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Background. The impact of coronavirus disease 2019 (COVID-19) on antimicrobial use (AU) and resistance has not been well 
evaluated in South America. These data are critical to inform national policies and clinical care.

Methods. At a tertiary hospital in Santiago, Chile, between 2018 and 2022, subdivided into pre- (3/2018–2/2020) and post– 
COVID-19 onset (3/2020–2/2022), we evaluated intravenous AU and frequency of carbapenem-resistant Enterobacterales 
(CRE). We grouped monthly AU (defined daily doses [DDD]/1000 patient-days) into broad-spectrum β-lactams, carbapenems, 
and colistin and used interrupted time-series analysis to compare AU during pre- and post-pandemic onset. We studied the 
frequency of carbapenemase-producing (CP) CRE and performed whole-genome sequencing analyses of all carbapenem- 
resistant (CR) Klebsiella pneumoniae (CRKpn) isolates collected during the study period.

Results. Compared with pre-pandemic, AU (DDD/1000 patient-days) significantly increased after the pandemic onset, from 78.1 to 
142.5 (P < .001), 50.9 to 110.1 (P < .001), and 4.1 to 13.3 (P < .001) for broad-spectrum β-lactams, carbapenems, and colistin, respectively. 
The frequency of CP-CRE increased from 12.8% pre–COVID-19 to 51.9% after pandemic onset (P < .001). The most frequent CRE 
species in both periods was CRKpn (79.5% and 76.5%, respectively). The expansion of CP-CRE harboring blaNDM was particularly 
noticeable, increasing from 40% (n = 4/10) before to 73.6% (n = 39/53) after pandemic onset (P < .001). Our phylogenomic analyses 
revealed the emergence of two distinct genomic lineages of CP-CRKpn: ST45, harboring blaNDM, and ST1161, which carried blaKPC.

Conclusions. AU and the frequency of CP-CRE increased after COVID-19 onset. The increase in CP-CRKpn was driven by the 
emergence of novel genomic lineages. Our observations highlight the need to strengthen infection prevention and control and 
antimicrobial stewardship efforts.

Keywords. Antimicrobial resistance; Antibiotic consumption; COVID-19; Carbapenemase-producing organisms; Klebsiella 
pneumoniae.
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Antimicrobial resistance (AMR) constitutes a major health 
crisis causing substantial global disease and economic burden 

worldwide [1–3]. A recent report estimated 1.2 million deaths 
directly attributable to AMR in the year immediately prior to 
the emergence of coronavirus disease 2019 (COVID-19) [1]. 
Further, the impact of AMR is expected to increase, with esti-
mates of approximately 10 million global annual AMR-related 
deaths by 2050 [4]. The World Health Organization (WHO) 
declared AMR as one of the most critical public health threats 
of the century [5].

COVID-19 led to a sharp increase in hospitalizations, a 
large proportion of which corresponded to high-complexity 
patients requiring admission to intensive care units (ICUs), 
invasive procedures, and prolonged hospital stays, in addition 
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to shortages of healthcare personnel and protective equipment, 
especially early in the pandemic [6–8]. There is growing concern 
that COVID-19 might have resulted in higher antimicrobial use 
(AU) and in lapses in infection prevention and control (IPC) 
practices, both of which could have accelerated the spread of 
AMR [9–12]. Recent studies showed an escalation in AU during 
the pandemic, with up to 74.6% of patients with COVID-19 re-
ceiving one or more antibiotics [13, 14], despite the relatively 
low occurrence of secondary bacterial coinfections [15, 16]. The 
most frequently prescribed antibiotics were β-lactams (30%), flu-
oroquinolones (20%), and macrolides (18.9%) [13]. One study re-
ported a significant increase in the use of broad-spectrum 
β-lactams (eg, cefepime, piperacillin/tazobactam, and carbape-
nems) and other last-resort antibiotics (eg, colistin and ceftazi-
dime/avibactam) during the first pandemic peak [17].

Carbapenem-resistant Enterobacterales (CRE) are listed as 
critical-priority pathogens by the WHO [18]. A report from 
the US Centers for Disease Control and Prevention highlighted 
increases in both hospital-onset infections due to CRE and AU 
in inpatient settings during the first year of the pandemic [19]. 
Carbapenemase-producing (CP) CRE (CP-CRE) are particular-
ly concerning as they harbor highly efficient enzymes often con-
tained on mobile genetic elements that facilitate their spread, 
posing a daunting challenge for clinicians and IPC teams. A re-
cent report alerted about an increased detection of CP-CRE af-
ter the COVID-19 pandemic in Latin America [20]. However, 
the magnitude of the impact of COVID-19 in the emergence 
of AMR remains unknown.

In Chile, official reports have shown that the most impor-
tant CRE is carbapenem-resistant (CR) Klebsiella pneumoniae 
(CRKpn), with a prevalence of approximately 35–40%. 
However, in contrast to other Latin American countries, the 
prevalence of CP-CRE prior to the pandemic was conspicu-
ously low in Chile [21]. In this study, we evaluated the poten-
tial impact of the COVID-19 pandemic on AU and CRE. 
Moreover,  we assessed the emergence of CP-CRE following 
the COVID-19 pandemic onset.

METHODS

Study Design and Sample Analysis

We collected hospital-wide data on AU and the frequency of CRE 
isolation in a public tertiary-care hospital in Santiago, Chile, with 
391 beds and a catchment area of approximately 423 000 popula-
tion (annual hospital discharges: ∼24 300) from March 2018 until 
March 2022. For context, the first patient with COVID-19 in 
Chile was diagnosed on 3 March 2020, and antimicrobial steward-
ship and IPC practices remained unchanged during the pandem-
ic. We compared two years before the pandemic (pre–COVID-19, 
March 2018–February 2020) with two years after the onset of 
COVID-19 in Chile (COVID-19, March 2020–February 2022), 
combining various datasets and analytical strategies.

Data Collection and Processing

Data were abstracted from the hospital’s epidemiological and phar-
macy records and included total number of beds, patient discharg-
es, patient-days, and intravenous AU for all adult patients admitted 
to acute care wards during the study period. Acute care wards refer 
to any patient admitted from the emergency department or by a 
general practitioner, along with those electively admitted for a sur-
gical procedure. Additionally, we obtained data on monthly ICU 
admissions and laboratory-confirmed COVID-19 discharges of 
adult subjects. Antimicrobial use was expressed in defined daily 
doses (DDDs) per 1000 patient-days and calculated for each 
intravenous compound as per WHO recommendations [22]. 
Antibiotics were classified into three groups: (1) broad- 
spectrum β-lactams (ie, ceftazidime, cefepime, piperacillin/ 
tazobactam, ertapenem, meropenem, imipenem), (2) carbapenems 
(ie, imipenem, meropenem, and ertapenem), and (3) colistin, a 
drug frequently used against CP-CRE. Antibiotics evaluated in 
the study are presented individually in Supplementary Figure 1.

Throughout the study period, we prospectively collected all 
clinical CRE isolates (ie, nonsusceptible to ≥1 carbapenem as 
per Clinical and Laboratory Standards Institute [CLSI] 2022) 
recovered from invasive infections (ie, bloodstream, sterile flu-
ids, or tissues). Isolates were sent to a central laboratory where 
species identification was reconfirmed by MALDI-TOF 
(matrix-assisted laser desorption/ionization–time of flight) 
mass spectrometry. The antibiotic susceptibility profile was re-
confirmed using the disk diffusion method following CLSI 
2022 [23]. Testing was performed using a multiplex polymerase 
chain reaction (PCR) designed to detect the three carbapenemases 
most frequently reported in the country (ie, Klebsiella pneumoniae 
carbapenemase [blaKPC], New Delhi metallo-β-lactamase 
[blaNDM], and Verona integron–encoded metallo-β-lactamase 
[blaVIM]) and was performed in all CRE isolates. Finally, given 
their high frequency and clinical relevance, we performed whole- 
genome sequencing (WGS) on all CRKpn isolates recovered dur-
ing the study period.

Statistical Analyses

Descriptive statistics were used to visualize monthly AU, ICU ad-
missions, and COVID-19 patient discharges. A second-order 
polynomial fit was adjusted to the data as it presented the best 
goodness-of-fit (according to the Akaike information criterion 
[AIC]). The AU rate for each antibiotic group expressed by 
DDDs per 1000 patient-days was compared between pre- and 
post-pandemic onset. To further understand AU over time, we 
calculated a baseline average monthly AU between March 2018 
and February 2019. Using this information, we estimated the 
monthly percentage change for March 2019–February 2020 (pre- 
pandemic) and for the two years post-pandemic onset (March 
2020–February 2022).

We used interrupted time-series analyses for each antibiotic 
group [24, 25] to evaluate the impact of COVID-19 on AU, 
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adjusting for seasonality and autocorrelation. First, we logarithmi-
cally transformed AU rates to adjust their variance over time and 
computed a first-order differentiation between consecutive time 
points to correct stationarity. Subsequently, we tested autocorrela-
tion and seasonality among AU group variables [25]. We used an 
autoregressive integrated moving average (ARIMA) approach 
through an automated algorithm, based on the best 
goodness-of-fit reported (eg, lowest AIC/Bayesian information 
criterion [BIC]), resulting in a seasonal ARIMA (1,0,0) (0,1,1) 
model [24]. A seasonal ARIMA model is classified as an 
ARIMA(p,d,q) x (P,D,Q), where (p,d,q) refers to the seasonal 
and (P,D,Q) to the non-seasonal component. P or p = number 
of seasonal autoregressive terms, D or d = number of seasonal dif-
ferences, Q or q = number of seasonal moving average terms. The 
interrupted side of the model comprised step change and ramp 
components, derived from any random shift and slope changes 
in AU over time after the pandemic onset [25]. Finally, we gener-
ated a counterfactual scenario related to a hypothetical absence of 
the COVID-19 pandemic to contrast observed and estimated AU 
through the backward prediction of the time series as if no random 
shift and slope changes would have existed. Analyses were con-
ducted using R version 3.2.1 (R Foundation for Statistical 
Computing).

Whole-Genome Sequencing and Phylogenomic Analyses

We performed WGS using Illumina MiSeq with the Illumina 
DNA library prep kit (Illumina, Inc). We used FASTQC and 
MultiQC to determine the read’s quality, and Trimmomatic 
to pair the reads [26, 27]. The genomes were assembled de 
novo with SPAdes, and the quality of the assemblies was as-
sessed with QUAST [28, 29]. We used MLST 2.19.0 [30] and 
ABRicate v1.0.1 15 to determine the sequence type (ST) and 
the presence of carbapenemases. We annotated genome as-
semblies with Bakta [31] and evaluated the pangenome using 
Roary v3.13.0 [32]. A maximum likelihood phylogenomic 
tree was performed using a core genome definition of 99% 
with RAxML 8.2.12 [33]. Finally, a recombination-free phy-
logenomic tree was generated with Clonal Frame ML v1.12 
[34] and visualized with the interactive Tree Of Life (iTOL) 
tool [35].

Ethics

Our study was approved by the Research Ethics Committee of the 
Clinica Alemana, Universidad del Desarrollo Faculty of Medicine 
(Institutional Review Board [IRB] 2021-24, Protocol 
number #UIEC1047). 

RESULTS

Hospital Characteristics and Epidemiological Analyses

The first patient with COVID-19 in Chile was diagnosed in 
early March 2020 and the first pandemic wave peaked in 

June 2020 [36]. During this peak, our hospital discharged 
530 patients with COVID-19 (Supplementary Figure 2A). 
The total number of beds and average monthly hospital 
discharges did not significantly vary during the study period. 
ICU admissions substantially increased after the pandemic 
onset, with an average of 11 and 25 ICU admissions in the 
pre- and post-pandemic period, respectively (P < .001). Most 
ICU admissions (80%) during the pandemic period were pa-
tients aged older than 60 years (Supplementary Figure 2B).

Antibiotic Use Over Time and Impact of COVID-19

Compared with pre–COVID-19, we observed a significant in-
crease in mean DDDs per 1000 patient-days during 
COVID-19, with an overall higher AU of broad-spectrum 
β-lactams (78.1 vs 142.5; P < .001), carbapenems (50.9 vs 
110.1; P < .001), and colistin (4.1 vs 13.3; P < .001) (Figure 1
and Table 1). Noticeably, the highest surge in AU of broad- 
spectrum β-lactams, carbapenems, and colistin was observed 
approximately 12 months after the pandemic onset, peaking 
at 137%, 246%, and 705%, respectively (Figure 1B). The month-
ly variation in AU for individual antibiotics is provided in 
Supplementary Figures 1 and 3. Cefepime, ertapenem, imipe-
nem, meropenem, and colistin drove the increasing trend in 
consumption among the different antibiotic groups 
(Supplementary Figure 3). The AU of colistin, imipenem, and 
meropenem increased after COVID-19’s onset in the ICU 
and in general wards, but remained stable in the emergency de-
partment (Supplementary Figure 4).

There was an immediate increase in AU of broad-spectrum 
β-lactams and carbapenems after the pandemic onset 
(step change coefficient [coeff] = .38; 95% confidence interval 
[CI] = .17–.59; P < .001; and step change coeff = .49; 95% 
CI = .09–.88; P = .016, respectively). We observed a significant 
shift in the slope of broad-spectrum β-lactam usage over time 
(slope change coeff =0.03; 95% CI = .01–.06; P = .006) 
(Table 2). In contrast, use of carbapenems and colistin was 
mainly related to AU in previous months (autoregressive order 
[AR] coeff), and no significant association was observed for the 
slope change (coeff = .03; 95% CI = −.02 to .08; P = .17; and 
coeff = .04; 95% CI = −.14 to .23; P = .65, respectively). A com-
parison between the observed AU and the theoretical expected 
values (counterfactual) in the absence of COVID-19 is present-
ed in Supplementary Figure 5. After the first year of COVID-19, 
our analyses revealed an estimated excess (ie, difference 
between observed and estimated counterfactual) of 77, 73, 
and 18 DDDs per 1000 patient-days for broad-spectrum 
β-lactams, carbapenems, and colistin, respectively.

Microbiological and Molecular Characterization of the CRE and CRKpn 
Collection

Overall, 180 CRE isolates from 139 patients were collected dur-
ing the study period: 78 (43%) pre–COVID-19 and 102 (57%) 
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during COVID-19. The number of isolates per patient did not 
change significantly before and during COVID-19 (1.37 and 
1.24, respectively). The majority of CRE recovered in both pe-
riods corresponded to CRKpn (62/78 [79.5%] and 78/102 
[76.5%], respectively), followed by CR-Enterobacter cloacae 
complex (16/78 [20.5%] and 16/102 [15.7%], respectively) 
(Figure 2 and Supplementary Table 1). The proportion of 
CRE found to harbor blaKPC, blaNDM, or blaVIM increased 
from 12.8% (10/78) pre–COVID-19 to 51.9% (53/102) during 

COVID-19 (P < .001) (Figure 2B). Prior to the pandemic, 
only 2 CRKpn isolates harbored any of these carbapenemases 
(ie, CP-CRKpn), blaKPC specifically. The proportion of 
CP-CRKpn isolates increased from 3.2% (2/62) pre– 
COVID-19 to 46.2% (36/78) during COVID-19 (P = .005) 
(Figure 2B). Apart from CRKpn, the proportion of other 
CRE isolates harboring a carbapenemase increased from 50% 
(n = 8/16) pre–COVID-19 to 70.8% (n = 17/24) during 
COVID-19 (Figure 2). A comparison of the antimicrobial 

Figure 1. Hospital-wide antibiotic consumption in DDD per 1000 patient-days (A) and monthly percentage change over time (B), by antibiotics group, 2018–2022. Colistin is 
classified as a compound active against CP organisms. Broad-spectrum β-lactam ATBs include piperacillin/tazobactam, cefepime, ceftazidime, meropenem, and imipenem. 
Carbapenems include imipenem, meropenem, and ertapenem. (B) Percentage change in antibiotic consumption over time (compared with the average antibiotic consumption 
between March 2018 and February 2019). Abbreviations: ATB, antibiotic; COVID-19, coronavirus disease 2019; CP, carbapenemase-producing; DDD, defined daily dose.

Table 1. Average Antibiotic Use Before (March 2018–February 2020) and After COVID-19’s Onset (March 2020–February 2022) by Group

Antibiotic Group and Pandemic Onset Mean SD Min P25 P50 P75 Max Percentage Variation in Mean Antibiotic Consumption

Broad-spectrum β-lactams

Before 78.13 14.52 45.64 66.82 78.08 88.60 107.41 …

After 142.45 28.74 75.29 121.72 146.47 158.25 195.29 82.3%

Carbapenems

Before 50.90 12.57 23.56 40.21 52.05 60.58 71.65 …

After 110.07 28.14 52.07 91.89 115.29 124.53 172.20 116.2%

Colistin

Before 4.15 4.44 0.00 1.45 3.10 5.30 20.66 …

After 13.34 8.46 0.00 5.93 15.28 19.03 34.29 221.5%

Data are presented as percentages. Times defined as before and after COVID-19’s onset are equally sized (12 months after and before COVID-19).  

Abbreviations: COVID-19, coronavirus disease 2019; Max, maximum; Min, minimum; P25, P50, and P75, 25th, 50th, and 75th percentiles, respectively; SD, standard deviation.
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susceptibility profiles between CP- and non–CP-CRE and 
CRKpn is shown in Supplementary Figure 6. Notably, while 
63 of 117 non–CP-CRE isolates were resistant to at least one 
of the three carbapenems (ertapenem: 96%, 112/117; merope-
nem: 58%, 68/117; imipenem: 8%, 9/117), most CP strains 
(99%, 62/63) exhibited resistance to all three carbapenems 
(Supplementary Figure 6).

Most organisms encoding blaKPC, blaNDM, or blaVIM, espe-
cially among CRKpn, were recovered from March 2021 on-
ward, precisely one year after the pandemic onset 
(Figure 2A). The expansion of CP-CRE harboring blaNDM 

was particularly noticeable, increasing from 40.0% (4/10) 
pre–COVID-19 to 73.6% (39/53) during COVID-19 (P < .001). 
Among CP-CRKpn, blaNDM increased from 0% to 69.4% 
(25/36), and among non–CP-CRKpn, blaNDM increased 
from 50.0% (4/8) to 82.4% (14/17), mostly driven by CR-E. 
cloacae (Figure 2 and Supplementary Table 1).

Whole-Genome Sequencing and Phylogenomic Analyses of CRKpn

Figure 3 shows a core genome-based phylogenomic reconstruc-
tion of 140 strains of CRKpn recovered from the bloodstream, 

other sterile sites, or tissue from 2018 to 2021. Overall, the most 
frequently observed genomic lineages were ST25 (49.6%), ST11 
(20.1%), ST45 (15.8%), and ST1161 (7.9%). After grouping ge-
nomes by year, our temporal analysis revealed critical clonal re-
placements over time (Figure 3). While ST11 accounted for the 
majority of isolates (69%) in 2018, we found a gradual replace-
ment of this lineage for strains belonging to ST25 in 2019 and 
2020. The ST25 lineage increased from 30.8% in 2018 to 68% 
and 92% in 2019 and 2020, respectively (Figure 3). After the 
first pandemic year, we observed the emergence of two lineages 
of CP-CRKpn, ST45 and ST1161, which increased from 3.4% 
and 0% in 2020 to 42.9% and 18.4% in 2021 (Figure 3). Our ge-
nomic analyses revealed that all blaKPC-2-containing isolates 
belonged to the ST1161 lineage, as did the only carbapenemase- 
producing CRKpn recovered before the COVID-19 pandemic 
(2019). On the other hand, while blaNDM-7 was predominantly 
found in CRKpn isolates belonging to the ST45 lineage, 
this trait was also found in genomes belonging to other 
lineages such as ST528 (n = 3) and ST25 (n = 1). All 
blaNDM-7-producing CRKpn organisms were recovered after 
the pandemic onset.

DISCUSSION

Understanding the drivers of AMR is critical to prevent the spread 
of multidrug-resistant organisms. Our data from a large public 
hospital in Chile show an association of the COVID-19 pandemic 
with increases in broad-spectrum antibiotic use and CRE infec-
tions. Notably, during the pandemic period we observed a signifi-
cant increase in the proportion of CP-CRE, which was particularly 
relevant for CP-CRKpn, with an approximately 7-fold increase in 
isolates encoding blaKPC or blaNDM. This increase was driven by 
the appearance of two distinct genomic lineages of CP-CRKpn: 
ST1161 (harboring blaKPC-2) and ST45 (harboring blaNDM-7).

The increase observed in CP-CRE, and especially in 
blaNDM-harboring organisms, which was previously uncom-
mon in Chile, has been reported in other Latin American coun-
tries during the pandemic [20]. In October 2021, the Pan 
American Health Organization issued an alert on the emer-
gence of and increase in new combinations of carbapenemases 
in Enterobacterales in the region [37]. Although we did not find 
CRE harboring more than one carbapenemase, several coun-
tries in Latin America have reported the detection of dual- 
producers after the pandemic [20]. The rapid dissemination 
of CP-CRKpn ST45 harboring blaNDM-7 observed in 2021 
may suggest in-hospital transmission rather than multiple in-
troductions. Hospitals, from different regions, reported chal-
lenges maintaining IPC practices, contributing to increases in 
healthcare-associated infections [38, 39].

Importantly, as shown by our data and official reports, our 
study was performed in a setting of low CP-CRE prevalence 
pre–COVID-19 [21], which provides a perfect setting to 

Table 2. Interrupted Time-Series Model Results for Antibiotic Consumption 
Using a Seasonal ARIMA (1,0,0)(0,1,1) Approach

Term Coeff. SE 95% CI P

(A) Broad-spectrum β-lactams

AR (1) −.08 .17 −.42, .25 .999

SM (1) −.73 .57 −1.84, .38 .999

Onset of COVID-19 pandemic

Step change .38 .11 .17, .59 <.001

Ramp (slope change) .03 .01 .01, .06 .006

Sigma2 = 0.04363: log likelihood = 3.33, AIC = 3.33, BIC = 11.25

(B) Carbapenems

AR (1) .37 .18 .02, .72 .037

SM (1) −.99 .62 −2.21, .21 .999

Onset of COVID-19 pandemic

Step change .49 .20 .09, .88 .016

Ramp (slope change) .03 .03 −.02, .08 .175

Sigma2 = 0.06279: log likelihood = −7.52, AIC = 25.03, BIC = 32.95

(C) Colistin

AR (1) .38 .16 .06, .71 .019

SM (1) −.99 .39 −1.77, -.23 .428

Onset of COVID-19 pandemic

Step change .73 .75 −.74, 2.19 .336

Ramp (slope change) .04 .09 −.14, .23 .653

Sigma2 = 0.7965: log likelihood = −53.26, AIC = 116.52, BIC = 124.43

The AR term refers to autoregressive order; the Ramp coefficient indicates the increment at 
each time point of the time series after the COVID-19 pandemic. The Step change 
coefficient indicates the augment rate immediately following the intervention; SM is for 
seasonal moving average. The model used the logged form of the difference in antibiotic 
consumption over time (by group); hence, coefficients should be transformed for 
interpretation. The logged time series and autocorrelation functions were computed to 
indicate if the time series was stationary. Our analysis of the model’s residuals indicated 
they were uncorrelated and had a zero mean. Significance level, α = 5.  

Abbreviations: AIC, Akaike information criterion; ARIMA, autoregressive integrated moving 
average; BIC, Bayesian information criterion; CI, confidence interval; Coeff., coefficient; 
COVID-19, coronavirus disease 2019; SE, standard error.
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assess the COVID-19 impact on the emergence of CP organ-
isms. Our phylogenomic analyses of CRKpn revealed that the 
increase in CP-CRKpn during 2021 was primarily driven by 
the emergence of two genomic lineages. ST1161 carried 
blaKPC-2, a class A enzyme frequently observed in CRKpn 
in different parts of the world. In contrast, strains of ST45 
harbored blaNDM-7, a class B metallo-enzyme against which 
there are very few, if any, reliable therapeutic options. 
While blaNDM-7 was also found in CP-CRKpn from other ge-
nomic lineages (ie, ST25 and ST528), blaKPC-2 was only ob-
served in ST1161, suggesting that blaNDM-7 could be 
located in a mobile genetic element that facilitates its hori-
zontal transmission into different genomic lineages and per-
haps species. Moreover, the fact that blaNDM was observed in 
non–K. pneumoniae CRE prior to the pandemic and in-
creased during the pandemic, mainly driven by E. cloacae 
complex, may hint towards horizontal transmission of this 
genetic trait. The study of genomic platforms with long-read 
sequencing analyses and transmission dynamics is part of 
our future research endeavors.

In addition to an increase in CP organisms, we observed an 
increase in AU after the pandemic onset. Our findings are con-
sistent with previous reports from China suggesting that 

approximately 70% of patients with COVID-19 received antibi-
otic treatment during the early stages of the pandemic [40, 41]. 
We observed a prolonged and consistent increase 
in broad-spectrum β-lactams, carbapenems, and colistin 
after the first pandemic wave. Antimicrobial use peaked soon 
after the first year since the pandemic onset and coincided 
with the increase in CP-CRE. While there is a temporal corre-
lation, our data do not allow us to establish causality. Therefore, 
the role of the increases in AU in selecting for CRE in general, 
and CP-CRE in our hospital, remains unclear. Several studies 
have demonstrated AU to be an independent risk factor 
for CRE colonization, including a meta-analysis focused on 
CRKpn [42,43]. Further studies are needed to evaluate the ap-
propriateness and drivers of AU in the hospital and its role in 
the emergence of CP-CRE.

Our study has several limitations. First, we only performed 
PCR detection for blaKPC, blaNDM, and blaVIM; therefore, it is pos-
sible that we missed other relevant carbapenemases, leading to an 
underestimation of the number of CP-CRE isolates. Indeed, a re-
cent communication reported the first detection of blaOXA-48 in 
CRKpn and Escherichia coli in Chile during the pandemic [36]. 
However, we did perform WGS in all CRKpn and no other car-
bapenemases were observed in these analyses. Second, while we 

Figure 2. (A, B) Carbapenem-resistant Enterobacterales and carbapenem-resistant Klebsiella pneumoniae over the study period and proportion of isolates harboring blaKPC, 
blaNDM, or blaVIM carbapenemases before and after the COVID-19 pandemic, 2018–2022. Abbreviations: blaKPC, Klebsiella pneumoniae carbapenemase; blaNDM, New Delhi 
metallo-β-lactamase; blaVIM, Verona integron-encoded metallo-β-lactamase; COVID-19, coronavirus disease 2019; PCR, polymerase chain reaction.
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analyzed the genomes of all CRKpn (which were by far the most 
frequent bacterial species), our WGS data did not include other 
organisms (eg, CR-E. cloacae complex), limiting our ability to 
draw conclusions about relevant observations such as the expan-
sion of blaNDM-harboring organisms. Third, our analyses are eco-
logical by nature and preclude conclusions regarding any causal 

effect. Although AU is one of the main drivers of AMR [44], 
our data do not allow us to rule out the influence of confounding 
factors, therefore hampering our ability to establish direct causal-
ity between AU increase and the emergence of CP-CRE.

Despite these limitations, this is the first report examining 
the temporal association between COVID-19 and its impact 

Figure 3. Genomic characterization of 140 carbapenem-resistant Klebsiella pneumoniae isolates. Upper panel: Maximum-likelihood recombination-free phylogenomic tree 
rooted to the midpoint of the genomic distances. The inner colored ring shows the ST; the external colored ring represents the year of isolation. The external red circles 
indicate the presence of the carbapenemase-encoding genes blaKPC, and blaNDM. Lower panel. Frequency ST by year of isolation. Abbreviations: blaKPC, Klebsiella pneumo-
niae carbapenemase; blaNDM, New Delhi metallo-β-lactamase; ST, sequence type.
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on AU and AMR in Chile. It draws attention to the emergence 
of genomic lineages of CP-CRE that pose treatment challenges 
and emphasizes the need for improved antibiotic stewardship 
and enhanced IPC measures to prevent their spread within 
healthcare facilities. The use of genomic surveillance provides 
data to help understand whether there were multiple introduc-
tions of new strains or if there is an expansion of a single strain, 
which hints towards healthcare transmission. It is not known 
whether blaKPC-2 ST1161 or blaNDM-7 ST45 CRKpn will spread 
rapidly within Chilean or South American hospitals, but in-
creased vigilance will be warranted.

In summary, our analyses show that AU rate and AMR in-
creased during COVID-19 surges in Chile. Additional studies 
are necessary to understand the specific ways in which the bur-
den of the pandemic affected AU and AMR rates and whether 
the increases in AU observed in our data directly increased the 
risk of AMR among our population. Our findings also highlight 
the need to build capacity for IPC and antimicrobial steward-
ship programs. As we move into next phase of the 
COVID-19 pandemic and recovery, it will be critical to empha-
size the need for strong IPC programs, one of the cornerstones 
of a resilient healthcare system.

Lesson Learned

Strengthening our capabilities to ensure appropriate AU, rapid 
genome-based surveillance of emerging multidrug-resistant 
pathogens, and efficient IPC programs is crucial to tackle 
AMR in the future.
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