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Abstract 

The 1970s and 1980s saw the appearance of many papers on the topics of synergy, 

antagonism, and similar concepts of causal interactions and interdependence of effects, with a 

special emphasis on distinguishing these concepts from that of statistical interaction – the 

need for a product term in a model. As an example, Miettinen defined “synergism” as “the 

existence of instances in which both risk factors are needed for the effect”, whereas 

“antagonism” is where “at least one [factor] can block the solo effect of the other”. In 

response, Greenland and Poole constructed a systematic analysis of 16 possible individual 

response patterns in a deterministic causal model for two binary exposure variables, and 

showed how these patterns can be mapped onto nine types of sufficient causes, which in turn 

can be simplified into four intuitive categories. Although these and other papers recognized 

that epidemiology cannot directly study biological mechanisms underlying interaction, they 

showed how it can usefully study causal and preventive interdependence – which, despite its 

mechanistic agnosticism, has important implications for clinical decision making as well as 

for public health. 
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Introduction 

In 1980 two papers appeared on interaction and effect modification [1, 2] commenting on 

debates occurring in the 1970s [3-7]. These papers distinguished between different concepts 

of interaction: statistical interaction, biologic interaction, public-health interaction, and 

interaction in individual decision-making (including clinical decision making[8]). Statistical 

interaction involves a departure from the additivity assumptions in a generalized-linear 

regression model (usually of a linear, loglinear or logistic form), as represented by the need 

for a product term in the model. Nonetheless, these papers argued that interaction in public 

health or in individual decision-making involves a departure from simple additivity of causal 

risk differences, insofar as the costs of these decisions corresponded to the number of cases 

generated or prevented by each combination of the exposures [1, 3, 9] 

Table 1 gives an example of the type of situation that sparked these debates. It shows the risk 

of lung cancer in people having two different exposures: E1 and E2, where we assume there 

is no confounding; for concreteness we may suppose that E1=asbestos and E2=smoking. The 

risk of lung cancer with both exposures (35/1000) is greater than would be expected from 

adding the separate effects of E2 in the absence of E1 (9/1000), and E1 in the absence of E2 

(4/1000) above the background risk (1/1000), which would be 1/1000+9/1000+4/1000 = 

14/1000. The excess over additivity, here 35/1000−14/1000 = 21/1000, had been taken as a 

measure of “synergy” or “biologic interaction” [1, 5, 6], but that usage left some ambiguity in 

the meaning of those terms. Rothman et al[1] defined biologic interaction as “the 

interdependent operation of two or more causes to produce disease”. However, 

“interdependent operation” was not defined in biological terms, and other authors [2, 10] 

raised objections based on the multistage model of carcinogenesis[11], noting that “the rather 

general and simple structure of the additive and multiplicative models, as currently used, 

seems to militate against their ability to reflect closely the sequence of specific and varied 

biologic events which manifest macroscopically in the form of different diseases”[2].  

The situation was made more confusing by differences in the usage of related terms such as 

“synergy”, and the concurrent use of the related but different term “effect modification”. 

Thus, it is not surprising that later commentators questioned whether we should use terms 

like “biological interaction” at all[12, 13]. Miettinen [14] instead shifted the discussion to a 

framework that left mechanistic elements unspecified. The term “biologic” doesn’t appear 

until the final discussion, and the focus is instead on “interdependence”. In this context 

“synergism” is defined as “the existence of instances in which both risk factors are needed for 
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the effect”. This definition is in line with Hume’s definition of causation (often regarded as 

the founding concept for counterfactuals or potential outcomes)[15, 16] where a factor can be 

considered a cause when “if the first object had not been, the second never had existed.”[17] 

In this context, we can consider the combination of two factors to be a cause of disease, if at 

least some cases of the disease would not have occurred if either factor had been missing. 

Miettinen then defined antagonism to mean that “at least one [factor] can block the solo 

effect of the other”. This definition of antagonism is intuitive, but introduces a subtlety that 

Miettinen missed: in at least one basic interpretation, competitive action becomes a form of 

antagonism [18]. 

Simple interdependence 

Let us return to table 1, this time assuming that the effects seen there are only causal (never 

preventive), and in a sense to be made precise there is only potential synergy (no antagonism) 

between their effects. This situation is illustrated in figure 1, which shows the potential 

outcomes for the hypothetical cohort of 1,000 people in table 1, framed in terms of 

Rothman’s sufficient-component cause model [19]. Removing smoking alone would prevent 

not only the “jointly caused cases” (21/35), but also the cases due to smoking (but not 

asbestos) (9/35), i.e. 30/35=86% of cases. Similarly, removing asbestos exposure alone would 

prevent 25/35=61% of cases. These two single-factor causal risk differences sum to 147%, 

which is logically impossible for risk differences. Thus, this sum cannot be the risk difference 

for the combined effect of smoking and asbestos relative to no exposure.[19] This non-

additivity arises because of 21 of the 35 cases occurred only because of the joint action of the 

two exposures.  

This example tells us that some cases occur due to the combination of asbestos exposure and 

smoking exposure, but it doesn’t tell us how this happens in any mechanical sense. It is quite 

possible that smoking acts at an early stage in the carcinogenic process (sometimes termed 

“initiation”), whereas asbestos acts at a later stage (sometimes termed “promotion”)[2]. If so, 

hypothetically, someone could develop lung cancer because they smoked at age 18-20, and 

then worked with asbestos at age 45-65. The two exposures need not even be in the body at 

the same time, and it therefore might seem odd to regard this as a biological interaction if the 

latter is thought of as a physiological action requiring simultaneity of the exposures. 

Nonetheless, if some cases occur because the effects of a later exposure depend on the effects 

of earlier exposure, then we would say there is causal interdependence (or synergy) between 

the effects of the two exposures. 
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This “synergism” tells us little about the underlying biologic mechanisms, because many 

different biological models could produce the same risk patterns[10, 13, 18, 20]. For 

example, multistage models of cancer[11] hypothesize that carcinogenesis is a multistep 

process, with the steps being distinct and occurring in a particular order. Such models can 

predict well the age patterns of epithelial-cancer incidence when that incidence is low, and 

have more recently been found to yield reasonable predictions for motor neurone disease[21] 

and for the case fatality of Covid-19[22]. Nonetheless, one can construct two-stage models 

that reproduce observed incidence patterns to the same degree of accuracy as models with 

more steps [23]. 

Individual susceptibilities 

Epidemiology is ultimately about populations rather than individuals; that is why we focus on 

population measures such as average risks (proportions falling ill, or more generally 

distributions of incidence across time), which are almost always greater than 0 and less than 

1. As did Rothman [19], however, Miettinen started from a deterministic concept of 

individual susceptibility, to the effect that some individuals who have the other relevant (if 

mostly unmeasured) exposures or cofactors will always develop the outcome if they are 

exposed to E1, whereas others who do not have enough relevant cofactors will not develop 

the outcome. He then discussed the implications of susceptibility distributions for population 

risk patterns. In this model, individuals have an all-or-nothing outcome, coded as 1 or 0. 

What we see in a population are averages over these all-or-nothing outcomes, which we call 

incidence proportions (as seen in Table 1). Miettinen gave examples to show how the simple 

causal model that we assumed above is only one of several that can account for observed risk 

patterns, given that “correlatedness of susceptibilities” [24] may vary.  

To see this identification problem exists even when the exposures are solely causal (never 

preventive), suppose we have a cohort of just two participants, and that for participant 1 

either exposure E1 or E2 or both will produce the outcome (a “competitive-action” response 

type [18]), whereas for participant 2 only E1+E2 together will produce it (a “synergistic-

action” type). Then, at the level of the cohort of the two participants, the effects on average 

risks (incidence proportions) of either E1 alone or E2 alone relative to no exposure (the 

causal risk differences) are (1+0)/2 = (0+1)/2 = ½ = 50%, while the effect of joint (combined) 

exposure E1+E2 relative to no exposure is (1+1)/2 = 1 = 100%. This pattern might naively be 

taken to indicate an absence of synergistic responders in the cohort (because the joint effect is 

the sum of the single effects), whereas in fact the response pattern of participant 2 exhibits 



 6 

synergism (the outcome only occurs because of the combination of exposures E1 and E2). 

Exactly the same pattern would however arise if participant 1 got the outcome exactly and 

only when E1 was present, and participant 2 got the outcome exactly and only when E2 was 

present, so that there was no synergism at all. Thus, a given incidence pattern in a cohort can 

be consistent with very different patterns of exposure susceptibilities. 

Greenland and Poole [18] responded to Miettinen’s paper with a systematic analysis of a 

table of the 24 = 16 possible individual response patterns allowed by Miettinen’s 

deterministic causal model with two binary exposures (and thus 4 possible exposure 

combinations, as in table 1) and a binary outcome, allowing that a particular exposure can 

cause or prevent disease depending on the other factor. Contrary to Miettinen, they pointed 

out that, in this model, causation and prevention could be treated as symmetric properties. A 

consequence is that additivity could be derived from a no-interdependence assumption, 

provided the competitive-action response type (someone who gets the outcome if exposed to 

E1, E2, or both) was treated as a form of antagonism or effect interference, and thus is ruled 

out by a no-interdependence assumption [18]. For such a type, if E1 comes first then the 

outcome will occur regardless of E2, and thus E1 is blocking any and all further action by E2 

on the outcome; if E2 comes first then then the outcome will occur regardless of E1 and thus 

E2 is blocking half of any further action by E1. Hence, in either case we can say competitive 

response types exhibit antagonism in that one factor blocks the effect of the other.  

Greenland and Poole also showed how the 16 deterministic types can be mapped onto 9 types 

of sufficient causes, showing again the symmetries of causation and prevention, which in turn 

can be simplified into four intuitive categories illustrated by the causal pies in figure 1. There, 

we let factors such as “E1” in figure 1 stand for both the case where E1 is causal (E1=1 in the 

figure) and the case where E1 is preventive (E1=0, i.e., the absence of E1 is necessary for this 

particular sufficient cause). In this situation, the four invariant properties (under recoding) are 

no involvement of either variable (first sufficient cause in figure 1), involvement of only E1 

(2nd sufficient cause), involvement of only E2 (3rd), or involvement of both (4th).  

A more extensive review of the background theory can be found in Greenland et al [25]. 

Further History 

Although Miettinen [14] provided a thoughtful conceptual analysis, the models and 

mathematical results in the paper were not new. For example, there were already many 

articles with individual causal models going back to at least the 1920s. Neyman [26] is often 
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cited as the first such paper, and by the 1960s the bioassay literature was using what 

Miettinen called causally interdependent individual response types to derive response 

probabilities; see Ashford and Cobby [27] and Weinberg [28] for overviews of that early 

literature.  

By the mid-1970s, epidemiological papers also began deriving population risk patterns from 

individual models of synergism and other interdependencies. In particular, Rothman in 1976 

[19] and Koopman in 1981 [29] had done so using a sufficient-component cause model, 

while Hamilton in 1979 [30] and Wahrendorf and Brown in 1980 [24] had used instead a 

potential-outcome model like Neyman’s. Thus, although the concept of building population 

risks from individual susceptibilities was an old one, a series of papers starting in the mid-

1970s introduced the idea to the ongoing epidemiological discussions about interaction and 

interdependence in a clear and coherent manner, and these seminal papers continue to 

influence current thinking on causality[31, 32]. In addition, a number of useful results for 

detecting interdependent effects via departures from risk additivity have been verified and 

derived [32-37]. 

An objection to the above approaches is the lack of statistical power at typical sample sizes 

for detecting departures from additivity[38]. Another is that they are based on deterministic 

causal models. To address that objection, Greenland and Poole [18] also described a model of 

independent action based on stochastic potential outcomes [33, 37, 39] which leads to 

additive hazard-rate differences when there is no interdependence of effects. The latter 

additivity also follows from the model in Wahrendorf and Brown [24] and Weinberg [28], 

which as they discussed was derived from much earlier bioassay literature on independent 

action. 

Discussion 

Given the many factors that influence population data, one might question how useful these 

conceptual modelling exercises are for epidemiology. For most of the models we have found 

that it is possible to describe realistic scenarios in which they at least provide useful thought 

experiments to test speculative hypotheses. For example, it is easy to find examples in which 

different medications given separately may prevent adverse events, albeit not necessarily in 

the same patients, but may be antagonistic in the sense that their combination actually 

increases the risks in some patients (because of drug synergies) – a major concern in the topic 

of polypharmacy. On the other hand, one can conceive of examples where both factors may 
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increase the risk of an adverse outcome, but their combination may or may not be mutually 

antagonistic and prevent the outcome depending on the specifics of the mechanism. For 

example, Miettinen noted that drugs which can cause severe acidosis or alkalosis may kill 

some patients, but careful combination might be harmless [14]. The timing and other 

specifics of drug combination are beyond the crude labelling typical in basic “interaction” 

models seen in epidemiology and biostatistics, although they are of clear concern in the 

bioassay and pharmacology literatures. 

Regardless of whether the models are realistic, in light of the earlier literature [27] one cannot 

justify Miettinen’s claim that “until now the conceptualization of synergism has been 

burdened by epistemological and statistical concerns, whereas in this paper… the take-off is 

guided by ontological considerations alone”[14]. A particular problem for Miettinen’s 

approach is that its definition of independent action depends on the choice of reference 

categories for the exposures. As Greenland and Poole noted [18], Miettinen constructed his 

definition on the assumption that causal and preventive action could be sharply distinguished 

as ontological concepts. This can be the case in situations in which the sequence of actions is 

clear, as with viral infections and vaccines. But often causal and preventive actions are 

distinguished only by arbitrary coding and thus there is no “correct” reference group (e.g. 

when considering gender or ethnicity).[18]  

What is the legacy of the numerous papers on synergy, antagonism, and causal interaction 

that appeared in the 1970s and 1980s? We think they laid out a number of scenarios and 

issues which remain useful and relevant. For example, the use of individual susceptibilities to 

derive population risks and rates has become mainstream, as seen in several current 

textbooks[31, 32]; the book by VanderWeele [32] in particular goes into great depth about 

modelling interdependent effects. On the other hand, as many have acknowledged, rarely can 

we identify hypothesized deterministic individual susceptibilities, so the approach may be of 

little use for risk prediction or clinical practice. To address this problem, subsequent authors 

borrowed the concept of stochastic (random) individual potential outcomes from the bioassay 

literature [18, 31, 37], noting in particular how certain common interpretations of measures of 

causal attribution corresponded to a (usually implausible) assumption of “no biologic 

interaction with background factors”.[33] 

Conclusions 
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Epidemiologists and statisticians analyse data for groups, not individuals. Suppose (even if 

only as a thought experiment) we are prepared to make a number of assumptions, including 

that: (a) susceptibilities and responses are uncorrelated across individuals and follow a simple 

potential-outcomes (counterfactual) model; (b) the response types do not counterbalance one 

another to produce a causally “unfaithful” risk pattern; and of course (c) there is no 

uncontrolled bias. In this situation, we can follow the relatively straightforward approach 

summarized above in table 1 and figure 1, in which we say causal interdependence is present 

when at least some effects of one of the exposures occur or are prevented because of the other 

exposure. When that occurs, the joint effect of the two exposures will be more than additive 

when synergistic responders outnumber antagonistic responders, and less than additive when 

the opposite is the case. In this regard it is essential that, when such issues are being 

considered, the separate and joint effects of exposures are presented (as in table 1) rather than 

dealt with simply by adding product (“interaction”) terms to regression models. 

Nonetheless, as discussed above, epidemiogic data alone can tell us little about the biological 

mechanisms underlying risk patterns, which is why some authors[12, 13] argued that the term 

“biological interaction” is best avoided in epidemiology (even if it remains useful in 

physiological studies). This problem may be seen in that the same pattern of interdependence 

can arise from different time orderings of the exposures, and thus from what may be very 

different mechanisms of action. By definition, epidemiology does not study such mechanisms 

directly, but it can usefully study causal interdependence – which, despite its mechanistic 

agnosticism, has important implications for clinical decision making as well as for public 

health. 
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Table 1: Potential lung cancer risk in 1,000 people over 10 years (and RR) in relation to 

exposure to two possible exposures or treatments: E1 and E2 

          E1 

                    Yes      No 

                  ------------------------------------------------------ 

   E2  Yes  35/1000 (35.0) 10/1000 (10.0) 

              No   5/1000 (5.0)  1/1000 (1.0) 

 ------------------------------------------------------ 

Risk difference  30/1000  9/1000 

------------------------------------------------------------------------------------- 

Risk ratio  7.0  10.0 
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U’’ E2 

Figure 1: Numbers of cases occurring through background factors, 

exposure A alone, exposure B alone, or their combination 

 

Background E1 E2 E1+E2 

U U’ E1 
E1 E2 

U’”
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Cases 1/35 (3%) 4/35 (11%) 9/35 (26%) 21/35 (60%) 

 


