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Motivated by our conduct of a literature review on social exposures and accelerated aging as measured by a
growing number of epigenetic “clocks” (which estimate age via DNA methylation (DNAm) patterns), we report on
3 different approaches in the epidemiologic literature—1 incorrect and 2 correct—on the treatment of age in these
and other studies using other common exposures (i.e., body mass index and alcohol consumption). Among the
50 empirical articles reviewed, the majority (n = 29; 58%) used the incorrect method of analyzing accelerated
aging detrended for age as the outcome and did not control for age as a covariate. By contrast, only 42% used
correct methods, which are either to analyze accelerated aging detrended for age as the outcome and control
for age as a covariate (n = 16; 32%) or to analyze raw DNAm age as the outcome and control for age as a
covariate (n = 5; 10%). In accord with prior demonstrations of bias introduced by use of the incorrect approach,
we provide simulation analyses and additional empirical analyses to illustrate how the incorrect method can lead
to bias towards the null, and we discuss implications for extant research and recommendations for best practices.

accelerated aging; air pollution; Avon Longitudinal Study of Parents and Children, DNA methylation; epigenetic
age; epigenetic clocks; racism; socioeconomic position

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BMI, body mass index; DNAm, DNA methylation; SEP,
socioeconomic position.

Accounting for age in epidemiologic studies is fundamen-
tal to the field (1–5), including but not limited to research
focused on measures of biological aging. In the past decade,
technological advances have enabled development of epige-
netic clocks, which have become a widely used tool in aging
research (6–8) (see Web Table 1, available at https://doi.
org/10.1093/aje/kwad025). An epigenetic clock uses DNA
methylation (DNAm) patterns to estimate the biological age
of an individual or biological specimen, and these estimates
are termed “DNAm age” (also referred to as “epigenetic
age”) (6–8). Above-average DNAm age relative to chrono-
logical age constitutes “accelerated aging,” which in turn is
associated, as hypothesized, with increased risk of numerous
adverse health outcomes, including cardiometabolic disease,
cancer, and younger age at death (6–8).

In this paper, we report on problems we encountered,
which to our knowledge have not previously been doc-
umented, when reviewing recent epidemiologic research
focused on such epigenetic clocks as the outcome (Web
Tables 2–4). At issue is use of 3 methods to account for
chronological age—one of which, though widely used,
is incorrect, and 2 of which are correct (Table 1). These
methods are to: 1) incorrectly analyze accelerated aging
detrended for age (typically measured as the residual of
regressing DNAm age on chronological age) as the outcome
and not control for age as a covariate; 2) correctly analyze
accelerated aging detrended for age as the outcome and also
control for age as a covariate; and 3) correctly analyze raw
DNAm age as the outcome and also control for age as a
covariate (Table 1). We demonstrate that use of the incorrect
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802 Krieger et al.

approach can bias findings towards the null and also renders
it difficult to interpret study findings, given the possibilities
of residual confounding by age, let alone compare results
across studies. Such problems in the incorrect treatment
of age and other potential confounders have long been
recognized (9–13), including most recently in genetic
epidemiology research (14, 15).

Motivating our analysis was a comprehensive literature
review update we conducted in November 2021 (Web Table
2) regarding epidemiologic investigations of epigenetic
accelerated aging (as an outcome) in relation to exposures
involving racial discrimination, economic adversity, and air
pollution, relevant to analyses we have in progress (16). We
extended the review to include 2 other common exposures
assessed in the epigenetic literature: body mass index (BMI;
weight (kg)/height (m)2) and alcohol consumption (Web
Table 2). Informing our concerns, associations between age
and these social exposures and socially patterned health
characteristics and practices can potentially be shaped by
not only chronological age but also birth cohort and period
effects, hence secular trends, reflecting the larger societal
context (e.g., legal age for enrollment in school; legal
age to purchase alcohol; being born before or after the
imposition or abolition of “Jim Crow” laws legalizing racial
discrimination) (4, 5). Depending on the causal process
at issue, age can thus potentially confound and/or modify
the specified exposure-outcome associations (17, 18). To
illustrate how, in relation to epigenetic aging, the incorrect
method can bias results towards the null, we provide
both simulation analyses and new empirical analyses,
and we discuss implications for the extant literature and
recommendations for best practices.

METHODS

Literature review

The initial objective of our literature review was to iden-
tify review articles and empirical studies, published through
November 2022, that explicitly focused on relationships
between DNAm age acceleration and exposure to 3 types of
adversity: racism, social class injustice, and higher levels of
air pollution (see Web Table 2 for search strategy and search
terms). For each article, we assessed how the investigators
accounted for age 1) in their conceptual discussion of the
literature and 2) for the empirical studies, in their statistical
analyses (Web Table 3), noting that some of the researchers
also carried out analyses in which DNAm age acceleration
was used as a predictor of health outcomes. We included
review articles because of their importance in critically
evaluating extant literature for the weaknesses and strengths
of both evidence and methods used to obtain this evidence
(see Web Table 2). Additionally, as a check on whether the
findings for the reviewed social epidemiologic articles were
specific to this field, in January 2022 we conducted an anal-
ogous search of articles focused on DNAm age acceleration
in relation to the exposures of BMI and alcohol consumption
(Web Table 4).

Statistical methods: Frisch-Waugh-Lovell theorem and
the “partialing out” interpretation in multiple regression

A fixture of many a basic statistics course on ordinary
least squares regression, especially in econometrics, is a
discussion of the “partialing out” interpretation in multiple
regression (12, 13). Consider, for example, a model with
k = 2 independent variables,

E (Yi) = β0 + β1Xi + β2Zi,

for i = 1, . . . n individuals. One way to estimate β1 is

β1 =
∑

i X̃iyi∑
i X̃2

i

,

where the X̃i are the ordinary least squares residuals from a
simple regression of X on Z. As Woolridge notes (12, p. 69),
the residuals X̃i have a zero sample average, and so β̂1 is the
usual slope estimate from simple regression. We can think
of the residuals X̃i as the part of Xi that is uncorrelated with
Zi. That is, X̃i is what remains of Xi after the effect of Zi has
been partialed out or netted out. More generally, as Angrist
and Pischke explain in Mostly Harmless Econometrics (13),
the usual ordinary least squares estimator of β,

β = E
[
XT

i X
]−1
E
[
XT

i Yi
]
,

is a k × 1 vector with kth element

βk = Cov
(
Yi, X̃ki

)
Var

(
X̃ki

) ,

where X̃ki is the residual from a regression of Xki on all
of the other covariates. The formula “shows us that each
coefficient in a multivariate regression is the bivariate slope
coefficient for the corresponding regressor after partialing
out all the other covariates“ (13, p. 35). This result is known
as the Frisch-Waugh-Lovell theorem (9, 10), which recog-
nizes, respectively, the contributions of Frisch and Waugh in
identifying this problem in 1933 and the extension of this
work by Lovell in 1963. Angrist and Pischke note that this
“regression anatomy formula,” as they term it (13, p. 36),
can also be written

βk = Cov
(
Ỹi, X̃ki

)
Var

(
X̃ki

) ,

where Ỹi is the residual from a regression of Yi on every
covariate except Xki. They state, “This works because the
fitted values removed from Ỹki are uncorrelated with X̃ki”
(13, p. 36).

To our knowledge, no epigenetic studies have explic-
itly addressed the implications of the Frisch-Waugh-Lovell
theorem for analyzing DNAm age acceleration. However,
a 2011 article by Demissie and Cupples (14), focused on
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Age in Studies of Epigenetic Accelerated Aging 803

genetic association studies, does derive the bias induced by
failing to “partial out” analyses correctly and considers the
implications for analogous kinds of investigations. We refer
readers to this paper for the technical derivation of this bias;
see also Web Appendix 1.

Here, we flag that the “partialing out” result does not
apply to the original motivating example of age-detrended
epigenetic clocks analyzed in relation to covariates where
no additional modeling of age is included in the regression
model. In this setting, one would have the age-detrended
epigenetic clock as Ỹi but would be regressing it on non–age-
detrended X variables. As Angrist and Pischke (13) noted,

Cov
(
Ỹi, Xki

)
Var (Xki)

=
[

Cov
(
Ỹi, X̃ki

)
Var

(
X̃ki

)
] [

Var
(
X̃ki

)
Var (Xki)

]
�= βk,

unless Xki is uncorrelated with the other covariates.
Thus, when regressing age-detrended epigenetic clocks

on other exposures and covariates that have not been sim-
ilarly age-detrended, we expect β estimates to be biased
unless these variables are uncorrelated with age (14).

We additionally underscore that in the omitted-variable
setting (in which there is no adjustment for age or no
detrending of DNAm for chronological age; see Web Figures
1 and 2), the bias depends on 1) the relationship between
age and the outcome, 2) the correlation between age and
the exposure, and 3) the relative variation in age and the
exposure, whereas in the detrended setting, the magnitude of
the bias depends on the magnitude of β1 and the correlation
between age and the exposure. Also, while omitted-variable
bias can bias results towards or away from the null, in the
detrended setting, the direction of the bias is always towards
the null. Intuitively, failing to adjust for age at all is a bigger
problem than age-detrending only the outcome, since the
resulting bias can go in any direction (Web Figures 1 and
2). Moreover, in applied settings, the extent of the bias
when using detrended outcome data may be small relative
to the uncertainty in the estimate of β̂1. Also important to
consider is the functional form of the relationship between
chronological age and DNAm age (i.e., linear vs. nonlinear);
while most of the studies that included age as a covariate in
Web Tables 3 and 4 used only age, 2 studies included terms
for both age and age2.

Simulations

We employed simulations to illustrate the implications
of using the 3 analytical approaches we identified in the
literature:

• Method 1: Detrended DNAm age is modeled as the
outcome with no additional adjustment for chronological
age.

• Method 2: Detrended DNAm age is modeled as the
outcome with chronological age included in the model.

• Method 3: Raw DNAm is modeled as the outcome with
chronological age included in the model.

To do so, we developed 5 simulation scenarios as summa-
rized in Table 2.

• In simulation 1, DNAm age (M) is an outcome that
depends on an exposure (X) and chronological age (Z),
and the true relationship between Z and M is linear.

• In simulation 2, DNAm age (M) is an outcome that
depends on an exposure (X) and chronological age (Z),
and the true relationship between Z and M includes a
squared term for chronological age.

Additionally, although the focus of our paper is on stud-
ies where DNAm age is the outcome, we also wanted to
illustrate the consequences of detrending DNAm age and
choices around the inclusion of chronological age in models
when DNAm is a predictor of an outcome and included on
the right-hand side of the model or when it is analyzed as
a mediator (also approaches employed in a handful of the
papers listed in Web Tables 3 and 4). Thus:

• In simulation 3, DNAm age is an exposure analyzed in
relation to an outcome Y that depends only on DNAm
and chronological age.

• In simulation 4, the outcome depends on DNAm age,
chronological age, and an additional exposure X whose
relationship to the outcome is also confounded by
chronological age, and the simulation considers the case
where all relationships are linear.

• In simulation 5, the outcome depends on DNAm age,
chronological age, and an additional exposure X whose
relationship to the outcome is also confounded by
chronological age, and the model introduces a squared
term for chronological age.

We considered simulation scenarios 2 and 5 to explore
the potential for bias when the age-detrending model for
obtaining detrended DNAm age is misspecified.

To tie the simulations to previously published data, we
chose parameters for the data-generating models from rela-
tionships between the epigenetic clock GrimAge, chrono-
logical age, and a socioeconomic index in the Multi-Ethnic
Study of Atherosclerosis, as reported by Schmitz et al. (19).
Because there were virtually no articles in our literature
review that presented data sufficient to inform simulation
of outcomes, we simulated data for a hypothetical outcome
using the values of parameters for the data-generating pro-
cesses summarized in Table 2. We also conducted new em-
pirical analyses, showing that results obtained with each
method applied to identical data obtained from the Avon
Longitudinal Study of Parents and Children (ALSPAC)
(20).

For each simulation (except simulation 3) we varied the
strength of the correlation ρxz between the exposure (X)
and chronological age (Z) from 0.1 to 0.5. Since under
simulation 3 we do not expect bias when using detrended
DNAm age, we simulated under a fixed correlation of 0.2.
We conducted 5,000 iterations for each simulation, and
we summarized the mean value and 95% quantiles of the
sampling distribution of the estimators of the target estimand
for each scenario using the 3 analytical methods.
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804 Krieger et al.

Table 2. Simulation Scenarios, Data-Generating Models, Target Estimands, and Parameters Used in a Study of Approaches to the Treatment
of Age in Epidemiologic Analyses of Epigenetic Accelerated Aging as an Outcome, 2014–2022a

Simulation Description Parameters

1 DNAm age (M) as an outcome that depends on an exposure (X) and
chronological age (Z){

Xi

Zi

}
∼ MVN

[
σ2

x ρxzσxσz

ρxzσxσz σ2
z

]

Mi = β0 + β1Xi + β2Zi + εM
Target estimand: β1

μx = 2.82
σx = 0.91
μz = 70
σz = 11
ρxz = {0.1, 0.2, 0.3, 0.4, 0.5}
β0 = 79.4
β1 = 0.5
β2 = 0.744
εM = 6

2 DNAm age (M) as an outcome that depends on an exposure (X) and
chronological age (Z), where the true relationship between epigenetic age
and chronological age is nonlinear{

Xi

Zi

}
∼ MVN

[
σ2

x ρxzσxσz

ρxzσxσz σ2
z

]

Mi = β0 + β1Xi + β2Zi + β3Z2
i + εM

Target estimand: β1

μx = 2.82
σx = 0.91
μz = 70
σz = 11
ρxz = {0.1, 0.2, 0.3, 0.4, 0.5}
β0 = 79.4
β1 = 0.5
β2 = 0.744
β3 = −0.004
εM = 6

3 DNAm age (M) as an exposure analyzed in relation to an outcome (Y) that
depends only on M and chronological age (Z){

Xi

Zi

}
∼ MVN

[
σ2

x ρxzσxσz

ρxzσxσ zσ
2
z

]

Mi = β0 + β1Xi + β2Zi + εM
Yi = θ0 + θ1Mi + θ2Zi + εY

Target estimand: θ1

μx = 2.82
σx = 0.91
μz = 70
σz = 11
ρxz = 0.2
β0 = 79.4
β1 = 0.5
β2 = 0.744
εM = 6
θ0 = 20
θ1 = 2.0
θ2 = 0.5
εY = 5

4 DNAm age (M) as an exposure analyzed in relation to an outcome (Y) that
depends on M, chronological age (Z), and an additional covariate (X) that is
also associated with chronological age{

Xi

Zi

}
∼ MVN

[
σ2

x ρxzσxσz

ρxzσxσz σ2
z

]

Mi = β0 + β1Xi + β2Zi + εM
Yi = θ0 + θ1Mi + θ2Zi + θ3Xi + εY

Target estimand: θ1

μx = 2.82
σx = 0.91
μz = 70
σz = 11
ρxz = {0.1, 0.2, 0.3, 0.4, 0.5}
β0 = 79.4
β1 = 0.5
β2 = 0.744
εM = 6
θ0 = 20
θ1 = 2.0
θ2 = 0.5
θ3 = 1.0
εY = 5

Table continues

RESULTS

Literature review

Common to all the literature we reviewed, the standard
approach to estimating raw DNAm age was to derive it
from each epigenetic clock’s algorithm, which converts the
DNA methylation data (typically obtained from blood sam-

ples) into estimates of DNAm age (Web Tables 1, 3, and
4). Following standard practice (6–8), the most commonly
employed measure of accelerated epigenetic aging used in
the empirical studies was the residual obtained from regress-
ing the observed raw DNAm age on chronological age; a
handful used DNAm age minus chronological age (Web
Tables 3 and 4).
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Table 2. Continued

Simulation Description Parameters

5 DNAm age (M) as an exposure analyzed in relation to an outcome (Y) that
depends on M, chronological age (Z), and an additional covariate (X), where
the true relationship between epigenetic age and chronological age is
nonlinear and the true relationship between age and the outcome is nonlinear{

Xi

Zi

}
∼ MVN

[
σ2

x ρxzσxσz

ρxzσxσz σ2
z

]

Mi = β0 + β1Xi + β2Zi + β3Z2
i + εM

Yi = θ0 + θ1Mi + θ2Zi + θ3Z2
i + θ4Xi + εY

Target estimand: θ1

μx = 2.82
σx = 0.91
μz = 70
σz = 11
ρxz = {0.1, 0.2, 0.3, 0.4, 0.5}
β0 = 79.4
β1 = 0.5
β2 = 0.744
β3 = −0.004
εM = 6
θ0 = 20
θ1 = 2.0
θ2 = 0.5
θ3 = −0.002
θ4 = 1.0
εY = 5

Abbreviation: DNAm, DNA methylation.
a For each simulation scenario, we analyzed the data using the following 3 methods: 1) DNAm age is detrended for chronological age by

regressing epigenetic age on chronological age and saving the residuals. Detrended DNAm age is included in the model and chronological age
is omitted. 2) DNAm age is detrended for chronological age by regressing DNAm age on chronological age and saving the residuals. Detrended
DNAm age is included in the model along with chronological age. 3) Raw DNAm age is included in the model along with chronological age.

Among the 40 relevant articles we identified (7 review, 33
empirical) that focused on epigenetic accelerated aging as an
outcome in relation to exposures involving racial discrimi-
nation, economic adversity, and air pollution, none of the
review articles explicitly discussed the different approaches
taken in the empirical literature regarding how age was
treated in their statistical models (Table 1; Web Table 3).
Among the 33 identified empirical analyses, the most fre-
quent approach (used in 18 analyses; 55%) was to 1) incor-
rectly use the age-detrended DNAm age as the outcome and
2) not control for age in models examining the associations
of this outcome with the specified exposures (Table 1; Web
Table 3). However, 10 of the analyses (30%) that used this
same outcome did correctly control for age, and 5 analyses
(15%) used raw DNAm age as the outcome and correctly
controlled for age as a covariate (Table 1; Web Table 3).

A similar mix of incorrect and correct approaches was
evident in the 2 review articles and 17 empirical studies
for which BMI, alcohol, or both served as the exposure
measure(s) (Table 1; Web Table 4). For example, among
the empirical analyses, investigators in 11 studies (65%)
incorrectly reported on the associations of an age-detrended
DNAm age with these exposures unadjusted for age,
whereas 6 (35%) used this same outcome but correctly
adjusted for age in their statistical analyses; none analyzed
raw DNAm age as the outcome. Thus, among the total
of 50 empirical analyses reviewed that focused on social
exposures or on BMI and alcohol consumption as exposures,
investigators in 29 studies (58%) incorrectly analyzed age-
detrended DNAm age as the outcome and did not control
for age as a covariate; 16 (32%) used this outcome and did
correctly control for age; and 5 (10%) analyzed raw DNAm

age as the outcome and correctly controlled for age as a
covariate.

Derivation of bias

As described above, we derived the bias under method 1
in the setting of simulation scenario 1 and show that it is a
function of the true relationship between the exposure X and
DNAm age M and the correlation ρxz between the exposure
and chronological age (Z):

Bias
(
β̃1

) = E
(
β̃1

) − β1 = β1
(
1 − ρ2

xz − 1
) = β1ρ

2
xz,

where β̃1 is the estimated regression coefficient for the
exposure X when detrended DNAm age is regressed on the
exposure and chronological age Z is not included in the
model, β1 is the true relationship between the exposure and
DNAm age, and ρxz is the correlation between the exposure
X and chronological age Z. Conversely, we do not expect
bias when raw DNAm age is the outcome and age is included
as a covariate in the model (method 3) or when detrended
DNAm age is the outcome and age is included as a covariate
in the model (method 2).

Simulations

Figure 1A shows the distributions of estimates for analyti-
cal methods 1–3 under simulation scenario 1. Method 3 (raw
DNAm age is modeled as the outcome with chronological
age included in the model) yields unbiased estimates of the
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Figure 1. Simulation results for bias in estimates of the association between epigenetic accelerated aging and a hypothetical socioeconomic
position metric. A) Distribution of estimates using analytical methods 1–3 for simulation scenario 1 for varying values of ρxz; B) distribution of
bias over 5,000 simulations under analytical method 1 for simulation scenario 1 for varying values of ρxz. The solid blue line in panel B shows
the predicted bias as derived in the Methods section. Per convention for box-and-whisker plots, the top and bottom of the box represent the 75th
and 25th percentiles, the horizontal line inside the box represents the mean value, the whiskers are the 10th and 90th percentiles, and circles
represent outliers.

association between a hypothetical index for socioeconomic
position (SEP) and accelerated aging (since the analytical
model corresponds directly to the data-generating model).

Method 2 (detrended DNAm age is modeled as the outcome
with chronological age included in the model) yields esti-
mates identical to those of method 1. However, method 1
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Figure 2. Simulation results for bias when the true relationship between chronological age and DNA methylation age is quadratic and a linear
specification for chronological age is assumed. The graph shows the distribution of estimates over 5,000 simulations under analytical methods
1–3 for simulation scenario 2 for varying values of ρxz. Per convention for box-and-whisker plots, the top and bottom of the box represent the
75th and 25th percentiles, the horizontal line inside the box represents the mean value, the whiskers are the 10th and 90th percentiles, and
circles represent outliers.

(detrended DNAm age is modeled as the outcome with no
additional adjustment for chronological age) yields biased
estimates of the association with SEP index. As illustrated
in Figure 1B, the bias incurred by method 1 increases as
the correlation between SEP index and chronological age
increases, and it matches the bias predicted by the derivation
above.

In Figure 2 we consider simulation scenario 2, where the
true relationship between chronological age and DNAm
age is quadratic but where, under analytical method 1,
a linear specification for chronological age is assumed
when regressing raw DNAm age on chronological age
and saving the residuals. As the correlation between SEP
index and chronological age increases, the extent of bias
increases.

Figure 3 illustrates the results obtained under the restric-
tive setting of simulation scenario 3, where DNAm age and
chronological age are the only predictors of a continuous
outcome Y . Under this scenario, all 3 analytical methods
yield identical unbiased estimates of the association between
DNAm age and the outcome. We note that under method 1,
detrended DNAm age meets the conditions under the Frisch-
Waugh-Lovell theorem (9, 10) for the estimated regression
coefficient to be unbiased, since there are no other covariates
in the model.

In contrast, Figure 4 illustrates the increasing bias in-
curred by analytical method 1 under simulation scenario 4,
where DNAm age and SEP index are both independent pre-

dictors of the outcome Y and both covariates are associated
with chronological age. Because analytical method 1 fails
to control for chronological age, which is a confounder of
the SEP index association with the outcome, the parameter
estimate for the SEP index is misestimated, and thus in turn
the estimate for the effect of DNAm age is confounded,
even though under analytical method 1 DNAm age has
been detrended for chronological age. In Figure 4, however,
we see that analytical methods 2 and 3 continue to yield
unbiased estimates of the association between DNAm age
and the outcome.

Under simulation scenario 5, when the true relationship
between chronological age and the outcome is quadratic
(Figure 5), analytical method 1 yields substantially biased
estimates of the association between DNAm age and the
outcome. Notably, though the detrending model assumed
(incorrectly) a linear relationship between chronological
age and DNAm age, analytical methods 2 and 3 still yield
unbiased estimates of the association between DNAm age
and the outcome when the correct functional relationship
with chronological age is included in the model.

Empirical demonstration of bias

In Web Figure 3, we depict the observed and expected
estimates of association for 4 epigenetic clocks (Horvath,
Hannum, GrimAge, and PhenoAge) for 14 outcomes with
demonstrated associations with epigenetic age, using data
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Figure 3. Simulation results for bias when DNA methylation age and chronological age are the only predictors of a continuous outcome Y.
The graph shows the distribution of estimates over 5,000 simulations under analytical methods 1–3 for simulation scenario 3 for a fixed value
of ρxz = 0.2. As anticipated, there is no bias when using detrended DNAm age (analytical method 1) when there are no other covariates. Per
convention for box-and-whisker plots, the top and bottom of the box represent the 75th and 25th percentiles, the horizontal line inside the box
represents the mean value, the whiskers are the 10th and 90th percentiles, and circles represent outliers.

from 4,355 individuals aged 17–24 years in ALSPAC (20,
21); see Web Appendix 2 for detailed descriptions of the
ALSPAC population and model results (Web Tables 5 and 6).

As expected, use of the incorrect approach (i.e., analytical
method 1) resulted, for most pairs, in attenuation of asso-
ciations as compared with those obtained using analytical
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Figure 4. Simulation results for bias when DNA methylation age and socioeconomic position index are both independent predictors of the
outcome Y and both covariates are associated with chronological age. The graph shows the distribution of estimates over 5,000 simulations
under analytical methods 1–3 for simulation scenario 4 for varying values of ρxz. Per convention for box-and-whisker plots, the top and bottom
of the box represent the 75th and 25th percentiles, the horizontal line inside the box represents the mean value, the whiskers are the 10th and
90th percentiles, and circles represent outliers.

Am J Epidemiol. 2023;192(5):800–811

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/192/5/800/7010721 by guest on 02 July 2023



Age in Studies of Epigenetic Accelerated Aging 809

1.90

1.95

2.00

2.05

2.10

Method

E
st
im
at
e

�xz �0.1 �xz �0.2 �xz �0.3 �xz �0.4 �xz �0.5
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1.85

Figure 5. Simulation results for bias when the true relationship between chronological age and the continuous outcome Y is quadratic. The
graph shows the distribution of estimates over 5,000 simulations under analytical methods 1–3 for simulation scenario 5 for varying values of
ρxz. Per convention for box-and-whisker plots, the top and bottom of the box represent the 75th and 25th percentiles, the horizontal line inside
the box represents the mean value, the whiskers are the 10th and 90th percentiles, and circles represent outliers.

methods 2 and 3; and these attenuations were greater for
variables with higher correlations with age. In those few
pairs whose associations were larger using analytical method
1, this was probably due to sampling variability and was also
observed in our simulations.

DISCUSSION

The widespread use of both correct and incorrect
approaches for accounting for age in epidemiologic studies
that investigate DNAm age acceleration is concerning.
Considered together, among the 50 empirical analyses we
reviewed in relation to diverse social exposures involving
racial discrimination, economic adversity, and air pollution,
as well as BMI and alcohol consumption, fully 58% of the
50 empirical analyses we reviewed used incorrect methods
(i.e., did not control for age in models whose outcome
was accelerated aging detrended for age), and only 21
(42%) of the analyses employed the appropriate approach
of controlling for age as a covariate when their outcome
comprised either age-detrended DNAm age acceleration or
raw DNAm age. Yet, as nearly a century of research has
shown (9–15), if an outcome is detrended for age, so too
must be the exposure(s) and the covariate(s).

Three implications of our findings stand out. First, results
of extant epigenetic clock studies using the incorrect method
are presumably biased towards the null. Second, the results
of these studies cannot be directly compared with those

from studies that used the correct methods. Third, given
publication bias against null findings (22), it is plausible
that there may be underreporting of meaningful significant
associations between accelerated epigenetic aging and social
or other exposures that were biased towards the null by use
of incorrect methods.

For best practices, we accordingly recommend use of one
of the 2 correct methods:

• Method 2, which uses the age-detrended measures of
DNAm age in analyses that also control for age (in relation
to the exposure and covariates).

• Method 3, which employs raw DNAm age as the out-
come and controls for age as a covariate, and which likely
is preferable, due to ease of modeling and greater data
transparency.
As Wang et al. (23) note, when raw DNAm age is modeled
as the outcome and chronological age is included in the
model as a covariate, effect estimates for covariates can still
be interpreted as effects on accelerated aging. Additionally,
we urgently recommend that explicit adjustment for chrono-
logical age be employed in reanalyses of existing studies
that have not accounted for age confounding in relation to
exposures and covariates, so as to 1) generate more accurate
estimates of association and 2) enable more rigorous and
robust comparisons of results across studies.

Moreover, as simulation scenarios 2 and 5 showed, care
should be taken to explore the correct functional form of
the relationship between chronological age and DNAm age
in the data. It is our opinion that method 3 makes this
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easier to do, since the raw DNAm age and chronological age
variables are available to the data analyst and can thus be
examined in a careful model-building process. However, as
long as due diligence is applied in modeling chronological
age even when using detrended DNAm age (even when
a linear relationship has been assumed in the detrending
process), method 2 will also yield valid results.

One concern for comparison across different studies is
technical variation in the measurement of DNAm both
within and between studies, including the use of different
arrays (or other methods for quantifying DNAm), limiting
the ability to compare findings between studies (24, 25). In
particular, not all DNAm sites are represented on each chip.
As such, some sites in the epigenetic clock algorithm may
be missing, especially from the Infinium MethylationEPIC
BeadChip (Illumina, Inc., San Diego, California), as most
epigenetic clocks were developed using the Illumina
HumanMethylation450 BeadChip (450K). These missing
sites are likely to mean that raw DNAm age summary
measures will not be directly comparable across studies
if they do not use the same chip. While this can be a
concern when reporting overall mean values for DNAm age
across different studies, we anticipate that this will not be
problematic when reporting effect estimates from models,
since control for chronological age in the model effectively
does the same thing as detrending for age using the residual
method. When different chips are used in the same study,
chip effects should clearly be included in the model as well.
Further work should be done to consider the implications for
analyses of DNAm age in relation to dichotomous, count, or
time-to-event outcomes.

In conclusion, the widespread use of incorrect treatment
of age in epidemiologic studies using an epigenetic clock as
an outcome, despite well-known methodological critiques of
consequent biases (9–15), warrants serious reflection. In the
case of age, every individual by definition not only has a spe-
cific chronological age tied to time period at birth but is also
characterized by being a member of a birth cohort—and both
period and birth cohort are highly likely to shape the kinds
of exposures which an individual encounters over the life
course (1–5). Thus, age, by virtue of simultaneously being
both a social and a biological variable, necessarily has a high
likelihood of being a relevant exposure, confounder, and
potentially modifier of any exposure-outcome association,
rendering it crucial to employ correct methods to account
for age in epidemiologic investigations.
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