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Abstract
Minimizing arsenic intake from food consumption is a key aspect of the public health

response in arsenic (As)-contaminated regions. In many of these regions, rice is

the predominant staple food. Here, we present a validated maximum allowable con-

centration of total As in paddy soil and provide the first derivation of a maximum

allowable soil concentration for bioavailable As. We have previously used meta-

analysis to predict the maximum allowable total As in soil based on decision tree (DT)

and logistic regression (LR) models. The models were defined using the maximum

tolerable concentration (MTC) of As in rice grains as per the codex recommendation.

Abbreviations: AUC, area under curve; Cov, covariance; DT, decision tree; FN, false negative; FP, false positive; GBM, gradient boost machine; ICE,

individual conditional expectation; LR, logistic regression; MCC, Mathew correlation coefficient; MTC, maximum tolerable arsenic concentration; PDP,

partial dependence plots; PPV, positive predictive value; RF, random forest; ROC, receiver operating characteristic; TN, true negative; TNR, true negative

rate; TP, true positive; TPR, true positive rate; VIF, variance inflation factor.
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In the present study, we validated these models using three test data sets derived from

purposely collected field data. The DT model performed better than the LR in terms

of accuracy and Matthews correlation coefficient (MCC). Therefore, the DT esti-

mated maximum allowable total As in paddy soil of 14 mg kg−1 could confidently be

used as an appropriate guideline value. We further used the purposely collected field

data to predict the concentration of bioavailable As in the paddy soil with the help of

random forest (RF), gradient boosting machine (GBM), and LR models. The category

of grain As (<MTC and >MTC) was considered as the dependent variable; bioavail-

able As (BAs), total As (TAs), pH, organic carbon (OC), available phosphorus (AvP),

and available iron (AvFe) were the predictor variables. LR performed better than RF

and GBM in terms of accuracy, sensitivity, specificity, kappa, precision, log loss,

F1score, and MCC. From the better-performing LR model, bioavailable As (BAs),

TAs, AvFe, and OC were significant variables for grain As. From the partial depen-

dence plots (PDP) and individual conditional expectation (ICE) of the LR model,

5.70 mg kg−1 was estimated to be the limit for BAs in soil.

1 INTRODUCTION

Arsenic (As) exposure has emerged as a major public health

concern over the past few decades. It is now a well-established

fact that not only drinking water, but also food crops culti-

vated using As-contaminated irrigation water is an important

exposure pathway to human through water–soil–rice trans-

fer (Mandal et al., 2021). Rice is a principal food for almost

half of the world’s population, particularly in Asia, Africa,

and Latin America (Majumder & Banik, 2019). Milled rice

consumption is substantial in India and Bangladesh that are

about 103 and 268 kg per capita annually, respectively (FAO,

2017). Rice accounts for roughly 73% of calorific intake

in Bangladesh and 30% in India (GriSP, 2013). It is high

in dietary fiber as well as nutrients such as carbohydrates,

proteins, vitamins, and minerals (Dipti et al., 2012; Mwale

et al., 2018). On the other hand, the consumption of rice

could be a substantial source of As exposure (Mondal &

Polya, 2008; Mondal et al., 2010, 2020). Since As intake from

rice has become a worldwide concern, some governments

and regulatory bodies have established maximum tolerable

As concentrations in rice grains (Schmidt, 2015). Accord-

ing to the Joint FAO–WHO Codex Alimentarius Commission

(JECFA, 2017), inorganic As levels should not exceed 0.2 mg

kg−1 in polished rice and 0.35 mg kg−1 in husked rice. Using

a machine learning approach, Mandal et al. (2021) predicted

the soil As concentrations above which the rice grains culti-

vated in Asian paddy fields may exceed the Codex maximum

tolerable concentrations (MTC). From the logistic regression

(LR) model, the maximum concentration of total As in soil

was found to be 11.75 mg kg−1, whereas the better perform-

ing decision tree (DT) model predicted the concentration of

total As to be 14 mg kg−1 above which the rice grain As

concentration would exceed the MTC. The study was a meta-

analysis using data that were published in 26 selected studies

from Asia. Although the inclusion criteria were restricted only

to field-based studies for reducing heterogeneity, it could not

be fully eliminated. Furthermore, purposely collected field-

based data were required to validate these models. Hence, in

this study, we aimed to validate both the LR and DT models

and test the efficacy of our model predictability using three

different purposely collected field data sets from different rice

cultivation practices: rainfed and groundwater irrigated from

As-contaminated sites of West Bengal, India.

Arsenic in soil is present in both the solution and solid

phases. The As may be in the form of organic and inor-

ganic complexes (present in soil solution), adsorbed ions

and compounds (clay and organic colloids), bound to sec-

ondary minerals and precipitated oxides of iron (Fe) and

manganese (Mn), carbonates, and phosphates or complexed

with organic matter and free ions (Raj et al., 2021). Total

elemental concentrations within the soil offer little insight

into the potential bioavailability of the elements (such as

As), which may cause metal(loid) sequestration and recycling

within the soil environment under the influence of various soil

parameters (Kumari et al., 2021). The fraction of the total

concentration of an element being reactive or labile is not

only related to its source but also the soil properties. The

most inert phase, which is contained in the crystal lattices

of minerals or occluded by particles (total elemental con-

centration), is not potentially available for the biota; instead,

only the reactive concentration is (Groenenberg et al., 2017).

The potential bioavailable or bioaccessible metal(loid) frac-

tion in soils may be a strong indicator of recent metal(loid)
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depositions, as in the case of As when the field is irrigated

with contaminated irrigation water (Sengupta et al., 2021).

The bioavailable As is often used as a key indicator to estimate

the dissolution behavior of As derived from the geochemical

fractions in soils (Bari et al., 2021; ISO, 2016). In this study,

we modeled the maximum tolerable available As concentra-

tions of paddy soil above which rice grain As may exceed

MTC using the collected field data. The bioavailability of As

in soil is governed primarily by pH, organic carbon (OC),

available phosphorus (P), and available iron (Fe) in the rice

ecosystem (Hussain et al., 2021; Kumari et al., 2021). In

another study, Yao et al. (2021) developed a predictive model

for rice grain As in relation to bioavailable As along with

soil characteristics (pH, EC, organic matter, total P, N, and

As) with multiple linear regression. Iron is usually high in the

Bengal delta in the groundwater as well as soil and phosphate-

based fertilizers are widely used in rice that may impact As

bioavailability, and hence, these two parameters may provide

a useful insight within the modeling framework. Previously as

reported by Tan et al. (2020) Fe and P proved to be the most

important parameter in governing the groundwater (drinking

purpose) As content in Bangladesh. From the comprehensive

study of 26 published articles, it was observed that the most

determinant soil properties for As bioavailability in typical

Asian paddy soils were pH, OC, and available P and Fe (Man-

dal et al., 2021). We predicted the threshold for bioavailable

As and also investigated the behavior of these soil parame-

ters (pH, OC, available P and Fe) both on the bioavailability

of As and also the grain As content with the help of indi-

vidual conditional expectation (ICE) and partial dependence

plots (PDP) using the random forest (RF), gradient boosting

machine (GBM), and LR models.

2 MATERIALS AND METHODS

2.1 Testing of LR and DT models

Three individual test data sets composed of paired rice grain

and soil’s total As concentrations were used for the purpose.

The test sets were selected in a way that there is a difference

in terms of sample size, site, and system of rice cultivation.

Test set 1 (n = 50) was collected from three As-contaminated

districts (Nadia, Murshidabad, and N-24 Parganas) of West

Bengal, India under the rainfed rice system. Test set 2 (n = 28)

and test set 3 (n = 132) were collected from the Maldah

and Nadia districts of West Bengal, India, respectively, from

irrigated rice systems using As-contaminated water. Total

As in rice and soil samples were analyzed following the

established protocols as outlined in Table S1.

The grain As content was converted to categorical variables

(<MTC and >MTC) as per the methods outlined in Mandal

et al. (2021). The model testing was performed using R-Studio

Core ideas
∙ Decision tree (DT) and logistic regression (LR)

models are tested with field data.

∙ For rice cultivation, the better performing DT

model predicts 14 mg kg−1 total As as the soil limit.

∙ Both LR and random forest models identified

available Fe, P, and organic carbon as important

variables governing bioavailable As.

∙ From LR model, 5.70 mg kg−1 is the threshold

limit for soil bioavailable As for rice.

(version 1.3.1093 2.3.1). The “caret” package (version 6.0–

86) was used to conduct prediction with LR and DT models.

2.2 Predicting grain As with RF, GBM, and
LR

Random forest is a supervised machine learning algorithm

used for classification and regression-based problems. It is

based on the principle of recursive partitioning (Breiman,

2001) and is independent of the assumption of functional

relationships between the response and predictor variables.

Gradient boost machine integrates the predictions from var-

ious decision trees to generate the final estimate (Friedman,

2001). Logistic regression predicts a binary outcome, based

on previous explanations of a data set. It predicts a dependent

variable by examining the connection between one or more

existing independent variables (James et al., 2013).

For predicting rice grain As alongside the impact of other

soil parameters with the RF and LR models, a compiled data

set (n = 233) of both irrigated and rainfed rice was used.

The details of the data set and analysis protocols followed

have been depicted in Table S2. The whole data set was ran-

domized and split into two. Overall, 80% of the data were

used as the training set and the remaining 20% formed the

testing set. After this, the testing set was kept aside and the

training set was subjected to repeated cross-validation. The

category of grain As (<MTC and >MTC) was considered

as the dependent variable, whereas bioavailable As (BAs),

total As (TAs), pH, organic carbon (OC), available phospho-

rus (AvP), and available iron (AvFe) were considered as the

predictor variables. Basically, the training set was used to

generate multiple splits of the training and validation sets to

reduce overfitting of the model. The “caret” package (version

6.0–86) was used to train the model with 10-fold cross-

validation repeated five times. For RF model accuracy of 0.89

and kappa of 0.345 was used to select the final model using the

value at mtry = 4 after repeated cross-validation (Figure S1).
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Similarly, after repeated cross-validation the final GBM

model was selected at an accuracy of 0.86 with n.tree = 450,

interaction.depth = 8, shrinkage = 0.1, n.minobsinnode = 10,

and kappa = 0.32. For LR model, the accuracy of 0.89

at kappa = 0.424 was considered as the final model after

repeated cross-validation.

The PDP shows the marginal effect that one or two fea-

tures have on the predicted outcome of a machine-learning

algorithm (Friedman, 2001). The correspondent to a PDP for

specific data occasions is ICE plot (Goldstein et al. 2015).

An ICE plot envisions the dependency of the prediction on

a variable for each occurrence separately, resulting in one

line per case, compared to one line in general in PDPs. The

PDP and ICE plots from the RF, GBM, and RF models were

prepared using the pdp (version 0.7.0) package. One of the

assumptions for PDPs is that a variable for which the partial

dependence is computed is not correlated with other vari-

ables. The RF model is highly robust against problems such

as multicollinearity among the variables (Sarkar et al., 2022).

For LR model, the presence of multicollinearity may under-

mine the assumptions for PDPs and hence the severity of

multicollinearity for each variable was tested with variance

inflation factor (VIF). The presence of collinearity raises the

variances of parameter estimations and might result in mis-

taken inferences about the relationship between dependent

and independent variables (Midi et al., 2010). VIF measures

the multicollinearity of predictor variables in a regression

analysis (Franke, 2010). As per Franke (2010), if VIF > 10,

then multicollinearity is high. In our study, the VIFs were 1.15

for pH, 1.45 for OC, 1.32 for BAs, 1.31 for AvFe, 1.34 for AvP,

and 1.15 for TAs.

2.3 Model performance parameters

As the predictive scores are binary (usually represented as

zeros and ones), there is just a single confusion matrix to ana-

lyze, to be informative, each category of the confusion matrix

(true positive [TP], true negative [TN], false positive [FP], and

false negative [FN]), must not be evaluated independently, but

rather with respect to the other ones. The model performance

parameters are accuracy (Equation 1) sensitivity (Equation 2),

specificity (Equation 3), and precision (Equation 4). True pos-

itive rate is also called recall or sensitivity. True negative rate

is also known as specificity. Positive predictive value is also

called precision. The F1 score and the MCC were calculated

by the formulae as outlined in Equations 5 and 6.

Accuracy = (TP + TN)∕(TP + TN + FP + FN) (1)

True positive rate (TPR)∕Recall = TP∕ (TP + FN) (2)

True negative rate (TNR)∕Specif icity = TN∕ (TN + FP)
(3)

Positive predictive value (PPV)∕Precision = TP∕(TP + FP)
(4)

F1 score = (2 × Precision × Recall)∕(Precision + Recall)
(5)

MCC = Cov (𝑐, 𝑙)∕ σ𝑐 σl, (6)

where Cov(c, l) is the covariance of the true classes c and pre-

dicted labels l, whereas σc and σl are the standard deviations,

respectively.

The receiver operating characteristic (ROC) curve was used

to calculate the magnitude of the predicted class for a spec-

ified data that was close to the true class for that data set.

The area under the curve (AUC) measured a classifier’s over-

all performance across all possible thresholds (James et al.,

2013).

3 RESULTS AND DISCUSSION

3.1 Testing of LR and DT models

Table S3 depicts the total As concentrations in the paired rice

grain and soil samples in the three testing sets. The mean rice

grain As content was 322 ± 166 μg kg−1, 257 ± 262 μg kg−1,

and 337 ± 139.2 μg kg−1 for test set 1, 2, and 3, respectively,

while the mean soil total As concentration was 13.8 ± 6.9 mg

kg−1, 7.4 ± 4.0 mg kg−1, and 11.6 ± 3.6 mg kg−1, respec-

tively. The three test sets have a variation in terms of rice

grain and soil total As content, and hence they serve as the

ideal sets for testing the models. A positive correlation was

also observed between soil As and grain As, test set 1 (0.031,

p > 0.05), test set 2 (0.6, p < 0.05), and test set 3 (0.46,

p < 0.05), as can be observed from Figure S2. A machine

learning model’s evaluation is just as crucial as its construc-

tion (James et al., 2013). So, testing the LR and DT models

on these new and unexplored data sets have led to a com-

plete and comprehensive review for both the models published

previously (Mandal et al., 2021).

The TP, FP, TN, and FN values for the three sets with

LR and DT is presented in Table 1, showing the model per-

formance matrices for both the models. The most important

metric for a classification model is accuracy. From the per-

formance metrics of the LR and DT models, it was observed

that in terms of accuracy for all three test sets, the DT out-

performed LR and vice versa for misclassification. The ratio

between the number of correctly classified samples and the
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T A B L E 1 Confusion matrix of the testing data sets

Model: LR Model: DT
Test set 1 (n = 50) Actual Actual

Predicted <MTC >MTC <MTC >MTC

<MTC 19 (TP) 1 (FP) 36 (TP) 2 (FP)

>MTC 27(FN) 3(TN) 10(FN) 2 (TN)

Accuracy (%) 44 76

Sensitivity/recall 41.30 78.26

Specificity 75.0 50.0

Precision 95.0 94.73

F1 Score 57.57 85.71

MCC 0.10 0.18

Test set 2 (n = 28)

<MTC 22 (TP) 1 (FP) 25 (TP) 2 (FP)

>MTC 3 (FN) 2 (TN) 0 (FN) 1 (TN)

Accuracy (%) 85.71 92.86

Sensitivity/recall 88.0 100.0

Specificity 66.67 33.33

Precision 95.65 92.59

F1 score 91.66 96.15

MCC 0.40 0.54

Test set 3 (n = 132)

<MTC 44 (TP) 3 (FP) 95 (TP) 9 (FP)

>MTC 68 (FN) 17 (TN) 17 (FN) 11 (TN)

Accuracy (%) 46.21 80.30

Sensitivity/recall 39.29 84.82

Specificity 85.0 55.0

Precision 93.62 91.35

F1 score 49.15 87.96

MCC 0.18 0.41

Abbreviations: MCC, Matthews correlation coefficient; MTC, maximum tolerable concentration; TN, true negative; FN, false negative; TP, true positive; FP, false positive.

total number of samples is the most appropriate performance

metric (Wang et al., 2007). This is referred to as accuracy,

and it works when there are more than two labels (multiclass

case). After converting the grain As to categorical variables

(<MTC and >MTC) based on the codex recommendation, it

was observed that for test set 1, the number of samples was 46

for <MTC and 4 for >MTC; for test set 2, it was 25 for <MTC

and 3 for > MTC; and for test set 3, it was 112 for <MTC

and 20 for >MTC. When the data set is unbalanced, as in

our case (the number of samples in one class is far greater

than the number of samples in the other classes), accuracy

is no longer a reliable measure since it provides an overopti-

mistic estimate of the classifier’s skill on the majority class

(Akosa, 2017; Sokolova et al., 2006). The specificity was the

highest in LR compared to DT for all the test sets, whereas the

DT had a higher sensitivity compared to LR. The wise rates—

true positive rate (or sensitivity, or recall) and true negative

rate (or specificity)—is computed for all the possible confu-

sion matrix thresholds. These different combinations of these

two metrics give rise to other measures: among them, ROC

and AUC are the most important. A higher AUC value indi-

cates a better-performing model (Mandal et al., 2021). From

Figure S3, AUC for LR was 58.2%, 77.3%, and 62.1% for test

sets 1, 2, and 3, respectively, and for DT the AUC was 64.1%,

66.7%, and 69.9% for test sets 1, 2, and 3, respectively. One

of the three test sets (test set 2) have a higher AUC for LR

compared to DT. However, ROC and AUC present several

flaws (Lobo et al., 2008), and it is sensitive to class imbalance

(Hanczar et al., 2010). So F1 score and MCC can be consid-

ered as the important model metrics to determine the efficacy

of a model. The F1 score for LR model was 57.57, 91.66, and

49.15 for test sets 1, 2, and 3, respectively. For DT, the F1

score was 96.15 for test set 2 followed by 87.96 and 85.71

for test sets 3 and 1, respectively. The MCC for LR was 0.10,

0.40, and 0.18, and for DT, it was 0.18, 0.54, and 0.41 for test

sets 1, 2, and 3, respectively. The DT model has an edge over
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the LR in terms of both F1 score and MCC. The F1 score is

widely used not only in the binary scenario, but also in multi-

class events. In multiclass events, researchers can use the F1

micro/macro averaging method (Pillai et al., 2017). The MCC

creates a high score only if the classifier correctly predicted

most of the positive data cases and most of the negative data

cases, and if most of its positive predictions and most of its

negative predictions are correct. In fact, regarding MCC and

F1, Dubey and Tarar (2018) stated that these two measures

“provide more realistic estimates of real-world model perfor-

mance.” In binary classification tasks, accuracy and F1 score

derived on confusion matrices have been (and continue to be)

among the most often used measures. However, for unbal-

anced data sets, these statistical techniques sometimes can

produce dangerously overoptimistic inflated outcomes as they

fail to reflect the ratio among positive and negative elements

(Chicco et al., 2021) and MCC creates a more explanatory

and honest parameter in evaluating binary classifications than

accuracy and F1 score. The principle of MCC is instinctive

and upfront: to get a high-quality score, the classifier must

make accurate predictions independently of most of the neg-

ative and positive cases of their ratios in the overall data set.

In our case, the DT model performs better than LR not only

in terms of F1 score but also in terms of MCC. Hence, the

DT is a better classifier as compared to LR and 14 mg kg−1

total As in soil will be an appropriate guideline value for rice

crop. For total As, our findings are in agreement with findings

of Rahman et al. (2007) who reported that rice grain is not

safe for consumption when the soil As is above 14.5 ± 0.1 mg

kg−1. Similarly, the recommended limit of soil As for safe cul-

tivation of rice as proposed by the Ministry of Environment,

Government of Japan is 15 mg kg−1 (Punshon et al., 2017).

The boxplot in Figure 1 shows a comparison between the

three test data sets in terms of category of grain As (<MTC

and >MTC) with respect to soil total As and the limits

predicted by the LR and DT model. The blue points below

the red line (representing 14 mg kg−1 of total soil As from

DT) represent the instances at which the rice grain As

was >MTC. These particular instances are due to the fact that

in addition to total As in soil the bioavailable or bioaccessible

fractions may be playing a significant role, leading to a high

uptake of As in rice grain. This warrants further investigation

considering the other soil parameters such as pH, OC,

available Fe, and P that leads to the next part of the analysis.

3.2 Confusion matrix and performance of
RF, GBM, and LR models for bioavailable As

The performance of the RF, GBM, and LR models over the

testing and training phase can be observed in Table 2. From

the confusion matrix of the RF, GBM and LR model, it was

observed that over the training set the model prediction accu-

racy was more in RF and GBM (100) compared LR (91.15)

but over the testing set LR (90.24) have an edge over both

RF and GBM (87.80). From the ROC in Figure S4 for RF

and GBM, the AUC was 100% for training set and 89.0% and

82.4% for testing set, respectively. In case of LR, the AUC

for training set was 89.60%, and for testing set, it was 85.2%.

Although the AUC followed the order of RF > LR > GBM

the accuracy and MCC matrices followed the order of

LR > RF ≅ GBM. The log loss for GBM was minimum over

the training set followed by RF and LR; however, over the test

set it followed the order GBM > LR ≅ RF. The log loss shows

how closely the prediction probability resembles the relevant

true or real value (0 or 1 in case of binary classification). The

higher the log loss number, the more the predicted probability

deviates from the actual value (Vovk, 2015). Hence, a lower

log loss value means better predictability of the model. From

the accuracy, recall, precision, F1 score, and MCC of the test

set, it can be concluded that the performance of the LR model

was better as compared to both the RF and GBM model. As

the test data set was imbalanced (<MTC= 33 and>MTC= 3)

from the MCC, it can be concluded that the LR model has an

edge over the RF model in terms of correctly predicting both

the classes as previously recommended (Chicco & Jurman,

2020). Data collection is prone to errors leading to flaws in

the data set. Noise is the name given to the errors. Machine

learning algorithms that read data noise as a pattern may start

generalizing from it, which might lead to issues. In general,

the performance of LR is improved when the number of noise

variables is less than or equal to the number of clarifying vari-

ables and RF has a higher true and false positive rate as the

number of clarifying variables surges in a data set (Kirasich

et al., 2018). LR having higher classification accuracy than

RF has also been reported by Geng et al. (2006) in predict-

ing colon cancer. Similarly in a financial study by Hao et al.

(2016) in predicting “past-due amount,” it was reported that

LR was effective in terms of predictive accuracy compared to

the RF in case of big and noisy data. Although GBM and RF

are excellent, they are not flawless; for instance, in comparison

to logistic regression models, gradient boosting techniques

typically have poor probability calibration (Niculescu-Mizi &

Caruana, 2005). Additionally, certain models are intrinsically

more data demanding, so perhaps the data set is simply insuf-

ficiently expressive (van der Ploeg et al., 2014) and hence

results in a better performance of the LR model compared to

RF and GBM.

3.3 Variable importance and partial
dependence of the variables from better
performing RF and LR model

The LR model predicted probability (< MTC | > MTC)

= −16.82 + 4.79OC + 0.48AvFe + 1.22BAs + 0.15TAs
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T A B L E 2 Confusion matrix of random forest (RF), gradient boost machine (GBM), and logistic regression (LR) model and model parameters

over training and testing phase for bioavailable arsenic (As)

Training set (n = 192) Testing set (n = 41)
Random forest

Actual Actual

Predicted <MTC >MTC <MTC >MTC

<MTC 166 (TP) 0 (FP) 33 (TP) 3(FP)

>MTC 0 (FN) 26 (TN) 2(FN) 3(TN)

Accuracy (%) 100 87.80

95% CI (0.981, 1) (0.738, 0.9592)

Kappa 1 0.48

Sensitivity/recall 100 94.29

Specificity 100 50.00

Precision 100 91.67

Log loss 0.074 0.29

F1 score 100 92.95

MCC 1.0 0.47

Gradient boost machine

Actual Actual

Predicted <MTC >MTC <MTC >MTC

<MTC 166 (TP) 0 (FP) 33 (TP) 3(FP)

>MTC 0 (FN) 26 (TN) 2(FN) 3(TN)

Accuracy (%) 100 87.80

95% CI (0.981, 1) (0.738, 0.9592)

Kappa 1 0.48

Sensitivity/recall 100 94.29

Specificity 100 50.00

Precision 100 91.67

Log loss 0.0009 1.28

F1 score 100 92.95

MCC 1.0 0.47

Logistic regression

Actual Actual

Predicted <MTC >MTC <MTC >MTC

<MTC 163 (TP) 14 (FP) 34 (TP) 3 (FP)

>MTC 3 (FN) 12 (TN) 1 (FN) 3 (TN)

Accuracy (%) 91.15 90.24

95% CI (0.862, 0.9476) (0.7687, 0.9728)

Kappa 0.54 0.54

Sensitivity/recall 98.19 97.14

Specificity 46.15 50.00

Precision 92.09 91.89

Log loss 0.25 0.31

F1 score 95.04 94.34

MCC 0.56 0.56

Abbreviations: MCC, Matthews correlation coefficient; MTC, maximum tolerable concentration; TN, true negative; FN, false negative; TP, true positive; FP, false positive.
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322 MANDAL ET AL.

F I G U R E 1 Boxplots of total arsenic (As) in soil (mg kg−1) with respect to category of grain As concentration (<MTC and >MTC, where

MTC is maximum tolerable concentration) of three testing data sets. (A: Test set 1 (n = 50), B: test set 2 (n = 28), C: test set 3 (n = 132)). The

horizontal red line indicates the limit of soil As (14 mg kg−1) predicted by decision tree, and the green line indicates the limit of soil As (11.75 mg

kg−1) predicted by logistic regression

(AIC = 106.92). The OC, AvFe, Bas, and TAs coefficients

significantly (p < 0.05) predicted the grain As content. When

AvP and pH were considered for the model, the coefficients

were statistically nonsignificant (p > 0.05) and AIC increased

to 110.25. Hence, from the LR model, the BAs, TAs, OC, and

AvFe were the most important predictor variables of grain

As content. From the variable importance plot of RF model

shown in Figure S5, it can be observed that for predicting the

category of grain As (<MTC and >MTC), the predictor vari-

ables followed the order BAs, TAs, AvFe, OC, and AvP. The

pH was not an important predictor variable in either model.

The importance of the BAs was 100 followed by TAs (41.75),

AvFe (25.77), OC (2.52), and AvP (0.84). The soil As has the

highest importance followed by pH, OC, and available soil

P concentration on grain As content was previously reported

by Sengupta et al. (2021) with RF regression model.

From the ICE (A) and the PDP (B and C) of the LR model

shown in Figure 2, it can be observed that at cut-off prob-

ability of 0.51 (Figure S6) the limit of soil As to classify

grain As < MTC was 5.70 mg kg−1. Similarly, at the cut-

off probability of 0.62 (Figure S5) from the RF model, it was

observed that the limit of soil As to classify grain As < MTC

was 5.72 mg kg−1 (Figure S7) above which the probabil-

ity of grain As < MTC decreases. The PDP was used to

show the marginal influence that one or two features have

on the predicted outcome of the LR and RF model. One line

per instance is displayed in an ICE plot, illustrating how the

instance’s prediction alters as a feature changes. The PDP does

not focus on each instance but rather an overall average. A

partial dependence plot can display whether the relationship

between the dependent variable and an independent variable

is linear, monotonic, or more complex. The PDP in Figure 3

and Figure S8 from LR and RF model shows the probability of

grain As category (<MTC) with respect to BAs (most impor-

tant variable) along with other variables for LR (TAs, AvFe,

OC) and RF (TAs, AvFe, OC, and AvP). It can be observed

that at BAs less than 5.70 mg kg−1 (from LR) and 5.72 mg

kg−1 (from RF) and TAs less that 14 mg kg−1 (predicted from

the DT model), the probability of grain As < MTC was maxi-

mum (1.0–0.8). At BAs of 5.72 mg kg−1 from RF and 5.70 mg

kg−1 from LR, the AvFe below 8 mg kg−1 was observed to

be effective in keeping the probability of <MTC higher. The

OC content between 0.6% and 0.8% was effective in keep-

ing higher probability of grain As < MTC at BAs of 5.72 mg

kg−1 from RF and 5.70 mg kg−1 from LR. For available P, it

was observed that at BAs above 5.72 mg kg−1 from RF, the

AvP was not effective in increasing the probability of grain

As < MTC. However, at lower levels of As, AvP was effective

for a high probability of <MTC.

To our knowledge, this is the first attempt at predicting

the limit of soil bioavailable As using the PDP with respect

to the cut-off probability from the models. The threshold or

cut-off in a binary classification represents the probability

at which most of the predictions are true. It represents the

trade-off between false positives and false negatives (Sarkar

et al., 2022). Neither a very rigorous nor a very slack thresh-

old limit should be used. As because neither India nor South

and South-East Asia as a whole has the luxury of cultivable

land sufficient enough to feed the population, nor would a

free acceptable limit help to adequately protect human health

from As hazards. So, model accuracy was considered as the

parameter for determining the cut-off probability rather than
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F I G U R E 2 Individual conditional expectation (ICE) and partial

dependence plots (PDP) of available As (mg kg−1) from logistic

regression model with respect to probability of grain As < MTC

(maximum tolerable concentration)

sensitivity-specificity (Figure S9). Previous attempts in deter-

mining the safe limit of As in soil (NaHCO3 extractable As)

in relation to dietary exposure from consumption of rice was

undertaken by Golui et al. (2017) only for one specific area

(Maldah district, West Bengal, India) and considering only

two variables pH and OC over a limited data set. Although

from both the models the predicted limit for available As was

very close to each other, the LR model performed better and

we, therefore, suggest that 5.70 mg kg−1 should be considered

as the limit of soil available As. Previously PDP from boosted

regression trees and RF were used to predict the probability of

As exceedance in groundwater on the important variables (Fe

and P) by Tan et al. (2020). The visualization of two variables

at once with BAs through PDP gives us an insight into the

effect of changes in the variables on the probability of grain

As. The PDP of BAs and TAs on grain As reveals that below

the predicted limit of available As (5.70 mg kg−1 from this

study) and total As (14 mg kg−1 from Mandal et al., 2021 and

tested with field data in this study), the probability of grain

As <MTC was maximum. The relationship between BAs and

AvFe revealed that Fe aids in the reduction of As absorption

in rice. Previously, it has been reported the use of Fe causes

the formation of oxides of Fe in form of Fe plaques close

to rice plant roots, which reduces As uptake, and increases

co-precipitation of Fe and As (Lee et al., 2012). Metallic Fe

and Fe-oxide have been observed to decline As accretion in

rice by 51% and 47% (Matsumoto et al., 2015). BAs and OC

relationship revealed the fact that the presence of organic mat-

ter within the soil can restrict the availability of As and its

uptake by rice. Soil organic fractions that comprise humic

acid (HA) and fulvic acid (FA) behave as an active binder

of As through metal–humate complexes of variable stability

(Kumar et al., 2021; Sengupta et al., 2022). The application of

organic amendments reducing the As uptake in rice has been

reported from the field experiments conducted by Sengupta

et al. (2021). Phosphorous competes with arsenate (AsV) for

similar adsorption sites both in the soil and on the Fe plaques

mainly by ligand exchange that is a key characteristic in the

rice field for bioavailability of As and uptake by roots (Peryea

et al., 1995). This explains the relationship of BAs with AvP.

Lee et al. (2016) proposed key factors prompting movement

of As in soil and its uptake by rice: antagonism between As

and P for adsorption sites and during transport in rice roots,

lastly role of P in transfer of As from root to shoot. Thus, lev-

els of AvFe, OC, and AvP (as shown in PDPs) in the soil at

which the BAs will be below the projected limit would aid

in the development of acceptable management techniques to

mitigate As buildup in rice.

4 CONCLUSIONS

Based on the model metrics, the DT model has an edge over

the LR model and hence 14 mg kg−1 of total As in soil will

be a proper guideline value below which rice cultivated in

fields will not surpass the Codex recommendation. From the

better-performing LR model, it was observed that BAs, TAs,

AvFe, and OC were the most important variables for grain As.

The PDPs of the LR model predicted the limit for bioavail-

able As to be 5.70 mg kg−1. It is well known that Fe, P, and

organic matter are used as amendments for reducing the As

accumulation in crops. Thus, levels of AvFe, OC, and AvP

(as shown in PDPs) in the soil at which the BAs will be below

the limit would aid in the development of acceptable man-

agement techniques to mitigate As buildup in rice. In future
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324 MANDAL ET AL.

F I G U R E 3 Partial dependence plots (PDP) of two variables, bioavailable As (BAs) (mg kg−1) with other significant variables total As (TAs),

available iron (AvFe), (mg kg−1) and organic carbon (OC) (%) from logistic regression (LR) model. Probability of <MTC (maximum tolerable

concentration) is depicted in terms of color intensities

studies, manganese can also be considered as a covariate of

the bioavailability of As. In spite of the uncertainties and

inherent limitations of the models brought on by the lack of

appropriate field data, this is a novel way of predicting the

grain As content. Despite collecting paired soil and rice grain

samples during different seasons and from different sites, data

imbalance was observed. The efficacy of a model depends on

its predictability of different types of data (balanced or imbal-

anced). So, from the MCC, it was observed that the LR model

(predicting BAs) has an edge over the RF. Hence, the model

can predict both balanced and imbalanced data sets. As the

models have been developed using a specific set of data from

a specific geographical region, it would be naïve to think that

they could be applied to all contaminated rice growing sites

globally. However, testing and fine-tuning the models with

more field data will enhance their applicability and will serve

as a protocol to derive site-specific regulatory limits.
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