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Abstract

Little is known about the genetic diversity of Salmonella enterica serovar Typhi (S. Typhi) cir-

culating in Latin America. It has been observed that typhoid fever is still endemic in this part

of the world; however, a lack of standardized blood culture surveillance across Latin Ameri-

can makes estimating the true disease burden problematic. The Colombian National Health

Service established a surveillance system for tracking bacterial pathogens, including S.

Typhi, in 2006. Here, we characterized 77 representative Colombian S. Typhi isolates col-

lected between 1997 and 2018 using pulse field gel electrophoresis (PFGE; the accepted

genotyping method in Latin America) and whole genome sequencing (WGS). We found that

the main S. Typhi clades circulating in Colombia were clades 2.5 and 3.5. Notably, the

sequenced S. Typhi isolates from Colombia were closely related in a global phylogeny. Con-

sequently, these data suggest that these are endemic clades circulating in Colombia. We

found that AMR in S. Typhi in Colombia was uncommon, with a small subset of organisms

exhibiting mutations associated with reduced susceptibility to fluoroquinolones. This is the

first time that S. Typhi isolated from Colombia have been characterized by WGS, and after

comparing these data with those generated using PFGE, we conclude that PFGE is unsuit-

able for tracking S. Typhi clones and mapping transmission. The genetic diversity of patho-

gens such as S. Typhi is limited in Latin America and should be targeted for future

surveillance studies incorporating WGS.
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Author summary

Salmonella Typhi is the causative agent of typhoid fever, with between 9–13 million cases

and 116,800 associated deaths annually. Typhoid fever is still a public health problem

mainly in low and middle-income countries (LMICs), including in Latin America, which

has a modelled incidence of up to 169 (32–642) cases per 100,000 person-years. Several

international studies have aimed to fill data gaps regarding the global distribution and

genetic landscape of typhoid; however, in spite of these efforts Latin America is still under-

represented. The globally dominant lineages of S. Typhi (e.g., H58), which often carry

multi-drug resistance (MDR) plasmids, decreased fluoroquinolone susceptibility, and

now azithromycin resistance, are not detectable by the accepted method (PFGE) used to

track outbreaks of typhoid in Latin America. We compared PFGE with whole genome

sequence (WGS) and found it correlated poorly, resulting in the over clustering of cases.

We additionally found that unlike in most endemic countries, S. Typhi in Colombia are

highly antimicrobial susceptible and restricted to a limited number of genotypes that are

not as commonly identified in other S. Typhi endemic countries. Our study provides the

first enhanced insights into the molecular epidemiology of S. Typhi in Colombia, using

WGS data for the first time to investigate the population structure in Colombia and iden-

tifying predominant circulating genotypes. Our work demonstrates that routine surveil-

lance with the integration of WGS is necessary not only to improve disease burden

estimates, but also to track the national and regional transmission dynamics of S. Typhi.

Introduction

Salmonella enterica serovar Typhi (S. Typhi) is the bacterial agent of typhoid fever. With

between 9–13 million cases and 116,800 associated deaths annually, typhoid is still a public

health problem in many low and middle-income countries (LMICs), particularly in South Asia

and parts of sub-Saharan Africa[1,2]. Antimicrobial resistance (AMR) is a major issue, with

multi-drug resistance (MDR; resistance to chloramphenicol, ampicillin, and trimethoprim-

sulfamethoxazole) and fluoroquinolone resistance in genotype 4.3.1 (H58) organisms domi-

nating the global genetic landscape [3,4]. The emergence of extensively-drug resistant (XDR;

MDR and resistant to fluoroquinolones and third generation cephalosporins) in Pakistan and

more recent reports of resistance to azithromycin in South Asia compound the problem [5,6]

Several international studies have aimed to fill data gaps regarding the global distribution of

typhoid [7–10]. However, there have not been large multicenter population-based surveillance

studies conducted in Latin America as there have been in sub-Saharan Africa and South Asia,

nor is there routine blood culture surveillance, so this region represents a major data gap in

global disease burden estimations [11–13]. The modelled incidence of typhoid in Latin Amer-

ica varies enormously, and estimates range from 1.0 (0.2–3.9) cases and 169 (32–642) cases per

100,000 person-years [8,14]. A lack of systematic surveillance also means that there are limited

contemporary data on the circulating bacterial population, AMR profiles, and potential trans-

mission dynamics within South America. However, a recent study revealed a large number of

S. Typhi isolates with a high prevalence of decreased fluoroquinolone susceptibility in Colom-

bia and El Salvador [15].

Pulsed Field Gel Electrophoresis (PFGE) is the conventional method for studying the

genetic relationship between S. Typhi isolates in Latin America [16]. Using this method, we

recently found that some S. Typhi isolates from Colombia shared indistinguishable PFGE pat-

terns with organisms from Argentina, Chile, Perú, Venezuela, Brazil, and Guatemala,
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indicative of the circulation of common “continental” genotypes [17,18]. However, PFGE has

limited discriminatory power to support subtyping and cannot identify genotype 4.3.1, other

emerging genotypes, or AMR genes. Whole genome sequencing (WGS) is the gold standard

for the investigating population structures, transmission dynamics, and molecular mecha-

nisms of AMR in S. Typhi. In 2015, a landmark global S. Typhi genotyping scheme was pub-

lished, but comprised only 20 genome sequences originating from Latin America (Argentina,

El Salvador, French Guiana, and Peru)[3]. Since then, there have been only three additional

publications describing S. Typhi isolated in Latin America and characterized using WGS, gen-

erating a further 36 genome sequences [4,19,20]

In response to local concern regarding the increase of typhoid fever and the international

threat of AMR, the National Surveillance System Public Health (SIVIGILA) of Colombia made

typhoid fever a notifiable disease in 2006, requiring laboratory follow-up [21]. Here, we aimed

to generate the first insights into the molecular epidemiology of typhoid in Colombia by per-

forming AMR profiling and comparative genotyping using both PFGE and WGS on a cross-

sectional collection of S. Typhi isolated in Colombia between 1997 and 2018.

Methods

Ethics statement

This study was conducted in accordance with the principles expressed in the Declaration of

Helsinki. The clinical bacterial isolates were collected through the Colombian Laboratory

National Surveillance System under the scientific, technical and administrative standard for

health research established in Colombian resolution 8430 of 1993 of the Ministry of Health.

Patient data were analysed anonymously; consequently, formal ethical approval for the study

was not necessary.

Salmonella Typhi isolates

A total of 1,478 S. Typhi isolates were submitted to the surveillance program at the National

Health Institute of Colombia between 1997 and 2018. These organisms were all associated

with a reported typhoid and paratyphoid fever event and came from 22 of 32 Colombian

departments and the Capital District of Colombia [21]. 1,077 (72.9%) of these isolates were

successfully genotyped using the standard routine PFGE pipeline (S1 Fig) and 77 (5.2%) S.

Typhi isolates were selected cross-sectionally for WGS (Fig 1 and S1 Table). Our aim was to

generate a broad overview of circulating genotypes in Colombia and to identify genotype H58.

Therefore, we included isolates from all years, from sampled departments, and a broad range

of PFGE patterns, including at least one isolate of each mayor PFGE pattern and including the

various AMR phenotypes. These isolates were both from outbreaks defined by the health

authorities (n = 12) and sporadic cases (n = 65); 61 isolates originated from blood, 10 from

stool, and six from other sources (3 bone marrow, 1 splenic abscess, 1 gluteus abscess, and 1

from a skin swab).

Bacterial identification and antimicrobial susceptibility testing

All isolates were identified using standard biochemical tests (Triple Sugar Iron Agar (TSI), Cit-

rate, Urea, motility), the automated MicroScan, VITEK II system and the Kauffmann-White-

Le Minor scheme to identify organisms suspected to be S. Typhi (Difco, United States) [22]

Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion

method against amoxicillin-clavulanic acid (AMC), chloramphenicol (CHL), nalidixic acid

(NAL), tetracycline (TET), ampicillin (AMP), cefotaxime (CTX), ceftazidime (CAZ),
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trimethoprim-sulfamethoxazole (SXT), and Meropenem in combination with the MIC-based

methods using the MicroScansystems according to manufactures recommendations. Cipro-

floxacin (CIP) susceptibility was determined by agar dilution assays according to the CLSI

standards of 2019 [23] Extended-Spectrum Beta-Lactamase (ESBLs) activity mediated by

blaSHV, blaTEM, and blaCTX-M genes was confirmed by PCR amplification [24].

Molecular subtyping by PFGE

All organisms were subtyped by PFGE following standardized PulseNet protocols. [16].

Briefly, genomic DNA were digested with XbaI (Promega, USA) and subjected to gel electro-

phoresis. PFGE patterns from the different runs were normalized by aligning the reference

digestion pattern of S. Braenderup H9812. Bands were assessed visually and by a computerized

program (Gelcompare 4.0 software (Applied Maths, Belgium). Parameters of tolerance and

optimization were set to 1.5% and similarities calculated according to Dice coefficient. The

Clustering dendrogram was based on the unweighted pair-group method using arithmetic

Fig 1. Colombian Salmonella Typhi isolates selected for whole genome sequencing. PFGE-XbaI dendrogram

generated with Dice coefficient and UPGMA clustering method (tolerance and optimization 1.5%) of the 77 selected S.

Typhi isolates with isolate identification and PFGE pattern code. The red boxes indicate isolates from epidemiological

confirmed outbreaks (A-H).

https://doi.org/10.1371/journal.pntd.0009755.g001
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averages (UPGMA). The resulting XbaI patterns were compared with the local database and if

indistinguishable (within this 1.5% tolerance) from an existing pattern the isolates was given

the same PFGE code; if a unique pattern was deteremined a new PFGE code was assigned. All

PFGE pattern codes were assigned following the PulseNet International guidelines for nomen-

clature, which includes 2 letters for the country or region, 3 letters for the serovar, 3 characters

for the enzyme and 4 digits for the profile number (e.g. COINJPPX01.0001 for Colombia) [17]

Genome sequencing and SNP analysis

DNA was extracted using a Qiacube in combination with the Qiagen QIAamp DNA Mini Kit

(Qiagen) at the Colombian National Health Institute (INS), following the manufacturer guide-

lines. DNA was quantified using a Qubit 2.0 fluorometer (Invitrogen) and 2μg of genomic

DNA was subjected to indexed WGS by Illumina MiSeq platform to generate 100 bp paired

end reads and 30x genome coverage. Genomic libraries were prepared with Nextera XT library

prep Kit FC 121–1031. Raw Illumina reads were assembled using (Velvet v1.2) via an auto-

mated pipeline at the Wellcome Sanger Institute[25]. For preliminary analysis and global con-

textualization and for the detection of non-synonymous mutations in the Quinolone

Resistance Determining Region (QRDR) of genes gyrA, gyrB, parC, and are, the assembled

genomes were uploaded to PathogenWatch v3.2.2 (https://pathogen.watch/). Genotypes were

assigned using GenoTyphi (https://github.com/katholt/genotyphi)

Sequenced reads and publicly available sequences were mapped and SNP called against the

reference genome S. Typhi CT18 using the Sanger institute pipelines and following quality

metrics as previously described [26]. Known recombinant regions such as prophage[4], were

manually excluded, and any remaining recombinant regions were filtered using Gubbins

(v1.4.10)[27]. The resultant core SNP alignment of 40,998 bp was used to infer Maximum

Likelihood (ML) phylogenies using RAxML (v8.2.8)[28], specifying a generalized time-revers-

ible model and a Gamma distribution to model site-specific rate variation (GTR+ Γ substitu-

tion model; GTRGAMMA in RAxML) with 100 bootstrap pseudoreplicates used to assess

branch support. SNP distances for the core genome alignment of all the novel genome

sequences were calculated from this alignment using snp-dists package (https://github.com/

tseemann/snp-dists). SRST2 v0.2.0 [29] was used with the ARGannot [30] and PlasmidFinder

[31] databases to detect the molecular determinants associated with AMR; standard cut-offs of

>90% gene coverage and a minimum read dept of 5 were used. Maps drawn in inkscape v1.0.1

an open source scalable graphics editor.

Results

PFGE genotyping and isolate selection

PFGE is performed routinely for S. Typhi in Latin America; results are consolidated into the

PulseNet Latin America and Caribbean Network database [16,17]. Organisms are given a

unique PFGE code according to their genomic digestion pattern; 1,478 Colombian isolates

were present in the national surveillance database at the initiation of this project. We selected

77 S. Typhi isolated between 1997 and 2018 to represent the broadest possible diversity (by

PFGE; S1 Fig) for WGS. This collection comprised 60 unique PFGE profiles (Fig 1 and S1

Table), including the most commonly circulating restriction patterns in Colombia (e.g.,

COINXX.JPPX01. 0008-0083-0115)[18]. Twelve isolates also originated from eight outbreaks

confirmed by the health authorities (A-H; 8, 4, 24, 9, 5, 2, 6, and 8 patients per outbreak respec-

tively) (Figs 1 and S1); more than one isolate were included from two of these outbreaks (D

and G). The selection was skewed towards more recent years based on number of available iso-

lates and for AMR isolates [32].
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AMR and population structure of Colombian S. Typhi

The 77 Colombian S. Typhi isolates were subjected to WGS and a phylogenetic tree was con-

structed from core genome SNPs (Fig 2). We found that genotypic variation in the population

of Colombian S. Typhi was generally limited, with the majority of isolates restricted to two

groups: major cluster 2 and 3. These clades could be further segregated into clades 2.5 (51/77;

66.2%), 3.5 (20/77; 24.9%), and 2 (4/77; 5.2%). In addition, we identified two isolates in major

cluster 1; these organisms belonged to genotypes 0.1.3 and 1.1.

Notably, unlike a recent observation from Chile, we did not identify genotype 4.3.1 (H58)

isolates in this set of Colombian sequences, despite being specifically enriched for organisms

that exhibited resistance to antimicrobials. However, we did identify 14 organisms in geno-

types 1.1, 2.5 and 3.5 that contained a single SNP in the QRDR region (Fig 2 and Table 1),

resulting in reduced susceptibility to fluoroquinolones. Overall, and unlike contemporaneous

S. Typhi collections from Africa and Asia, this collection contained a limited accumulation of

acquired AMR genes. We identified one isolate carrying the sul2 and tetA genes associated

with resistance to tetracycline and sulphonamides, respectively. We additionally detected one

organism from Bogota, isolated in 2012, which carried blaCTX-M-12, blaTEM-1, blaOXA-15, and

Sul1, rendering it resistant to ampicillin, cephalosporins, and sulphamethoxazole (Fig 2 and

Table 1).

Associations between PFGE and WGS

We next aimed to compare the PFGE patterns of the 77 Colombian S. Typhi with that of phy-

logenetic structure created by WGS. First, we found that the paired isolates from the outbreaks

(D and G) were indistinguishable; these organisms had identical PFGEs patterns and displayed

Fig 2. The phylogenetic structure of Salmonella Typhi in Colombia. SNP based RAxML generated Maximum Likelihood

phylogenetic tree of 77 selected Salmonella Typhi isolates. Branches are coloured by genotype (numbers shown). Column 1 indicates

year of isolation, column 2 indicates department (state) of isolation, column 3 indicates the presence (brown) of SNPs in the QNDR

and column D indicates acquired AMR genes (see legend). The map was drawn by inkscape v1.0.1 an Open Source Scalable Vector

Graphics Editor.

https://doi.org/10.1371/journal.pntd.0009755.g002
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no SNP differences in the WGS data (Figs 1 and 3). However, more generally, the PFGE

restriction patterns and position in the dendrogram showed minimal concordance with their

corresponding phylogenetic location from the WGS data (Fig 3). For example, three isolates

from an outbreak (G) shared an identical PFGE restriction pattern (COINXX.JPPX01.0235).

This association was encouraging, but on further investigation, an additional three S. Typhi

isolates exhibited this same restriction profile. These three further isolates had no apparent epi-

demiological association with the specific outbreak, were from different geographical locations

across Colombia, and were isolated several years after the outbreak (Fig 3). These isolates were

determined to be>40 SNPs away in the phylogenetic tree from the isolates causing the

Table 1. Colombian Salmonella Typhi isolates with antimicrobial resistance phenotypes and their associated genes and plasmids.

Organism id Genotype Resistance Kirby-Bauer

(mm)�
MIC Resistance profile AMR Genes/QRDR mutations Plasmid content

INS-S.Ty1062/

1087-15

3.5 NAL(28),AMP(33), S(14) AMP >16

CIP 0.008

AMP

INS-S.Ty0330/256-

08

2.5 NAL(27), AMP(16),S(12) CIP 0.008 AMP(I)

INS-S.Ty0115/36-

03

2.0 NAL(28),SXT(6), TET(6), S

(14)

CIP 0.008 SXT-TET

INS-S.Ty551/52-12 3.5 NAL(24),AMP(6), CTX(8),

TET(6), S(6)

CIP 0.008 AMP-CTX blaCTX-M-12, blaOXA-15, Sul,
blaTEM-1

IncL/M(pOXA-48) IncFIB

(pHCM2)

INS-S.Ty980/524-

15

2.5 NAL(22), TET(6), S(6)

CTX(6), CTX-CLA(10)

CAZ(17), CAZ-CLA(19)

AMP >16 CTX

>32

CIP 0.016

AMP-CTX-TET-S TetA(A), Sul2 ColRNAI

INS-S.Ty0130/69-

04

1.1 NAL(6), S(14) CIP 0.25 NAL-CIP(I) gyrA_S83F

INS-GMR-S-331-

18

3.5 NAL(6),CIP(26)(I) NAL-CIP(I) gyrA_D87Y

INS-S.Ty1100/

1425-15

3.5 NAL(18)(I) CIP 0.25 NAL(I)-CIP(I) gyrA_S83F

INS-S.Ty772/314-

14

2.5 NAL(10), CIP(25), S(10) CIP 0.032 NAL gyrA_D87V

INS-S.Ty423/316-

10

2.5 NAL(6), S(14) CIP 0.064 NAL gyrA_S83Y

INS-S.Ty666/329-

13

3.5 NAL(6), S(11) CIP 0.032 NAL gyrA_D87G

INS-S.Ty1013/755-

15

2.5 NAL(6), S(13) CIP 0.064 NAL gyrA_D87G

INS-GMR-S-752-

17

2.5 NAL(6), CIP(25), S(12) CIP 0.064 NAL gyrA_D87G

INS-GMR-S-91-18 3.5 NAL(6), CIP(24), S(14) CIP 0.064 NAL gyrA_S83F
INS-GMR-S-480-

18

2.5 NAL(6), CIP(26), S(13) CIP 0.064 NAL gyrA_D87G

INS-GMR-S-432-

18

3.5 NAL(6), CIP(23) ND NAL gyrA_S83F

INS-S.Ty0253/397-

07

2.5 NAL(6), S(12) CIP 0.064 NAL gyrA_D87N

INS-GMR-S-114-

17

2.5 NAL(15),CIP(26), S(13) CIP 0.064 NAL gyrB_S464Y

INS-S.Ty563/214-

12

2.5 NAL(18), CIP(28) CIP 0.032 NAL(I) gyrA_S83F

INS-S.Ty538/7-12 3.5 NAL(24), CIP(29), S(12) CIP 0.008 Susceptible IncFIB(pHCM2)

�Interpretation criteria according CLSI 2020

https://doi.org/10.1371/journal.pntd.0009755.t001
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outbreak. Lastly, we found a number of occasions where isolates within differing major WGS

clades shared an identical PFGE digestion pattern. For example, isolates exhibiting the 0006,

0083, and 0250 PFGE patterns could be found in both clade 2.5 and clade 3.5 of the WGS-

based phylogeny (Fig 3). As predicted, these data show that PGFE has limited discriminatory

power to identify organisms that may or may not be closely genetically related, further sup-

porting the transition to WGS for routine surveillance.

Colombian S. Typhi in a global context

To determine if the detected Colombian genotypes were more likely to be of Colombian origin

or introduced from other continents, we placed these contemporaneous Colombian isolates

into a global context with an international collection of S. Typhi genome sequences. We con-

structed a phylogenetic tree of 3,382 publicly available S. Typhi genome sequences with the 77

contemporaneous Colombian isolates; genotype 4.3.1 (H58) sequences were excluded as they

were not identified in this collection (Fig 4). The Colombian organisms in clades 2.5 and 3.5

clustered alongside other Colombian organisms within their respective genotypes. The nearest

Fig 3. WGS and PFGE exhibit a limited correlation for Salmonella Typhi genotyping. The branches of the SNP based RAxML

phylogenetic tree and the first column are coloured by genotype. The sequential columns highlight the PFGE patterns that were

present more than one occasion. i.e., the bottom two isolates of clade 2.5 with PFGE code COINXX.JPPX01.0004 and the top two

isolates of clade 3.5 with PFGE code COINXX.JPPX01.0249. All PFGE patterns are additionally listed under PFGE code (the PFGE

pattern correspond to the last 4 digits of the PFGE code) for enhanced visibility only unique PFGE are listed by code and not

highlighted. The year of isolation and department are coloured as in Fig 2. Letter D and G indicate the two outbreaks from which

we sequenced more than one isolate, these correspond with outbreak strains D and G in Fig 1.

https://doi.org/10.1371/journal.pntd.0009755.g003
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neighbours to these organisms were isolated in India (10592_2_45, genotype 2.5) and Vietnam

(10425_1_60, genotype 3.5) in 1997 and 1993, respectively. In the absence of further sampling,

these data suggest that clade 2.5 and clade 3.5 are locally circulating genotypes in Colombia.

Similarly, the presence of genotypes 1.1 and 0.1.3 in Colombia is indicative of limited circula-

tion of overseas genotypes. Organisms belonging to genotypes 1.1 and 0.1.3 are considered

ancient and presently uncommon on the international S. Typhi genotypic landscape and are

historically associated with typhoid in Africa [3].

Discussion

Here, in this primary study of WGS data from S. Typhi circulating in Colombia, we show that

the majority of organisms in the selected 20-year time span displayed limited genetic diversity,

belonging mainly to two major clades: 3.5 and 2.5. The limited number of sequenced isolates

from Latin America to date mainly belonged to primary cluster 2 and primary cluster 4, with

genotype 2.0 in Argentina, Mexico, El Salvador, and Peru, genotype 2.3.2 in Argentina, El Sal-

vador, and Mexico, genotype 4.1.0 in Brazil [19], and Argentina [3]. In the restricted number

of isolates screened here, no genotype 4.3.1 (H58) isolates were found. Although samples were

selected to present a maximal variation based on diverse PFGE patterns, included specifically

outbreak and AMR related isolates, we cannot be certain H58 is not present in Colombia; how-

ever, we can surmise that this genotype is not as broadly distributed as in Asia and Africa.

Before 2020, genotype 4.3.1 S. Typhi had not been detected in Latin America, but a recent

Fig 4. The phylogenetic location of Colombian Salmonella Typhi in a global context. SNP based RAxML based phylogenetic

tree of the 77 Colombian isolates among 3,382 publicly available non-H58 S. Typhi genome sequences. Branches are coloured by

genotype, inner ring depicts country of isolation, Asia in red shades, South East Asia in blue shades, Africa in green shades,

Colombia in bright red and other Latin American countries in grey. The middle ring indicates AMR profile, any AMR is shown in

light brown and MDR isolates are shown in dark brown. Finally, the outer ring shows number of QRDR SNPs with the colour

intensity increases with increasing number of SNPs.

https://doi.org/10.1371/journal.pntd.0009755.g004
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study identified three independent introductions of H58 into Chile [20]. In Chile, the spread

of these isolates appears to have been contained; however, this observation highlights the need

for sustained genomic surveillance to detect any additional introductions and potential

increased circulation of genotype 4.3.1 [33].

A key observation is that the prevalence of AMR in Colombian S. Typhi appears to be sig-

nificantly lower than that observed in South Asia or Africa. This study, despite being enriched

for AMR isolates, indicates an exceptionally low background of AMR in S. Typhi, with only

one isolate carrying a plasmid containing AMR genes (IncL/M; pOXA-48), with an additional

cryptic no-AMR plasmid (IncFIB; pHCM2) also detected. The precise reason(s) for a lower

prevalence of AMR in S. Typhi, in Colombia are unknown and requires additional investiga-

tion. We hypothesise that a lower prevalence of AMR S. Typhi, in comparison to Asia and

Africa, may be related to antimicrobial access and global pathogen dynamics. Generally, anti-

microbial is not better regulated in this region than other locations with a high density of

LMICs in the past [34]. However, in the last decade many Latin American countries developed

their own National Action Plans to combat AMR under the guidance of PAHO [35]. AMR in

S. Typhi is not static, and the global trajectory of AMR is increasing; consequently, there is a

constant threat of the importation of AMR organisms and sustained surveillance in Colombia

remains crucial. These factors highlight the importance of global typhoid surveillance and not

purely restricting observations to Africa and Southeast Asia.

We additionally aimed to assess the potential correlations and utility of PFGE for S. Typhi

tracking across Latin America. We found that PFGE and SNP based phylogenetic do not cor-

relate especially well. We found the same PFGE patterns in completely distinct primary clus-

ters of the SNP based phylogeny. These observations again indicate that PFGE results in false

clustering and is not appropriately sensitive for surveillance requiring high resolution delinea-

tion of local/regional population structure and dynamics of S. Typhi or for outbreak detection

in Colombia. WGS is a more appropriate method and is therefore slowly being adopted as the

gold standard for these purposes internationally. Lastly, we compared the Colombian isolates

to publicly available non-H58 global isolates to determine whether Colombian organisms were

imported. This global tree highlighted a lack of genomic information from Latin America. It

was therefore impossible to determine whether observed cases are the result of introductions

into Colombia from other Latin American countries or local endemic transmission. However,

we found that even though the Colombian isolates were collected over 20-years, they formed

their own clusters and were not closely related organisms from other locations. These observa-

tions suggest that the S. Typhi population structure in Colombia is likely driven by sustained

endemic circulation of local genotypes.

This study has limitations, the main one being the small sample size of sequenced isolates.

The need to select only a subset of samples meant we could have overlooked genotypes and the

proportion of the detected genotypes may not be an accurate overview of the distribution.

However, this study was aimed to assess S. Typhi genetic diversity in Colombia and we show

that in spite of our diverse selection of organisms that 90% of the isolates belonged to two pre-

dominate clades. More thorough sequencing strategies are required to more accurately deter-

mine the distribution of genotypes.

This study provides an enhanced insight into the molecular epidemiology of S. Typhi in

Colombia, constructing the pathogen population structure and identifying the predominant

circulating genotypes. Our work demonstrates that routine surveillance with the integration of

WGS is necessary not only to improve disease burden estimates, but also to track the national

and regional transmission dynamics of S. Typhi and determine AMR profiles. These data will

be pivotal to better estimate the burden of typhoid in the region, improve antimicrobial treat-

ment practices and help policymakers to assess the need for typhoid conjugate vaccine
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introduction. While the population of S. Typhi in Colombia appears isolated, the emergence

and spread of AMR variants have been observed internationally [5,6,33]. Consequently, it is

critical for improved control and prevention measures that we establish routine WGS surveil-

lance in Colombia and other Latin American countries to strengthen surveillance and moni-

toring the continental spread of S. Typhi.
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