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Abstract 

Water erosion removes soil nutrients, soil carbon, and in extreme cases can remove topsoil 

altogether. Previous studies have quantified crop yield losses from water erosion using a 

range of methods, applied mostly to single plots or fields, and cannot be systematically 

compared. This study assesses the worldwide impact of water erosion on maize and wheat 

production using a global gridded modelling approach for the first time. The EPIC crop model 

is used to simulate the global impact of water erosion on maize and wheat yields, from 1980 

to 2010, for a range of field management strategies. Maize and wheat yields were reduced by 

a median of 3% annually in grid cells affected by water erosion, which represent approximately 

half of global maize and wheat cultivation areas. Water erosion reduces the annual global 

production of maize and wheat by 8.9 million tonnes and 5.6 million tonnes, with a value of 

$3.3bn globally. Nitrogen fertilizer necessary to reduce losses is valued at $0.9bn. As cropland 
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most affected by water erosion is outside major maize and wheat production regions, the 

production losses account for less than 1% of the annual global production by volume. 

Countries with heavy rainfall, hilly agricultural regions and low fertilizer use are most 

vulnerable to water erosion. These characteristics are most common in South and Southeast 

Asia, sub-Saharan Africa and South and Central America. Notable uncertainties remain 

around large-scale water erosion estimates that will need to be addressed by better integration 

of models and observations. Yet, an integrated bio-physical modelling framework - considering 

plant growth, soil processes and input requirements - as presented herein can provide a link 

between robust water erosion estimates, economics and policy-making so far lacking in global 

agricultural assessments. 

 

 

1. Introduction 

Soil erosion through rainfall and water runoff, washes away topsoil and degrades soil 

structure, which can reduce crop yields. Water erosion affects a variety of soil functions 

relevant for crop growth such as nutrient levels, pH, water-holding capacity, texture, infiltration 

rates and soil organic matter (den Biggelaar et al., 2001). The main factors determining the 

degree of water erosion are precipitation strength, slope steepness, soil structure and 

vegetation cover. Apart from precipitation, the primary factors influencing water erosion can 

be directly altered through field management such as the choice of crops, reducing tillage 

intensity, fallow and crop residue cover, and terracing and contour ploughing (Panagos et al., 

2016; Poesen, 2018).  

Productivity loss through water erosion and other processes, such as the depletion of soil 

nutrients, is defined as land degradation (Vogt et al., 2011). Although no clear consensus on 

the global extent of land degradation exists, it has become clear that a considerable amount 
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of cropland is degraded and threatened by productivity loss. In a review of most prominent 

land degradation assessments, Gibbs and Salmon (2015) estimated that 1–6 billion ha of ice-

free land surface (up to 66%) is degraded to varying degrees. Most studies agree that water 

erosion is one of the most serious land degradation processes, especially in developing 

countries (FAO and ITPS, 2015; Montanarella et al., 2016; Oldeman et al., 1991). 

Furthermore, several studies point out that land degradation disproportionately affects 

populations under social and economic pressures, who are more exposed to degraded land 

and are often forced to have an unsustainable reliance on available resources (Nachtergaele 

et al., 2011; Wynants et al., 2019). The negative effects of land degradation on social and 

economic well-being has been widely recognised. Yet its present and future impacts are not 

adequately quantified globally in physical and economic terms to inform major environmental 

and agricultural policies (Montanarella, 2007; Montanarella et al., 2016; Nkonya et al., 2011).  

Soil loss due to water erosion has been estimated at many sites worldwide and modelled 

globally (Borrelli et al., 2017; Doetterl et al., 2012; García-Ruiz et al., 2015; Montgomery, 

2007). However, from a food security standpoint, it is more relevant to quantify the impact of 

water erosion on crop productivity. There are substantial variations in the estimates of 

productivity losses from the few studies in the literature (Bakker et al., 2004, 2007; Den 

Biggelaar et al., 2004b; van den Born et al., 2000; De la Rosa et al., 2000; Lal, 1995; Larney 

et al., 2009; Oyedele and Aina, 1998). This variability is not surprising as erosion-productivity 

relationships are difficult to generalize due to the location-specific nature of soil erosion 

determined by soil properties, climate and management (Den Biggelaar et al., 2004a). 

Moreover, the choice of method to measure water erosion impacts on crops is one of the most 

important factors explaining variations between studies (Bakker et al., 2004). Hence, different 

methodological approaches in field studies can mask the impact of regional differences on 

water erosion impacts on crops.  

Previous global erosion impact assessments (Pimentel et al., 1995; Sartori et al., 2019) relied 

on simple linear assumptions about the impact of water erosion on crop yields, and neglected 
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differences between crops and regional characteristics. Crop models can facilitate the 

extrapolation of experimental and small-scale data across a range of environments and 

management strategies (Nelson et al., 1996). Moreover, models are essential to determine 

long-term effects of degradation processes, which are challenging to observe in short-term 

field experiments (Enters, 1998). Crop models combined with global gridded data 

infrastructure are increasingly used for climate change impact assessments, evaluations of 

agricultural externalities, and as input data providers for agro-economic models (Elliott et al., 

2014; Mueller et al., 2017; Nelson et al., 2014). However, most of the global gridded crop 

modelling (GGCM) studies have so far neglected soil erosion and its impact on crop yield and 

production. 

In this study, we use a GGCM platform to quantify global potential crop productivity losses due 

to water erosion for the first time. We examine maize and wheat as representative staple 

crops, due to their wide distribution in global agriculture and their contrasting soil cover 

patterns. We assess the overall impact of water erosion on global maize and wheat production, 

for a variety of field management techniques, and identify the most vulnerable regions based 

on environmental conditions and fertilizer use. Finally, we consider the uncertainties in our 

assessment. 

2. Methods 

We use the gridded crop model EPIC-IIASA (Balkovič et al., 2014), which combines the 

biophysical Environmental Policy Integrate Climate (EPIC) model with global data on soil, 

climate and crop management, to simulate the daily growth of maize and wheat with and 

without the impact of water erosion on a global scale. This approach enables us to assess, 

based on a globally consistent method, the impact of water erosion on maize and wheat 

productivity relative to a reference scenario where water erosion is excluded from simulations 

and has no impact on crop growth. In both cases, the simulations account for a variety of 

environmental drivers, farming techniques and farm inputs such as fertilizers and irrigation. 
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Importantly, this approach enables us to identify regions which are vulnerable to water erosion, 

and to quantify a production volume that is under threat due to water erosion. Our simulation 

results reflect long-term impacts of water erosion following continuous cultivation for 31 years, 

based on daily weather data for the period 1980–2010. In addition, we use a range of field 

management scenarios to address the highly influential impact of farming techniques on water 

erosion impact assessments, which are among the main sources of uncertainty at the global 

scale (Carr et al., 2020). 

1.1 The EPIC model 

EPIC can simulate a wide range of crops and relevant soil and hydrological processes 

controlling carbon, nutrient and water dynamics (Izaurralde et al., 2006). The relevant model 

processes to simulate crop growth and water erosion presented in the following are based on 

their description in the EPIC model documentation (Sharpley and Williams, 1990). 

Phenological development of a crop is based on the heat unit (HU) approach. This involves a 

base temperature providing a crop-specific threshold under which no growth occurs, and the 

sum of daily HUs (˚C) accumulated during crop growth stages needed to determine when a 

crop reaches maturity. In our study, the potential HUs determining crop maturity are based on 

long-term climate data and reported growing seasons provided for different global 

environments by Sacks et al. (2010). Daily potential biomass growth is determined by 

intercepted photosynthetically active radiation based on the leaf area index (LAI) and solar 

radiation. The LAI of wheat and maize increases exponentially during early vegetative growth, 

after a plateauing it reaches a maximum at maturity, and continuously decreases afterwards. 

A dormancy period is considered in case of autumn-sown wheat cultivars. LAI is calculated as 

a function of heat units, crop stress, and crop development stages. Total biomass is split 

between above- and below-ground biomass. At maturity, crop yield is calculated by multiplying 

the total above-ground biomass with a harvest index, which is affected by heat units. Potential 

crop growth and crop yields are constraint mainly by water, nutrients (N and P), temperature 
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and aeration stress. The most severe stress factor on a given day limits biomass 

accumulation, root growth and yield by a fraction ranging from 0 to 1. 

EPIC includes seven empirical equations to calculate water erosion (Wischmeier and Smith, 

1978). The basic equation is: 

𝐸 = 𝑅 ∗ 𝐾 ∗ 𝐿𝑆 ∗ 𝐶 ∗ 𝑃 (1) 

where E is soil erosion in t ha-1 (mass/area), R is the erosivity factor (erosivity unit/area), K is 

the soil erodibility factor in t MJ-1 (mass/erosivity unit), LS is the slope length and steepness 

factor (dimensionless), C is the soil cover and management factor (dimensionless) and P is 

the conservation practices factor (dimensionless). In this study, we use the MUSS equation 

(Williams, 1995), which is adapted for small watersheds:  

𝑅 = 0.79 ∗ (𝑄 ∗ 𝑞𝑝)0.65 ∗ 𝑊𝑆𝐴0.009  (2) 

where Q is runoff volume (mm), qp is peak runoff rate (mm h-1) and WSA is watershed area 

(ha). In a comparison of the seven water erosion equations included in EPIC, simulated water 

erosion values based on the MUSS equation match closest with observed water erosion rates 

from 606 measurements on arable land around the world (Carr et al., 2020) (For a summary 

of the comparison of simulated erosion rates with field measurements, see Text S1.). In EPIC, 

the main impact of water erosion on crops is driven by nutrient stress through the export of 

organic carbon, nitrogen and phosphorus from the topsoil layer through sediment runoff. The 

soil organic matter model in EPIC is based on the Century model (Izaurralde et al., 2006). The 

system interacts directly with soil moisture, temperature, erosion, tillage, soil density, soil 

texture, leaching, and translocation functions. 

1.2 Global gridded EPIC model 

The EPIC-IIASA GGCM has 131,326 grid cells with a resolution varying between 5’ x 5’ and 

30’ x 30’ (approximately 9 km and 56 km, respectively, at the equator). The smallest spatial 

elements of the grid cells are global datasets of soil and topography with a resolution of 5’ x 

5’. Soil information includes soil type, texture, bulk density and organic carbon concentration 
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from the Harmonized World Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), and 

topography data is taken from USGS GTOPO30 (USGS, 1997). Within a domain of 30’ x 30’ 

grids, the elements belonging to identical topography and soil texture classes, and falling 

within the same country, are spatially aggregated to grid cells. Each grid cell is represented 

by a single field characterized by the prevailing combination of topography and soil conditions 

found in the landscape. Slope length (20 – 200m) and field size (1 – 10ha) are allocated to 

each representative field based on a set of rules for different slope classes (Table S1). The 

slope of each representative field is determined by the slope class covering the largest area 

in each grid cell (Table S1). Slope classes are taken from a global terrain slope database 

(IIASA/FAO, 2012) and are based on a high-resolution 90 m SRTM digital elevation model. 

Weather data, including daily precipitation (mm), minimum and maximum temperatures (°C), 

solar radiation (MJ m-2) and relative humidity (%), are used at a spatial resolution of 0.25° x 

0.25°. We use historic bias-corrected daily weather data combining data from the MERRA 

reanalysis model, station data, and remotely sensed datasets, covering the years 1980–2010 

(AgMERRA, Ruane et al., 2015). Rainfed and irrigated maize and wheat production areas for 

each grid cell are taken from Portmann et al. (2010)  We base crop management on reported 

growing seasons (Sacks et al., 2010) and spatially explicit nitrogen and phosphorus fertilizer 

application rates (Mueller et al., 2012). 

1.3 Field management scenarios 

Maize and wheat have contrasting soil cover densities. Maize is typically cultivated in wide 

rows, which leaves the soil surface less protected than in wheat fields, where crops are grown 

in a higher density. We simulate each crop for six field management scenarios (three tillage x 

two cover crop scenarios), each influencing soil properties, water erosion and plant growth 

differently. In grid cells in which several of these scenarios coincide (see below), simulation 

results are subsequently averaged. The tillage management scenarios represent 

conventional, reduced and no-tillage, which differ by tillage depth, mixing efficiency of tillage 

and sowing mechanizations, surface roughness and the amount of plant residues left on the 
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field after crop harvest (Table 1). In addition, we alter the runoff curve numbers for each tillage 

scenario to account for different runoff intensities for the cover treatment classes presented in 

Table 1. Runoff curve numbers indicate the runoff potential of a hydrological soil group, land 

use and treatment class and allow to take the impact of different tillage practices on the 

hydrologic balance into account (Chung et al., 1999). The different tillage intensities account 

for the impact of gradually changing surface cover and roughness on water erosion rates. We 

simulate each tillage scenario with and without cover crop (grass-type green fallow) in between 

growing seasons. 

The field management scenarios reflect a range of potential impacts occurring due to different 

farming techniques on erosion–crop yield relationships. To account for geographic variations 

in field management, we construct a baseline wheat and maize management scenario from 

the six alternatives based on the climatic and country-specific indicators as follows: 

• As the only global statistical data on the type of tillage systems are provided for the extent 

of Conservation Agriculture area at the national scale (FAO, 2016), we assign only the 

lowest tillage intensity scenario to specific countries in our baseline scenario. Therefore, 

conventional and reduced tillage are simulated in each grid cell globally, whereas the 

additional no-tillage scenario is simulated only for countries in which at least 5% of cropland 

is cultivated under conservation agriculture according to AQUASTAT (2007–2014) (FAO, 

2016), including Argentina, Australia, Bolivia, Brazil, Canada, Chile, China, Colombia, 

Finland, Italy, Kazakhstan, New Zealand, Paraguay, Spain, USA, Uruguay, Venezuela, 

Zambia, and Zimbabwe (Figure S7).  

• The simulation of green fallow in between growing seasons is determined by the main 

Köppen-Geiger regions (Kottek et al., 2006). In tropical regions, we simulate cover crops in 

between maize and wheat seasons to represent soil cover from a year-round growing 

season. In arid regions, we do not simulate cover crops in between growing seasons due 

to limited water supply. In temperate and snow regions, we use average simulation results 

from both cover crop scenarios (Figure S7). 
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• Irrigation and conservation practices in all field management scenarios are based on the 

underlying slope class of each grid cell (Table S1). On slopes steeper than 5%, we consider 

only rainfed agriculture, as hilly cropland is irrigated predominantly on terraces that prevent 

water runoff. 

• P-factors can be used to simulate conservation practices. These are static coefficients 

ranging between 0 and 1, where 0 represents conservation practices that prevent any 

erosion and 1 represents no conservation practices. Whilst we introduced conservation 

practices implicitly through various crop growth assumptions as presented in Table 1, we 

showed in a previous study (Carr et al., 2020) that P-factors (i.e., additional, or more 

efficient conservation practices) should be used on steep slopes to prevent EPIC from 

overestimating water erosion. As there is presently no globally consistent information on 

the distribution of conservation practices, we assigned P-factors <1 to slopes > 16% 

assuming that conservation practices are most likely implemented on steep slopes. On 

slopes steeper than 16%, we assign a P-factor of 0.5, and on slopes steeper than 30%, we 

assign a P-factor of 0.15 to simulate contouring and terracing based on the range of P-

values presented in Morgan (2005).  

To determine the impact of water erosion on maize and wheat yields, we simulate all field 

management scenarios additionally with no erosion (P=0). The comparison of crop yields 

simulated with a P-factor value of zero with crop yields simulated under higher P-factor values 

can be used to identify grid cells where crop yields are reduced by water erosion. We use the 

simulation outputs at those grid cells to quantify the reduction of maize and wheat production 

and the relative reduction of crop yields due to water erosion. 

1.4 Uncertainties in the cultivated slope and field management data 

Assumptions about land topography and field management have a significant impact on 

estimated water erosion rates. This is particularly important because global data on land use 

is uncertain and the use of different farming techniques are not well understood, and this could 

introduce errors into our analysis. 
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While we know the range of slopes and the fraction of cropland in each grid cell, we do not 

know how much land in each slope class is cultivated. We therefore assume the cropland in 

each grid cell is on the slope class that is most common in the grid cell, as this represents the 

prevailing topographical conditions. This assumption is likely to introduce spatially-varying 

uncertainty as the fraction of each grid cell containing the dominant slope category varies from 

20% to 100%, with an average share of 48%. The share of land covered by cropland in each 

grid cell also varies greatly, from 1% to 100%, with an average share of 14% (Figure S6). 

Therefore, the extrapolation of our simulation outputs to the entire cultivated area in a grid cell 

can provide only a rough estimate of the global differences in maize and wheat production 

losses due to water erosion. 

We explore the implications of this assumption by comparing our simulation results to a 

second set of simulation outputs based on an ideal cropland distribution scenario, in which the 

flattest terrain available rather than the most common slope in each grid cell is cultivated. This 

assumes that farmers would prefer to cultivate flatter land where possible. As this requires a 

large number of additional model runs for various combinations of slope assumptions and field 

management scenarios per grid cell, we use an example region to reduce computational time. 

We examine Italy, as it is susceptible to water erosion and includes large and heterogenous 

maize and wheat cultivation areas on flat terrain in the north and mountainous regions in the 

south. 

We address field management uncertainties by examining the range between minimum and 

maximum water erosion impacts on crops simulated with all field management scenarios for 

each grid cell and country. 

1.5 Crop yield and production impact aggregation 

Simulated maize and wheat yields, which are calculated in t ha-1 dry matter, are converted to 

fresh matter assuming a net water content of 12% following Wirsenius (2000), so that they 

can be compared with yields reported by FAOSTAT (FAO, 2020). To determine the impact of 
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water erosion on maize and wheat yields by the end of the simulation period, we average crop 

yields generated with all relevant field management scenarios selected under the baseline 

scenario assumptions for the years 2001–2010. We weight mean crop yields by the irrigated 

and rainfed cultivation area (Portmann et al., 2010) of the respective crop per grid cell 

(Equation 3). The difference between average maize and wheat yields, simulated with and 

without the impact of water erosion, are used to filter grid cells where water erosion reduces 

crop yields (i.e. the area where crop yields are vulnerable to water erosion). Subsequently, 

the relative reduction of maize and wheat yield due to water erosion is calculated on grid cell 

level (Equation 4).  

𝑌𝑤𝑐𝑝𝑔 = 𝑌𝑎𝑣(𝑟)𝑐𝑝𝑔 ∗ 𝐴𝑓(𝑟)𝑐𝑔 + 𝑌𝑎𝑣(𝑖)𝑐𝑝𝑔 ∗ 𝐴𝑓(𝑖)𝑐𝑔   (3) 

𝑑𝑌𝑟𝑒𝑙𝑐𝑔 =
𝑌𝑤(𝑒0)𝑐𝑔−𝑌𝑤(𝑒1)𝑐𝑔

𝑌𝑤(𝑒0)𝑐𝑔
 ; 𝑖𝑓 𝑌𝑤(𝑒0)𝑐𝑔 >  𝑌𝑤(𝑒1)𝑐𝑔 (4) 

Ywcpg is area-weighted mean crop fresh matter yield (t ha-1) for crop c, P-factor value p and 

grid cell g; Yav is yield averaged across the tillage and cover crop scenarios selected in each 

grid following the baseline scenario assumptions and for the years 2001–2010 simulated 

under irrigated (i) and rainfed (r) conditions; Af(r) is the rainfed area fraction; and Af(i) is the 

irrigated area fraction. dYrel is the relative loss of the yield of crop c, at grid cell g; Yw is 

weighted average yield simulated with a P-factor value of 0 (e0) and a P-factor value greater 

than 0 (e1). 

To calculate the loss of crop production in each country, we first estimate the absolute 

reduction of crop yields as the difference in the mean yield for the years 2001–2010 simulated 

without and with water erosion (e0 and e1, respectively) (Equation 5). We then multiply this 

yield reduction by the total area of irrigated and rainfed cropland of each grid cell in the country 

(Equation 6).  

𝑑𝑌𝑎𝑏𝑠𝑐𝑤𝑔 = 𝑌𝑎𝑣(𝑒0)𝑐𝑤𝑔 − 𝑌𝑎𝑣(𝑒1)𝑐𝑤𝑔;  𝑖𝑓 𝑌𝑤(𝑒0)𝑐𝑝𝑔 >  𝑌𝑤(𝑒1)𝑐𝑝𝑔  (5) 

𝑑𝑃𝑙𝑐 = ∑ 𝑑𝑌𝑎𝑏𝑠(𝑖)𝑐𝑔 ∗ 𝐴(𝑖)𝑐𝑔 + 𝑑𝑌𝑎𝑏𝑠(𝑟)𝑐𝑔 ∗ 𝐴(𝑟)𝑐𝑔
𝑛
𝑔=1  (6) 
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dYabscwg is the absolute yield loss for crop c, irrigation scenario w and grid cell g; Yav is yield 

averaged across the tillage and cover crop scenarios selected in each grid cell following the 

baseline scenario assumptions and for the years 2001–2010 with P=0 (e0) and a P>0 (e1); 

dPlc is the loss of production (in tonnes) of crop c in country l; n is the number of grid cells in 

country l; dYabs(i) is the absolute decline in irrigated yields and dYabs(r) is the absolute 

decline in rainfed yields; A(r) is the rainfed area (in ha); and A(i) is the irrigated area (in ha). 

We use the national market prices of crops from the FAOSTAT producer price (average 2013–

2018, or the last five annual records available) to calculate the economic maize and wheat 

production losses (in $) due to water erosion per country and globally. Two-tailed T-tests are 

used to filter countries with significant differences between average yields simulated with and 

without water erosion. 

1.6 Evaluation of the quality of the modelled crop yields 

We evaluate modelled maize and wheat yields (Figure S5) against FAOSTAT reported yields 

using the baseline crop management scenario. We convert modelled dry-matter crop yields to 

fresh matter and aggregate yields for each country using the same approach as for grid cell-

level aggregation in Equation 3. We average irrigated and rainfed crop yields (generated with 

all P-factor values, tillage and cover crop scenarios selected for the baseline scenario and the 

years 2001 and 2010) for each country and weight them by the cultivated area of the 

respective irrigated or rainfed crop per country (Portmann et al., 2010) (Equation 7). We use 

average maize and wheat yields per grid cell to summarise the total maize and wheat 

production for each country (Equation 8). 

𝑌𝑤𝑐𝑙 = 𝑌𝑎𝑣(𝑟)𝑐𝑙 ∗ 𝐴𝑓(𝑟)𝑐𝑙 + 𝑌𝑎𝑣(𝑖)𝑐𝑙 ∗ 𝐴𝑓(𝑖)𝑐𝑙 (7) 

𝑃𝑐𝑙 = ∑ 𝑌𝑎𝑣(𝑟)𝑐𝑔 ∗ 𝐴(𝑟)𝑐𝑔 + 𝑌𝑎𝑣(𝑖)𝑐𝑔 ∗ 𝐴(𝑖)𝑐𝑔
𝑛
𝑔=1  (8) 

Ywcl is weighted yield for crop c in country l; Yav is yield averaged for the years 2001–2010, 

with all P-factor values and all tillage and cover crop scenarios selected under the baseline 

scenario assumptions simulated under irrigated (i) and rainfed (r) conditions; Af(r) is the 
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rainfed area fraction and Af(i) is the irrigated area fraction; Pcl is the total production (in tonnes) 

of crop c in country l; g is any grid cell in country l; n is the number of grid cells in country l; 

A(r) is the rainfed area and A(i) is the irrigated area in hectares. 

We compare crop yields and total production per country against FAOSTAT statistics for the 

years 1995–2005. The years are chosen based on the years of reported fertilizer application 

rates that are used to simulate maize and wheat yields. The agreement between simulated 

and reported data is determined by the coefficient of determination (R2) and the relative error 

(%) between both datasets. Evaluation results are provided in the supplementary information 

(Text S2, Figure S3, Figure S4). 

2 Results 

2.1 The impact of water erosion on global maize and wheat yields 

In the last decade of our 31-year simulation period, the average annual maize and wheat 

yields were reduced due to water erosion at 58% and 62% of grids cells, respectively, by a 

global median of 3% for each crop. The affected grid cells represent 51% and 46% of global 

maize and wheat cultivation areas, respectively. Median annual soil loss at grid cells where 

crop yields are reduced is 11 t ha-1 and 6 t ha-1 on maize and wheat fields, respectively. The 

simulated relative reduction of average annual maize and wheat yields per grid cell at the end 

of the simulation period is illustrated in Figure 1. Most grid cells where high yield reduction is 

simulated represent fields with low fertilizer input on steep slopes exposed to intensive 

precipitation. 

The distribution of annual average crop yield losses for the 40 most vulnerable maize- and 

wheat-producing countries is plotted in Figure 2. Countries in which the median annual 

reduction of maize yields due to water erosion is higher than 5% by the end of the simulation 

period are most abundant in sub-Saharan Africa and across Asia. There are similarly high 

median maize yield losses for countries in Central America and the Caribbean, but only Chile 
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and Uruguay are badly affected in South America, and only Albania, Croatia and Greece in 

Europe. Median wheat yield losses per country are generally lower than for maize. Countries 

with median wheat losses higher than 5% are mostly in Asia and Europe. In Africa, annual 

median wheat yield losses higher than 5% are simulated in Ethiopia, Uganda and Tanzania, 

and in South America in Uruguay, Bolivia and Chile. These crop yield losses are modelled 

using the prevailing environment and management conditions in each country. Actual crop 

yield losses could only be determined based on an explicit spatial link between the extent of 

crop cultivation areas and areas vulnerable to water erosion, which would only be possible 

with on-site observations. 

The distribution of the magnitude of crop yield losses and the share of grid cells affected by 

water erosion needs to be considered to assess each countries vulnerability to water erosion. 

In some large countries, the majority of cropland is exposed to low water erosion despite 

extensive vulnerable areas within the country. For example, large areas in the United States, 

Brazil, India and China are affected by water erosion. However, as these regions are only a 

small part of the entire cropland area, overall median crop losses are low. On the other hand, 

in some countries a small number of grid cells with high water erosion cause high median crop 

productivity losses. Afghanistan, Pakistan and Iran are ranked among the most vulnerable 

countries even though less than half of the grid cells are affected by water erosion under all 

scenarios. 

In several countries, field management scenarios have a significant impact on the area 

affected by water erosion and on the magnitude of crop yield losses, as demonstrated by the 

uncertainty ranges in Figure 2. In most countries, the median maize and wheat yield losses 

are lowest with no tillage and cover crops and highest with conventional or reduced tillage and 

bare soil fallow. On a global scale, annual maize and wheat yield losses simulated under all 

field management scenarios range from 2–5% and 3–4%, respectively.  
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2.2 Fertilizer use and environmental drivers affect the impacts of water erosion 

The simulated impact of water erosion on crop yields is strongly influenced by fertilizer input 

and environmental drivers in each country such as slope inclination and precipitation amount. 

Figure 3a shows that median maize and wheat yield losses per country tend to be higher in 

countries with higher levels of water erosion. Losses are relatively lower in countries with high 

rates of fertilizer application, which replace nutrients lost through soil runoff (Figure S10). We 

simulate a global median rate of nitrogen runoff from maize and wheat fields of 7 kg ha-1 yr-1 

and 5 kg ha-1 yr-1, and a global median rate of soil organic carbon runoff from maize and wheat 

fields of 107 kg ha-1 yr-1 and 72 kg ha-1 yr-1 during the whole simulation period (global maps 

on soil, nitrogen and carbon runoff are provided in the supplementary information in Figures 

S11–S13).  

Slope steepness and precipitation strength are the most important environmental drivers 

influencing the impact of water erosion on crop yields. Figures 3b and 3c show how yield 

losses increase as a function of slope classes and rainfall erosivity classes1. The distribution 

of maize and wheat cropland in our grid cells per slope and rainfall erosivity classes is 

illustrated by the grey bars in the same plots. Around 73% of maize and wheat cropland is on 

slopes whose steepness does not exceed 5%. On those slopes, median global maize and 

wheat yield losses range from 0% to 1%. On steeper slopes, median yield losses range from 

3% to 9%. Similarly, 69% of maize and wheat land is exposed to rainfall erosivity below 3000 

MJ mm ha-1 h-1 yr-1, which is the average rainfall erosivity on global cropland. For those areas, 

median crop yield losses range from 1% to 2%. Median crop yield losses on fields exposed to 

higher rainfall erosivity range from 2% to 4%. 

 

The highest yield losses tend to occur in regions with low fertilizer input and high rates of water 

erosion. Figure 4 identifies agricultural regions susceptible to water erosion as indicated by 

 
1 Rainfall erosivity classes are taken from Panagos et al. (2017). 
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overlapping areas of slope steepness (IIASA/FAO, 2012) and rainfall erosivity (Panagos et al., 

2017), and shows the average fertilizer application rates for maize- and wheat-producing 

countries (Mueller et al., 2012). Each map layer is presented in Figures S13–S15. Dark areas 

highlight most vulnerable locations characterised by high abundance of steep slopes in 

regions of high rainfall erosivity. These are most common in South, East and Southeast Asia, 

sub-Saharan Africa, and Latin America. The cultivation on steep slopes is a common factor of 

vulnerability outside the tropics as well, but rainfall erosivity decreases there, reducing the 

energy of rainfall to erode soil. Fertilizer application per country varies significantly. In most 

African countries and in several countries in Asia and Latin America, the fertilizer use is 

substantially lower than in the rest of the world.  

2.3 The impact of water erosion on total maize and wheat production  

By extrapolating average absolute maize and wheat yield losses across the entire irrigated 

and rainfed cultivation area of each crop in a grid cell, we sum the total annual production loss 

per country (Figure 5). We estimate that water erosion reduces the global production of maize 

and wheat by 9 million tonnes and 6 million tonnes annually. This accounts for less than 1% 

of the global average maize and wheat production of 1,091 million tonnes and 739 million 

tonnes, respectively, from 2013–2018 reported by FAOSTAT. Market values of the national 

maize and wheat production losses, derived by multiplying production losses with the average 

market prices ($ t-1) in each country, add up to an annual global loss of approximately $2bn in 

maize production, and $1.3bn in wheat production. Highest production losses in absolute 

terms are in countries with the largest maize and wheat cultivation areas rather than in the 

most vulnerable countries. Tables 2 and 3 list the 20 countries with the highest annual 

reduction in maize and wheat production due to water erosion. These countries account for 

84% and 77% of the global maize and wheat production. 

We estimate the largest maize production declines for the most important producers such as 

Mexico, Brazil, United States, India, China and Indonesia. Nevertheless, losses in the United 

States and China are only 0.2% of their national production, but reach 5% of Mexico’s 
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production. Few countries with the highest absolute losses have low shares of global 

production (e.g. Guatemala; Nicaragua; Nepal; Myanmar). 

Similarly, the modelled loss of wheat production due to water erosion in absolute terms is 

highest for India and China as they produce nearly a third of global wheat production, but is 

less than 1% of their total production. High production losses in absolute terms for small 

producers are rarer than for maize. Countries with lowest production losses in absolute terms 

are most abundant in Africa, Southeast Asia and Latin America.  

2.4 The Impact of uncertainty in field management and slope modelling 

The impact of our assumption that the most common slope represents the whole grid cell is 

examined for Italy in Figure 6. The plots compare the distribution of modelled maize and wheat 

yield losses due to water erosion for cases in which all cropland is either on the most common 

slope class or on the flattest terrain in each grid cell. Median annual maize and wheat yield 

losses for the flattest terrain assumption are 0.2% and 1.2%, respectively, leading to annual 

maize and wheat production losses of 0.01 million tonnes and 0.04 million tonnes, 

respectively. For the most common slope scenario, median annual maize and wheat yield 

losses are 2.1% and 4.1%, with substantially higher annual maize and wheat production 

losses of 0.05 million tonnes and 0.1 million tonnes, respectively. 

The uncertainty due to lacking field management information varies around the globe and is 

most pronounced in erosion-sensitive areas, where soil conservation techniques can reduce 

extreme water erosion rates considerably. In those areas, contrasting field management 

scenarios generate a large range of values with varying degrees of water erosion impacts on 

crop yields (Figure S17). We reduced this large uncertainty range in our baseline scenario by 

identifying and removing field management practices that are unlikely to be used in specific 

regions. However, due to the large variety of field management practices worldwide, we can 

only partly narrow down this uncertainty. 



18 
 

3 Discussion 

3.1 Erosion-induced crop yield losses and fertilizer requirements for 

compensation 

Previous studies suggest that soil loss rates up to 11 t ha-1 are tolerable to maintain crop 

productivity for soils in the United States (Schertz and Nearing, 2006) and in Europe (Panagos 

et al., 2018) based on the assumption that fertilizer will compensate for nutrient runoff. On 

fields with higher water erosion rates, Panagos et al. (2018) assumed that crop productivity 

would reduce by 8%, based on a review of relevant studies on erosion-crop productivity 

relationships. Similarly, our model outputs generate a median global reduction of maize and 

wheat yields of 6% for grid cells with water erosion of at least 11 t ha-1. In fields with water 

erosion below 11 t ha-1 we simulate a considerably lower median crop yield reduction of 1%. 

However, large variations in fertilizer input between countries affect the impact of water 

erosion on crop yields. If fertilizer were not sufficiently supplied to compensate for nutrient 

losses in certain countries, their crop yield losses may be higher than in countries with both 

higher water erosion and fertilizer application rates (Balkovič et al., 2018). Although synthetic 

fertilizers can quickly compensate for nutrient loss, the recovery of lost organic matter and the 

consequent damage to soil structure can take decades (Poulton et al., 2018). Therefore, 

acceptable soil loss rates should not consider only the extent to which fertilizer application can 

replenish soil fertility. An assessment should also consider soil formation rates and off-site 

concerns such as the proximity to sensitive areas (Montgomery, 2007; Schertz and Nearing, 

2006).  

The additional fertilizer costs to compensate for water erosion can be higher than the loss of 

income due to production losses (Graves et al., 2015). Global median nitrogen runoff of 7 kg 

ha-1 yr-1 in maize fields and 5 kg ha-1 yr-1 in wheat fields, from our simulation outputs, would 

cost $1.7 ha-1 yr-1 and $1.2 ha-1 yr-1 2. The global annual nitrogen fertilizer replacement costs 

 
2 based on global urea price for the period 2015–2019 taken from World Bank (2020a). 
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for maize and wheat fields would be $642m and $255m, respectively. Although this is lower 

than the estimated annual maize and wheat production losses ($2.0bn and $1.3bn), 

replacement costs for lost nutrients would be considerably higher if we were to also account 

for phosphorus and potassium runoff. In addition, carbon runoff of median 107 kg ha-1 yr-1 and 

72 kg ha-1 yr-1 in maize and wheat fields might add additional costs through nutrient 

replacement efforts such as manure application. On a global scale, the relative fertilizer 

replacement costs might be too low to incentivise farmers to introduce soil conservation 

measures, but they can be considerably higher for vulnerable areas (Hein, 2007). For a 

comprehensive assessment of water erosion impacts, off-site impacts on surrounding 

environments such as the pollution of surface water and emission of greenhouse gases also 

need to be considered (Chappell et al., 2016; Tilman et al., 2001). Several studies estimate 

higher costs of off-site impacts due to erosion than on-site costs through production losses 

and fertilizer replacement (Görlach et al., 2004; Graves et al., 2015). Further, we did not 

account for sediment re-distribution as we currently rely on simple water erosion models for 

global assessments. Topsoil accumulation in deposition areas may improve nutrient 

availability and soil properties and can offset the negative effects on crops in eroded areas 

(Bakker et al., 2007; Duan et al., 2016). 

Due to the high fertilizer use in major maize and wheat production areas, which are mostly 

located on flat terrain and in regions with lower rainfall erosivity than the global average, water 

erosion has had a low impact on annual global production losses in absolute terms. Vulnerable 

regions with potentially high crop yield losses are mostly outside major production regions and 

therefore they hardly affect changes in global maize and wheat production. Den Biggelaar et 

al. (2004a) also estimated a low impact of water erosion on a global scale, and concluded that 

the small losses would likely be masked over the short term by market fluctuations, weather, 

and other environmental perturbations. Furthermore, market mechanisms such as trade flows 

can considerably reduce production losses. Sartori et al. (2019) used a global market 

simulation model that accounted for market impacts of soil erosion, which reduced direct 
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production losses by three times. Nevertheless, as erosion impacts are cumulative, they may 

cause more serious losses if erosion continues unabated over a long period of time (Den 

Biggelaar et al., 2004a), and could ultimately lead to total topsoil loss and the land being 

abandoned. Moreover, water erosion could be self-reinforcing, by decreasing the protective 

cover through reduced crop cover and residues on the soil surface (Ponzi, 1993). 

Slope inclination and precipitation intensity are the dominant environmental characteristics 

affecting water erosion. Soil types are generally relevant in GGCM crop yield simulations 

(Folberth et al., 2016) and for erosion-productivity relationships (den Biggelaar et al., 2001; 

Lal, 1995), but on a global scale their impact on water erosion is small compared to slope 

steepness and precipitation. This means water erosion impacts are highest in hilly areas, in 

the tropics and in other regions with heavy precipitation. In countries with diverse 

environmental conditions, the variation in water erosion impacts is usually wide ranging and 

therefore a comparison of the extent of cropland vulnerable to water erosion should be further 

analysed on a sub-national scale.  

3.2 Potential impacts of water erosion on livelihoods 

High production losses from water erosion on a national or regional scale can severely impact 

livelihoods of farmers (Wynants et al., 2019). The agricultural sector of both sub-Sahran Africa 

and South Asia contributes roughly 16% to their GDP, compared to a worldwide share of 

approximately 4% (World Bank, 2020b). Moreover, food security is a pressing issue in those 

regions (von Grebmer et al., 2012). Whilst in some of these regions water erosion was recently 

reduced through programs improving land management (Nyssen et al., 2015), increasing crop 

demand through population growth and market effects led to re-cultivation of tropical steep 

slopes (Turkelboom et al., 2008) or soils prone to degradation (Wildemeersch et al., 2015). 

Pressures are likely to increase through climate change impacts on agriculture, which are 

projected to decrease agricultural productivity highest in low latitudes (Iizumi et al., 2017; 

Rosenzweig et al., 2014), which will likely enhance food security issues (Knox et al., 2012; 

Wheeler and Von Braun, 2013). The impact of climate change on water erosion impacts is still 
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unclear but projected increases in rainfall intensity (Olsson et al., 2019; Wang et al., 2014) 

and diminishing vegetation cover through increasing temperature (Zhao et al., 2017) may 

accelerate water erosion and its impacts on crop yields (Li and Fang, 2016). Our simulation 

results indicate that several countries in regions most affected by food security issues today 

and projected to be under high pressure by population growth and climate change in the future 

are among the most affected by high relative production losses due to water erosion. 

3.3 Uncertainties in water erosion estimates 

The large spatial resolution of global-gridded crop models cause uncertainty from various input 

sources including climate, soil, field management, distribution of crop cultivars and cropland, 

irrigation area, growing seasons, model structure and model parameterization, most of which 

have been addressed by prior studies (Folberth et al., 2016, 2019; Mueller et al., 2017; 

Porwollik et al., 2017). In this study, we focus on the uncertainty from cultivated slope and field 

management data, as both are critical for estimating water erosion and its effect on crop yields 

and production.  

3.3.1 Uncertain slopes of modelled fields 

Slope data is the most critical parameter for estimating water erosion. However, the 

uncertainty of global land use datasets (Fritz et al., 2015; Lesiv et al., 2019) does not enable 

us to establish explicit spatial links between maize and wheat cultivation areas and slopes 

without on-site observations. Instead, we use the slope covering the largest area in a grid cell 

to capture the slope most likely covered by most of the cropland. This approach represents 

the prevailing topographic differences of global crop production regions but cannot capture 

the heterogeneity of fields in certain areas. In an ideal situation where all cultivated areas are 

concentrated on the flattest terrain available, simulated water erosion impacts on crop yields 

are reduced substantially. However, the distribution of cropland is based on more factors than 

the topography of land, such as the suitability of soil, climate and socio- economic 

circumstances or limitations such as land tenure and competing land use (Hazell and Wood, 

2008; Nyssen et al., 2019).  
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3.3.2 Uncertainties in field management 

Field management can vary substantially between regions, farming systems and farmers, and 

is based on a complex web of factors (Pannell et al., 2014). While our management scenarios 

bracket the range of field management intensities and soil surface coverage, our baseline 

scenario narrows down prevailing field management by selecting or excluding scenarios 

based on environmental- and country-specific indicators. Apart from similar approaches (e.g. 

Porwollik et al., 2019), no detailed representation of the diversity in global field management 

currently exists. Moreover, our field management scenarios are constant for every season and 

we do not account for the farmer’s actions to mitigate soil erosion, which might significantly 

reduce water erosion impacts (Tiffen et al., 1994). 

Yet an advantage of simulating constant field management is that it enables us to detect the 

impact of water erosion on soil resources in the long term, which might otherwise have been 

masked by technological advances such as higher yielding crop varieties, herbicides, 

insecticides, new planting technologies, and increased fertilizer input to compensate for 

sediment runoff (Littleboy et al., 1996). Moreover, we can address the likely differences in 

water erosion impacts with different intensities of field management, as our model outputs 

reflect the ability of cover crops, crop residues and low tillage intensity to decrease water 

erosion rates and to maintain and replenish soil nutrients. Although this reduces crop yield 

losses due to water erosion, it does not necessarily translate into higher crop yields due to 

other growth constraints being influenced by the choice of farming techniques. Since field 

management practices greatly influence crop yields in general, and water erosion in particular, 

improving their representation and understanding the decision processes of farmers 

responding to changing physical conditions in their fields would help to improve our 

understanding of water erosion impacts on crop yields. 

3.3.3 Data requirements to improve global erosion impact assessments 

Future global studies on water erosion impacts may benefit from current efforts to compile 

spatial data on representative management practices such as tillage systems (Porwollik et al., 
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2019), and remote sensing products for spatial attribution of field management practices 

(Hively et al., 2018; Zheng et al., 2014). In addition, the increasing availability of high-

resolution data through improvements in remote sensing techniques will benefit future global 

water erosion assessments (Buchhorn et al., 2020). However, due to the current uncertainties 

in global land use maps (Lesiv et al., 2019) and spatial field management data (Folberth et al., 

2019), global studies cannot replace field-scale assessments based on precise information on 

management practices and site characteristics. Due to higher spatial detail, field-scale 

assessments can be based on more complex water erosion models, which may include 

special elements such as channels and ponds to identify potential sources and sinks of 

sediments and associated nutrients within a field (Jetten et al., 2003). By including depositional 

areas within the spatial unit studied, positive effects of topsoil accumulation on crop 

productivity can be considered (Bakker et al., 2007). In addition, studies based on data with a 

higher temporal resolution can consider the impact of individual rainfall events on sediment 

runoff instead of focusing on average erosion rates as it is common in global studies. In other 

words, smaller-scale studies can more precisely inform about actual water erosion impacts on 

a field to support effective anti-erosion measures on-site. However, studies on erosion-

productivity relationships cannot normally be scaled-up as the robustness of locally observed 

relationships need to be re-evaluated for different environmental and socioeconomic 

conditions in each location. Given the current lack of consistent field studies representing all 

global environments, a bottom-up approach to deliver large-scale indicators on erosion rates 

and impacts to inform agricultural and environmental policy programs is not currently feasible 

(Alewell et al., 2019). 

The limited availability of global experimental field-scale data means that only simple erosion 

models are appropriate for global studies. For this reason, USLE-based models have been 

chosen in this study and by most other recent global studies to estimate water erosion rates 

at large scales (Borrelli et al., 2017; Naipal et al., 2018). In a previous study, we tested the 

robustness of our modelling approach and concluded that water erosion rates simulated with 
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EPIC-IIASA largely overlapped with experimentally-measured erosion rates in most global 

cropland environments, while water erosion rates simulated at locations with steep slopes and 

strong precipitation were overestimated (Carr et al., 2020). A major challenge in the evaluation 

of simulated water erosion rates was the limited amount of appropriate field data, which do 

not represent all needed regions and field management scenarios, as well as the 

inconsistency in field experiment setups. Whilst the robustness of spatial patterns of crop 

yields simulated with EPIC-IIASA has been evaluated using regional yield statistics and other 

global crop and land use models as a part of ISI-MIP and GGCMI model inter-comparison 

initiatives (Mueller et al., 2017), similar comprehensive evaluation and benchmarking 

techniques to improve global water erosion models are hampered by a lack of appropriate 

field data. Recent efforts to collate erosion measurements and metadata from existing studies 

may improve the global coverage of appropriate field data in the future (Benaud et al., 2020; 

Borrelli et al., 2020). In addition to the need for more spatial data on representative 

management practices and higher-resolution datasets on land use patterns and topography, 

a more consistent approach to field-based data collection to evaluate model outputs would 

enable such studies to be used in future large-scale water erosion assessments. 

 

4 Conclusion 

We used a global gridded crop model to analyse the vulnerability of maize and wheat 

producing regions to water erosion. Locations that are highly vulnerable to water erosion are 

concentrated in regions combining hilly terrain, strong precipitation and low fertilizer inputs. 

But water erosion has only a small impact on global maize and wheat production, because the 

major maize and wheat production areas are on relatively flat terrain and nutrient losses 

through water erosion are offset by high fertilizer applications. However, this compensation of 

soil loss with fertilizers to maintain crop yields hides the negative impacts of water erosion on 

soil resources and surrounding environments.  
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We have performed a globally-consistent and transparent analysis of water erosion impacts 

on maize and wheat production. The most crucial data requirements to improve the robustness 

of simulated water erosion impacts on global crops include well-defined field data covering all 

global regions to evaluate water erosion estimates, higher-resolution global land use datasets 

and detailed information on field management patterns. Improving our understanding of soil 

conservation and anti-erosion measures used in each region when cultivating slopes would 

enable us to improve our representation of vulnerable regions. As these datasets are currently 

not available in higher detail at the global scale, further research on water erosion impacts 

could focus on the most vulnerable regions by analysing land use patterns and all 

environmental circumstances on-site at a finer resolution. The high vulnerability to water 

erosion in sub-Saharan Africa, and parts of South Asia and Latin America, where future 

changes in population growth and climate could amplify land degradation processes, are 

priorities for further research. 
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Figure 1: Maize (a) and wheat (b) yield loss due to water erosion (% yr-1) simulated with the baseline scenario and 

averaged for the years 2001 – 2010. Each grid cell is represented by one representative field capturing the most 

common site characteristics. Cropland areas are not considered in grid cell size. 
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Figure 2: Maize (a) and wheat (b) yield losses due to water erosion (% yr-1) for the 40 most vulnerable countries 

estimated with the baseline scenario. Countries contributing less than 0.01% to global maize and wheat production 

are excluded. The countries are ranked by median crop yield losses. Boxes include values from the 25th to the 

75th percentiles and whiskers bracket values between the 10th and the 90th percentiles. The points illustrate 

minimum and maximum median crop yield losses generated from all field management scenarios. Medians and 

percentiles are converted to logarithmic scale. Grey barplots on the right illustrate the share of grid cells affected 

by water erosion impacts in each country, and errorbars indicate the variability of affected grid cells due to all 

management scenarios. The distributions of all relevant maize and wheat producing countries are provided in 

Figure S8 and Figure S9. 
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Figure 3: (a) Modelled median maize and wheat yield loss plotted against median soil loss through water erosion 

for each country. The linear relationship between national soil loss and crop yield loss is illustrated by the dashed 

regression line. Colours indicate the rate of fertilizer application per country. (b,c) Maize and wheat yield losses, 

respectively, per grid cells classified by slope steepness and rainfall erosivity. Grey bars illustrate the share of 

cropland in grid cells summarised for the different slope and rainfall erosivity classes. 

 

 

Figure 4: water erosion vulnerability on global cropland indicated through the most important environmental drivers, 

rainfall erosivity (MJ mm ha-1 h-1 yr-1) and slope steepness (%), and the average sum of Nitrogen, Phosphorous 

and Potassium fertilizer application rates (kg ha-1yr-1) per country represented by the red bars. To improve the 
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overview of the map, fertilizer application from countries contributing less than 0.1% to global maize and wheat 

production have been excluded, and fertilizer application from all relevant EU27 countries has been averaged. 

 

 

Figure 5: The impact of water erosion on national maize (a) and wheat (b) production based on the sum of estimated 

production losses in all grid cells in each country. NA marks countries without maize or wheat production area. 

Estimates of production losses in each grid cell assume uniform site characteristics for the entire cropland in each 

grid cell. 
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Figure 6: Range of simulated maize and wheat yield losses (% yr-1) in Italy simulated with different cropland 

distribution scenarios for maize (a) and wheat (b). Boxes illustrate medians and 25th and 75th percentiles, whiskers 

illustrate values between the 10th and the 90th percentiles. Grey bars mark the baseline scenario used for the main 

results of this study. 

 

Table 1: input settings for the conventional, reduced and no-tillage scenario 

 Conventional 

tillage 

Reduced 

tillage 

No-tillage 

total cultivation operations 6–7 4–5 3 

max. tillage depth 150 mm 150 mm 40–60 mm 

mixing efficiency 99% 75% 2% 

max. surface roughness 30–50 mm 20 mm 10 mm 

plant residues left 25% 50% 75% 

cover treatment class straight  contoured contoured & terraced 

 

Table 2: Countries with the highest annual maize production losses. All records are provided in Table S2. 

country 
prod. 

(million t)+ 

prod. loss 

(million t)* 

prod. loss 

(%) 

prod. loss 

(million $)+ 

Mexico 25.6 1.3 5.0 264.8 

Brazil 81.6 0.8 1.0 157.7 

USA 376.7 0.7 0.2 104.9 

India 25.6 0.6 2.5 92.0 

China 246.7 0.5 0.2 199.8 

Indonesia 23.3 0.5 2.1 151.8 

Philippines 7.6 0.4 5.2 111.3 

Nepal 2.2 0.3 12.5 74.2 

Guatemala 1.9 0.2 12.8 37.2 

Russia 12.7 0.2 1.5 24.6 
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country 
prod. 

(million t)+ 

prod. loss 

(million t)* 

prod. loss 

(%) 

prod. loss 

(million $)+ 

Argentina 38.6 0.2 0.5 31.1 

Tanzania 6.0 0.2 2.7 29.8 

Nigeria 10.2 0.1 1.3 41.2 

Myanmar 1.8 0.1 6.5 27.1 

Nicaragua 0.4 0.1 27.8 31.9 

Romania 12.7 0.1 0.9 20.6 

Ukraine 28.6 0.1 0.4 14.8 

France 14.4 0.1 0.7 17.9 

Ethiopia 7.5 0.1 1.3 20.8 

Viet Nam 5.2 0.1 1.7 26.4 

World 1,091.1 8.9 0.8 1,960.7 

+FAOSTAT: 2013 - 2018 or the latest five years recorded. 

*assuming uniform cropland in each grid cell. 

 

Table 3: Countries with the highest annual wheat production losses. All records are provided in Table S3. 

country 
prod. 

(million t)+ 

prod. loss 

(million t)* 

prod. loss 

(%) 

prod. loss 

(million $)+ 

India 94.4 0.7 0.7 137.4 

China 130.0 0.6 0.5 213.7 

Turkey 21.0 0.5 2.5 139.4 

USA 55.1 0.5 0.8 89.4 

Russia 67.5 0.4 0.6 60.2 

France 37.4 0.3 0.8 56.9 

Argentina 13.2 0.2 1.8 56.5 

Iran 12.4 0.2 1.6 77.4 

United Kingdom 14.6 0.1 1.0 30.1 

Italy 7.3 0.1 1.9 32.5 

Germany 24.8 0.1 0.5 22.9 

Ukraine 25.0 0.1 0.5 17.7 
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country 
prod. 

(million t)+ 

prod. loss 

(million t)* 

prod. loss 

(%) 

prod. loss 

(million $)+ 

Australia 24.5 0.1 0.4 22.0 

Kazakhstan 14.1 0.1 0.6 11.3 

Spain 6.9 0.1 1.2 17.9 

Syria 2.0 0.1 3.6 9.7 

Morocco 6.2 0.1 1.1 19.4 

Romania 8.6 0.1 0.8 11.9 

Greece 1.5 0.1 4.4 15.8 

Ethiopia 4.4 0.1 1.4 23.4 

World 739.5 5.6 0.8 1,292.5 

+FAOSTAT: 2013 - 2018 or the latest five years recorded. 

* assuming uniform cropland in each grid cell. 

 


