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Abstract
Motivation: Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex 
(MTBC), which has a strain- or lineage-based clonal population structure. The evolution of drug-
resistance in the MTBC poses a threat to successful treatment and eradication of TB. Machine learning 
approaches are being increasingly adopted to predict drug-resistance and characterise underlying 
mutations from whole genome sequences. However, such approaches may not generalise well in 
clinical practice due to confounding from the population structure of the MTBC.
Results: To investigate how population structure affects machine learning prediction, we compared 
three different approaches to reduce lineage dependency in random forest (RF) models, including 
stratification, feature selection and feature weighted models. All RF models achieved moderate-high 
performance (AUC-ROC range: 0.60-0.98). First-line drugs had higher performance than second-line 
drugs, but it varied depending on the lineages in the training dataset. Lineage-specific models generally 
had higher sensitivity than global models which may be underpinned by strain-specific drug-resistance 
mutations or sampling effects. The application of feature weights and feature selection approaches 
reduced lineage dependency in the model and had comparable performance to unweighted RF models.
Availability and Implementation: https://github.com/NinaMercedes/RF_lineages
Contact: nbillows@rvc.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Tuberculosis (TB), caused by Mycobacterium tuberculosis, has a 

significant impact on public health worldwide, resulting in 1.6 million 
deaths in 2021 alone (WHO 2022). The primary treatment of TB is to use 
a combination of first-line drugs including rifampicin [RIF], isoniazid 
[INH], ethambutol [EMB] and pyrazinamide [PZA]. However, multi-drug 

resistant TB [MDR-TB] (resistance to RIF and INH) has developed and 
second-line therapies are increasingly required for effective treatment of 
TB (WHO 2022). Previously, second-line treatments included 
fluoroquinolones (ofloxacin [OFL], moxifloxacin [MOX], levofloxacin 
[LEV]), second-line injectables (amikacin [AMI], capreomycin [CAP], 
kanamycin [KAN], streptomycin [STM]) and other drugs (cycloserine 
[CYS], ethionamide [ETD], para-aminosalicylic acid [PAS]) (WHO 
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2022). More recently, WHO updated the treatment guidelines due to the 
need for shorter and effective treatments for drug-susceptible and MDR-
TB (WHO 2021). Recent changes to treatment guidelines and drug-
resistant phenotype classification emphasises the ongoing development of 
the drug-resistant TB problem. Therefore, it is important to gain insight 
into the biological drivers of resistance with a view to improve TB 
treatment and diagnosis. 

Machine learning (ML) algorithms offer a new method to address the 
drug-resistant TB problem by simultaneously predicting drug-resistant 
phenotypes and exploring the genomic variation that underpins drug-
resistance (Kouchaki et al. 2019; Niehaus et al. 2014; Yang et al. 2018). 
Numerous traditional ML approaches have been applied to predict drug-
resistance such as logistic regression, decision trees, random forests (RFs), 
and gradient boosted trees (Deelder et al. 2019; Kouchaki et al. 2019; 
Kouchaki et al. 2020; Libiseller-Egger et al. 2020; Niehaus et al. 2014; 
Yang et al. 2018). Although such models have achieved moderate-high 
performance, their application in clinical settings is hindered due to lack 
of interpretability.

It is suggested that the ideal solution would be for ML algorithms to 
predict resistance using only mutations that are causative of drug-
resistance. This would facilitate the surveillance of drug-resistance 
mutations. However, most published models rely on non-causative 
mutations to boost the predictive performance of the model (Deelder et al. 
2019). For example, co-occurrent resistant mutations that cause resistance 
to a different drug are often assigned high importance and contribute to 
improved performance for some drugs (Deelder et al. 2019). Likewise, it 
is hypothesised that ML prediction is confounded by population structure, 
contributing to high importance of lineage-specific mutations across 
models (Deelder et al. 2019; Libiseller-Egger et al. 2020; Yang et al. 
2019). Even so, the mechanisms that underly drug-resistance are complex 
and can differ between lineages, indicating that some lineage-specific 
mutations may play a role in drug-resistance (Oppong et al. 2019; Wu et 
al. 2013). Therefore, it is important to determine how population structure 
affects model performance and interpretability. 

The Mycobacterium tuberculosis complex (MTBC) is a group of 
genetically related Mycobacterium species that are responsible for causing 
TB. The MTBC has a highly clonal population structure with no ongoing 
horizontal gene transfer and low recombination rate (Gagneux 2018; 
Hershberg et al. 2008; Ngabonziza et al. 2020). It is comprised of several 
human and animal adapted lineages, including Mycobacterium 
tuberculosis sensu stricto (lineages 1- 4 and 7), Mycobacterium var. 
africanum (lineages 5-6) and at least nine zoonotic lineages (Coll et al. 
2014; Napier et al. 2020). Additionally, new lineages 8 and 9 have recently 
been described (Coscolla et al. 2021; Napier et al. 2020). Whilst lineages 
2 (East Asian) and 4 (Euro-American) are more widespread, the remaining 
lineages are geographically isolated, suggesting strains have co-evolved 
with human populations (Gagneux 2012, 2018; Hershberg et al. 2008). 
Population structure is of particular importance in the context of resistance 
prediction for several reasons. Firstly, most ML models assume that 
samples are independent which may be invalid due to the ancestral 
relationships between isolates. This can lead to spurious genotype-
phenotype associations because of confounding. In addition, it has 
previously been shown that the performance of resistance prediction can 
vary across countries and lineages (Mahe et al. 2019; WHO 2018). This 
variation may be due to the genetic background of MTBC lineages which 
can vary in transmission, virulence, and drug-resistance (Karmakar et al. 
2019; Krishnan et al. 2011; Niemann et al. 2010; Oppong et al. 2019). 
Poor performance can also stem from a sampling effect whereby more 
prevalent lineages make up most existing datasets, leading to a lack of 
knowledge of drug-resistance mutations in under-sampled lineages and 

poor generalisation of predictive models. Consequently, it is important to 
explore how lineage dependency affects the prediction of resistant 
phenotypes across the MTBC. 

Confounding from population structure has yet to be fully addressed in 
ML prediction. Previous studies have applied a weight to each sample 
according to its clade size and strain prevalence (Lees et al. 2020; Nguyen 
et al. 2020). However, in some circumstances this led to reduced model 
performance and the effectiveness was dependent on the complexity of the 
population structure. In contrast, population structure has been adjusted 
for in genome wide association studies (GWAS) using a variety of 
methods, including the use of kinship matrices in linear mixed models, 
covariates derived from principal component analysis (PCA), 
multidimensional scaling on pairwise distances, and de Bruijn graphs 
(Coll et al. 2018; Earle et al. 2016; Jaillard et al. 2018; Lees et al. 2018; 
Oppong et al. 2019; J. Phelan et al. 2016; Zhou and Stephens 2012). 
Furthermore, convergence analysis tests have been developed to identify 
homoplastic mutations enriched in resistant branches across a 
phylogenetic tree (Collins and Didelot 2018; Farhat et al. 2013; J. Phelan 
et al. 2016). Such analyses inherently account for confounding from clonal 
population structure and have been essential for improving our 
understanding of the mechanisms that underpin drug-resistance in the 
MTBC. In contrast, there is no standard approach to account for 
population structure in ML models. It is important to address this 
limitation for ML models to generalise and perform optimally across 
MTBC lineages. 

Given the existing limitations previously reported for “off-the-shelf” 
ML algorithms, we explore the effects of reducing lineage dependency 
using RF models. The RF model is a non-parametric tree ensemble 
algorithm that combines the output of multiple decision trees to make a 
prediction (Breiman 2001). Notably, RF models are favoured as they are 
interpretable and can capture feature interactions (Nembrini et al. 2018). 
The strong phylogeographical associations exhibited by the MTBC may 
indicate the need for models that predict resistance for each lineage 
separately. Therefore, we first measured how RF models perform using 
stratified datasets that are comprised of the most prevalent lineages of the 
MTBC (lineages 2 and 4) in comparison to a global version based on all 
lineages. Alternatively, ML methods that take advantage of evolutionary 
convergence would intrinsically account for population structure and 
prioritise mutations that have evolved independently multiple times. 
Consequently, we devised a method to weight features according to their 
homoplasy distribution to indicate the probability that it will be used as a 
split-variable in the model. We hypothesised that the feature weighted 
approach can improve the robustness of resistance prediction without 
jeopardising the performance of the model. This insight has important 
implications for genotype-phenotype predictions carried out across a wide 
range of disciplines that are frequently confounded by population 
structure, including infectious disease and genomic medicine.

2 Methods
2.1 Whole Genome Sequencing Data

A dataset that was curated prior to this study was used for the analysis 
(Coll et al. 2015; J. E. Phelan et al. 2019). The dataset is comprised of 
whole genome sequences (WGS) and drug susceptibility test (DST) data 
for 18,396 MTBC isolates and was collated from previously published 
studies. WGS was performed using Illumina sequencing and were 
processed using methods that have previously been described (Coll et al. 
2015; J. E. Phelan et al. 2019). In brief, raw reads were aligned to the 
H37Rv reference genome (Genbank accession NC_000962.3) using BWA 
mem algorithm and variants (single nucleotide polymorphisms (SNPs); 
insertions/deletions (indels)) were called using SAMtools/BCFtools and 
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GATK software (H. Li 2011; McKenna et al. 2010). Missing genotypes 
were assigned if the total depth of coverage was 20 or at least 75% of the 
total coverage was not reported for by one nucleotide. Samples or variant 
sites were removed if greater than 10% of genotypes were assigned as 
missing. Missing genotypes were infrequent and assumed to be missing at 
random. Missing genotypes were assigned using a phylogenetic-based 
imputation method. Allele frequency was calculated using VCFtools 
(v1.9) (Danecek et al. 2011).

2.2 DST Data
Binary DST data was obtained using WHO recommended protocols 

from clinical isolates that were retrieved from individual patients. For our 
analysis, susceptibility to 13 drugs including first-line drugs (INH, RIF, 
EMB, PZA), fluoroquinolones (OFL, MOX), aminoglycosides (AMI, 
CAP, KAN, STM) and other drugs (CYS, ETD, PAS) was considered. In 
addition, MDR was also predicted for comparison and was defined as 
resistance to both INH and RIF. DST data for each individual drug was 
not available for all isolates and there were varying degrees of 
completeness across all drugs. Therefore, samples with missing 
phenotypes for each drug were removed per analysis.

2.3 Training and Testing Datasets
The global TB dataset (n=18,396) was split into training and testing 

datasets which were used to train and test the performance of the RF model 
respectively. As several lineages are represented in the dataset, some of 
which are known to contain lineage-specific drug-resistance mutations, a 
stratified sampling approach was taken to ensure the training and testing 
datasets for the global model contained equal proportions of resistant and 
susceptible isolates derived from each lineage across all 14 phenotypes. 
The majority (80%) of the data was used to train the algorithm and the 
remaining subset (20%) was used for testing purposes. We also included 
combined and separate training and testing datasets for lineages 2 and 4 to 
assess how RF models perform over individual lineages.

2.4 Random Forest Training and Predictive Performance
All RF models were implemented using the Ranger package in R and 

used to predict binary DST phenotypes from genome variants (Marvin N. 
Wright and Ziegler 2017). Methods to account for lineage dependency 
were compared (Supplementary Table A). Model hyperparameters, such 
as split rule were optimised using five-fold cross validation using the grid 
search approach available in the caret package in R (Kuhn 2008). Default 
settings were used for mtry (square root of number of features), and 
minimum node size (1) as preliminary analysis had shown that they were 
optimal for classification. Additionally, we used 1,000 trees (num.trees) 
and a maximum depth of 10 (max.depth) consistent with previous analyses 
(Libiseller-Egger et al. 2020). To address imbalances in the number of 
susceptible and resistant isolates, resistant and susceptible phenotypes 
were weighted inversely proportional to their respective frequencies 
(weights summed to one). 

Three different strategies to account for lineage-specific variants were 
used: (1) stratified analysis applied to global, combined (lineage 2 and 4) 
and lineage-specific (lineage 2 or 4) data; (2) feature selection model: 
excluding lineage-specific variants (score<2); (3) feature weighted model. 
The split.select.weights option implemented by Ranger software was used 
to weight features in the model, as demonstrated by a previous study 
(Oskooei et al. 2019). This provides a probability that the feature will be 
used for splitting in the RF model. The overall predictive performance was 
assessed using AUC-ROC, Sensitivity, Specificity and F1 score. The 

framework used to generate these results is summarised in Supplementary 
B.

2.5 Population Structure and Feature Weight Calculation
Two methods were used to infer the population structure of the global 

dataset. Firstly, phylogenetic trees were obtained from a genome-wide 
SNP alignment using FastTree (v2.1 double precision) software with a 
Generalised Time Reversible (GTR) substitution model. Branch lengths 
were rescaled to compute a Gamma20-based likelihood (Price et al. 2010). 
SNPs in hypervariable regions, including PE/PPE genes, were excluded 
from the alignment. Phylogenetic trees for training and testing datasets 
were built independently and rooted on an M. canetti isolate. Trees were 
pre-processed using the Ape package in R (v3.6.1) (Paradis and Schliep 
2019). After pre-processing the phylogenetic tree of the training dataset, 
ancestral states were reconstructed using maximum likelihood and 
parsimony methods in the Phangorn package (Schliep 2011). Results 
between parsimony and maximum likelihood methods were comparable 
and all following results were obtained using the parsimony approach. The 
site-wise parsimony score for each variant was estimated by Fitch’s 
parsimony algorithm using the Phangorn package in R (Schliep 2011). 
Parsimony scores were defined as the minimum number of state changes 
that are required to explain the genotypes observed at the tips of the tree. 
In the feature weighted models, normalised parsimony scores were used 
to weight features in the RF model. Additionally, population structure of 
sub-lineages was also inferred by PCA using PCAtools (v3.15). 

2.6 Feature Selection
Variants (SNPs and indels) in 29 candidate genes encoded in a binary 

format were used as features in the analysis. Candidate genes were 
selected in line with the TB-Profiler database, a mutation catalogue that 
has undergone expert curation (Supplementary C) (J. E. Phelan et al. 
2019). This includes variants that are listed in the WHO drug-resistance 
mutation catalogue for TB (Walker et al. 2022). For the purpose of 
comparison, an additional feature selection method was used whereby 
features with a parsimony score of <2 were removed from the dataset. 
Such features would otherwise have a weight of 0 in the weighted model. 
Removed features were also compared to existing MTBC barcodes that 
contain lineage-specific variants to ensure that all lineage defining 
mutations were removed (Coll et al. 2014; Freschi et al. 2021; Napier et 
al. 2020). This removal was to assess the performance, interpretability, 
and robustness of a feature weighted model in comparison to this 
traditional feature selection method (unweighted RF (parsimony score 
<2)) where lineage-specific variants are removed.

2.7 Ranking Feature Importance and Feature Interactions
Feature importance was assessed using Gini importance due to its 

superiority in capturing interactions between features when compared to 
permutation importance (Nembrini et al. 2018). To establish a threshold 
for the ‘most important’ features in the model, the analysis was rerun, and 
features were recurrently eliminated until the maximum area under the 
ROC curve (AUC-ROC) was reached. Variants were converted to HGVS 
format using SNPEff software (v4.3) and compared to M. tuberculosis 
H37Rv genome to infer variant functional class and effects (Danecek et 
al. 2011). All features were compared to the TB-profiler database and 
literature, as well as a list of lineage-specific variants to classify them as 
either known drug-resistance mutation or co-occurring mutation (causes 
resistance to another drug) (J. E. Phelan et al. 2019). Variants were also 
assigned as ‘lineage’ according to their phylogenetic distribution in the 
training dataset. This was to account for lineage effects that might be 
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observed where a variant is highly prevalent in one lineage but observed 
rarely in other lineages which may be indicative of confounding. Variants 
were considered as putative novel drug-resistance if they were included in 
the ‘most important’ features in the model, >90% samples that contain the 
variant were resistant, and in a known drug-resistance gene. 

Feature interactions were also explored. The occurrence of parent-child 
node interactions was summed up across 1,000 trees in the RF. The most 
frequent interactions (top 1%) were identified using frequency graphs. 
Interactions were classified in a similar manner to features, as described 
above. For example, if the parent node was a known drug-resistance 
variant and the child node was lineage-specific, the interaction would be 
labelled as ‘Known: Lineage’. Interactions between drug-resistance 
mutations and compensatory mutations were also examined.

3 Results
3.1 Genomic and Phenotypic Data

WGS were available for 18,396 M. tuberculosis isolates. Most isolates 
belong to lineages 2 (N=4605, 25.0%) and 4 (N=8875, 48.2%), whilst 
fewer isolates represented the remaining lineages. Most isolates were pan-
susceptible (N=10976, 59.7%), but a considerable proportion were RIF-
resistant (N=5403, 29.9%) and MDR (N=4608, 25.1%). Phenotypic data 
was most complete for first-line drugs RIF (N= 18087, 98%), INH 
(N=17895, 97.0%), EMB (N=16576, 90.0%) and PZA (N=13248, 72.0%). 
However, data was limited for most second-line drugs, especially for PAS 
and CYS (<10%). Phylogenetic analysis of the training dataset revealed 
isolates cluster according to lineage (Fig. 1.). Resistant phenotypes were 
unevenly distributed throughout lineages (Supplementary D). A larger 
percentage of lineage 2 (60.3%) isolates were MDR in comparison to 

lineage 4 (22.32%) (Supplementary D). PCA also revealed isolates cluster 
according to lineage and sub-lineage and greater diversity was observed 
for lineage 4 (Supplementary E). 

3.2 Data Predictive performance of global, combined and 
lineage-specific models

We first assessed the effectiveness of stratification for dealing with 
lineage dependency by comparing the AUC-ROC, sensitivity, and 
specificity of the RF models. Overall, the predictive performance of the 
RF model varied across the global and lineage-specific models for each 
drug (Supplementary D). As observed in previous studies, the AUC-ROC 
was generally higher for first-line [>0.85] than second-line drugs. AUC-
ROC was especially limited for drugs with fewer samples, including ETD 
[Global AUC-ROC=0.79 (0.77-0.81)], CYS [Global AUC-ROC=0.78 
(0.72-0.84)] and PAS [Global AUC-ROC=0.71 (0.64-0.78)]. The optimal 
performance of RF models differed between drugs. The AUC-ROC for 
global and combined datasets (lineage 2 and 4) were comparable (Fig. 2.). 
This was unsurprising given that the global dataset is mostly comprised of 
isolates from lineages 2 and 4. For AMI [Global AUC-ROC=0.91 (0.89-
0.93)] and CAP [Global AUC-ROC=0.89 (0.87-0.91)], the global model 
displayed the highest AUC-ROC (Fig. 2.). In contrast, there was higher 
AUC-ROC for lineage 2 (INH, STM, CYS and PAS) and lineage 4 (MDR, 
EMB, PZA, KAN and ETD) (Fig. 2.). Global and lineage-specific RF 
models performed similarly for RIF, OFL and MOX (Supplementary D). 
These results indicated that performance across drugs can vary depending 
on the strain diversity within the training and testing datasets. 

Fig. 1. Phylogenetic analysis of the training dataset annotated with corresponding lineage and drug-resistant phenotype. The training dataset was comprised of 14,724 MTBC isolates 
that belong to lineages 1-7 and zoonotic species (inner ring). The outer ring shows the composite drug-resistant phenotypes which are shaded according to increasing severity of resistance, 
including pan-susceptible, mono-resistant, MDR, pre-XDR and other.
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This observation was further exemplified by the variation in sensitivity 
observed. Lineage-specific models tended to outperform global models in 
terms of sensitivity (Supplementary D). Highest sensitivity was observed 
in the lineage 2 specific model for MDR [0.89 (0.87-0.90)], RIF [0.88 
(0.87-0.89)], INH [0.85 (0.84-0.87)], MOX [0.78 (0.72-0.83)], STM [0.87 
(0.85-0.89)], and PAS [0.40 (0.28-0.54)]. The higher sensitivity may be 
driven in part by the larger number of resistant samples in lineage 2 
available for these drugs (Supplementary D). A larger sample size may 
include a higher number of known drug-resistance mutations that can 
drive improvements in sensitivity. Meanwhile, highest sensitivity was 
reported for lineage 4 in PZA [0.87 (0.84-0.89)], KAN [0.84 (0.79-0.88)], 
CYS [0.52 (0.32-0.72)] and ETD [0.70 (0.63-0.75)]. Specificity was 
generally high across all models, with a slight trade-off with sensitivity 
(Supplementary D). Collectively, this indicates that the performance of RF 
model prediction is highly dependent on the lineages and drug-resistant 
phenotypes represented in the dataset. 

3.3 Identification of known and putative lineage-specific 
resistant mutations

To identify what was driving the variation in performance, we 
measured the feature importance across lineage-specific, combined, and 
global models (Supplementary F). Features were classified as a known 
drug-resistance mechanism if they had previously been incorporated in the 
TB-Profiler database (J. E. Phelan et al. 2019). In addition, mutations were 
also labelled as having ‘co-occurring’ or ‘lineage’ effects. The feature 
importance threshold differed between models meaning that the optimal 
performance was achieved using a varying number of mutations 
(Supplementary F). Despite undergoing stratification, high importance 
was still assigned to variants with lineage effects (Supplementary F). This 

highlights 

that confounding from population structure is a deep-rooted issue and that 
confounding occurs at the sub-lineage level. This was especially 
noticeable for drugs with limited phenotype data including CYS, ETD and 
PAS (Supplementary F). The number of known drug-resistance mutations 
identified by lineage-specific and global models also varied. Lineage-
specific models were able to capture drug-resistance mutations that are 
restricted to single lineages. For example, RF models trained on lineage 2 
isolates assigned high importance to known drug-resistance mutations in 
ethA, including Ala381Pro and 1010_1010del that are found exclusively 
in lineages 2.2.2 and 2.2.1 respectively (Supplementary G). We also report 
variants with lineage-specific associations with drug-resistance that have 
yet to be described for EMB (embA Ala576Thr, lineage 4.2.2.1) and ETD 
(ethR 579G>C, lineage 4.3.4.2) (Supplementary G). However, their role 
in drug-resistance cannot be fully established based on the outcome of ML 
models.

3.4 Performance of Unweighted and Feature Weighted 
Models

Moreover, the feature selection and feature weighted approaches had 
better or equivalent AUC in comparison to unweighted RF models across 
all first-line drugs (Supplementary H). Using either the feature selection 
approach or feature weighting led to increased or similar sensitivity across 
all drugs (Fig. 3B.). For half of the resistant phenotypes, higher sensitivity 
was achieved using parsimony score to weight features in the model, 
including MDR (0.93 [0.92-0.94]), RIF (0.93 [0.92-0.94]), INH (0.87 
[0.86-0.87]), EMB (0.91 [0.89-0.92]), KAN (0.83 [0.79-0.86]) (Fig. 3., 
Supplementary H). In contrast, the feature selection approach had higher 
sensitivity for OFL (0.76 [0.72-0.79]), MOX (0.78 [0.73-0.83]), CAP 
(0.71 [0.66-0.76]), ETD (0.43 [0.32-0.54]). This indicated that reducing 

Fig. 2. AUC-ROC of lineage-specific, combined, and global RF models predicting 14 drug-resistant phenotypes. AUC-ROC for each drug-resistant phenotype is shown. Bars are filled 
according to lineages included in the analysis. Error bars show 95% confidence intervals for each prediction. 
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lineage dependency may not necessarily lead to weaker performance of 
the global model. Additionally, the performance differed between the 
choice of approach used to account for lineage. The feature selection 
approach needs to utilise information from existing knowledge about 
lineage-specific variants and may miss variants that are not yet defined. 
The feature weighting approach utilises all available information from the 
data and accounts for unknown lineage-specific variants and biases in the 
distribution of mutations across the phylogeny (Fig. 3.). Regardless of the 
approach used, there was low sensitivity for CYS, ETD and PAS 
(Supplementary H). 

3.5 Feature Importance and Interactions of Feature 
Weighted Models

We assessed the impact of reducing lineage dependency on the model 
further by evaluating the feature importance and most frequent 
interactions in the model. The importance of variants that contribute to 
lineage dependency in the model was mostly reduced using the feature 
weighted model (Supplementary I). Across most drugs, the feature 
selection approach also reduced the importance of clade-specific variants 
but was less effective when compared to the feature weighted model 
(Supplementary I). In some cases, this was advantageous as drug-

resistance mutations belonging to a single lineage were ranked highly. 
This list included a frameshift mutation in tlyA 751_752insTG (lineage 
4.3.4.2) (Supplementary G). The robustness of drug-resistance prediction 
was analysed by comparing the most frequent interactions in the 
Unweighted model and Feature Weighted model. The feature weighting 
method effectively removed all frequent lineage interactions across all 
drugs (Fig. 4., Supplementary J). Within the top 1% of interactions, the 
number of interactions between known drug-resistance mutations 
increased using the feature weighted model for the MDR phenotype (Fig. 
4.). Whilst the feature weighted RF (FW-RF) approach increased the 
interactions between known drug-resistance mutations, both models were 
unable to capture interactions between all drug-resistance mutations. 
Reducing lineage dependency also led to increased reliance on co-
occurring mutations associated with resistance to RIF, EMB, PZA, ETD, 
PAS and CYS (Supplementary J). This is shown further by a higher 
frequency of co-occurring interactions in the feature weighted model. 
Additionally, no lineage-specific drug-resistance mutations or putative 
novel drug-resistance mutations were reported by the feature weighted 
model. 

Fig. 3. Performance of unweighted and feature weighted RF models predicting 14 drug-resistant phenotypes. AUC-ROC (A), Sensitivity (B) and Specificity (C) for each drug-resistant 
phenotype is shown. Bars are filled according to feature weight and feature selection method used. Error bars show 95% confidence intervals for prediction. Plots produced using ggplot2 
package in R. 
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Fig. 4. Most frequent interactions (top 1%) observed across 1,000 trees in RF model for MDR TB prediction. A) Most frequent variant-variant interactions in the Unweighted RF 
model. B) Most frequent variant-variant interactions in the weighted model. Genes known to contain MDR mutations are highlighted in blue. Interactions are classified as a known drug-
resistance interaction (blue), co-occurring interaction (orange) and lineage interaction (green). Interactions were visualised using shinyCircos (Yu et al. 2018).

4 Discussion
Confounding from population structure occurs as a result of the highly 

clonal nature of the MTBC phylogeny which has been driven by asexual 
reproduction, an absence of horizontal gene transfer and low levels of 
recombination (Gagneux 2018). Whilst the effects of confounding from 
population structure are widely considered for GWAS, it remains a key 
limitation for genotype-phenotype prediction in ML studies. In this study, 
we addressed bias in ML prediction of M. tuberculosis drug-resistant 
phenotypes that occurs due to population structure. We developed a novel 
method, Feature Weighted Random Forest (FW-RF), to account for 
lineage dependency in ML prediction and compare it to ad-hoc 
approaches, namely stratification and feature selection. 

Stratification of the global dataset into lineage-specific (lineage 2 and 
lineage 4 separately) and combined (lineages 2 and 4 combined) datasets 
led to varying performance depending on lineages and drug-resistant 
phenotypes represented in the datasets. This result suggests that resistance 
to specific antitubercular agents can vary between lineages. Intrinsic 
differences between MTBC sub-lineages have been explored. The most 
notable example being the increased transmission of the modern Beijing 
sub-lineage associated with MDR-TB (Cox et al. 2005; Karmakar et al. 
2019; Q. J. Li et al. 2016; Niemann et al. 2010).

This insight has been supported further by evidence of lineage-specific 
genotypic associations with drug-resistance in separate and combined 
analysis for major lineages (Oppong et al. 2019). Previous analyses have 
also shown predictions based on profiling tools and molecular diagnostic 
tests can differ between lineages and countries respectively (Mahe et al. 
2019; WHO 2018). This difference may stem from an inconsistent 
diagnostic and treatment regimen implemented across countries, whereby 
second-line treatments and new drugs (bedaquiline and delamanid) are 
excluded from essential medicine lists required for basic healthcare (Saran 
et al. 2019). Furthermore, our study showed that lineage-specific models 
tended to outperform the global and combined models across the drug 
panel. This result confirms concerns made by previous studies that global 

models may not necessarily perform and generalise well in clinical 
practice (Mahe et al. 2019). Therefore, future studies should provide an 
evaluation of performance for individual lineages to indicate the general 
applicability of ML models. Whilst stratification contributed to improved 
performance, it does not prevent confounding due to the ancestral 
relationships between samples occurring at the sub-lineage level. 
Stratification was also not possible across all lineages because of a limited 
number of samples being available for the remaining lineages, implying 
that other approaches are required to handle population structure. 

When comparing our novel FW-RF approach to traditional feature 
selection method, we observed that the removal of lineage-specific 
mutations, that were defined using predetermined SNP barcodes, may not 
account for all lineage dependency in the model and also led to the 
removal of drug-resistance mutations found within specific lineages (Coll 
et al. 2014; Freschi et al. 2021; Napier et al. 2020). Previously developed 
barcodes primarily include SNPs and do not include insertions and 
deletions, larger structural variants, or SNPs in known drug-resistance 
genes (Coll et al. 2014). Therefore, such variants would have been 
maintained within the set of features. The feature selection process also 
could be considered too strict due to the complete removal of phylogenetic 
related features. 

The FW-RF model uses feature weights to determine the probability 
that features will be used as a split variable. The advantage of this 
approach is that the number of times mutations have evolved 
independently is taken into account. This observation is more consistent 
with convergent evolution and selection of drug-resistant mutations. 
Although the importance of strain-specific drug-resistance mutations will 
be lowered using this approach, the effect size helps to compensate for its 
suppression. This enables us to maintain predictive performance whilst 
improving the interpretability of the model. Whilst this study has primarily 
focused on feature weighting in the context of RF prediction, feature 
weights could be applied to several other algorithms, including support 
vector machines, K-nearest neighbour, neural networks and learning 
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classifier systems (Chen and Hao 2017; Huang et al. 2021; Urbanowicz 
and Moore 2015). Future research should be carried out to explore feature 
weighting mechanisms and expert knowledge discovery in prediction 
tasks further. 

Our study supports outcomes from prior research that have shown that 
confounding variables such as lineage and co-occurring phenotypes boost 
model performance (Deelder et al. 2019; Green et al. 2022). We find that 
despite reducing lineage dependency using the FW-RF model, the 
performance was maintained across most drugs. Whilst this could be due 
to greater importance of known drug-resistance mutations, it may also be 
caused by confounding from co-occurring resistance to other drugs which 
could indicate overfitting to the dataset (Deelder et al. 2022). This 
emphasises the importance of addressing confounding in ML prediction, 
even though such features may increase performance, to make 
interpretable and robust predictions. 

Additionally, we found that variation in performance across the 
stratified datasets was underpinned by the representation of drug-resistant 
phenotypes across sub-lineages, as well as drug-resistance mutations, that 
have emerged in a single lineage. For example, ethA Ala381Pro and 
1010_1010del were identified as important features for predicting ETD 
resistance in lineage 2. ETD is a pro-drug activated by the mycobacterial 
monooxygenase EthA. Mutations in ethA prevent the activation of ETD, 
some of which have been reported as lineage-specific (Alame Emane et 
al. 2021; Coll et al. 2018). We also report putative novel mutations in ethR 
(579G>C), a transcriptional regulator of ethA, as well as embA 
(Ala576Thr), which encodes the drug target of EMB, in lineage 4. Lineage 
4 is considered to have greater strain diversity than lineage 2 which has 
facilitated the discovery of novel drug-resistance mechanisms (Oppong et 
al. 2019). Despite this, previous epidemiological and in vitro studies have 
suggested that lineage 2 isolates are at a greater risk of developing drug-
resistance than lineage 4 (Torres Ortiz et al. 2021). Consequently, it is 
thought isolates belonging to lineage 2 are predisposed to developing 
resistance due to their genomic background (Torres Ortiz et al. 2021). 
Compensatory mutations, such as those in rpoC, were also reported as 
high-ranking features across all models regardless of lineages represented 
in the dataset. Compensatory mutations are considered to alleviate fitness 
costs associated with drug-resistance and some studies suggest association 
with transmission (Casali et al. 2014). There is conflicting evidence as to 
whether compensatory mutations vary between strain types and their role 
in drug-resistance is not fully understood (Casali et al. 2014; de Vos et al. 
2013; Q. J. Li et al. 2016; Liu et al. 2018; Merker et al. 2018). This 
questions whether concentrating solely on causal variants overlooks the 
role that other mutations play in drug-resistance, including compensatory 
and lineage-specific mutations. For example, lineage-specific mutations 
may influence the transmission of MDR strains. In such cases, lineage-
specific mutations can directly impact drug-resistance or have broader 
implications on bacterial fitness (Shah et al. 2017). As a whole, this 
indicates that the molecular mechanisms that underpin drug-resistance are 
complex and are dependent on an interplay between genetic background, 
epistasis and fitness (Borrell and Gagneux 2011). 

We note that there are several limitations and areas of further research 
that would enhance the outcome of this study. Firstly, we only consider 
two major lineages of the MTBC in lineage-specific models. We also note 
the limited number of samples for second-line drugs within these lineages. 
A larger number of samples from under-sampled lineages would facilitate 
research into improving current knowledge surrounding the evolution of 
drug-resistance in MTBC strains. Secondly, we recognise the feature 
weighted model may be biased towards features with higher minor allele 
frequency. This is also a known existing limitation of RF models using 
Gini importance measures (M. N. Wright et al. 2016). This could be 

improved by aggregating mutations across loci to take into account rarer 
alleles. Drug-resistance mutations are likely to occur outside of candidate 
genes and other genomic regions have been implicated in pre-resistance 
(Torres Ortiz et al. 2021). Genome-wide models would promote further 
discovery and limit the pre-processing required for ML prediction. 
Finally, the role of putative novel drug-resistance mutations require 
validation which may be performed using in silico and in vitro 
experimentation.

5 Conclusion
Previous studies have suggested that ML performance is in part driven 

by lineage dependency due to confounding from population structure. 
Evidence presented here confirms that lineage dependency impacts ML 
predictive performance and interpretability. This study investigated 
methods to tackle confounding from population structure including 
stratification, feature selection and FW-RF approaches. FW-RF is a novel 
approach that is particularly effective at helping us to obtain clearer 
interpretations of ML prediction, whilst maintaining the power to predict-
drug-resistance. However, it is important to consider there may be 
complex interactions between mutations to bring about drug-resistant 
phenotypes. Overall, ML approaches have widespread applications to 
genomic medicine, where genotype-phenotype predictions are being 
increasingly utilised to gain insight into genomic drivers of disease. 
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