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Abstract
Background Acute Kidney Injury (AKI) is a multifactorial condition which presents a substantial burden to healthcare 
systems. There is limited evidence on whether it is seasonal. We sought to investigate the seasonality of AKI 
hospitalisations in England and use unsupervised machine learning to explore clustering of underlying comorbidities, 
to gain insights for future intervention.

Methods We used Hospital Episodes Statistics linked to the Clinical Practice Research Datalink to describe the 
overall incidence of AKI admissions between 2015 and 2019 weekly by demographic and admission characteristics. 
We carried out dimension reduction on 850 diagnosis codes using multiple correspondence analysis and applied 
k-means clustering to classify patients. We phenotype each group based on the dominant characteristics and 
describe the seasonality of AKI admissions by these different phenotypes.

Results Between 2015 and 2019, weekly AKI admissions peaked in winter, with additional summer peaks related to 
periods of extreme heat. Winter seasonality was more evident in those diagnosed with AKI on admission. From the 
cluster classification we describe six phenotypes of people admitted to hospital with AKI. Among these, seasonality of 
AKI admissions was observed among people who we described as having a multimorbid phenotype, established risk 
factor phenotype, and general AKI phenotype.

Conclusion We demonstrate winter seasonality of AKI admissions in England, particularly among those with AKI 
diagnosed on admission, suggestive of community triggers. Differences in seasonality between phenotypes suggests 
some groups may be more likely to develop AKI as a result of these factors. This may be driven by underlying 
comorbidity profiles or reflect differences in uptake of seasonal interventions such as vaccines.
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Background
Acute kidney injury (AKI) is a syndrome defined by rapid 
decline in kidney function from hours to days leading to 
disruption in metabolic, electrolyte, and fluid homeosta-
sis [1]. Between 20 and 25% of hospitalised adults have 
AKI, and it is associated with longer duration of stay and 
a 4–16 fold increase in odds of death following hospitali-
sation [1–3]. The heterogeneity of the condition and its 
triggers and the wide range of risk factors makes it dif-
ficult to identify important mechanisms which can be 
modified to reduce the incidence of AKI [1].

Previous studies have demonstrated a seasonal winter 
pattern to AKI hospital admissions [4–6]. Data from a 
Welsh automated electronic AKI reporting system found 
an increase in AKI alerts during winter in primary and 
secondary care [4]. Furthermore, a study in Japan indi-
cated an increased odds of AKI in winter months with 
seasonality most pronounced for patients primarily diag-
nosed with cardiovascular and pulmonary admission 
codes, and when AKI was diagnosed on the day of admis-
sion [5]. While winter increases in AKI suggest associa-
tion with infections [7], other conditions associated with 
AKI such as heart failure and myocardial infarction also 
have seasonal patterns [8–11].

Given the high incidence and complex, multifactorial 
aetiology of AKI the condition is well suited to analysis 
using machine learning (ML) [12–14]. ML is increasingly 
used to analyse electronic health records (EHR) for risk 
prediction models, causal inference, text mining, and 
phenotypic discovery methods [12–14]. Previous studies 
using unsupervised clustering classification of EHR data 
include studies such as identifying clinical phenotypes of 
heart failure, Alzheimer’s disease, and chronic obstruc-
tive pulmonary disease to describe the diversity of 
expression, progression, and aetiology of patients expe-
riencing the same disease [14–16]. The primary benefit 
of unsupervised clustering classification is the ability to 
analyse large datasets without pre-specifying hypotheses 
or interactions, and without limiting the number of fea-
tures included to phenotype patients [17]. ML methods 
could uncover new and important phenotypes of AKI not 
previously considered for detailed epidemiological inves-
tigation, and new targets for intervention.

Therefore, in this study using routine primary and sec-
ondary care data from England, we sought to firstly deter-
mine whether there is seasonality in AKI admissions in 
England, and any associations with age and gender, and 
secondly to use unsupervised ML clustering approaches 
to investigate AKI phenotypes, and whether these also 
demonstrated seasonality.

Methods
Data source
We used linked primary and secondary care data from 
England in CPRD GOLD, which is a large primary care 
database collecting longitudinal EHRs from participating 
GPs representing 21 million patients with 3 million cur-
rently registered [18]. Data is quality assured and includes 
demographic characteristics, diagnoses and symptoms, 
drug exposures, vaccination history, laboratory tests, and 
referrals to secondary care [18]. Data are recorded using 
Read codes, a standardised hierarchical coding structure 
to describe a patient’s consultation and condition. CPRD 
has been shown to be representative of the UK popula-
tion by age, sex, and ethnicity [17].

In 2019, 52% of CPRD GOLD patients were linked to 
hospital episode statistics (HES) which records hospi-
tal admissions, attendances to Accident & Emergency, 
and outpatient appointments to all NHS hospitals. Data 
in HES are recorded using the International Classifica-
tion of Diseases version 10 (ICD-10) codes, where each 
code represents a diagnosis, which are grouped under 22 
headings in a hierarchical structure.

Study population
We defined the source population as all patients recorded 
between January 2015 – December 2019, that met 
research acceptable quality control standards [18]. We 
defined the cohort as patients admitted to hospital with 
an AKI ICD-10 code (ICD-10  N-17 and N-19) in any 
diagnostic position during an admission (Supplementary 
Table 1).

Feature selection
We mapped the Read codes to the relevant hierarchi-
cal structure from specific to general terms. Each Read 
code consists of up to 5 levels, with each level provid-
ing a more specific description of the diagnosis. For 
example, the following code H3100, corresponds to the 
diagnosis of “Chronic catarrhal bronchitis” when all 5 
levels are considered. At level 3 (code H31.), this code 
falls under the classification of “Chronic bronchitis”. 
At level 2 (code H3…), it belongs to the classification of 
“Chronic obstructive pulmonary disease”. To facilitate 
clustering, we prepared all patient codes at level 3 (e.g., 
H31 - “Chronic bronchitis”). Once we allocated patients 
to clusters we used the frequency of clinical codes in each 
cluster to describe the dominant characteristics of each, 
using Read code chapter level 2.

We included diagnosis codes as features for the clus-
ter classification (Supplementary Table  2), and age and 
sex were included as supplementary variables, used to 
describe the cluster but not included in the cluster clas-
sification algorithm. We excluded codes relating to 
symptoms, medical procedures, and lifestyle factors 
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(Supplementary Table  3), as well as Read code chap-
ter Z (Unspecified conditions) to reduce the number of 
features included to improve processing capacity. We 
excluded features recorded less than 100 times in the 
observation period across all patients in order to reduce 
the computational burden, and made the assumption that 
these features will not have a material impact on clusters 
formed due to the low frequency. Diagnosis codes relat-
ing to infectious diseases (Chapter A - Infectious and 
parasitic diseases; Chapter H0 - Acute respiratory infec-
tions; Chapter H1 - Other upper respiratory tract dis-
eases; Chapter H2 - Pneumonia and influenza; Chapter 
K190 - Urinary tract infection, site not specified) were 
removed if they were more than 30 days before or any-
time after the AKI hospitalisation. This was done in order 
to reflect the acute nature of these diagnoses, and time 
bounding these codes selected the diagnoses possibly 
associated with subsequent development of AKI. With-
out this, infection codes unrelated to AKI in time would 
have a dominant impact in the formation of clusters.

To prepare for cluster classification, we transformed 
the data into a matrix indicating the presence and 
absence of codes for each patient.

Dimension reduction
We used Multiple Correspondence Analysis (MCA) as 
a dimension reduction technique [15, 19]. Dimension 
reduction improves the efficiency of clustering meth-
ods, while preserving the global structure and correlation 
between data points [19]. We selected the optimum num-
ber of dimensions using a scree plot to observe the per-
centage of variance in each dimension [19]. We applied 
the “elbow rule” to the plot to determine the number of 
dimensions to retain.

K-means clustering and phenotyping
We used k-means clustering to classify patients into 
groups. K-means clustering classifies patients into a pre-
specified number of groups based on the distance from 
mean centre points that minimises the total within-
cluster sum of squares [15]. Patients with similar char-
acteristics are therefore classified in the same clusters. 
We selected the optimum number of clusters using the 
NbClust package [20]. This package calculates the opti-
mum number of clusters using 30 different indices and 
aggregates the results for the user to make an assess-
ment of the optimum number of clusters in the dataset of 
interest [20]. Due to the computational burden of apply-
ing different indices, a random sample of 25,000 patients 
from the cohort were selected to apply the method. To 
ensure consistency, five random samples were taken.

Analysis
We described the overall incidence of AKI admissions 
between 2015 and 2019 and disaggregated by age, sex, 
diagnostic position of AKI code, and the day during the 
admission where AKI was recorded. We described the 
clusters of AKI patients by age, sex, and Read codes at 
chapter level 2. All Read codes were reviewed for describ-
ing the cluster, however 17 codes were selected for illus-
trative purposes and cover codes mostly commonly 
reported as well as being plausible risk factors for AKI. 
We labelled clusters with the description of the overall 
phenotype of the cluster based on the dominant char-
acteristics observed. We then described the incidence of 
AKI admissions by the cluster phenotypes.

Sensitivity analysis
We conducted sensitivity analysis of the cluster pheno-
types by (1) restricting the cohort to those who had an 
AKI ICD10 code of N17 (i.e. excluding N19 codes) (2) 
restricting the cohort to those where AKI was recorded 
in a primary diagnostic position and separately a second-
ary diagnostic position, (3) restricting the cohort to those 
diagnosed with AKI on admission (day 0), (4) setting 
random seeds to test the reproducibility of the cluster-
ing method, and (5) changing the number of dimensions 
included for the cluster analysis following MCA to 
observe the impact on the cluster phenotypes.

Results
Incidence
Between 2015 and 2019 in England, there were 198,754 
AKI admissions recorded for a cohort of 133,488 indi-
vidual patients. 52% were male and the median age was 
78 (IQR: 66–86). AKI incidence increased over the entire 
observation period from 34,539 admissions in 2015 to 
42,326 admissions in 2019. We observed distinct peaks 
in AKI admissions in December and January of each year 
(Fig. 1, Supplementary Fig. 1), as well as June-July.

Winter seasonality
Both men and women exhibited similar seasonal peaks 
in admissions (Fig.  1A), most prominently observed 
in people aged > 75 (Fig.  1D). AKI admission codes 
recorded on day 0–1 of the admission had evidence of 
seasonality, with no seasonality observed where AKI was 
recorded > 2 days after admission (Fig.  1B). Analysis of 
diagnostic position of AKI codes also demonstrated that 
seasonality is more apparent where AKI was recorded 
as non-primary reason for admission (diagnostic posi-
tion > 2) (Fig.  1C). Among those with a secondary AKI 
code, the most common primary reasons for admissions 
were pneumonia, urinary tract infections (UTIs), sepsis, 
heart failure, and chronic obstructive pulmonary disease 
(COPD) (Supplementary Table 4). These codes make up 
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30% of admissions where AKI was recorded as secondary 
code. Seasonality was most notable for admissions where 
pneumonia was the primary diagnosis (Fig. 1E).

Summer seasonality
We observed short peaks in the summer of each year; 
one to two weeks in duration. These peaks were observed 
among men and women (Fig. 1A) and across age groups 
(Fig. 1D), although not consistently across all years. Sum-
mer peaks were only observed where people were coded 
with AKI on day 0–1 of admission (Fig.  1B), and were 
observed where AKI was recorded as a primary or sec-
ondary diagnostic position (Fig.  1C). These periods of 
increased AKI admissions in the summer across all years, 
coincide with heatwave alerts declared by the Meteoro-
logical Office in England [21] (Supplementary Fig. 2).

Cluster classification
There were 133,488 patients that were diagnosed with 
AKI during an admission between 2015 and 2019. 
Among these patients there were 1,788 chapter level 
3 Read codes available for dimension reduction using 
MCA. Of these, 938 codes were recorded less than 100 
times across all patients in the time period, and were 
excluded. Thus 850 features were retained, which made 
up 99.6% of records reported among the cohort. Fol-
lowing exclusion of sparsely recorded variables, 130,625 
patients were retained for the cluster analysis.

Following dimension reduction we retained five dimen-
sions for cluster analysis (Supplementary Fig. 3). K-means 
clustering was applied to the five dimensions, and the 
analysis of different indices selected between two to 10 

clusters as the optimum number of clusters (Supplemen-
tary Fig. 4). More indices selected two and six as the opti-
mum number of clusters for the dataset, therefore for the 
analysis we presented the cluster phenotypes up to k = 6 
(Supplementary Fig. 5).

As the number of clusters increased, further clusters 
were generally created as subsets of one existing cluster 
at each step of k (Fig. 2). One exception was the creation 
of cluster 2 at k = 3, which was formed as a large branch 
from two existing clusters. At k = 4 a small cluster was 
formed defined by a group of patients characterised by 
non-specific coding (discussed further later).

We identified the following six broadly defined phe-
notypes from the cluster classification based on the 
dominant characteristics in each cluster (Fig. 3, Supple-
mentary Tables 5 - Supplementary Table 9):

Cluster 1 (Less multi-morbid phenotype): The largest 
cluster contained 59,586 patients defined by a younger 
age profile with median age of 75 (IQR: 61–85) vs. 78 
(IQR: 66–86) in the cohort overall. Across the selected 
17 disease codes, there were 18–50% fewer codes in this 
group of patients. Codes were highest for hypertensive 
disease (45%), rheumatism (41%), and disorders of eye 
and adnexa (33%).

Cluster 2 (Younger, mental health phenotype): The 
youngest cluster with median age 55 (IQR: 45–66). There 
were 7,867 patients in the cluster with 88% with a record 
of non-psychotic mental health disorders. Codes were 
also higher for female genital tract disorders (34%), and 
liver biliary, pancreas and gastrointestinal diseases (28%). 
34% of patients had alcohol dependence syndrome, 

Fig. 1 AKI admissions in HES-linked CPRD 2015–2029. Time series of weekly AKI admissions, 2015–2019, England total and by (A) sex of patients (B) day 
AKI code was recorded during the admission (C) diagnostic position of AKI record (D) age group (E) primary diagnosis where AKI was a secondary code 
during the admission (primary diagnoses displayed make up 30% of all primary diagnoses recorded)
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compared to 4% in the cohort overall (Supplementary 
Table 10).

Cluster 3 (Established risk factors phenotype): Con-
tained 20,098 patients, with a higher percentage of men 
and the oldest profile of patients with a median age of 83 
(IQR: 76–88). This cluster was defined by a higher per-
centage of established risk factors for AKI. People had a 
higher proportion of cardiovascular disease codes with 
2.7 times more ischemic heart disease (55%), 2.4 times 
more other forms of heart disease including heart failure 
(63%), 1.4 times more vein, lymphatic, and circulatory 

disease (43%), and 1.4 times more hypertensive disease 
(76%). Furthermore, 51% had other endocrine gland dis-
eases including diabetes and 27% had codes for nephri-
tis, nephrosis, and nephrotic syndrome (including acute 
and chronic renal failure codes), which was the highest 
percentage between the different clusters for both sets of 
codes.

Cluster 4 (General AKI phenotype): Contained 30,654 
patients defined by a more typical phenotype of patient 
characteristics given no particular codes and condi-
tions stood out. Few characteristics differed substantially 

Fig. 3 Cluster characteristics. Stratified by (A) Relative frequency of cluster characteristics compared to overall cohort characteristics. (B) Proportion by sex 
of each cluster and overall cohort. (C) Percentage by age groups of each cluster and overall cohort

 

Fig. 2 Sankey diagram of clustering assignment by k-means at each step of k for a total of 6 clusters
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from the overall cohort, although with a slightly higher 
proportion of patients with hypertensive disease (61%), 
rheumatism (88%), and other forms of skin and subcu-
taneous tissue infections, inflammatory conditions, and 
disorders. There were slightly more women in this group 
(53%) and slightly older than the cohort with a median 
age of 80 (IQR: 71–87).

Cluster 5 (Female multimorbid phenotype): Con-
tained 11,609 patients with 70% female and older than 
the cohort overall with a median age of 81 (IQR: 73–88). 
Furthermore, patients in this cluster had 2.7 times more 
genital tract disorders (50%) such as menopausal and 
postmenopausal disorders, and 1.8 times more codes 
for non-psychotic mental disorders (70%). People in this 
cluster also had 2.2 times higher percentage of other 
urinary system diseases (58%), 2.2 times higher vein, 
lymphatic, and circulatory disease (67%), and 2.1 times 
higher percentage for liver, biliary, pancreas and gastroin-
testinal diseases (30%) codes than the overall cohort.

Cluster 6 (High level coding phenotype): Was a small 
cluster of 811 patients who were defined by a high pro-
portion of high level diagnostic codes. For example, 
rather than having a code for hypertensive disease or 
heart failure, only a broad code is recorded such as ‘cir-
culatory system disease’. Most frequently recorded were 
Read codes for digestive system disease (67%), circula-
tory system disease (55%), genitourinary system disease 
(55%), and respiratory system disease (51%) (Supplemen-
tary Table 7).

Cluster time series
Seasonal patterns of AKI admissions were not observed 
for the cluster 2, 5, and 6 (Fig. 4, Supplementary Fig. 6, 

Supplementary Fig.  7, Supplementary Fig.  8) while they 
were evident for cluster 1, 3, and 4. In addition to sea-
sonal trends, differences in changing incidence were 
observed between clusters during the study period. The 
incidence of weekly admissions remained stable for clus-
ter 5 and 6; increased for clusters 1, 4, and 2; declined for 
cluster 3 (Supplementary Fig. 5).

Sensitivity analysis
When conducting sensitivity analyses, the same pheno-
types were identified as the primary analysis when (1) we 
restricted the cohort to those coded with N17 only (2) we 
restricted the cohort to those who had AKI recorded only 
in a primary diagnostic position and separately for those 
who had AKI recorded only in a secondary diagnostic 
position, (3) when we restricted the cohort to those who 
were diagnosed on admission (day 0), and (4) when set-
ting random seeds for reproducibility.

We conducted a sensitivity analysis of 5) the number of 
dimensions included in the cluster analysis, and included 
461 dimensions following MCA; equivalent to covering 
70% of the variance explained in the dataset (Supplemen-
tary Fig.  9). Five cluster phenotypes remained the same 
when increasing the number of dimensions. One cluster, 
the mental health phenotype, was replaced with a small 
cluster (129 patients) of patients with musculoskeletal or 
connective tissue diseases.

Discussion
Our results demonstrate that admissions involving AKI 
in England between 2015 and 2019 show a seasonal pat-
tern with the highest peaks in December/January and 
further increases in June/July, coinciding with heatwaves. 

Fig. 4 Time series of weekly AKI admissions, 2015–2019, England, by assigned cluster
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Admissions for people aged over 80 years showed the 
greatest winter seasonal increases, as well as those where 
AKI was diagnosed on admission suggesting the onset 
and cause may have been community acquired.

Using unsupervised ML clustering to generate hypoth-
eses in a data driven approach, we identified six pheno-
types of AKI admissions, of which three demonstrated 
marked winter seasonality. These clusters were charac-
terised by a general AKI phenotype, those with estab-
lished risk factors phenotype, and those with a younger, 
less multi-morbid phenotype. Using clustering methods 
to describe phenotypes begins to hypothesise the dif-
ferent profiles of patients potentially predisposed to an 
increased risk of AKI in the winter.

Results in context
Increasing incidence of AKI coding over the course of 
the observation period may be a reflection of increases 
in detection of AKI due in part to changes in laboratory 
testing algorithms in England as well as increased aware-
ness of the condition. The observed seasonal increase 
of AKI in the winter months in England was consistent 
with previous studies which found increases in AKI 
reports and RRT use in the UK, and AKI admissions in 
Japan [4–6]. However summer increases in AKI were not 
reported in these studies. These studies were not anal-
ysed on a weekly time scale and may not have been able 
to detect acute increases in admissions. Similar to find-
ings in Japan, AKI admissions were most common in the 
elderly, and those diagnosed on admission, suggestive of 
community-acquired AKI [5]. However, where pneumo-
nia, UTIs, and sepsis were the most common primary 
diagnosis categories (where AKI was a secondary code) 
in this study, in Japan the most common admissions cate-
gories were cardiovascular and pulmonary disease. These 
differences may be a result of different coding practices 
and interpretations of primary admissions and not neces-
sarily the underlying aetiology of AKI. The acute rise in 
AKI admissions we observed in the summer during heat-
wave alerts aligns with evidence linking increased ambi-
ent temperatures to an increased risk of AKI [8, 22–28]. 
This is an important observation given the current and 
increasing future impact of climate change.

Our study shows that people diagnosed with AKI have 
a complex multi-morbid profile and potentially have a 
number of mechanisms which may increase their risk of 
AKI, especially in winter. This is in keeping with the pic-
ture described by Philips et al., in which they found that 
seasonal increases in AKI affected most major medical 
specialities, suggesting a number of mechanisms through 
which AKI may increase in the winter [4].

Comparison of how the phenotypes identified in this 
work compare to other cluster classification studies is 
challenging given the large heterogeneity in approaches 

[29]. Different methods of clustering, features included, 
dimension reduction techniques, and method of inter-
preting phenotypes (quantitative vs. qualitative) contrib-
utes to the heterogeneity in the characterisation of AKI 
phenotypes. Furthermore studies phenotype different 
subgroups of AKI such as those based on serum creati-
nine trajectories, severity, or biomarkers (all unavailable 
in this study) which further differentiate the clusters 
characterised from general AKI attendance [29]. For 
example, Xu et al. used deep learning methods to char-
acterise phenotypes of AKI patients in a critical care unit 
in Israel [30]. The phenotypes they identified were mild, 
moderate, and severe kidney dysfunction which was 
associated with AKI stage 1, 2, and 3 respectively. Unlike 
our study, they found no comorbidities or demographic 
features defined the phenotypes identified.

Limitations
Our study represents the most detailed examination 
of the seasonality of AKI in England to date. Using an 
unsupervised ML approach, we incorporated an unprec-
edented amount of data in order to be data-driven and 
hypothesis free and describe an objective picture of 
seasonal trends. However, there were several limita-
tions to this approach. Firstly, only categorical features 
were included as part of phenotyping AKI (presence or 
absence of disease codes only). This excludes further 
clinical characteristics such as biomarkers, measures to 
determine severity of AKI, duration of AKI, or medica-
tion which could further contribute to the phenotype of 
AKI patients, although many of these features are not 
available in routine data. While the inclusion of the full 
clinical picture of patients with AKI at the scale needed 
to use machine learning may be challenging, phenotyp-
ing only diagnosis codes may bias the clinical picture and 
warrants caution in how these clusters are interpreted.

A further limitation was that a low proportion of the 
variance was explained in each dimension following 
dimension reduction, suggesting each variable contrib-
utes only a small amount of the variance in the data. The 
sensitivity analysis, which accounted for 70% of the vari-
ance, did not alter five of the cluster phenotypes, indi-
cating that the clusters identified through the primary 
analysis may be stable despite being based on only a few 
dimensions.

While the use of Read codes enabled the examination 
of many diagnoses to describe clusters, it could have 
introduced biases in how clusters are formed due to large 
variation in the sensitivity and specificity of different 
codes. For example, using diagnostic codes alone under-
estimates the prevalence of CKD in CPRD [31, 32] and 
this may have impacted on cluster formation, reducing 
their external validity. Assessment of the sensitivity and 
specificity of all 850 codes included would be challenging 



Page 8 of 9Bolt et al. BMC Nephrology          (2023) 24:234 

and presents an important limitation of an unsupervised 
approach to clustering. While an approach that more 
accurately characterises underlying comorbidities could 
produce clusters with higher external validity, it would 
likely necessitate a targeted approach that is not entirely 
hypothesis-free.

An important limitation is that AKI ICD-10 codes have 
poor sensitivity for AKI diagnosis - more so when coded 
in a secondary diagnostic position - and are more likely 
to be coded for more severe stages of AKI. This limits 
the generalisability of the phenotypes characterised and 
biases them towards the characteristics of people with 
severe AKI [32, 33]. Furthermore, using diagnostic codes 
for the identification of AKI means the definition of the 
outcome is susceptible to changes in coding practices 
over time. Therefore phenotypes characterised may dif-
fer over time due in part to changes in underlying coding 
practices.

While other sources of data are available with better 
quality data on the identification of AKI, such as the UK 
Renal Registry, these data are not readily linked to pri-
mary care data. This therefore limits their use in studies 
exploring phenotypes of patients.

Interpretation and future studies
Our analysis of the time series data show that there are 
likely seasonal factors that lead to increases in AKI which 
is important for planning of health care services (such as 
surges in renal replacement therapy). AKI is a common 
syndrome which can lead to serious long term adverse 
outcomes and further evidence of seasonal increases 
warrants further attention of identifying which triggers, 
such as infectious diseases, account for the most burden. 
There is strong evidence of individual level associations 
of developing AKI following infections [7], and further 
studies are needed to establish whether this translates 
to population level drivers of AKI trends. In addition, it 
would be beneficial to quantify the patients at high risk, 
temperature triggers and burden of heat-related AKI to 
enable planning of appropriate responses in a changing 
climate.

Some individuals are more likely to be affected by 
winter-related triggers than others. This may be due to 
their underlying comorbidity profile (such as age, sever-
ity of CKD, or differences in drug therapy). However, our 
results highlight that some individuals who develop AKI 
in winter have lower levels of comorbidities. This sug-
gests that there may be interventions that reduce the risk 
of seasonal AKI such as identifying those at highest risk 
and ensuring vaccine uptake, optimisation of medica-
tions management, or increased provision of virtual clin-
ics to improve management of long-term conditions.

To build on our study, alternative clustering meth-
odologies like Guassian mixture models, or supervised 

classification methods using known predictive AKI fea-
tures could be applied. Further stratification of AKI as 
proposed by Vaara et al. by serum creatinine trajectories 
or severity of AKI may further disentangle possible aeti-
ologies of AKI phenotypes [29]. This could be achieved by 
the inclusion of secondary care data in defining clusters.

In conclusion, our results demonstrate how AKI inci-
dence in England has a distinct winter and summer 
(heat-related) seasonal pattern which has important 
implications on healthcare provision planning, public 
health, and clinical practice.
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