310 consecWetDays 2 0 0.072 -0.009 0.155 5328 1.426 0.459
311 consecWetDays 2 1 0.08 0.004 0.16 5327 1.426 0.459
312 consecWetDays 2 2 0.07 -0.003 0.147 5327 1.426 0.459
313 consecWetDays 2 3 0.064 -0.008 0.138 5328 1.426 0.458
314 consecWetDays 2 4 0.053 -0.017 0.126 5329 1.426 0.459
315 consecWetDays 2 5 0.057 -0.015 0.131 5329 1.426 0.459
316 consecWetDays 2 6 0.055 -0.02 0.133 5329 1.426 0.459
317 consecWetDays 2 7 0.021 -0.054 0.098 5330 1.426 0.458
318 consecWetDays 2 8 0.057 -0.021 0.138 5329 1.426 0.458
319 consecWetDays 4 0 0.082 0.003 0.164 5327 1.426 0.459
320 consecWetDays 4 1 0.077 0 0.156 5328 1.426 0.458
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321 consecWetDays 4 2 0.071 -0.003 0.148 5328 1.426 0.459
322 consecWetDays 4 3 0.078 0.003 0.155 5327 1.426 0.459
323 consecWetDays 4 4 0.06 -0.014 0.137 5329 1.426 0.459
324 consecWetDays 4 5 0.042 -0.033 0.119 5330 1.426 0.458
325 consecWetDays 4 6 0.054 -0.024 0.134 5329 1.426 0.458
326 consecWetDays 4 7 0.056 -0.023 0.138 5329 1.426 0.458
327 consecWetDays 4 8 0.106 0.025 0.19 5325 1.425 0.459
328 consecWetDays 6 0 0.073 -0.005 0.154 5328 1.426 0.458
329 consecWetDays 6 1 0.085 0.007 0.166 5327 1.426 0.459
330 consecWetDays 6 2 0.07 -0.008 0.149 5328 1.426 0.459
331 consecWetDays 6 3 0.053 -0.023 0.131 5329 1.426 0.458
332 consecWetDays 6 4 0.053 -0.024 0.133 5329 1.426 0.458
333 consecWetDays 6 5 0.067 -0.013 0.149 5329 1.426 0.458
334 consecWetDays 6 6 0.099 0.017 0.184 5326 1.425 0.459
335 consecWetDays 6 7 0.081 -0.001 0.166 5328 1.426 0.458
336 consecWetDays 6 8 0.093 0.01 0.179 5327 1.426 0.459
337 consecWetDays 8 0 0.069 -0.011 0.152 5329 1.426 0.458
338 consecWetDays 8 1 0.056 -0.024 0.137 5329 1.426 0.458
339 consecWetDays 8 2 0.05 -0.028 0.131 5330 1.426 0.458
340 consecWetDays 8 3 0.072 -0.008 0.154 5328 1.426 0.459
341 consecWetDays 8 4 0.103 0.02 0.187 5325 1.425 0.459
342 consecWetDays 8 5 0.094 0.01 0.179 5327 1.426 0.458
343 consecWetDays 8 6 0.095 0.011 0.182 5327 1.426 0.459
344 consecWetDays 8 7 0.08 -0.003 0.165 5328 1.426 0.458
345 consecWetDays 8 8 0.093 0.01 0.179 5327 1.426 0.459
346 consecWetDays 12 0 0.068 -0.017 0.154 5329 1.426 0.458
347 consecWetDays 12 1 0.074 -0.011 0.16 5329 1.426 0.458
348 consecWetDays 12 2 0.076 -0.008 0.161 5329 1.426 0.458
349 consecWetDays 12 3 0.083 0 0.167 5328 1.426 0.458
350 consecWetDays 12 4 0.098 0.013 0.184 5327 1.426 0.459
351 consecWetDays 12 5 0.095 0.011 0.182 5327 1.426 0.459
352 consecWetDays 12 6 0.087 0.001 0.174 5327 1.426 0.458
353 consecWetDays 12 7 0.092 0.006 0.182 5327 1.426 0.459
354 consecWetDays 12 8 0.11 0.022 0.201 5325 1.425 0.459
355 consecWetDays 16 0 0.049 -0.048 0.146 5330 1.426 0.458
356 consecWetDays 16 1 0.046 -0.05 0.141 5330 1.426 0.458
357 consecWetDays 16 2 0.032 -0.063 0.127 5330 1.427 0.458
358 consecWetDays 16 3 0.063 -0.033 0.158 5330 1.426 0.458
359 consecWetDays 16 4 0.061 -0.034 0.156 5330 1.426 0.458
360 consecWetDays 16 5 0.051 -0.044 0.146 5330 1.426 0.458
361 consecWetDays 16 6 0.033 -0.062 0.128 5330 1.426 0.458
362 consecWetDays 16 7 0.032 -0.061 0.126 5330 1.426 0.458
363 consecWetDays 16 8 0.053 -0.04 0.148 5329 1.426 0.458
364 spi.1 - 0 0.17 0.096 0.244 5309 1.421 0.465
365 spi.1 - 1 0.065 -0.008 0.138 5328 1.426 0.459
366 spi.1 - 2 0.014 -0.06 0.087 5330 1.426 0.458
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367 spi.1 - 3 0.097 0.024 0.171 5323 1.425 0.46
368 spi.1 - 4 0.05 -0.025 0.124 5329 1.426 0.459
369 spi.1 - 5 -0.017 -0.092 0.058 5330 1.426 0.458
370 spi.1 - 6 -0.062 -0.135 0.011 5328 1.426 0.459
371 spi.1 - 7 0.006 -0.066 0.079 5331 1.427 0.458
372 spi.1 - 8 -0.052 -0.124 0.02 5329 1.426 0.458
373 spi.1 - 9 -0.074 -0.148 0 5327 1.426 0.459
374 spi.1 - 10 0 -0.076 0.076 5330 1.427 0.458
375 spi.1 - 11 0.039 -0.039 0.117 5329 1.426 0.458
376 spi.1 - 12 0.059 -0.019 0.137 5328 1.426 0.459
377 spi.1 - 13 0.035 -0.042 0.112 5329 1.426 0.459
378 spi.1 - 14 0.028 -0.051 0.106 5330 1.426 0.458
379 spi.1 - 15 0.066 -0.011 0.143 5327 1.426 0.459
380 spi.1 - 16 0.018 -0.058 0.094 5330 1.426 0.458
381 spi.3 - 0 0.191 0.104 0.278 5313 1.422 0.464
382 spi.3 - 1 0.141 0.055 0.228 5321 1.424 0.461
383 spi.3 - 2 0.115 0.03 0.199 5323 1.425 0.46
384 spi.3 - 3 0.115 0.029 0.2 5324 1.425 0.46
385 spi.3 - 4 -0.001 -0.087 0.086 5330 1.426 0.458
386 spi.3 - 5 -0.05 -0.136 0.037 5329 1.426 0.458
387 spi.3 - 6 -0.055 -0.139 0.029 5329 1.426 0.458
388 spi.3 - 7 -0.032 -0.118 0.054 5330 1.426 0.458
389 spi.3 - 8 -0.053 -0.137 0.031 5329 1.426 0.458
390 spi.3 - 9 -0.02 -0.108 0.068 5330 1.426 0.458
391 spi.3 - 10 0.011 -0.076 0.097 5330 1.426 0.458
392 spi.3 - 11 0.038 -0.05 0.126 5330 1.426 0.459
393 spi.3 - 12 0.052 -0.038 0.142 5328 1.426 0.459
394 spi.3 - 13 0.031 -0.056 0.119 5329 1.426 0.458
395 spi.3 - 14 0.034 -0.052 0.121 5329 1.426 0.458
396 spi.3 - 15 0.04 -0.046 0.127 5329 1.426 0.458
397 spi.3 - 16 -0.051 -0.135 0.034 5329 1.426 0.459
398 spi.6 - 0 0.281 0.173 0.389 5306 1.42 0.466
399 spi.6 - 1 0.156 0.049 0.262 5323 1.425 0.461
400 spi.6 - 2 0.144 0.036 0.252 5324 1.425 0.46
401 spi.6 - 3 0.148 0.038 0.258 5323 1.425 0.461
402 spi.6 - 4 -0.025 -0.135 0.085 5330 1.426 0.458
403 spi.6 - 5 -0.048 -0.162 0.065 5330 1.426 0.458
404 spi.6 - 6 0.003 -0.11 0.115 5330 1.426 0.458
405 spi.6 - 7 0.007 -0.1 0.113 5330 1.426 0.458
406 spi.6 - 8 -0.049 -0.151 0.054 5330 1.426 0.458
407 spi.6 - 9 -0.052 -0.158 0.053 5330 1.426 0.458
408 spi.6 - 10 0 -0.106 0.106 5330 1.427 0.458
409 spi.6 - 11 0.003 -0.103 0.109 5330 1.427 0.458
410 spi.6 - 12 -0.009 -0.117 0.099 5330 1.427 0.458
411 spi.6 - 13 -0.038 -0.146 0.07 5330 1.427 0.458
412 spi.6 - 14 0.004 -0.1 0.108 5330 1.426 0.458
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413 spi.6 - 15 0.028 -0.073 0.13 5330 1.426 0.458
414 spi.6 - 16 -0.106 -0.206 -0.005 5327 1.426 0.459
415 spei.1 - 0 0.17 0.096 0.244 5309 1.421 0.465
416 spei.1 - 1 0.065 -0.008 0.138 5328 1.426 0.459
417 spei.1 - 2 0.014 -0.06 0.087 5330 1.426 0.458
418 spei.1 - 3 0.097 0.024 0.171 5323 1.425 0.46
419 spei.1 - 4 0.05 -0.025 0.124 5329 1.426 0.459
420 spei.1 - 5 -0.017 -0.092 0.058 5330 1.426 0.458
421 spei.1 - 6 -0.062 -0.135 0.011 5328 1.426 0.459
422 spei.1 - 7 0.006 -0.066 0.079 5331 1.427 0.458
423 spei.1 - 8 -0.052 -0.124 0.02 5329 1.426 0.458
424 spei.1 - 9 -0.074 -0.148 0 5327 1.426 0.459
425 spei.1 - 10 0 -0.076 0.076 5330 1.427 0.458
426 spei.1 - 11 0.039 -0.039 0.117 5329 1.426 0.458
427 spei.1 - 12 0.059 -0.019 0.137 5328 1.426 0.459
428 spei.1 - 13 0.035 -0.042 0.112 5329 1.426 0.459
429 spei.1 - 14 0.028 -0.051 0.106 5330 1.426 0.458
430 spei.1 - 15 0.066 -0.011 0.143 5327 1.426 0.459
431 spei.1 - 16 0.018 -0.058 0.094 5330 1.426 0.458
432 spei.3 - 0 0.191 0.104 0.278 5313 1.422 0.464
433 spei.3 - 1 0.141 0.055 0.228 5321 1.424 0.461
434 spei.3 - 2 0.115 0.03 0.199 5323 1.425 0.46
435 spei.3 - 3 0.115 0.029 0.2 5324 1.425 0.46
436 spei.3 - 4 -0.001 -0.087 0.086 5330 1.426 0.458
437 spei.3 - 5 -0.05 -0.136 0.037 5329 1.426 0.458
438 spei.3 - 6 -0.055 -0.139 0.029 5329 1.426 0.458
439 spei.3 - 7 -0.032 -0.118 0.054 5330 1.426 0.458
440 spei.3 - 8 -0.053 -0.137 0.031 5329 1.426 0.458
441 spei.3 - 9 -0.02 -0.108 0.068 5330 1.426 0.458
442 spei.3 - 10 0.011 -0.076 0.097 5330 1.426 0.458
443 spei.3 - 11 0.038 -0.05 0.126 5330 1.426 0.459
444 spei.3 - 12 0.052 -0.038 0.142 5328 1.426 0.459
445 spei.3 - 13 0.031 -0.056 0.119 5329 1.426 0.458
446 spei.3 - 14 0.034 -0.052 0.121 5329 1.426 0.458
447 spei.3 - 15 0.04 -0.046 0.127 5329 1.426 0.458
448 spei.3 - 16 -0.051 -0.135 0.034 5329 1.426 0.459
449 spei.6 - 0 0.277 0.17 0.383 5306 1.42 0.466
450 spei.6 - 1 0.159 0.052 0.266 5323 1.425 0.461
451 spei.6 - 2 0.124 0.017 0.231 5326 1.425 0.46
452 spei.6 - 3 0.11 0.001 0.219 5326 1.425 0.46
453 spei.6 - 4 -0.076 -0.184 0.032 5328 1.426 0.459
454 spei.6 - 5 -0.103 -0.214 0.007 5327 1.426 0.459
455 spei.6 - 6 -0.02 -0.129 0.09 5330 1.426 0.458
456 spei.6 - 7 0.009 -0.096 0.113 5330 1.426 0.458
457 spei.6 - 8 -0.042 -0.143 0.059 5330 1.426 0.458
458 spei.6 - 9 -0.043 -0.147 0.061 5330 1.426 0.458
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459 spei.6 - 10 0.009 -0.096 0.115 5330 1.427 0.458
460 spei.6 - 11 0.018 -0.087 0.124 5330 1.426 0.458
461 spei.6 - 12 0.023 -0.085 0.132 5330 1.426 0.458
462 spei.6 - 13 -0.019 -0.128 0.09 5331 1.427 0.458
463 spei.6 - 14 0.001 -0.103 0.107 5330 1.426 0.458
464 spei.6 - 15 0.03 -0.072 0.132 5330 1.426 0.458
465 spei.6 - 16 -0.107 -0.208 -0.006 5327 1.426 0.459

Supplementary Table 2. Model goodness of fit results from the hydrometeorological 
indicators and lags included within the study.
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6XSSOHPHQWDU\ )LJ� �� 5HODWLYH LPSURYHPHQW LQ PRGHO ILW EHWZHHQ WKH UDQGRP HIIHFW RQO\
PRGHO DQG IXOO PRGHO� %OXH EDUV UHSUHVHQW ZHHNV ZKHQ WKH PRGHO ILW RI WKH IXOO PRGHO ZDV
EHWWHU WKDQ WKH UDQGRP HIIHFWV RQO\ PRGHO �L�H�� WKH GLIIHUHQFH EHWZHHQ WKH REVHUYHG YHUVXV
PRGHO ILWWHG FDVHV ZDV VPDOOHU IRU WKH IXOO PRGHO FRPSDUHG ZLWK WKH UDQGRP HIIHFWV PRGHO�
Q ����� 5HG EDUV UHSUHVHQW ZHHNV ZKHQ WKH PRGHO ILW RI WKH UDQGRP HIIHFWV RQO\ PRGHO ZDV
EHWWHU WKDQ WKH IXOO PRGHO �Q ����� $W ]HUR WKHUH LV QR GLIIHUHQFH EHWZHHQ WKH WZR PRGHOV�
DQG�WKH\�SHUIRUPHG�HTXLYDOHQWO\��Q ���

6XSSOHPHQWDU\ )LJ� �� :HHNO\ UDQGRP HIIHFWV IRU WKH UDQGRP HIIHFW �5(� RQO\ PRGHO� VKRZQ
LQ RUDQJH� DQG WKH ILQDO PRGHO ZKLFK LQFOXGHG SUHFLSLWDWLRQ� 1LxR ��� DQG PLQLPXP
WHPSHUDWXUH�VKRZQ�LQ�EOXH�
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6XSSOHPHQWDU\ )LJ� �� <HDUO\ UDQGRP HIIHFWV IRU WKH UDQGRP HIIHFW �5(� RQO\ PRGHO �GDVKHG
OLQHV� DQG WKH ILQDO PRGHO ZKLFK LQFOXGHG SUHFLSLWDWLRQ� 1LxR ��� DQG PLQLPXP WHPSHUDWXUH
�VROLG�OLQHV���IRU�WKH�&HQWUDO��EOXH���1RUWKHUQ��\HOORZ��DQG�:HVWHUQ��UHG��GLYLVLRQV�
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6XSSOHPHQWDU\�)LJ�����&RPSDULVRQ�RI��$��WKH�FOLPDWH�YDULDEOHV�DQG�PRGHO�SDUDPHWHU
HVWLPDWHV���%��WKH�IXOO�PRGHO�LQFOXGLQJ�VHDVRQDO�DQG�LQWHUDQQXDO�UDQGRP�HIIHFWV��DQG��&�
ZHHNO\�OHSWRVSLURVLV�FDVHV�UHSRUWHG�LQ�)LML�EHWZHHQ������DQG������E\�GLYLVLRQ��)RU��$���WKH
WKUHH�FOLPDWH�FRHIILFLHQWV�ZHUH�H[WUDFWHG�IURP�WKH�EHVW�SHUIRUPLQJ�PRGHO�DQG�WKHQ�XVLQJ�WKH
WLPHVHULHV�RI�WRWDO�SUHFLSLWDWLRQ��PLQLPXP�WHPSHUDWXUH�DQG�1LxR�����LQGLFDWRU��ZH�PXOWLSOLHG
WKH�FOLPDWH�FRHIILFLHQWV�WR�H[WUDFW�WKH�FRQWULEXWLRQ�RI�WKH�FOLPDWH�FRYDULDWHV�WR�WKH�RYHUDOO
OHSWRVSLURVLV�LQFLGHQFH�UDWH�HVWLPDWHV�
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6XSSOHPHQWDU\ 7DEOH �� /LNHOLKRRG UDWLR 5/5
� VWDWLVWLFV DUH VKRZQ IRU ZHHNO\ DQG PRQWKO\

GLYLVLRQ�PRGHOV�

0RGHO 5/5
� ��� �ZHHNO\�

1XOO
5/5

� ��� �ZHHNO\�
5(

5/5
����

�PRQWKO\��1XOO
5/5

����
�PRQWKO\��5(

$OO�GLYLVLRQV ���� ��� ���� ���

&HQWUDO�GLYLVLRQ ���� ��� ���� ���

:HVWHUQ�GLYLVLRQ ���� ��� ���� ����

1RUWKHUQ�GLYLVLRQ ���� ���� ���� ����

6XSSOHPHQWDU\ 7DEOH �� 0RGHO JRRGQHVV RI ILW UHVXOWV IRU PRGHOV RI (/,6$�SRVLWLYH
OHSWRVSLURVLV FDVHV SHU PRQWK UHSRUWHG LQ )LML IURP ���� WR ����� 7KH ZLGHO\ DSSOLFDEOH
LQIRUPDWLRQ FULWHULRQ �:$,&�� WKH FURVV�YDOLGDWHG �&9� PHDQ ORJDULWKPLF VFRUH� DQG WKH
OLNHOLKRRG�UDWLR�5/5

� VWDWLVWLF�DUH�VKRZQ�IRU�PRGHOV RI�LQFUHDVLQJ�FRPSOH[LW\�

0RGHO
:$,& &9�ORJ�VFRUH 5/5

� 5(���

� Ɯ� ࡟ ��Ɵ
՜Ŝ՛

࡟ �ƞ
՟

%DVHOLQH PRGHO �VHDVRQDO DQG LQWHU�DQQXDO UDQGRP
HIIHFWV�

���� ����� �

� Ɯ� ࡟ ��Ɵ
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՟
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ɘ՜՛՟
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࡟ �ƞ
՟
� ࡟ �ՠ
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%DVHOLQH�� 1LxR����
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6XSSOHPHQWDU\�)LJXUH����3DUDPHWHU�HVWLPDWHV�IRU�H[SODQDWRU\�YDULDEOHV�IRU�PRQWKO\�FDVHV�RI
OHSWRVSLURVLV�LQ�)LML�IURP������WR������IRU�WKH�RYHUDOO�FRXQWU\�PRGHO��EODFN��ZKLFK�LQFOXGHG
PRQWKO\�DQG�\HDUO\�UDQGRP�HIIHFWV��DQG�IRU�WKH�GLYLVLRQ�OHYHO�PRGHO��JUH\��ZKLFK�LQFOXGHG
PRQWKO\�UDQGRP�HIIHFWV�UHSOLFDWHG�E\�GLYLVLRQ��DQG�\HDUO\�UDQGRP�HIIHFWV���3RVWHULRU�PHDQ
DQG�����FUHGLEOH�LQWHUYDOV�DUH�VKRZQ�IRU�PLQLPXP�WHPSHUDWXUH��ODJJHG�E\�RQH�PRQWK���WRWDO
SUHFLSLWDWLRQ�IURP�WKH�SUHYLRXV�WZR�PRQWKV��DQG�1LxR ����ODJJHG�E\�WZR�PRQWKV�
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6XSSOHPHQWDU\ )LJ� �� 0RGHO SRVWHULRU GLVWULEXWLRQV IRU PRQWKO\ OHSWRVSLURVLV FDVHV LQ )LML
EHWZHHQ ���� DQG ���� E\ GLYLVLRQ� 2EVHUYHG FDVHV �JUH\ OLQH�� SRVWHULRU PHDQ �JUHHQ OLQH�
DQG ��� FUHGLEOH LQWHUYDOV �JUHHQ VKDGLQJ� DUH VKRZQ IRU WKH EHVW SHUIRUPLQJ PRGHO ZKLFK
LQFOXGHG WRWDO SUHFLSLWDWLRQ DQG 1LxR ���� 7KH UDQGRP HIIHFW RQO\ PRGHO LV VKRZQ DV DQ
RUDQJH�GDVKHG�OLQH�
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Supplementary material: 
 
 
Supplementary Table 1. Summary, advantages and disadvantages of MAT and 
ELISA test used for the diagnosis of leptospirosis [1-5]. 
 
Diagnostic 
test 

Summary Advantage Disadvantage 

 
MAT 

 
Patient serum is 
incubated with live 
antigen leptospires. 
Agglutination then 
occurs, which is 
detected using dark-
field microscopy. 
Live antige 
leptospires are 
diluted sequentially, 
and the highest 
dilution in which 
50% agglutination 
occurs is recorded. 
IgG and IgM 
antibodies can be 
detected using dark 
field microscopy. 
   

 
¶*ROG�VWDQGDUG¶�WHVW��
due to high 
specificity and ability 
to distinguish 
between serovars. 
  

Requires 
maintenance of a 
panel of live 
leptospires, it can be 
time consuming and 
difficult to interpret 
the results and 
requires the correct 
selection of 
leptospire serovars 
on the panel. Cross 
reaction between 
different serogroups 
may occur.  

 
ELISA Detection of 

(usually) IgM 
antibodies in patient 
serum using a 
broad- spectrum 
antigen against 
pathogenic 
Leptospira spp. 

More sensitive than 
MAT during the 
acute phase of the 
illness. It is easy to 
perform and results 
are rapidly available. 
   

Not serovar- 
specific and detects 
both pathogenic and 
non-pathogenic 
Leptospira spp. 
Sensitivity and 
specificity variable. 

MAT, microscopic agglutination test; ELISA, enzyme-linked immunosorbent assay. 
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Supplementary Table 2. Description of the different models fitted and priors used. 
Model Priors Number of parameters 

Catalytic model FOI ~ Uniform(0,0.5) 1 

Reverse catalytic model FOI ~ Uniform(0,0.5) 
Waning ~ Uniform(0,10) 

2 

Reverse catalytic model by sex FOI ~ Uniform(0,0.5) 
Waning ~ Uniform(0,10) 

3 

Reverse catalytic model by 
administrative division 

FOI ~ Uniform(0,0.5) 
Waning ~ Uniform(0,10) 

4 

Reverse catalytic model by 
serovar 

FOI ~ Uniform(0,0.1) 
Waning ~ Uniform(0,10) 

5 

Constant FOI with 1 outbreak  
(2 years) 

FOI ~ Uniform(0,0.1) 
Waning ~ Uniform(0,10) 
T1 ~ Uniform(0,2) 

3 

Constant FOI with 1 outbreak  
(5 years) 

FOI ~ Uniform(0,0.1) 
Waning ~ Uniform(0,10) 
T1 ~ Uniform(0,5) 

3 

No constant FOI & 1 Outbreak  
(10 years) 

FOI ~ Uniform(0,0.1) 
Waning ~ Uniform(0,10) 
T1 ~ Uniform(0,10) 

3 

FOI, Force of infection; T1, timing of the outbreak. 
 
 
 
 
 
 

 
 
Supplementary Figure 1. Number of individuals included within the 2013 
leptospirosis serosurvey by five-year age groups. 
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Supplementary Figure 2. Number of individuals seropositive by serovar by ten-year 
age groups (n = 399). Individuals that had the same titre for two serovars, and 
therefore infecting titre could not be assumed, were excluded (n=18). 
 
 

 
 
Supplementary Figure 3. Distribution of MAT titres by serovar for seropositive 
individuals. 89 individuals had titres for more than one serovar, and so are included 
more than once in this plot (n=520). 
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Supplementary Table 3. Simulation recovery study. Estimating the FOI and waning 
from a high FOI and low FOI setting. 
 

Setting 
True parameter values Model estimates 

FOI  Waning FOI (95% CrI) Waning (95% CrI) 

High FOI 0.05 0.1 0.051 (0.039 - 0.068) 0.101 (0.074 - 0.138) 

Low FOI 0.005 0.1 0.032 (0.004 - 0.178) 0.715 (0.072 ± 4.028) 

FOI, Force of infection 
 
 
 
 

 
Supplementary Figure 4. Simulation recovery study. Sample estimates (mean and 95% 
binomial confidence interval) and model fit (solid line) for the high FOI (shown in orange) and 
low FOI (shown in blue) scenario. Under the high FOI scenario, the parameter estimates 
obtained were similar to the true parameter values. Under the low FOI scenario, the model 
was able to reproduce the data, but there was much greater uncertainty in the true 
underlying parameters.  
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Supplementary Figure 5. Simulation recovery study. Posterior distributions for waning and 
force of infection (FOI) for the high FOI scenario (orange) and low FOI scenario (blue). 
Under the high FOI scenario, the parameter estimates obtained were similar to the true 
parameter values. Under the low FOI scenario, although the true parameter values were 
included within the 95% credible intervals, there was much greater uncertainty in the 
estimates. 
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Supplementary Figure 6. Proportion of seropositive individuals by age (black points 
represent the mean and the error bars represent the binomial 95% confidence intervals), 
from national serosurvey conducted in Fiji in 2013 (n = 2,152) by serovar Pohnpei (A), 
Canciola (B), Copenhageni (C) and Ballum (D). The reverse catalytic model is shown for 
each serovar including model 95% credible intervals (red shading). 
 
 
 
 
 
 

 
Supplementary Figure 7. Time-varying FOI from the constant FOI model with one 
outbreak (occurring in the preceding five years). 
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Supplementary Figure 8. Estimating the most likely time of infection from 
leptospirosis seroprevalence data from Fiji by serovar. (A) assumes that individuals 
can be seropositive for more than one serovar at different times (n = 520), whilst (B) 
using results of the serovar associated with the highest titre (n = 417). 
  
 
 
 
 
 
 
     

 
Supplementary Figure 9. Sensitivity analysis for estimating the most likely time of 
infection from the seroprevalence data, using different initial titre distributions based 
on the geometric mean reported in Lupidi et al.. The initial titre distributions were 
shifted to correspond to a geometric mean (a) one dilution titre higher, (b) two 
dilutions titres higher and (c) three dilution titres higher. 
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Supplementary Table 4. Results from the mixed-effects linear model from the point 
source outbreak in Italy (Lupidi et al.). Antibody drop time was defined as the time 
taken in months for antibodies to drop one antibody titre level (e.g. from 1:100 to 
1:50).  
Serovar Antibody titre drop time in 

months (95% CrI) 
Time taken to reach 
undetectable levels 
(years) 

Bratislava 6.94 (5.63 - 9.05) 6.05 

Australis 9.30 (6.88 - 15.08) 6.66 

Iora 7.51 (6.38- 9.12) 6.99 
 
CrI, credible interval. 
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Supplementary material 

Sensitivity analysis: Less informative priors for FOI 
 
Supplementary Table 1. Parameter estimates from the age-varying FOI reverse catalytic 
model. FOI was allowed to vary by study, whilst alpha and the cut-off were allowed to vary 
across settings. Waning was held across all studies and strains. Less informative priors were 
used for FOI, Normal ~ (0.3,0.5). 
 

 
 

Strain First 
Author 

FOI Alpha Cut-off Waning WAIC LOO 

HCoV-
229E 

Shao 1.03 (0.58 - 
1.76) 

1.08 (0.42 - 
1.9) 

11.14 (0.48 - 
19.62) 

1.08 (0.61 - 
1.68) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

536.4 (SE: 
99.6) 

546.0 (SE: 
100.6) 

Zhou 3.22 (1.95 - 
4.85) 

2.12 (1.72 - 
2.58) 

3.17 (2.02 - 
4.51) 

Cavallaro 0.46 (0.20 - 
1.49) 

0.74 (0.23 - 
1.32) 

5.69 (0.30 - 
19.2) 

HCoV-
HKU1 

Chan 0.09 (0.04 - 
0.16) 

2.44 (1.61 - 
3.63) 

17.38 (9.63 - 
19.87) 

Zhou 1.65 (1.00 - 
2.54) 

2.12 (1.72 - 
2.58) 

3.17 (2.02 - 
4.51) 

HCoV-
OC43 

Zhou 1.80 (1.09 - 
2.77) 

2.12 (1.72 - 
2.58) 

3.17 (2.02 - 
4.51) 

Monto  0.30 (0.14 - 
0.96) 

0.74 (0.23 - 
1.32) 

5.69 (0.30 - 
19.2) 

Sarateanu  0.73 (0.4 - 
1.17) 

2.63 (2.24 - 
3.10) 

12.57 (7.72 - 
17.71) 

HCoV-
NL63 

Zhou 1.36 (0.83 - 
2.1) 

2.12 (1.72 - 
2.58) 

3.17 (2.02 - 
4.51) 

Shao 1.11 (0.62 - 
1.9) 

1.08 (0.42 - 
1.90) 

11.14 (0.48 - 
19.62) 
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Supplementary Figure 1. Reverse catalytic model with age-varying FOI. The points are the 
observed proportion of seropositive individuals from each study (with confidence intervals). 
The lines are the seroprevalence curves from the model, with shaded 95% credible intervals. 
Less informative priors were used for FOI [Normal ~ (0.3,0.5)]. 
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Sensitivity analysis: Waning estimated by strain 
 
Supplementary Table 2. Parameter estimates from the age-varying FOI reverse catalytic 
model. FOI was allowed to vary by study, whilst alpha and the cut-off were allowed to vary 
across settings. Waning was allowed to vary by strain. 
 

 
 

  

Strain First 
Author 

FOI Alpha Waning Cut-off WAIC LOO 

HCoV-
229E 

Shao 0.37 (0.23 - 
0.63) 

0.85 (0.37 - 
1.76) 

0.24 (0.1 - 0.52) 
 
 
 
 

10.33 (0.51 - 
19.57) 

545.0 
(SE: 
99.8) 

560.4 
(SE 
100.9) 

Zhou 0.9 (0.48 - 1.68) 1.8 (0.94 - 2.95) 2.4 (0.74 - 12.14) 

Cavallaro 0.09 (0.04 - 
0.25) 

0.79 (0.41 - 
1.35) 

10.6 (0.41 - 19.44) 

HCoV-
HKU1 

Chan 0.03 (0.01 - 
0.09) 

2.33 (1.5 - 3.53) 0.37 (0.15 - 
1.01) 
 
 

16.89 (8.39 - 
19.84) 

Zhou 0.67 (0.35 - 
1.56) 

1.8 (0.94 - 2.95) 2.4 (0.74 - 12.14) 

HCoV-
OC43 

Zhou 0.85 (0.43 - 
1.66) 

1.8 (0.94 - 2.95) 0.44 (0.2 - 0.94) 
 
 

2.4 (0.74 - 12.14) 

Monto  0.11 (0.05 - 
0.27) 

0.79 (0.41 - 
1.35) 

10.6 (0.41 - 19.44) 

Sarateanu  0.3 (0.15 - 0.64) 2.6 (2.17 - 3.09) 11.14 (7.56 - 
16.29) 

HCoV-
NL63 

Zhou 0.62 (0.33 - 
1.14) 

1.8 (0.94 - 2.95) 0.41 (0.18 - 
0.87) 
 
 

2.4 (0.74 - 12.14) 

Shao 0.53 (0.31 - 
0.97) 

0.85 (0.37 - 
1.76) 

10.33 (0.51 - 
19.57) 

Appendix D: Supplementary Material Chapter 4

180



 

Sensitivity analysis: Alpha and cut-off jointly estimated by study 
Supplementary Table 3. Parameter estimates from the age-varying FOI reverse catalytic 
model. FOI was allowed to vary by study, whilst alpha, cut-off and waning was held across 
all studies and strains. 
 

Strain First 
Author 

FOI Alpha Waning Cut-off WAIC LOO 

HCoV-229E Shao 0.45 (0.31 - 0.65) 1.93 (1.69 - 
2.19) 

0.45 (0.32 - 
0.64) 

8.49 (7.52 - 
9.94) 

622.1 
(SE: 
103.3) 

632.5 
(SE: 
105.6) 

Zhou 1.52 (1.12 - 2.12) 

Cavallaro 0.08 (0.06 - 0.12) 

HCoV-HKU1 Chan 0.04 (0.03 - 0.06) 

Zhou 0.81 (0.61 - 1.1) 

HCoV-OC43 Zhou 0.88 (0.67 - 1.19) 

Monto  0.06 (0.04 - 0.08) 

Sarateanu  0.39 (0.29 - 0.52) 

HCoV-NL63 Zhou 0.68 (0.51 - 0.91) 

Shao 0.47 (0.32 - 0.69) 
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Supplementary Figure 2. Reverse catalytic model with age-varying FOI. The points are the 
observed proportion of seropositive individuals from each study (with confidence intervals). 
The lines are the seroprevalence curves from the model, with shaded 95% credible intervals. 
FOI was allowed to vary by study, whilst alpha, cut-off and waning was held across all 
studies and strains. 
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Reverse catalytic model 
 
Supplementary Table 4. Parameter estimates from the reverse catalytic model. Waning was 
jointly estimated across all studies, but FOI was allowed to vary by study.  
 
 

Strain First Author FOI Waning WAIC LOO 

HCoV-229E Shao 0.26 (0.19 - 0.36) 0.13 (0.11 - 
0.16) 

717.2 (SE: 
156.8) 

713.8 (SE: 
151.8) 

Zhou 0.85 (0.7 - 1.04) 

Cavallaro 0.05 (0.03 - 0.06) 

HCoV-HKU1 Chan 0.02 (0.02 - 0.03) 

Zhou 0.47 (0.39 - 0.57) 

HCoV-OC43 Zhou 0.51 (0.43 - 0.63) 

Monto  0.03 (0.02 - 0.04) 

Sarateanu  0.18 (0.16 - 0.22) 

HCoV-NL63 Zhou 0.39 (0.33 - 0.48) 

Shao 0.27 (0.2 - 0.37) 
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Supplementary Figure 3. Reverse catalytic model. The points are the observed proportion of 
seropositive individuals from each study (with confidence intervals). The lines are the 
seroprevalence curves from the model, with shaded 95% credible intervals.  
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Sensitivity analysis: Including the youngest age groups (<1 
year) 
 
Supplementary Table 5. Parameter estimates from the age-varying FOI reverse catalytic 
PRGHO��ZKLFK�LQFOXGHV�GDWD�IURP�WKH�\RXQJHVW�DJH�JURXS��ื���\HDU���)2,�ZDV�DOORZHG�WR�YDU\�
by study, whilst alpha and cut-off was allowed to vary by setting. Waning was simultaneously 
estimated across all studies.  

Strain First 
Author 

FOI Alpha Cut-off Waning 

HCoV-229E Shao 2.92 (2.08 - 
4.01) 

0.2 (0.1 - 0.35) 0.09 (0.07 - 0.14) 0.49 (0.21 - 
0.78) 

Zhou 1.64 (1.04 - 
2.42) 

1.81 (1.06 - 2.33) 2.93 (1.85 - 7.39) 

Cavallaro 0.18 (0.08 - 
0.44) 

0.8 (0.35 - 1.38) 8.43 (0.4 - 19.38) 

HCoV-HKU1 Chan 0.04 (0.02 - 
0.07) 

2.39 (1.56 - 3.58) 17.08 (9.14 - 19.85) 

Zhou 0.89 (0.6 - 1.28) 1.81 (1.06 - 2.33) 2.93 (1.85 - 7.39) 

HCoV-OC43 Zhou 0.94 (0.64 - 
1.37) 

1.81 (1.06 - 2.33) 2.93 (1.85 - 7.39) 

Monto  0.12 (0.05 - 
0.28) 

0.8 (0.35 - 1.38) 8.43 (0.4 - 19.38) 

Sarateanu  0.33 (0.15 - 
0.54) 

2.62 (2.19 - 3.1) 11.36 (7.58 - 16.32) 

HCoV-NL63 Zhou 0.74 (0.5 - 1.06) 1.81 (1.06 - 2.33) 2.93 (1.85 - 7.39) 

Shao 2.47 (1.73 - 
3.41) 0.2 (0.1 - 0.35) 0.09 (0.07 - 0.14) 
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Supplementary Figure 4. Reverse catalytic model with age-varying FOI, which includes data 
IURP�WKH�\RXQJHVW�DJH�JURXS��ื���\HDU���7KH�SRLQWV�DUH�WKH�REVHUYHG�SURSRUWLRQ�RI�
seropositive individuals from each study (with confidence intervals). The lines are the 
seroprevalence curves from the model, with shaded 95% credible intervals.  
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Sensitivity analysis: Refitting the model using data from only 
two strains 
 
 
Supplementary Table 6. Parameter estimates from cross comparison models, which used 
half the data (only two strains included at once). Alpha, cut-off and waning were held across 
studies, whilst FOI was allowed to vary by study. 
 

 Strain First 
Author 

FOI Alpha Cut-off Waning 

Model 1 HCoV-OC43 Zhou 1.02 (0.73 - 
1.53) 

2.01 (1.75 - 2.31) 8.61 (7.53 - 
10.13) 

0.56 (0.38 - 0.85) 

Monto  0.06 (0.04 - 0.1) 

Sarateanu  0.46 (0.32 - 
0.69) 

HCoV-NL63 Zhou 0.79 (0.56 - 
1.16) 

Shao 0.54 (0.35 - 
0.84) 

Model 2 HCoV-229E Shao 0.34 (0.22 - 
0.55) 

1.45 (0.5 - 1.96) 16.41 (1.29 - 
19.81) 

0.23 (0.07 - 0.42) 

Zhou 1.03 (0.74 - 
1.57) 

Cavallaro 0.06 (0.04 - 0.1) 

HCoV-
HKU1 

Chan 0.03 (0.02 - 
0.05) 

Zhou 0.57 (0.42 - 
0.84) 

Model 3 HCoV-NL63 Zhou 0.52 (0.39 - 
0.76) 

1.05 (0.42 - 1.63) 7.86 (0.48 - 
19.45) 

0.19 (0.07 - 0.39) 
 

Shao 0.33 (0.22 - 
0.52) 

HCoV-
HKU1 

Chan 0.03 (0.02 - 
0.05) 

Zhou 0.61 (0.46 - 0.9) 

Model 4 HCoV-NL63 Zhou 0.54 (0.4 - 0.81) 1.28 (0.68 - 1.86) 13.01 (0.77 - 
19.72) 

0.24 (0.12 - 0.5) 

Shao 0.35 (0.23 - 
0.55) 
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HCoV-229E Shao 0.35 (0.23 - 
0.53) 

Zhou 1.16 (0.82 - 
1.83) 

Cavallaro 0.07 (0.04 - 
0.11) 

Model 5 HCoV-OC43 Zhou 0.97 (0.67 - 
1.58) 

2.1 (1.82 - 2.41) 8.5 (7.52 - 9.93) 0.54 (0.35 - 0.92) 

Monto  0.06 (0.04 - 0.1) 

Sarateanu  0.43 (0.29 - 
0.72) 

HCoV-
HKU1 

Chan 0.05 (0.03 - 
0.08) 

Zhou 0.89 (0.62 - 
1.45) 

Model 6 HCoV-OC43 Zhou 0.91 (0.64 - 
1.35) 

2.07 (1.8 - 2.37) 8.46 (7.52 - 9.95) 0.5 (0.32 - 0.76) 

Monto  0.06 (0.04 - 
0.09) 

Sarateanu  0.4 (0.27 - 0.6) 

HCoV-229E Shao 0.47 (0.31 - 
0.72) 

Zhou 1.58 (1.09 - 2.4) 

Cavallaro 0.09 (0.05 - 
0.14) 
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Sensitivity analysis: Waning estimated by assay 
Supplementary Table 7. Parameter estimates from the age-varying FOI reverse catalytic 
model. FOI was allowed to vary by study, whilst alpha and the cut-off were allowed to vary 
across settings. Waning was allowed to vary by serological assay. 
 
Strain First 

Author 
Assay FOI Alpha Waning Cut-off WAIC LOO 

HCoV-
229E 

Shao ELISA (IgG) 0.47 (0.27 - 
0.94)  

0.89 (0.33 - 
1.88)  

0.38 (0.11 - 
1.06) 

10.2 (0.46 - 
19.56)  

545.1 
(SE: 
99.9) 

560.4 
(SE: 
101.0) 

Zhou IFA (IgG) 0.9 (0.66 - 
1.26)  

0.78 (0.45 - 
2.03)  

0.13 (0.07 - 
0.33) 

8.87 (0.42 - 
18.93)  

Cavallaro Neutralisation 0.26 (0.02 - 
1.19)  

0.82 (0.47 - 
1.66)  

0.78 (0.02 
- 3.93) 

11.22 (0.49 
- 19.47)  

HCoV-
HKU1 

Chan ELISA (IgG) 0.03 (0.01 - 
0.09)  

2.33 (1.46 - 
3.53)  

0.38 (0.11 - 
1.06) 

16.86 (7.85 
- 19.84)  

Zhou IFA (IgG) 0.52 (0.37 - 
0.7)  

0.78 (0.45 - 
2.03)  

0.13 (0.07 - 
0.33) 

8.87 (0.42 - 
18.93)  

HCoV-
OC43 

Zhou IFA (IgG) 0.57 (0.4 - 
0.76)  

0.78 (0.45 - 
2.03)  

0.13 (0.07 - 
0.33) 

8.87 (0.42 - 
18.93)  

Monto  CF or HIa 0.21 (0.07 - 
0.55)  

0.82 (0.47 - 
1.66)  

0.93 (0.3 - 
2.27) 

11.22 (0.49 
- 19.47)  

Sarateanu  HI 0.62 (0.2 - 
1.5)  

2.66 (2.25 - 
3.13)  

0.93 (0.3 - 
2.27) 

12.23 (7.68 
- 17.67)  

HCoV-
NL63 

Zhou IFA (IgG) 0.44 (0.31 - 
0.59)  

0.78 (0.45 - 
2.03)  

0.13 (0.07 - 
0.33) 

8.87 (0.42 - 
18.93)  

Shao ELISA (IgG) 0.49 (0.27 - 
1)  

0.89 (0.33 - 
1.88)  

0.38 (0.11 - 
1.06) 

10.2 (0.46 - 
19.56) 

 
Enzyme-linked immunosorbent assays (ELISA), immunofluorescence assays (IFA), 
complement fixation (CF), hemagglutination inhibition assays (HI). aFor the purposes of this 
analysis, this was treated as HI. 
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Supplementary Figure 5. Reverse catalytic model with age-varying FOI. The points are the 

observed proportion of seropositive individuals from each study (with confidence intervals). 

The lines are the seroprevalence curves from the model, with shaded 95% credible intervals. 

FOI was allowed to vary by study, whilst alpha and cut-off were allowed to vary by setting, 

and waning varied by assay. 
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Supplementary material 
 
Table S1. Table of all diseases listed on PHE, ECDC and WHO lists of zoonotic diseases, with reasons for exclusion 
if relevant.  
 

Disease or Organism Include Reasons for exclusion PHE WHO ECDC 

Anthrax; Bacillus anthracis Yes  Yes Yes Yes 

Animal influenza; Influenza A 
viruses No 

Limited duration of survival in the environment. Majority 
of transmission to humans via direct contact with an 
infectious animal Yes Yes Yes 

Avian influenza; Influenza A 
viruses No Only included land mammals Yes Yes Yes 

Bovine tuberculosis; 
Mycobacterium bovis No 

Main routes of transmission to humans via direct contact 
(for the purposes of this review, contaminated meat or 
milk is considered to be direct contact with an infectious 
animal). There is limited evidence of contamination to 
humans via the environment, and it is not considered a 
primary transmission route  Yes Yes No 

Campylobacteriosis; 
Campylobacter spp. Yes  Yes Yes Yes 
Cat scratch fever; Bartonella 
henselae No No evidence of environmental persistence Yes No No 

Cowpox; Cowpox virus No 
Transmission via direct contact, no evidence of 
environmental persistence Yes No Yes 

Cryptosporidiosis; Cryptosporidium 
spp Yes  Yes No Yes 

Cysticercosis / Taeniasis; Taenia 
spp. (Taenia solium, Taenia 
saginata and Taenia asiatica) No 

Humans are the definitive host. Has a very complex life-
cycle, where by humans can get infected from eating raw 
and under-cooked pork. The environment can then be 
contaminated via humans. Animals are also involved in 
the life-cycle, but the source of cysticercosis is as a result 
of environmental contamination by humans. Since animal 
contamination does not result in this disease, this does 
not fit our inclusion criteria.  Yes Yes No 

Erysipeloid; Erysipelothrix 
rhusiopathiae Yes 

E. rhusiopathiae in humans is occupationally related, 
principally occurring as a result of contact with 
contaminated animals, their products or wastes, or soil. Yes No No 

Fish tank / swimming pool 
granuloma; Mycobacterium 
marinum No Only included land mammals Yes No No 

Giardiasis; Giardia spp Yes  Yes No Yes 

Haemorrhagic colitis and 
haemolytic uraemic syndrome 
(HUS); Shiga toxin-producing E. 
coli Yes  Yes Yes Yes 
Hantavirus syndromes; 
Hantaviruses Yes  Yes No No 

Hepatitis E; Hepatitis E virus No 

The majority of Hepatitis E infections are as a result of 
genotypes 1 and 2, which are only found in humans. 
Geontypes 3 and 4 circulate in animals, but they rarely 
infect humans. For this reason, hepatitis was excluded, as 
the majority of transmission in not zoonotic. Yes No No 

Hydatid disease; Echinococcus 
granulosus Yes  Yes Yes Yes 

Leptospirosis; Leptospira spp Yes  Yes Yes Yes 

Listeriosis; Listeria spp. No 

Primarily a food borne pathogen - with very few cases of 
environmentally acquired transmission. Therefore 
exclude Yes No 

Yes 

Louping ill; Louping ill virus No A very rare disease in humans, therefore exclude Yes No No 

Lyme disease; Borrelia burgdorferi No Excluded vector-borne diseases Yes No No 
Lymphocytic choriomeningitis; 
Lymphocytic choriomeningitis 
virus (LCMV) No 

Very short-lived surival in the environment. Rare 
infection in humans Yes No No 
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Orf; Orf virus No Transmission to humans seems to be via direct contact Yes No No 
Ovine chlamydiosis; Chlamydia 
abortus No 

Inhalation of bacteria during sheep births. Can survive in 
the environment for days/weeks. Yes No No 

Pasteurellosis; Pasteurella spp No Occurs via direct contact with an animal Yes No No 

Psittacosis; Chlamydia psittaci No Only included land mammals Yes No No 

Q fever; Coxiella burnetii Yes  Yes No Yes 

Rat bite fever; Streptobacillus 
moniliformis No 

Some evidence of contamination to humans via the 
environment. Incredibly rare diseases, and so little 
information is available.  Yes No No 

Ringworm; Dermatophyte fungi No Excluded funguses Yes No No 

Salmonellosis; Salmonella spp. Yes  Yes Yes Yes 

Streptococcal sepsis; Streptococcus 
suis No 

Very rare in humans. Most transmission occurs via direct 
contact with infected animals or meat. Some evidence of 
ariborn transmission. Yes Yes No 

Streptococcal sepsis; Streptococcus 
zooepidemicus No 

Very rare in humans. Occurs via direct contact with 
animals.  Yes No No 

Toxocariasis; Toxocara canis/catis Yes  Yes No No 

Toxoplasmosis; Toxoplasma gondii Yes  Yes No Yes 

Zoonotic diphtheria; 
Corynebacterium ulcerans No 

Diptheria can rarely be caused by Corynebacterium 
ulcerans. Occurs via direct contact with animals, or with 
contaminated milk Yes No No 

Alveolar echinococcosis; 
Echinococcus multilocularis Yes  Yes Yes Yes 

Brucellosis; Brucella spp. Yes  Yes Yes Yes 

Crimean-Congo haemorrhagic fever 
(CCHF); CCHF virus No Excluded vector-borne diseases Yes Yes No 

Ebola virus disease; Ebola virus No 

Whilst there is evidence that Ebola virus can survive in 
the environment, there is little evidence of humans 
acquiring ebola from the environment. Instead 
transmission to humans appears to be via direct contact 
with infectious animals, and direct, human to human 
contact Yes Yes No 

Glanders; Burkholderia mallei Yes  Yes No No 

Hendra virus infection; Hendra 
virus No 

Humans acquire infection as a result of direct infection 
with an infectious animal, does not appear to be much 
evidence of transmission via the environment Yes No No 

Kyasanur Forest disease; Kyasanur 
Forest virus No 

Transmission to humans occurs via direct contact with an 
infectious animal, or via an infected tick-bite Yes No No 

Lassa fever; Lassa virus No 

Very little evidence of the length of survival of lassa 
virus in the environment. Only anecdotal evidence that it 
survives. Yes Yes Yes 

Marburg virus disease; Marburg 
virus No 

It is unknown exactly how transmission occurs from 
animals to human hosts. But once in humans, it spreads 
via direct contact from human to human. Due to the 
limited information about the risk of environmental 
exposure this disease was not included Yes Yes No 

MERS; MERS Coronavirus No 

It's not exactly clear how infection passes from 
dromedary camels to humans, but once in humans it 
passes from human to human with close contact. No 
evidence of an environmental reservoir. Yes Yes No 

Monkeypox; Monkeypox virus No 

Transmission seems to mainly occur via direct contact 
with an infectious animal. No evidence of environmental 
transmission.  Yes No Yes 

Nipah virus infection; Nipah virus Yes  Yes No No 
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Plague; Yersinia pestis No 

Rodents are the main reservoir of infection and people 
are most commonly infected through rodent flea bites. 
People are less commonly infected by scratches or bites 
from infected domestic cats, by direct handling of 
infected animal tissues, or through laboratory exposure. 
 
An important route of transmission is the inhalation of 
respiratory droplets or small particles from a patient with 
pneumonic plague. There is no evidence of 
environmental contamination Yes Yes Yes 

Rabies; Rabies virus and other 
lyssaviruses No 

Transmission occurs to humans via direct contact with an 
infectious animal or human. There is no evidence of 
environmentally-acquired infection Yes Yes Yes 

Rift Valley fever; Rift Valley fever 
virus No Excluded vector-borne diseases Yes Yes No 
Tickborne encephalitis; Tickborne 
encephalitis virus No Excluded vector-borne diseases Yes No No 

Trichinellosis; Trichinella spiralis No 

Transmission occurs via under-cooked meat. No evidence 
of environmental transmission. For the purposes of this 
review, animal products are considered direct 
transmission. Yes No Yes 

Tularemia; Francisella tularensis Yes  Yes No Yes 
West Nile virus infection; West 
Nile virus No Excluded vector-borne diseases Yes No No 

Yellow fever; Yellow fever virus No Excluded vector-borne diseases Yes No No 

Botulism  No 

Very rare disease. Does not seem to be much evidence of 
the role of animals in the transmission cycle. Most cases 
seem to be as a result of eating contaminated food.  No Yes Yes 

Chagas disease No Excluded vector-borne diseases No Yes No 

Chikungunya No Excluded vector-borne diseases No Yes No 

Dengue No Excluded vector-borne diseases No Yes No 
Encephalitis (including Japonese 
Encephalitis and tick-borne 
encephalitis) No Excluded vector-borne diseases No Yes No 

Crimean-Congo haemorrhagic fever 
(CCHF)  No 

Humans can become infected via tick bites, contact with 
infected animal bood, and I some cases human to human 
contact via body fluids. Some evidence of contamination 
via improerly sterilised equipment. Most infection occurs 
via ticks. No Yes No 

Rift Valley fever  No Excluded vector-borne diseases No Yes No 

Japanese encephalitis  No Excluded vector-borne diseases No Yes No 

Leishmaniasis No Excluded vector-borne diseases No Yes No 

Zika virus No Excluded vector-borne diseases No Yes No 

Clonorchiasis No 
Infection in humans as a result of consuming 
contaminated fish No Yes No 

Paragonimiasis No 
Infection in humans as a result of consuming 
contaminated crustaceans No Yes No 

Fascioliasis Yes 

Infection in humans as a result of consuming 
contaminated aquatic plants - which is considered to be 
environmental contamination since the agent is on the 
outside of the plants. Also evidence of contamination 
from water directly.  No Yes No 

Opisthorchiasis felinea No 
Infection in humans as a result of consuming 
contaminated fish No Yes No 

Opisthorchiasis viverrini No 
Infection in humans as a result of consuming 
contaminated fish No Yes No 

Schmallenberg virus No Excluded vector-borne diseases No No Yes 

Sindbis fever No Excluded vector-borne diseases No No Yes 

Babesiosis No Excluded vector-borne diseases No No Yes 
Severe Acute Respiratory 
Syndrome (SARS)  No No evidence of an environmental reservoir No Yes No 

Variant Creutzfeldt-Jakob disease No Excluded prion diseases No Yes Yes 

Yersiniosis Yes  No No Yes 
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Table S2. Individual search terms were created using disease-specific search terms shown in table 2a, and all 
modelling terms shown in table 2b.  

Table S2a. Disease-specific search terms used in Embase, Medline and Web of Science.  

Disease-specific search terms 
Anthrax Anthrax OR Bacillus anthracis 
Brucellosis brucellos* OR brucella OR undulant fever OR Malta fever OR cyprus fever OR 

Mediterranean fever  
Campylobacter Campylobacter 
Cryptosporidium Cryptosporidium 
E. coli Escherichia coli OR e. coli 
Echinococcosis echinococcosis OR hydatid OR hydatidosis OR Echinococcus 
Erysipeloid Erysipeloid OR Erysipelothrix rhusiopathiae 
Fascioliasis Fascioliasis OR Fasciola hepatica OR Fasciola gigantica 
Glanders Glanders OR Burkholderia mallei 
Giardia Giardia OR Giardiasis 
Hantavius hantavirus OR hanta* virus OR puumala virus OR seoul virus OR sin nombre 

virus  
Leptospirosis Leptospir* OR weil disease 
Meloidosis Melioid* 
Nipah Virus Nipah Virus 
Q fever q fever* OR query fever* OR Coxiella burnetii  
Salmonella Salmonella typhimurium OR S. typhimurium OR Salmonella Dublin OR S. 

Dublin OR Salmonella Enteritidis OR S. Enteritidis OR Salmonella 
Choleraesuis OR S. choleraesuis  

Toxoplasmosis toxoplasm* 
Toxocarosis Toxocara OR Toxocarosis 
Tularaemia Tularemia* OR francisella tularensis 
Yersinosis yersiniosis OR enterocolitica OR yersinia 
*Denotes truncation. 
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Table S2b. Modelling-specific search terms used in Embase, Medline and Web of Science  

 

 

 

 
 

Modelling specific search terms 
Mechanistic model*a Simulation model 
Stochastic model*a Mathematical model 
Bayesian model*a Analytical model 
Epidemic model SIR model 
Transmission model SEIR model 
Deterministic model Network model 
Compartmental model Epidemiological model 
Theoretical model  Sensitivity analysis 
Dynamic model Population dynamics 
aProximity searching was used, search terms had to be within 3 words of each other. For Embase 
and Medline ADJ3 was used, and for Web of Science NEAR/3 was used. *Denotes truncation.  

Appendix E: Supplementary Material Chapter 5

196



 
1. Leptospirosis/ or weil disease/  
2. Leptospir*  
3. 1 or 2  
4. (mathematical adj3 model*)  
5. (stochastic* adj3 model*)  
6. (dynamic* adj3 model*)  
7. (transmission adj3 model*)  
8. (bayesian adj3 model*)  
9. (mechanistic* adj3 model)  
10. (epidemic adj3 model*)  
11. (deterministic adj3 model*)  
12. (compartmental adj3 model*)  
13. (simulation adj3 model*)  
14. (analytical adj3 model*)  
15. (SIR adj3 model*)  
16. (SEIR adj3 model*)  
17. (network adj3 model*)  
18. (Epidemiological adj3 model*)  
19. Sensitivity analysis  
20. population dynamics  
21. (theoretical adj3 model*)  
22. 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 

20 or 21  
23. 3 and 22  

Figure S1.  Example literature search for leptospirosis in Embase.  
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Figure S2. PRISMA flow diagram of the search and exclusion process  
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Figure S3. Number of studies by disease (n = 210). The different colours represent the different model 
structure by disease.  
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