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One of the main challenges when using observational data for causal inference

is the presence of confounding. A classic approach to account for confound-

2Université Paris-Cité, Centre of
Epidemiology and Statistics (CRESS)

ing is the use of propensity score techniques that provide consistent estimators

Inserm, Paris, France

3MRC Clinical Trials Unit at UCL, UCL,
London, UK

Correspondence
Corentin Ségalas, Department of Medical
Statistics, London School of Hygiene and

of the causal treatment effect under four common identifiability assumptions
for causal effects, including that of no unmeasured confounding. Propensity
score matching is a very popular approach which, in its simplest form, involves
matching each treated patient to an untreated patient with a similar estimated
propensity score, that is, probability of receiving the treatment. The treatment
effect can then be estimated by comparing treated and untreated patients within
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Email: corentin.segalas@inserm fr the matched dataset. When missing data arises, a popular approach is to apply

multiple imputation to handle the missingness. The combination of propen-
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sity score matching and multiple imputation is increasingly applied in practice.
However, in this article we demonstrate that combining multiple imputation
and propensity score matching can lead to over-coverage of the confidence inter-
val for the treatment effect estimate. We explore the cause of this over-coverage
and we evaluate, in this context, the performance of a correction to Rubin’s rules
for multiple imputation proposed by finding that this correction removes the

over-coverage.
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1 | INTRODUCTION

While randomized controlled trials are considered the gold standard for causal inference in the medical sciences, they
are not always feasible.! Often, data from observational data must be used to address causal questions.> However, obser-
vational studies are prone to confounding which means that unadjusted analyses would lead to bias.>* Various statistical
methods to adjust for observed confounding exist, for example, multivariable regression. However, propensity score meth-
ods are an increasingly popular approach. The propensity score is a balancing score, which means that, at any particular
value of the propensity score, the distribution of the baseline covariates is the same among treated and untreated patients.
Under four key assumptions,® including that of no unmeasured confounding, a range of propensity score methods aim
to achieve balance of observed confounders between treatment groups, with the view of mimicking randomization.
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Despite some criticism in the literature,® the propensity score matching method is the most widely used in practice
in medical research.”!* Many different implementations of propensity score matching exist depending on: the matching
algorithm, greedy or optimal, the metric used,!'? the presence and size of a caliper that limits the difference between
propensity scores of a matched pair,!*!° the number of non-treated patients matched to each treated patient'® and the
presence or absence of replacement in the sampling.!>!7 Based on the distance between their estimated propensity scores,
treated patients are matched to non-treated patients in order to create a matched sample in which the two treatment
groups have similar characteristics. Whether and how to take account of the matching in the analysis has been contested
in the literature.”!8

In the following, we consider the setting of a cohort study, with potential confounders measured at the study baseline,
a treatment of interest assessed at study baseline and an outcome of interest assessed during follow-up.

An issue for propensity score matching, as for any other adjustment method, is the presence of missing data on con-
founders. Multiple imputation is a powerful and increasingly popular approach to handle missing data. M completed
datasets are built by drawing missing values from their posterior predictive distribution. Treatment effect estimates are
then obtained for each completed dataset and are averaged into a single treatment effect estimate. Rubin'® proposed rules
to obtain a variance effect estimate that correctly accounts for the additional variability caused by the missing data.

Multiple imputation has been proposed in combination with propensity score analysis. Leyrat et al*® discuss chal-
lenges in applying multiple imputation within propensity score analysis in general. Here, we focus on specific issues
encountered when applying propensity score matching. The most notable feature of propensity score matching, in con-
trast to other propensity score approaches, is that a portion of the data used to generate the estimated propensity scores
is discarded in the final analysis. This means that the sample used to estimate the treatment effect will be only a subset
of the sample used to fit the imputation models. In the context of multiple imputation for measurement error, Reiter?!
noticed that if some patients contributed to the imputation model but not to the analysis model, Rubin’s rules could lead
to inflated variances and over-coverage. This reflects a general phenomenon of over-coverage arising when some infor-
mation is available to the imputer that is not available to the subsequent analyst. For example, if an imputation model
correctly omits an interaction that is allowed for in the analysis model, no bias is induced but over-coverage occurs.??

Reiter proposed a new approach, adding a bootstrapping step to Rubin’s rules, leading to confidence intervals with
correct coverage in the measurement error setting. Parallels between Reiter’s setting and the current one - namely the use
of data to inform imputation models which is then discarded prior to fitting the substantive model - raise the question of
whether similar over-coverage occurs when using Rubin’s rules to obtain variance estimates following multiple imputa-
tion in the context of propensity score matching. Therefore, our objectives are to establish whether discarding unmatched
patients in propensity score matching, following multiple imputation, does lead to over-coverage of the confidence inter-
val for the treatment effect estimate and if, as we expect, we do observe this phenomenon, to evaluate the performance of
Reiter’s correction in this context.

This article is structured as follows. Section 2 introduces key statistical concepts and methodology. Section 3 presents a
simulation study assessing the statistical properties of confidence intervals obtained by applying Rubin’s rules, following
the application of multiple imputation and propensity score matching, and by applying Reiter’s proposed correction. An
illustrative example estimating the effect of age on the probability of receiving surgery for lung cancer in a UK cohort
study is performed in Section 4. Finally, some concluding remarks are given in Section 5.

2 | METHODS

Suppose our fully observed data consists of, for each patienti =1, ... , N, a binary outcome y;, a binary treatment z; and
some baseline covariates xl.T = (x1, ... ,Xp), all potential confounders.

2.1 | Estimands

Two common estimands of interest are the average treatment effect (ATE) and the average treatment effect on the treated
(ATT). These are defined as

ATE = E(y}) — EO),

ATT = E(y} |z = 1) - EQ|z; = 1),
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where y? and yl.1 are the values of the outcome for patient i if patient i were not treated and if patient i were
treated, respectively. In the counterfactual framework,?®> y° and y! are the two potential outcomes, only one is
observed and the other is called the counterfactual. One can only observe y; = ziyi1 +(1- zi)y? because it is impos-
sible to observe both y? and yl.1 for a same patient i. Therefore, the ATE and the ATT are not directly com-
putable. Here, we focus on the ATT throughout since that is often the estimand of interest in propensity score
matching.

2.2 | Assumptions

We make the following standard causal inference assumptions. First, we make the stable unit treatment value
assumption (SUTVA),?* which states that the two potential outcomes y? and yl.1 of one patient i cannot be influ-
enced by the treatment of another patient. Secondly, we assume consistency,” which states that for each sub-
ject, the potential outcome under the observed treatment exactly matches the observed outcome (ie, if z; =
1 then y; =yl.1 and if z; =0 then y; =y?). Third, we assume positivity,”® which states that each patient has a
non-null probability of receiving the treatment and of not receiving the treatment, that is, 0 < p(z; = 1|x;) < 1.
And finally, we assume ignorability> which states that y°,y' L z|x which implies that there are no unmeasured
confounders.

2.3 | Propensity score matching and treatment effect estimation

The propensity score was introduced by Rosenbaum and Rubin® and is defined as the probability that a patient i receives
treatment conditional on the patient’s baseline covariates, ps; = P(z; = 1]x;). Since this probability is unknown, it is esti-
mated from the data, often using a logistic regression model for observed treatment. Alternatively, more data-adaptive
modeling strategies may be used.?’

Due to the balancing property of the propensity score, under the assumptions detailed in Section 2.2, 1:1 matching
on the estimated propensity score allows a consistent estimator § of the ATT to be directly computed by compar-
ing the outcomes y between treated and untreated patients. For binary outcomes, while we have defined the ATT as
a difference in means, leading to a causal risk difference, analogous definitions on different scales exist (risk ratio,
odds ratio, etc.). The variance estimate can be modified to take into account the matched nature of the data’ or to
take into account the estimation of the propensity scores.?® Bootstrap approaches have also been proposed!” in this
context.

24 | Combining propensity score matching and multiple imputation

Problems arise when there are missing data in at least one of the baseline covariates so that the propensity score is not
directly estimable. In this case, a widely used approach is based on the combination of propensity score matching with
multiple imputation.!® Multiple imputation samples from the posterior distribution of the missing data conditional on
the observed data to impute missing values. Typically this is done under the missing at random assumption. The most
commonly used implementation of multiple imputation is based on the chained equation method.?*° Implementa-
tions of this approach are available in most standard software, for example in the r package mice by van Buuren and
Groothuis-Oudshoorn.?!

By imputing multiple times, nb;,, imputed datasets are created. For each of the nb;,, imputed datasets, a propensity
score model can be estimated. From there, to obtain an estimate of the treatment effect using propensity score matching,
different approaches can be used, notably what have been termed the within and across approaches.?’ In the within
approach, the matching is done separately for each one of the nb;,, imputed datasets leading to nb;,, matched datasets
and nb;n,, treatment effect estimates that are aggregated into one estimate.'® In the across approach, the propensity scores
are averaged over all nb;,, imputed datasets and the matching is done from this averaged propensity score leading directly
to one treatment effect estimate only. Following initial debate of these two approaches,*?3¢ Leyrat et al** demonstrated
that only the within approach could lead to consistent estimates, subsequently confirmed by other authors.?”-3® Therefore,
we adopt the within approach.
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The within approach leads to nb;,,, estimated treatment effects, O, k=1, , nbimp, which can be aggregated using
Rubin’s rules’ as follows:
nb;mp
b= Ok,
l’lbimp =1

@(9)=W+<1+ 1 )B,

nbimp

where W is the within imputation variance and B the between imputation variance

nblmp
2 Var(y),
n imp j_ 1
tmp
B= Z (0 — 0)%.

lmp

2.5 | Reiter’s rules

In the context of multiple imputation for measurement error, Reiter?! proposed a modification of Rubin’s rules to com-
bine estimates across imputed datasets in scenarios where some of the patients used for imputation are not used for
further analysis. In classic multiple imputation, a parameter draw computed from the imputation model is used to
generate a single imputed dataset. This operation is repeated nb;y, times, resulting in nb;,, completed datasets each
corresponding to a different parameter draw. Reiter?! proposed generating not one but nb,, datasets from the same
parameter draw and to repeat this nb;y, times leading to a total of nb;,, X nb,, imputed datasets. The treatment effect

estimates @y for k =1, ... ,nbynp and j = 1, ... , nb,, are aggregated and the variance is estimated using the following
formulae:
R 1 nblmpnbpep nblmp 1 nbrep R
O = I Kj = where ) = Ok
nbimpnbrep I; le nbrep le

I7a\r(é)=W+<1+ 1 )B—<1+ 1 )U,
nbimp nbrep

where
1 nblmpnbrep
W=—— Var(fy).
nbimpnbrep ]; ng !
1 nbimp
~ A A\ 2
B=——— 0c—0),
l’lbimp -1 ]; ( )
nblmpnbmp
U=
nbzmp(nbrep ; jz

In the above formula, W is the average within imputation variance of the treatment effect estimate, B is the between
imputation variance of the average treatment effect estimate across parameter draws and U is the variability of the treat-
ment effect within parameter draws but across imputed datasets. When W and B gets close to W and B, that is, for nbimp
and nb,, big enough, the variance formula above includes a new positive term compared to Rubin’s rules, U, which is
subtracted, leading to a smaller estimated variance and hence narrower confidence intervals. In this two-stage approach,
because we are imputing nb,., times for each parameter draw generated from the imputation model, the successive match-
ing will lead to nb,., matched samples for each parameter draw, thus increasing the probability of a patient being included
in one of the final analyses.

Informally, the second term in Rubin’s rules accounts for the additional variance introduced due to uncertainty about
the missing values. This is estimated by the empirical variance across treatment effects estimated from the different sets
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of imputed values. However, in the case of propensity score matching, treatment effects resulting from these different sets
of imputed values differ not just due to uncertainty about the missing values but also because of the stochastic nature
of the sampling process (ie, the propensity score matching). The latter is accounted for within the second term (B), but
is also accounted for in the original within-sample variance estimate (W), thus we need to subtract an estimate of the
additional variability induced by the propensity score sampling process within a fixed dataset (U).

In practice, implementation of these rules, which we will refer to as Reiter’s rules as a parallel to Rubin’s rules, requires
a slight modification of the standard implementation of multiple imputation by chained equation: for each parameter
draw, nb;,, imputed datasets are created instead of only one. This can generally be done using existing options of standard
packages for multiple imputation. For example, the ignore argument of the r function mice allows the imputation
model to be fitted on a subset of the whole dataset. Therefore, if we concatenate nb,., duplicates of the initial dataset and
fix the ignore argument to TRUE for all duplicates, except the first one, this will impute all duplicates using an imputation
model based on the same parameter draw estimated from the initial dataset only. This procedure can be repeated nbj,,,
times so that we obtain nb;n, X nb,, imputed datasets, based on nb;,, parameter draws sampling with for each, nb,,,
imputation.

3 | SIMULATIONS

This section presents results from a simulation study we conducted following the ADEMP framework proposed
by Morris et al.*°

31 | Aims

The aim of the simulation study presented in this section is first to establish whether the discarding of patients in propen-
sity score matching following multiple imputation leads to over-coverage when Rubin’s rules are applied and second to
apply Reiter’s multiple imputation combination rules (Reiter’s rules) to our context and evaluate how they perform.

The number of discarded patients in the matching procedure increases as the number of treated patients decreases
(under a 1:1 matching strategy as described below). If discarding patients leads to over-coverage using Rubin’s rules, then
we would expect to see larger amounts of over-coverage as the proportion of patients who are treated decreases. Hence
we will simulate scenarios with differing numbers of treated patients to explore whether we observe this phenomenon.

The inverse probability of treatment weighting (IPTW)?° approach does not lead to patients being discarded, hence the
combination of IPTW and multiple imputation should not suffer from this particular source of potential over-coverage.
Therefore, a final aim of the simulation study is to establish that any over-coverage seen when combining multiple impu-
tation with Rubin’s rules and propensity score matching is not observed when combining the same imputation process
with IPTW.

3.2 | Datageneration
We generated Ny, = 1000 datasets, each with N = 10 000 patients. Three confounders x = (x;, x;,x;) were generated
as three independent standard Gaussian variables N'(0,1). Three levels of confounding (strong, moderate and weak)

were considered. We expect the crude estimation of the treatment effect to be biased for both the strong and moderate
confounding scenarios while we expect the crude estimation to be almost unbiased for the weak confounding scenario.

3.2.1 | Treatment and outcome models

The treatment allocation variable z was generated as a Bernoulli variable whose individual probability 7rl.T depends upon
the three confounders x through a logistic model:

logit(z]) = fo + Pixi1 + BoXip + PaxXis,

where the intercept f, was chosen so that either approximately 30% (o = —1), 20% (fo = —1.4) or 10% (fy = —2.2) of the
patients were treated.
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The outcome variable y was generated as a Bernoulli variable whose individual probability ﬂ'io depends upon the three
confounders x and treatment z through a logistic model:

logit(z) = —1 + y1Xi1 + 72Xz + 3Xi3 + 02;.

The three levels of confounding (strong, moderate and weak) were determined according to the values of the model
parameters:

« Strong confounding: f; = —0.5; f, = —0.4; 3 = —0.7;y1 = 0.4; 7, = 0.5; 73 = 0.9; 0 = 1.2.
« Moderate confounding: f; = —0.3; f, = —0.4; f3 = —0.3;y; = 0.4; y, = 0.5; 73 = 0.3; 6 = 1.2.
« Weak confounding: §; = —0.01; , = —0.05; §3 = 0.01; y; = 0.1; 7, =0.1; y3 = -0.1; 0 = 3.

3.2.2 | Missing data model

Only the variable x, was partially missing. For this variable, we considered a missing data scenario with a missing at
random mechanism. We simulated a missing data indicator as a Bernouilli variable whose parameter ”LM follows a logistic
regression model

logit(z}") = =2 + 0.1x;1 +x;3 + 1.1z;.

This model results in approximately 15% of the values of x, being missing.

3.3 | Estimand

In their most commonly applied forms, propensity score matching estimates the ATT while IPTW estimates the ATE. The
true values of these estimands were obtained numerically. We quantify the treatment effect for the ATT and ATE both as
an odds ratio and a risk difference. The true ATT values were numerically approximated in the following way. For each
scenario, we simulated a sample with a million patients keeping only the treated patients. For those, we saved the values
of their outcome and generated a new outcome as if they were untreated, that is, by fixing z; to 0 in the outcome model.
Therefore, we have both the potential outcomes for all treated patients in the sample. From that, we can obtain the true
ATT values to a high degree of precision. A similar process was followed to obtain the true values of the ATE estimands.

3.4 | Methods
34.1 | Assessing confounding in our simulated scenarios

First, we evaluated the level of confounding generated in our simulation scenarios. To this end, we simulated a sample of
N = 10,000 patients with a binary outcome, without any missing data and with 30% treated (ie, with f, = —1). For each
confounding scenario (weak, moderate and strong) we looked at the balance of the three confounders before matching
(in the whole dataset) and after matching (in the propensity score matched dataset). We also looked at the absolute stan-
dardized mean differences (ASMD) for all three confounders before and after matching. The ASMD is a balance indicator
that helps to identify confounding. Guidelines suggest that ASMD values above 0.1 indicate potential confounding.*’ To
plot balance and ASMD, we used the cobalt package.*! Finally, using the same simulated data, the crude treatment
effect estimates for the three levels of confounding were compared to the true values to assess the impact of confounding
in our simulated scenarios.

3.4.2 | Combining multiple imputation and propensity score matching

For all simulations, we set nb;,, = 20 and nb,,, = 10. Simulations were conducted using R. First, multiple imputation was
performed using the function mice with the outcome included in the imputation model as advised by previous work?%+
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to generate nb;,,, imputed datasets. In the case of Reiter’s rules, nb;n, X nb,,, imputed datasets were produced and we used
the ignore argument of the mice function to generate nb,,, imputed datasets for each nb;,,, parameter draws. Then, for
each completed dataset, the propensity score was estimated using the glm function with a logit link including x;, x, and
X3 as covariates. For each completed dataset, each treated patient was matched to one untreated patient by their estimated
propensity score, using a caliper of 0.2 times the standard deviation of the logit of the propensity score.'* Matching was
performed without replacement. This matching was done using the package MatchIt.*? For each matched dataset, the
ATT was estimated with a generalized linear model of outcome on treatment only, as a risk difference between the treated
and the untreated by using a linear link and as an odds ratio between the treated and the untreated by using a logit
link. As advised by Austin’ and Hill,'8 clustered standard errors that take into account the within-pair correlation due
to the matched nature of the data were used. In R, this was done using the function glm. cluster from the package
miceadds. Finally, all treatment effect estimates and estimation of their variance were aggregated using Rubin’s rules
or Reiter’s rules.

3.4.3 | Combining multiple imputation and IPTW

For each of the nby,, imputed datasets, we estimated the ATE using the IPTW approach, aggregating estimates using
Rubin’s rules. Here, we use the IPTW approach only as a control to assess the impact of not discarding any patient between
multiple imputation and propensity score analysis.

3.5 | Performance measures

The simulations were evaluated using the following metrics: the relative bias (Rel. bias) defined as the ratio of the absolute
bias over the true value and the coverage rate of the 95% confidence intervals.

3.6 | Results
3.6.1 | Confounding in the simulated scenarios

Balance and ASMD for the three levels of confounding are displayed in Figure 1. Propensity score distributions among
the treated and untreated are very similar in the weak scenario but increasingly different in the moderate and strong
scenarios. Little covariate imbalance is observed in the weak scenario (ASMD < 0.01) but large covariate imbalances
(ASMD above 0.25) are observed for the moderate and strong scenarios. Overall, we see little potential for confounding in
the weak scenario but much stronger in the other two. This is reflected in the unadjusted odds ratio for treatment: with
an estimate of 3 in the weak scenario (true value 3) and 0.69 and 0.18 in the moderate and strong scenarios (true value
1.2 in both these settings), indicating strong confounding.

3.6.2 | Results when combining multiple imputation and propensity score matching

Relative bias and coverage of the 95% confidence intervals are shown in Figure 2 when Rubin’s rules and Reiter’s rules
are applied after applying multiple imputation and then propensity score matching under the three levels of confounding
and three levels of percentage of the sample treated. The ATT is quantified both as an odds ratio (left) and a risk difference
(right).

From Figure 2, we can see that both Rubin’s rules and Reiter’s rules give approximately unbiased point estimates
with relative bias very close to 0. Application of Rubin’s rules led to higher than nominal coverage, around 0.99. This
over-coverage is a consequence of a general discrepancy between the empirical and the model standard errors, the latter
being systematically bigger than the former. As we hypothesized, this over-coverage of the confidence interval increases
when the percentage of treated patients decreases, that is, when more patients are discarded between the imputation and
the treatment effect estimation.

Conversely, Figure 2 shows that using Reiter’s rules led to coverage rates much closer to the nominal value of 0.95.
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confounding scenarios: weak, moderate and strong (on the right, from top to bottom). These plots were obtained using the cobalt package

on a simulated sample of N = 10,000 patients with a binary outcome, without any missing data and with 30% of treated (ie, with g, = —1)
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FIGURE 2 Simulation performance results for a binary outcome for three levels of confounding (weak, moderate, strong), and three
levels of treatment percentage (10%, 20%, 30%) on the odds ratio and mean difference scale (ATT) using Rubin’s rules and Reiter’s rules after
applying multiple imputation and then propensity score matching
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FIGURE 3 Simulation performance results for a binary outcome for three levels of confounding (weak, moderate, strong), and three
levels of treatment percentage (10%, 20%, 30%) on the odds ratio and mean difference scale (ATE) using Rubin’s rules after combining
multiple imputation and IPTW

3.6.3 | Results when combining multiple imputation and IPTW

Relative bias and coverage of the 95% confidence intervals are shown in Figure 3 when Rubin’s rules are used after apply-
ing multiple imputation and then IPTW under the three levels of confounding and three levels of percentage of the sample
treated. The ATE is quantified both as an odds ratio (left) and a risk difference (right).

From Figure 3, we observe that the combination of multiple imputation and IPTW leads to unbiased estimate of the
ATE and the coverage rates are close to the nominal value of 0.95 when using Rubin’s rules as aggregator of the estimates.
This was expected because, in contrast to propensity score matching, IPTW does not discard any patients so the set of
patients used in the imputation step match the set used in the treatment effect estimation step.

4 | APPLICATION

In this section, we use data taken from the National Cancer Registry of the Office for National Statistics** to estimate the
effect of age at diagnosis as a binary variable (using the median as the cutoff) on the receipt of surgery for the 31,351
patients diagnosed with lung cancer recorded in the registry. Tumor stage at diagnosis is classed as early versus late, based
on a dichotomization (stages 1,2 vs 3,4) of Belot et al’s algorithm.** The patient’s performance status, assessing functional
abilities, has two modalities, good and bad, based upon dichotomization of the five-category WHO classification.** Depri-
vation was measured using the Income Domain from the 2010 England Indices of Multiple Deprivation.*> Comorbidities
were adjusted for using the Charlson Comorbidity Index with a 6-year time window up to 6 months before diagnosis. All
these variables and the sex of the patient were considered to be confounders in our analysis. Table 1 provides a descrip-
tion of the sample by the outcome, receipt of surgery, summarizing potential confounder variables and any missing data.
About 25% of performance status and 10% of tumor stage data were missing.

Multiple imputation was performed using mice, by including the binary outcome, treatment and the fully observed
confounders listed above in the imputation model. Propensity score matching was performed using nearest neighbor
matching without resampling. A caliper of 0.2 was applied on the scale of the logit of the propensity score values. We
applied the procedure described in Section 3.4.2 to these data using both Rubin’s rules and Reiter’s rules. In order to assess
the impact of the choice of nb;,,, and nb,,,, several combinations of values were used: (nbyyy; nbrep) = (20; 10), (20; 30),
(30; 10), (305 30), (50; 10) and (50; 30). We also used two different seeds, 1604 and 1993, to assess the potential impact of
random fluctuation on the results. For each scenario, the treatment effect was quantified using both the odds ratio and
the risk difference, with the point estimate and the estimated variance obtained using both Rubin’s rules and Reiter’s
rules. We computed the relative difference between Rubin’s and Reiter’s rules point estimates and variances defined as
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TABLE 1 Descriptive statistics and missing data summary for potential confounders used in our illustrative example from the
National Cancer Registry dataset according to the outcome: absence or presence of surgery

No surgery received Surgery received Overall

Surgery (N =26 501) (N = 4850) (N =31351)
Age (binary)

< median 12 371 (46.7%) 3304 (68.1%) 15 675 (50.0%)

> median 14130 (53.3%) 1546 (31.9%) 15 676 (50.0%)
Sex

Male 14 729 (55.6%) 2463 (50.8%) 17 192 (54.8%)

Female 11 772 (44.4%) 2387 (49.2%) 14 159 (45.2%)
Stage

Early 3339 (12.6%) 3823 (78.8%) 7162 (22.8%)

Late 20 488 (77.3%) 878 (18.1%) 21 366 (68.2%)

Missing 2674 (10.1%) 149 (3.1%) 2823 (9.0%)

Performance status

Good 9332 (35.2%) 3728 (76.9%) 3728 (76.9%)

Bad 10 309 (38.9%) 340 (7.0%) 10 649 (34.0%)

Missing 6860 (25.9%) 782 (16.1%) 7642 (24.4%)
Deprivation

Mean (SD) 0.690 (0.463) 0.653 (0.476) 0.684 (0.465)
Charlson score

Mean (SD) 1.34 (1.66) 1.04 (1.32) 1.29 (1.62)

the difference between Rubin’s and Reiter’s rules point estimates and variances over the Reiter’s rules point estimate and
variance. This allows the comparison of the two approaches in a more standardized way than just looking at the raw
differences. Figure 4 shows these relative difference for all scenario considered.

For both Rubin’s rules and Reiter’s rules, the point estimate is obtained as the mean of estimated treatment effects
across imputed datasets. Therefore, on average we would expect the difference in point estimates to be zero. Figure 4
shows, as expected, that the relative difference in point estimates is scattered around zero, demonstrating no systematic
difference between the two approaches. The variance estimate obtained from Reiter’s rules is expected to be smaller than
that from Rubin’s rules (although not mathematically guaranteed to be smaller), therefore we would expect the relative
difference to be positive in general. Indeed, in almost all scenarios the relative difference is positive, meaning that the
estimated variance is systematically smaller when using Reiter’s rules rather than Reiter’s rules. For the three remaining
scenarios, the variance was only slightly smaller using Rubin’s rules, compared to using Reiter’s rules. Also, these three
cases happen only in scenarios where values of (nbj,; nb.p) are low. We would expect that increasing these numbers
would result in W and B becoming closer to W and B, resulting in the variance from using Reiter’s rules being at least as
small as that using Rubin’s rules.

Table 2 displays the point estimates and 95% confidence intervals of the ATT on the risk difference scale using Rubin’s
and Reiter’s rules, using both random seeds and for the different values of (nbj; nbrp). From this Table, it is clear that
Reiter’s rules lead to narrower confidence intervals. Also, it seems that, assuming nb;,,, constant, increasing nb,, lead to
narrower confidence intervals in most of the cases for Reiter’s rules results. Increasing, nb;,,, from 20 to 30 also lead to
narrower confidence intervals for both Rubin’s rules and Reiter’s rules but increasing it to 50 does not lead to a substantial
higher precision.

In this application, when (nby,p; nbe,) goes from (20, 10) to (20, 30), the computational time was multiplied by 3;
when it goes from (20, 10) to (30, 10) it was multiplied by 1.4. As we would expect, the Monte Carlo error is reduced by
increasing both nb;,,, and nb,.,. However, computational burden may limit the feasibility of using very high numbers, in
which case, we suggest re-running the analysis using a different seed to assess the robustness of results.
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FIGURE 4 Relative differences for the point estimates (left pane) and the estimated variances (right pane) between Rubin’s rules and
Reiter’s rules in the OR scale (upper pane) and RD scale (lower pane) using both random seeds (4 for 1604 and X for 1993) and for each
value of (nbjpp; nbyep)

TABLE 2 Pointestimate and 95% confidence intervals for the ATT on the risk difference scale using Rubin’s and Reiter’s rules, using
two different random seeds and a range of values for (nby,, nby.,)

Rubin’s rules Reiter’s rules

nb;y,, Seed 1993 Seed 1604 nb,,, Seed1993 Seed 1604

20 —0.575 (—0.580; —0.570)  —0.568(—0.575; —0.562) 10 —0.579 (=0.584; —0.573)  —0.576 (=0.579; —0.572)
30 —0.571 (—0.576; —0.566) —0.554 (—0.557; —0.551)

30 —0.578 (—0.585; —0.071)  —0.562 (—0.568; —0.556) 10 —0.565 (—0.571; —0.559)  —0.556 (—0.570; —0.562)
30 —0.579 (—0.583; —0.575)  —0.575 (—0.580; —0.570)

50 —0.578 (=0.584; —0.572)  —0.564 (=0.569; —0.559) 10 ~0.568 (—0.572; —0.564)  —0.576 (—0.580; —0.572)
30 —0.584 (—0.588; —0.579)  —0.569 (—0.573; —0.566)
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5 | DISCUSSION

In this article, we demonstrated that estimating a treatment effect using propensity score matching, after using multi-
ple imputation to handle missing data, leads to over-coverage in the confidence interval for the treatment effect, when
Rubin’s rules are used to estimate the variance of the treatment effect estimate. This over-coverage is due to using data
in the imputation from patients whose data is not used in the subsequent estimation of the treatment effect. We demon-
strated that Reiter’s correction?' to Rubin’s rules, introduced to solve a related problem in a different context, removed
this over-coverage in a range of simulation settings.

In a recent simulation study?’ over-coverage was also observed when combining multiple imputation and propensity
score matching using Rubin’s rules. However, because inflated standard errors were observed in the absence of missing
data, the authors attributed the over-coverage to the standard error estimator being conservative, rather than being a
consequence of applying multiple imputation in this setting.

Reiter’s rules have the advantage of being easy to implement using the R package mice and its ignore argument
as we detailed on Section 2. A drawback of Reiter’s rules, however, is that when doing nb;,, imputations for each of the
nb,,, parameter draws this leads to a total of nb;y, X nb,, imputed datasets, requiring the process of propensity score
matching and treatment effect estimation to be repeated nbyy,, X nby, times. The choice of (nbjyp; nbyyp) when using
Reiter’s rules is therefore important and is a compromise between the computational burden and the precision of the
method. When working with big sample sizes, implementing Reiter’s rules may become computationally burdensome.
However, in many standard situations with modest sample sizes, this is not an issue and Reiter’s rules can be easily
applied.

In this article, we have focused on the propensity score matching approach only because the issue of inflated
variance only arises with this propensity score method. This is because among the various propensity score
approaches, matching is the only one which discards a large portion of patients from the initial dataset leading to
an inconsistency between the sample used to impute the missing data and the one used to estimate the treatment
effect. In our simulation settings, using the IPTW approach to estimate the average treatment effect using Rubin’s
rules to compute the variance results in coverage rates close to the nominal value, consistent with results from
previous work. %37

We have focused on binary outcomes in this article. In principle, the same phenomenon of over-coverage is likely to
arise when combining multiple imputation with Rubin’s rules and propensity score matching. However, with a continu-
ous outcome, obtaining a standard error that correctly accounts for all sources of variability—including the estimation of
the propensity score—in the absence of missing data is more challenging. This makes it hard to clearly disentangle incor-
rect coverage due to lack of correction for the propensity score estimation with that due to the phenomenon explored in
the current article.

While we explored one particular variance estimator in our simulation studies, we expect the over-coverage identified
to occur when using other variance estimators. We note that different estimators do not always account for the same
sources of variability in the full data (eg, some account for the estimation of the propensity score and some do not),
which would impact their relative performance with or without missing data. We have therefore avoided this additional
complicating factor by focusing on one variance estimator only.

In this paper, we have explored only a small number of simulation settings. We identified the over-coverage we
expected to find and showed that, in these situations, Reiter’s correction removed the over-coverage, as expected. More
research is needed to explore this phenomenon in different settings, and to develop guidance on how to optimally choose
the numbers of different phases of imputations (nb;mp and nb,ep).
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