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Unobserved individual heterogeneity is a common challenge in population can-
cer survival studies. This heterogeneity is usually associated with the combina-
tion of model misspecification and the failure to record truly relevant variables.
We investigate the effects of unobserved individual heterogeneity in the con-
text of excess hazard models, one of the main tools in cancer epidemiology.
We propose an individual excess hazard frailty model to account for individual
heterogeneity. This represents an extension of frailty modeling to the relative
survival framework. In order to facilitate the inference on the parameters of
the proposed model, we select frailty distributions which produce closed-form
expressions of the marginal hazard and survival functions. The resulting model
allows for an intuitive interpretation, in which the frailties induce a selection of
the healthier individuals among survivors. We model the excess hazard using a
flexible parametric model with a general hazard structure which facilitates the
inclusion of time-dependent effects. We illustrate the performance of the pro-
posed methodology through a simulation study. We present a real-data example
using data from lung cancer patients diagnosed in England, and discuss the
impact of not accounting for unobserved heterogeneity on the estimation of net
survival. The methodology is implemented in the R package IFNS.
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1 INTRODUCTION

Cancer epidemiology has become one of the priorities of many countries and health organizations. The outcomes of
interest in this area include the time to death since the diagnosis of cancer as well as the survival due to cancer. The latter
is often interpreted as a proxy of the quality of cancer management. There exist different ways for analyzing times to
event. Briefly, the Overall Survival framework, where the aim is to study the survival function associated with all causes
of death, and the Competing Risks framework, where the goal is to analyze survival times in the case where the death can
be attributable to different causes. When the cause of death is known, the Cause-Specific framework allows for studying
cause-specific quantities, while the Relative Survival framework allows for studying the hazard associated to cancer when
the cause of death is unavailable or unreliable (eg, population-based cancer registries data). The main idea behind the
Relative Survival framework is to separate the hazard associated with cancer from the hazard associated with other causes
of death, without requiring to know the cause of death but using expected mortality hazard from life tables. The overall
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survival framework is typically avoided in cancer epidemiology as this quantity does not represent the survival associated
with cancer. Moreover, the survival of patients may be affected if the populations of interest are exposed to considerably
different hazard mortality rates associated with other causes of death, thus complicating the comparison of overall survival
functions associated with different populations. Although the cause-specific framework is a useful framework for the
analysis of cancer survival, the cause of death (eg, from death certificates) is not available or unreliable in most countries,
thus limiting its usability in population cancer epidemiology. For this reason, the relative survival framework has become
the most popular tool for international comparisons of cancer survival.1 The relative survival framework assumes that
the individual hazard function can be decomposed as the hazard associated with other causes of death plus the “excess”
hazard associated with cancer:

h(t; x) = hP(age + t; year + t, z) + hE(t; x), (1)

where t > 0 is the time-to-event measured since diagnosis (typically in years), hP(age + t; year + t, z) is the expected pop-
ulation mortality hazard obtained from a life table based on the characteristics z, “age” represents the age at diagnosis of
cancer and “year” is the year of diagnosis (so age + t is the age at time t, and year + t is the year at time t). The expected
population mortality hazard hP(age + t; year + t, z) is considered known, and the excess hazard associated with cancer,
hE(t; x), is the quantity of interest and is estimated according to the available patient characteristics x. Typically, z ⊆ x. A
related quantity of interest is the net survival, SN(t; x) = exp{−∫ t

0 hE(r; x)dr}, which is the survival function associated with
the excess hazard function hE(t; x) for a patient with characteristics x (see Perme et al2 and Rubio et al3 for a discussion on
these points, and Belot et al4 for an overview of other measures used in cancer survival analysis). Policy-making and inter-
national comparisons of cancer management are often based on the net survival associated with the entire population or
subgroups of interest, which is calculated as the marginal or average net survival

SN(t) = ∫ SN(t; x)d𝜑(x),

where 𝜑 is the distribution function of covariates x. In population studies, where the population of interest has covariates
x1, … , xm, this quantity is usually calculated as

SN(t) =
m∑

i=1
SN(t; xi).

Several parametric,5-10 semi-parametric,11 and nonparametric2 methods have been proposed in the literature for estimat-
ing the excess hazard and the net survival.

One of the challenges in estimating the excess hazard function is that not all of the relevant covariates may be available
at the population level. Unobserved individual heterogeneity (UIH) refers to the situation where important covariates
are not recorded, or unavailable in the sample, potentially combined with model misspecification. The effects of not
accounting for UIH can be substantial. For instance, in the context of overall survival analysis, Aalen12 and Aalen et al13

show that neglecting UIH induces a bias on the estimation of the parameters, as well as affecting the interpretation of
some epidemiological measures such as the hazard function and incidence rates. Similar effects are observed by UIH
produced by model misspecification14 or missing covariates.15 In addition, UIH can also affect model selection16 and the
estimation of causal effects,17 emphasizing the importance of accounting for it.

Individual frailty models represent a tractable option for accounting for UIH.18-25 The idea behind frailty models
consists of multiplying the individual hazard function by a random correction that follows a parametric distribution G
(see Section 2 for more details on this point). This allows for accounting for non-specific departures from the original
model (without a frailty term), in the sense that these departures may be a result of model misspecification or unavailable
relevant covariates. In the relative survival framework, Zahl26 investigated the use of correlated frailty models, which
include two random frailties that affect the hazard function associated with other causes of death and the excess hazard,
separately. However, they encountered a number of inferential issues as his proposal added five parameters which cannot
be simultaneously estimated, unless an arbitrary restriction of the parameter space is introduced. Indeed, jointly modeling
the two competing risks (associated to other causes and cancer) is a challenging problem that may lead to non-identifiable
models,27 such as that proposed by Zahl.26 Goeman et al28 studied the use of frailties in a combination of concurrent
and excess hazard models. This is, assuming a further decomposition of the excess hazard into a hazard associated with
a concurrent disease (assumed to be known) and the hazard associated with cancer. They assumed that the frailty term
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1068 RUBIO et al.

affects both the concurrent disease hazard and the excess hazard equally, and focused on modeling the excess hazard using
a proportional hazards (PH) model with a piecewise baseline hazard and without time dependent effects. It is important
to notice that assuming a simple model (eg, without time-dependent effects) may induce a variance inflation of the frailty
term, as this term captures UIH due to missing covariates or model misspecification. Rancoita et al29 investigated the
use of shared frailty models, which assume that the random frailty simultaneously affects the hazard associated with
other causes and the excess hazard. Rubio et al3 studied the case where there is a potential mismatch in the estimation
of the hazard associated with other causes, as a consequence of using an insufficiently stratified life table. They proposed
correcting this mismatch using a random frailty affecting only the hazard associated with other causes. To our knowledge,
the specific case of frailty models that can account for UIH on the excess hazard model has not been studied in the
literature, neither the consequences of UIH in the estimation of net survival, which motivates our study.

In this article, we propose a frailty excess hazard model which can account for potential UIH on the excess hazard
function. This is, we assume that the UIH affects the excess hazard, either as a consequence of missing covariates or
model misspecification. In order to ameliorate concerns about model misspecification, we model the excess hazard using
flexible parametric models with a rich hazard structure,7 which can incorporate covariates that affect the time scale as
well as covariates that act on the hazard scale. Such models include popular hazard structures (such as PH and accelerated
failure time (AFT)) as particular cases. We derive some properties of this model, and characterize the marginal hazard and
survival functions for several choices of the frailty distribution. We provide intuitive interpretations of these functions,
and discuss identifiability of the proposed frailty model. The resulting models are available in closed form, allowing for a
tractable implementation and estimation of the parameters using maximum likelihood methods.

The article is organized as follows. In Section 2, we present the frailty model and derive the marginal hazard and
survival functions, which are required for writing down the likelihood function, and discuss the interpretation of these
quantities. We consider several frailty distributions that lead to closed-form expressions of the marginal hazard and sur-
vival functions. In Section 3, we present the flexible parametric models for the excess hazard, and discuss interpretation of
the parameters. In Section 4, we present the expression of the likelihood function and discuss point and interval estima-
tion of the parameters. We discuss tools for selecting the models with and without frailties. Section 5 presents a simulation
study that illustrates the performance of the proposed model in scenarios of practical interest, and illustrates the ability
of the individual frailty model to recover the marginal net survival in the presence of UIH (due to the omission of one
covariate). Section 6 presents an application using data from patients diagnosed with lung cancer in England. Section 7
concludes with a summary of our results and a general discussion about the use of frailty models in the relative survival
framework. The methodology is implemented in the R package IFNS available at https://github.com/FJRubio67/IFNS.

2 EXCESS HAZARD FRAILTY MODEL

In this section, we consider a frailty model based on the hazard decomposition (1). This model represents an extension
of frailty models25 to the relative survival framework. We calculate the marginal hazard and survival functions, which
will later be used to construct the likelihood function, and discuss the interpretation of the resulting expressions. We also
discuss several choices of the frailty distribution that lead to closed-form expressions of the hazard and survival functions.

Consider the following frailty model, where we include a frailty (random effect), 𝜆 ∼ G, which multiplies the excess
hazard function in (1) and is allowed to vary across individuals. More specifically, consider the conditional hazard model

̃h(t|𝜆; x) = hP(age + t; year + t, z) + 𝜆hE(t; x),
𝜆 ∼ G. (2)

where G is an absolutely continuous cumulative distribution function, with support on R+ and unit mean. In the Supple-
mentary material, we present additional details about the identifiability of the proposed model under the hazard structure
proposed in Section 3, which is guaranteed under the assumption of unit mean of the frailty distribution. The conditional
survival function is

̃S(t|𝜆; x) = exp{−[HP(age + t; year + t, z) −HP(age; year, z)]} exp [−𝜆HE(t; x)] , (3)

where HP(⋅) and HE(⋅) represent the cumulative hazards associated with hP(⋅) and hE(⋅), respectively. Then, after inte-
grating out the frailty 𝜆 with respect to the distribution G (see Supplementary material), the subgroup-specific marginal
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survival function, for a specific vector of covariates x, can be written as

̃S(t; x) = exp{−HP(age + t; year + t, z) +HP(age; year, z)}G{HE(t; x)}, (4)

where G{s} = ∫ ∞0 e−srdG(r) denotes the Laplace transform of G evaluated at s. Consequently, the marginal hazard
function is

̃h(t) = − d
dt

log ̃S(t; x)

= hP(age + t; year + t, z) −
′G{HE(t; x)}
G{HE(t; x)}

hE(t; x)

= hP(age + t; year + t, z) + E[𝜆|To ≥ t]hE(t; x), (5)

where To = min {TP,TC} is the observed survival time, TP is the time to death from other causes, and TC is the time to
death from cancer, and′G{u} = 𝜕

𝜕z
G{z}|||z=u

. A detailed derivation of the last equality is presented in the Supplementary
material. Equation (5) reveals that the effect of the frailty on the marginal excess hazard is time-dependent and also
depends on the choice of the frailty distribution G. This implies that the value of the marginal excess hazard, for different
values of t, may differ for different choices of the frailty distribution (in particular, for larger values of the variance of
the frailty). This becomes more evident by looking at the resulting expression of the Laplace transforms associated with
different distributions (eg, gamma and inverse Gaussian, shown in the Supplementary material). Moreover, this allows
us to interpret frailty excess hazard models in a similar way as in Balan et al,25 where the frailty is interpreted, at a
marginal level, as an element inducing a selection of healthier individuals among cancer patients. Moreover, this factor
also accounts for unobserved heterogeneity and departures from the fitted model. Next, we consider a specific choice
for the distribution G: a gamma distribution. This choice allows for obtaining a closed-form expression of the marginal
survival function, in addition to its appealing flexibility and interpretability of parameters. In the Supplementary material,
we also present the Laplace transforms associated with the inverse Gaussian and power variance function (PVF) frailties.
The PVF is a more general distribution with closed form Laplace transform, but with one additional parameter.21 The
gamma distribution is a limit case of the PVF. Other three-parameter frailty distributions leading to closed-form Laplace
transforms are the compound Poisson distribution30 and the stable distribution,31 which include the gamma, inverse
Gaussian, among other distributions, as particular cases. Other frailty distributions, which require numerical integration
to calculate the marginal hazard and survival functions, are reviewed in Rondeau et al.32

2.1 Gamma frailty

Consider the conditional hazard model (2) and suppose that 𝜆 ∼ Ga(𝜇, b), where Ga(𝜇, b) denotes a gamma distribu-

tion with mean parameter 𝜇 > 0, scale parameter b > 0, and probability density function g(r;𝜇, b) = r
𝜇

b
−1

Γ
(
𝜇

b

)
b
𝜇

b

exp
(
− r

b

)
.

Under the constraint that the mean parameter 𝜇 is set to 1, the scale parameter b of the frailty represents the variance.
With this assumption (𝜇 = 1) it follows that the subgroup-specific marginal frailty survival function is given by

̃S(t; x) =
exp

{
−
[
HP(age + t; year + t, z) −HP(age; year, z)

]}

{1 + bHE(t; x)}
1
b

. (6)

The subgroup-specific marginal frailty net survival function is

̃SN(t; x) =
1

{1 + bHE(t; x)}
1
b

. (7)

The subgroup-specific marginal frailty net survival (7) is the net survival marginalized with respect to the frailty distribu-
tion but conditional on the covariates x. This is a corrected version of the classical net survival SN(t; x) = exp [−HE(t; x)],
and we can see that limb→0 ̃SN(t; x) = SN(t; x).
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1070 RUBIO et al.

The subgroup-specific marginal frailty hazard function is given by

̃h(t; x) = hP(age + t; year + t, z) + hE(t; x)
1 + bHE(t; x)

. (8)

Expression (8) provides a nice interpretation of our approach since the observed hazard can be seen as a model with
a time-dependent weight function 𝜔(t; x, b) = 1

1 + bHE(t; x)
on the excess hazard, which provides a functional form that

involves the scale or spread of the correction due to unobserved heterogeneity. Moreover, 𝜔(t; x, b) is a decreasing func-
tion of HE(t; x) and b. Thus, an increase in these quantities induces a more pronounced frailty effect (as 0 < 𝜔(t; x, b) ≤ 1,
and 𝜔(t; x, b) = 1 represents no frailty effect). Thus, the correction induced by the weight function 𝜔(t; x, b) can be inter-
preted as a reduction in the level of the excess hazard hE(t; x), due to frailties associated with unobserved heterogeneity
for specific values of the parameters. However, it is important to notice that this does not mean that the frailty correc-
tion always shrinks the excess hazard hE(⋅), as the model parameters are estimated jointly with the scale parameter b in
the weight function. Indeed, the excess hazard in the models with and without frailty are not directly comparable. This
effect will be illustrated in the simulation study and the real-data application, where we observe that the estimates of the
parameters of the models with and without frailty do not necessarily coincide when there is UIH.

3 FLEXIBLE PARAMETRIC MODELS FOR THE EXCESS HAZARD

To model the excess hazard, we consider the flexible parametric general hazard (GH) structure:33

hE(t; x,𝜶, 𝜷,𝜽) = h0
(

t exp{w⊤

𝜶};𝜽
)

exp
{

x⊤𝜷
}
. (9)

where x ∈ Rp, w ∈ Rpt , 𝜶 ∈ Rpt , and 𝜷 ∈ Rp. Typically w ⊆ x. h0(⋅;𝜽) represents a parametric baseline hazard function
with parameters 𝜽 ∈ Θ. This is a rich hazard structure which contains, as particular cases, the PH model (𝜶 = 0), the
accelerated hazards (AH) model (𝜷 = 0), and the AFT model (𝜶 = 𝜷, w = x). See Reference 7 for an extensive discussion
on the GH structure. This structure allows for the inclusion of time-scale effects (through w) and effects that act at the
hazard level (x). Allowing for a flexible excess hazard model helps reducing UIH associated with model misspecification,
which in turn is useful to focus our attention on capturing the effect of potentially missing covariates. These points have
been discussed in the overall survival framework in Gasparini et al.34 The corresponding cumulative hazard function is

HE(t; x,𝜶, 𝜷,𝜽) = H0
(

t exp{w⊤

𝜶};𝜽
)

exp
{

x⊤𝜷 −w⊤

𝜶

}
. (10)

The fact that the excess cumulative hazard function can be written in closed form facilitates the implementation of the
likelihood function (discussed in the next section) as well as simulating survival times from this model. More specifically,
simulating a random time-to-event from the GH model (9) is simple using the probability integral transform (see also
Rossell and Rubio16):

t =
F−1

0
[
1 − exp

{
log(1 − u) exp(w⊤

𝜶 − x⊤𝜷)
}
;𝜽
]

exp(w⊤

𝜶)
, (11)

where u ∼ (0, 1), and F0 is the cumulative distribution function associated with the baseline hazard h0. Analogously,
simulating from the frailty model (2) can be done as follows

t =
F−1

0
[
1 − exp

{
log(1 − u) exp(w⊤

𝜶 − x⊤𝜷)∕𝜆
}
;𝜽
]

exp(w⊤

𝜶)
,

where u ∼ (0, 1), and 𝜆 ∼ G.
Regarding the choice of the baseline hazard, Rubio et al7 presents a discussion on different choices using flexible

parametric distributions. The desirable properties of this hazard function are: numerical tractability and the ability to cap-
ture the basic shapes of the hazard (increasing, decreasing, unimodal, bathtub). Rubio et al7 mention the exponentiated
Weibull (EW) and the generalized gamma (GG), as particular choices for the baseline hazard. Here, we consider the use of
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RUBIO et al. 1071

the power generalized Weibull (PGW) distribution,35 but we emphasize that any other flexible baseline hazard distribution
could be used instead. The PGW distribution is a flexible three-parameter distribution (with scale parameter 𝜎 > 0 and two
shape parameters 𝜈, 𝛾 > 0), which can also capture the basic hazard shapes while having tractable expressions for the haz-
ard and survival functions.36 The probability density function, survival function, and hazard function of the PGW distri-
bution are presented in the Supplementary material. We could also consider simpler (2-parameter) baseline hazards that
can capture specific basic shapes such as the log-normal distribution (unimodal), log-logistic, and the gamma distribution.

4 INFERENCE

Throughout, let (t1, … , tn) be the survival times associated with n cancer patients in a population; (𝛿1, … , 𝛿n) be the
corresponding vital status indicators (0-alive, 1-dead); xi ∈ Rp, i =, … ,n represent the vector of covariates available for
the ith patient; agei be the age at diagnosis; and yeari be the year of diagnosis. The likelihood function for the individual
frailty model (4)-(5) is

̃L(𝜶, 𝜷, 𝜎, 𝜈, 𝛾, b) ∝
n∏

i=1

[
hP(agei + ti; yeari + ti, zi) +

hE(ti; xi,𝜶, 𝜷, 𝜎, 𝜈, 𝛾))
1 + bHE(ti; xi,𝜶, 𝜷, 𝜎, 𝜈, 𝛾))

]
𝛿i

× 1

{1 + bHE(ti; xi,𝜶, 𝜷, 𝜎, 𝜈, 𝛾)}
1
b

.

In contrast, the likelihood function associated with the model without frailty (1) is

L(𝜶, 𝜷, 𝜎, 𝜈, 𝛾) ∝
n∏

i=1

[
hP(agei + ti; yeari + ti, zi) + hE(ti; xi,𝜶, 𝜷, 𝜎, 𝜈, 𝛾)

]
𝛿i × exp {−HE(ti; xi,𝜶, 𝜷, 𝜎, 𝜈, 𝛾)} .

Point estimates of the parameters of these models will be obtained via maximum likelihood estimation. Confidence inter-
vals will be calculated using asymptotic normal approximations, which are justified by the typically large samples in our
applications in cancer epidemiology. Briefly, let 𝝍 be the full vector of parameters for the model of interest, we consider

the use of confidence intervals of the type �̂� ± Z1− 𝜏

2
diag

(
J−

1
2 (�̂�)

)
, where J(𝝍) = − 𝜕

2

𝜕𝝍𝜕𝝍
T log L(𝝍) is the negative of the

Hessian matrix of the log-likelihood function under the appropriate parametrization, and 1 − 𝜏 ∈ (0, 1) is the confidence
level.

We compare these two models using AIC and evaluate their performance using a simulation study. We point out that
the use of the likelihood ratio test for comparing these two models is more complex as the distribution of the likelihood
ratio test statistic is not necessarily asymptotically chi-square with one degree of freedom (see, Chapter 8 of Reference 23).
Moreover, there exist a number of information criteria developed for mixed models that could also be used.37 In particular,
in our applications the sample size is large enough that makes the AIC and the marginal AIC37 very close. A thorough
exploration of the use of different information criteria is beyond the aims of this article and we refer the reader to Müller
et al37 for a more extensive discussion on this point.

5 SIMULATION STUDY

In this section, we present a simulation study where we investigate the performance of the frailty model under several
scenarios. The proposed scenarios are designed with specific objectives:38 (Aim 1) to investigate the finite sample per-
formance of the proposed approach in different settings, and (Aim 2) to assess the effect of missing covariates (with
heterogeneous distributions) in subgroups of the population.

5.1 Aim 1: Finite sample performance

5.1.1 Data generation and simulation design

We investigate the impact of (i) different sample sizes and (ii) different values of the regression coefficients on
the performance of our approach. The different true values of these regression coefficients correspond to three
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1072 RUBIO et al.

different scenarios (called Sc1, Sc2, or Sc3 hereafter), and for each scenario, we consider four different sample sizes
(n ∈ {500, 1000, 2000, 5000}). For each scenario, we generate four covariates: a continuous covariate (say age) was simu-
lated using a mixture of uniform distributions with 0.25 probability for the range (30, 65), 0.35 probability for (65, 75) and
0.40 probability for (75, 85) years old; the remaining three covariates (say sex, X1 and X2) are binary with equal probabilities
of being 0 or 1 (ie, P(sex = 0) = P(sex = 1) = 0.5).

The simulation of the survival times is based on the additive decomposition of the overall mortality hazard as detailed
in equation (1). We simulate the “other-causes” time-to event using the UK life tables, and the cancer event time (ie, the
time to event from the excess hazard) using the inverse transform method (11), assuming model (9). This is, we adopt a
GH structure with a PGW baseline excess hazard, a gamma frailty with mean 𝜇∗ = 1 and scale b∗ (its value depends on the
simulated scenario), and the effects of the covariates age, sex, X1 and X2 (Section 3 details the use of the inverse transform
method with the PGW distribution). We simulate a random drop-out time assuming an exponential distribution with a
given rate r, the value of this rate being chosen in order to generate around 5% of random drop-out in each scenario. Finally,
we assume an administrative censoring at 5 years. Both sources of censoring (ie, random drop-out and administrative
censoring) induce between 40% and 45% of censoring in total and for all the scenarios. We generate and analyze M = 1000
samples in each scenario.

For Sc1, the true values of the baseline distribution parameters are 𝜎∗ = 0.75, 𝜈∗ = 1.75, 𝛾∗ = 8, the scale of the gamma
frailty b∗ = 0.5 and the regression coefficients 𝜶∗ = 𝜷∗ = (1, 1, 1, 1). We emphasize that these are complex simulation sce-
narios where the 4 covariates are included and with both time-dependent and hazard-level effects, in combination with a
flexible baseline hazard. In practice, one would typically include only some of the covariates (eg, age) as a time-dependent
effect, thus reducing the effective number of model parameters. The aim of Sc1 is to portray the performance of the
proposed frailty model in very challenging scenarios.

In Sc2 and Sc3, we assumed less complex true models than in Sc1, assuming only two covariates with time-dependent
effects. Moreover, the parameters defining the distribution of the baseline hazard and the variance of the random effect
were also assumed different than in Sc1, in order to cover a suitable range of possible scenarios. The true values used for
Sc2 and Sc3 can be found in the Tables 1 and 2, respectively, in the Supplementary material.

5.1.2 Analysis of the simulated data

We analyze the data using model (9) for the excess mortality hazard, assuming the same parametrization as the one used
to simulate the data. We report the mean of the estimated regression coefficients, the bias (the difference between the
mean of the estimated regression coefficients and the true value), the median of the estimated regression coefficients, the
empirical standard deviation, the mean (estimated) standard error, and the coverage proportions of asymptotic confidence
intervals.

Our approach has been fully implemented using R software. The optimization step was conducted using the R com-
mand “nlminb.” The standard errors of regression coefficients were derived from the Hessian matrix obtained with the
command “hessian” (R package “numDeriv”), and the asymptotic 95% confidence intervals were approximated using
these standard errors. For the initial values for the optimization step, we used the parameters estimated from a PH model
with the PGW distribution but without a frailty parameter (so we set to 1 the initial value for the scale of the gamma
distribution, and for the parameters corresponding to time-dependent effects we used as initial values the ones obtained
from the PH model). The cases where the optimizer did not converge (as indicated by “nlminb”) or when the command
“hessian” produced “Inf” or “NaN” values were excluded: for Sc1, it represents 31, 16, 3, and 0 sets of estimates excluded
among 1000 estimates with n = 500, 1000, 2000, 5000 observations, respectively. For Sc2, it represents 10, 1, 0, and 0 sets
of estimates excluded among 1000 estimates with n = 500, 1000, 2000, 5000 observations, respectively, while none were
excluded in Sc3.

5.1.3 Results

The results of Sc1 are detailed in Table 1 below, while the results for Sc2 and Sc3 are given in Tables 1 and 2 in the
Supplementary material, respectively. As expected, the bias decreases and the coverage gets closer to the nominal value
with increasing sample size. Using different values of regression coefficients and variance of the frailty does not alter the
performance and the results observed, as shown in Tables 1 and 2 in the Supplementary material. We observed a different
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RUBIO et al. 1073

T A B L E 1 Simulation results for Aim 1, scenario 1

Parameter True MeanMLE Bias MedianMLE Coverage Mean StdErr EmpSD

Scenario N = 500

𝜎 0.750 0.974 0.224 0.761 0.817 0.446 0.622

𝜈 1.750 1.983 0.233 1.873 0.932 0.397 0.498

𝛾 8.000 8.690 0.690 8.609 0.787 4.097 4.986

𝛼1 1.000 1.097 0.097 1.006 0.928 0.607 1.333

𝛼2 1.000 0.984 −0.016 0.995 0.914 0.273 0.639

𝛼3 1.000 1.027 0.027 0.991 0.924 0.565 1.197

𝛼4 1.000 1.010 0.010 0.986 0.917 0.608 1.420

𝛽1 1.000 0.940 −0.060 1.016 0.941 0.384 0.846

𝛽2 1.000 1.007 0.007 0.996 0.964 0.165 0.369

𝛽3 1.000 0.989 −0.011 1.009 0.957 0.359 0.675

𝛽4 1.000 1.003 0.003 1.014 0.946 0.378 0.821

b 0.500 1.231 0.731 0.549 0.828 0.810 1.675

Scenario N = 1000

𝜎 0.750 0.870 0.120 0.740 0.885 0.333 0.453

𝜈 1.750 1.847 0.097 1.820 0.937 0.246 0.269

𝛾 8.000 8.364 0.364 8.246 0.869 3.065 3.404

𝛼1 1.000 1.029 0.029 1.000 0.957 0.319 0.582

𝛼2 1.000 1.023 0.023 1.001 0.955 0.162 0.373

𝛼3 1.000 1.004 0.004 0.972 0.953 0.319 0.570

𝛼4 1.000 0.969 −0.031 0.989 0.945 0.326 0.584

𝛽1 1.000 0.994 −0.006 1.008 0.954 0.189 0.263

𝛽2 1.000 0.984 −0.016 0.995 0.948 0.090 0.207

𝛽3 1.000 0.997 −0.003 1.005 0.952 0.191 0.327

𝛽4 1.000 1.007 0.007 0.999 0.956 0.194 0.317

b 0.500 0.836 0.336 0.541 0.923 0.616 1.063

Scenario N = 2000

𝜎 0.750 0.821 0.071 0.759 0.942 0.227 0.309

𝜈 1.750 1.778 0.028 1.766 0.962 0.165 0.162

𝛾 8.000 8.061 0.061 8.010 0.929 2.170 2.292

𝛼1 1.000 1.015 0.015 0.997 0.959 0.192 0.272

𝛼2 1.000 1.010 0.010 1.005 0.954 0.093 0.154

𝛼3 1.000 1.009 0.009 0.991 0.945 0.197 0.338

𝛼4 1.000 1.009 0.009 0.995 0.945 0.193 0.310

𝛽1 1.000 1.003 0.003 1.008 0.947 0.113 0.147

𝛽2 1.000 0.994 −0.006 0.998 0.956 0.048 0.087

𝛽3 1.000 0.996 −0.004 1.004 0.946 0.116 0.185

𝛽4 1.000 0.997 −0.003 1.003 0.939 0.114 0.175

b 0.500 0.660 0.160 0.550 0.964 0.409 0.607
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1074 RUBIO et al.

T A B L E 1 (Continued)

Parameter True MeanMLE Bias MedianMLE Coverage Mean StdErr EmpSD

Scenario N = 5000

𝜎 0.750 0.760 0.010 0.747 0.950 0.123 0.125

𝜈 1.750 1.764 0.014 1.760 0.954 0.102 0.102

𝛾 8.000 8.108 0.108 8.026 0.951 1.352 1.369

𝛼1 1.000 0.991 −0.009 0.987 0.952 0.109 0.110

𝛼2 1.000 1.001 0.001 1.002 0.949 0.051 0.052

𝛼3 1.000 0.988 −0.012 0.986 0.948 0.110 0.109

𝛼4 1.000 0.987 −0.013 0.989 0.936 0.110 0.113

𝛽1 1.000 0.999 −0.001 0.997 0.945 0.066 0.066

𝛽2 1.000 1.000 −0.000 0.998 0.949 0.027 0.028

𝛽3 1.000 1.001 0.001 1.000 0.943 0.066 0.067

𝛽4 1.000 1.002 0.002 1.001 0.938 0.066 0.068

b 0.500 0.565 0.065 0.543 0.941 0.229 0.233

Abbreviations: EmpSD, empirical standard deviation; Mean StdErr, mean of the standard errors; MeanMLE, mean of the maximum likelihood estimates;
MedianMLE, median value of the maximum likelihood estimates.
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F I G U R E 1 Scenario Sc1 with 500 observations: Subgroup-specific marginal net survival for the reference group

behavior in the estimation of the regression coefficients associated with covariates compared to those of the baseline
hazard parameters and the scale parameter of the frailty. For the regression coefficients associated with covariates, the
performances are good even with a small sample size of 500 cases. For the baseline distribution parameters and the scale
of the frailty, the bias is high in situations with sample size of 500 or 1000. When the sample size is larger (2000 or 5000),
the performances are good, with small bias and coverage near the nominal value.

For Sc1 with 500 observations (and therefore non negligible bias on the baseline distribution parameters and the
scale of the frailty), we check the ability of our approach to recover the true subgroup-specific marginal net survival (ie,
integrated over the frailty distribution but conditional on covariates, see Equation (7). We could see that for the reference
group (ie, covariates values set to 0) and despite the bias aforementioned, the true subgroup-specific marginal net survival
is nicely recovered on average over the set of simulated samples (Figure 1).
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RUBIO et al. 1075

5.2 Aim 2: Impact of missing covariates with heterogeneous distributions

We now explore two simulation scenarios as follows. The overall aim is to compare the use of the model fitted to the
entire population for predicting net survival for subgroups of the population, a common strategy in epidemiology, against
a stratified analysis. In the first scenario, we assume that there exist two subgroups of the population, defined by the
variable sex, with slightly different PGW baseline hazards (𝜽1 = (0.5, 1.5, 5) for sex = 1, and 𝜽2 = (0.5, 1.5, 3), for sex = 0).
The variable sex is binary with probability 0.6 of being 1 and probability 0.4 of being 0. For each subgroup, we generate 2
covariates: a continuous covariate (say age) was simulated using a mixture of uniform distributions with 0.25 probability
for the range (30, 65), 0.35 probability for (65, 75) and 0.40 probability for (75, 85) years old; and the variable X1 is also
binary, with conditional probability 0.8 of being 1 if sex = 1, an conditional probability 0.4 of being 1 if sex = 0 (that is, it
has a different distribution for each sex). In addition, we assume that the effects of the covariates are different for each
sex subgroup: for sex = 1, 𝜶 = (0.7, 0.7, 0.5) and 𝜷 = (1, 0.5, 1); and for sex = 0, 𝜶 = (0.7, 0.7, 0.25) and 𝜷 = (0.5, 0.5, 0.25).
In the second simulation scenario, we again assume that there exist two subgroups of the population, defined by the
variable sex, now with markedly different PGW baseline hazards (𝜽1 = (0.5, 1.5, 5) for sex = 1, and 𝜽2 = (0.5, 1.5, 0.75) for
sex = 0). The covariates are simulated as in the first scenario, and the true values of the regression coefficients 𝜶 and 𝜷
are chosen as in the first scenario. For both scenarios, we consider sample sizes n = 500, 1000, 5000 and censoring rate of
approximately 65%.

For each scenario, we first fit the classical model without frailty (1) and the frailty model (8) with PGW baseline haz-
ard to each simulated data set omitting the variable X1. We calculate the corresponding population net survival curves
by averaging the individual net survival curves, for both models, associated to each patient. We compare the true pop-
ulation net survival curve against the fitted net survival curves obtained with these models. Then, we calculate the
net survival associated to the subgroups defined by sex = 0, 1 by taking the average of individual net survival curves
over the corresponding subsets of observations. Our aim here is to compare the net survival curves associated to the
entire population, and the use of the models fitted to the entire sample for net survival subgroup estimations in the
presence of UIH.

In a second stage, we perform a stratified analysis where we fit the classical model without frailty (1) and the frailty
model (8) to each data subset defined by the variable sex = 0, 1. Then, we calculate the net survival curves associated to
the subgroups sex = 0, 1 with the average of the individual fitted net survival curves obtained with these models. We again
compare the corresponding net survival curves against the true net survival for these subgroups.

Results are shown in the Supplementary material (Figures 1 and 2). In the first scenario and for all sample sizes (Figure
1 in the Supplementary material), we notice that the average fitted population net survival curves are very close to the
true population net survival. The subgroup analysis also leads to close net survival curves, with a slightly worst fit from
the classical model (which remains for all sample sizes). The stratified analysis produces the best results as the average
fitted net survival curves are virtually the same as the true net survival curves. In the second scenario (Figure 2 in the
Supplementary material), we notice that the average fitted population net survival curves are close to the true population
net survival, although a small bias is observed for both models and all sample sizes. The subgroup analysis leads to a very
large bias for both average curves, and we also notice a discrepancy between the classical and frailty models. This bias is
largely reduced by using a stratified analysis for all sample sizes.

6 REAL DATA APPLICATION: LUNG CANCER EPIDEMIOLOGY

We analyze a data set obtained from population-based national cancer registry of non-small cell lung cancer (NSCLC)
female patients diagnosed in 2012 in England.39 We include the following covariates: standardized age at diagnosis (agec,
continuous); tumor stage at diagnosis (stage, categorical I-IV); the presence of cardiovascular comorbidities (CVD,
binary); the presence of chronic obstructive pulmonary disease (COPD, binary); and the standardized income domain
from the 2010 England indices of multiple deprivation (IMD, continuous), defined at the lower super output area level (as
a measure of deprivation). Information on stage at diagnosis and comorbidities was obtained from linked data (Hospital
Episode Statistics—HES—and the Lung Cancer Audit data). The cohort of patients was followed-up until December 31,
2015, at which time patients alive were right-censored. We restrict the analysis to women with no missing covariates. The
resulting sample size was n = 14 557 patients with complete cases, among which no = 12 138 died before the December
31, 2015. The 25%, 50% and 75% quantiles of the patients’ age at diagnosis was 64.93, 72.64, 80.23 while the mean was
72.00. Among these patients, 2434 were diagnosed at Stage I, 1131 at Stage II, 3241 at Stage III, and 7751 at Stage IV.
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F I G U R E 2 Lung cancer data: (A) Net survival curves for the entire population, and (b) stratified net survival curves by tumor stage at
diagnosis (Model C1 - gray lines, Model F1 - black lines)

Finally, 1954 patients were classified with a cardiovascular comorbidity and 3260 with a chronic obstructive pulmonary
disease.

In order to evaluate the effects of UIH, we compare eight models for this data set. Model C1: (classical) model with-
out frailty with time-level effect of agec (wi), and hazard-level (xi) effects of agec, IMD, stage, CVD, and COPD.
Model F1: frailty model with time-level effect of agec (wi), and hazard-level (xi) effects of agec, IMD, stage, CVD,
and COPD. Model C2: model without frailty with time-level effect of agec (wi), and hazard-level (xi) effects of agec,
IMD, CVD, and COPD. Model F2: frailty model with time-level effect of agec (wi), and hazard-level (xi) effects of
agec, IMD, CVD, and COPD. Model C3: model without frailty with time-level effect of agec (wi), and hazard-level (xi)
effects of agec, IMD. Model F3: frailty model with time-level effect of agec (wi), and hazard-level (xi) effects of agec,
IMD. Model C4: PGW baseline hazard without covariates. Model F4: frailty model with PGW baseline hazard without
covariates.

Figure 2A shows the net survival for the entire cohort obtained with Models C1-C4 and F1-F4. These are obtained
using the formulas:

SN(t) =
1
n

n∑

i=1
exp{−HE(t; xi, �̂�, ̂𝜷, 𝜎, 𝜈, �̂�)}, Models C1-C4,

̃SN(t) =
1
n

n∑

i=1

1
{

1 + ̂bHE(t; xi, �̂�, ̂𝜷, 𝜎, 𝜈, �̂�)
} 1

̂b

, Models F1-F4.

The AIC values for Models C1-C4 and F1-F4 are shown in Table 2. The overall best model is Model F1, clearly favoring a
model with all covariates and a frailty. The best model among the classical models (C1-C4) was model C1, also favoring the
inclusion of all covariates. Some interesting conclusions arise from this model comparison and Figure 2. Although AIC
clearly favors Model F1, Figure 2A shows that the estimated population net survival curves obtained for models C1-C4
and F1-F4 are very similar. This indicates that, even though the data favors a frailty model, some estimated quantities
based on models with and without frailties may be similar. However, this is far from being a general conclusion. Figure 2B
shows that the net survival stratified by stage for models C1 and F1 exhibit marked differences for early tumor stages.
These differences are masked in Figure 2A due to the distribution of the tumor stage covariate, which mostly contains
late-stage patients (see the descriptive analysis). This is, since we are interested in estimating quantities based on averages
over subgroups of the population, the distribution of the corresponding covariates (patient characteristics) plays a key
role. Thus, although the estimated models are quite different (see Table 2), the distribution of the covariates produces
similar marginal net survival curves at the population level. However, this conclusion does not apply to the net survival
functions stratified by stage. Table 3 presents confidence intervals for the net survival at times t = 1, 2, 3, 4 years. These
confidence intervals are obtained using a Monte Carlo approximation based on the asymptotic normality of the maximum
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RUBIO et al. 1077

T A B L E 2 Maximum likelihood estimates and AIC for Models C1-C4 and F1-F4

Model C1 F1 C2 F2 C3 F3 C4 F4

𝜎 0.763 8.760 (7.072,10.851) 0.109 0.769 0.107 0.737 0.099 0.562

𝜈 0.987 1.077 (1.046,1.108) 1.196 1.273 1.199 1.288 1.197 1.407

�̂� 4.980 0.813 (0.675,0.980) 4.185 0.323 4.173 0.314 4.325 0.272

agect 0.308 2.633 (1.367,3.900) 0.271 0.442 0.272 0.436 - -

agec 0.328 0.124 (0.000 0.248) 0.331 0.289 0.340 0.303 - -

IMD 0.530 0.827 (0.578,1.075) 0.305 1.079 0.319 1.126 - -

stage2 0.706 0.964 (0.825,1.102) - - - - - -

stage3 1.460 2.085 (1.963,2.207) - - - - - -

stage4 2.202 3.312 (3.169,3.456) - - - - - -

CVD 0.214 0.352 (0.267,0.437) 0.147 0.295 - - - -

COPD 0.142 0.242 (0.172,0.311) −0.018 −0.054 - - - -
̂b - 0.764 (0.687,0.850) - 4.542 - 4.785 - 6.836

AIC 20548.43 20140.06 26328.84 26311.62 26306.3 26302.23 26864.78 26808.51

Note: 95% confidence intervals are also presented for the parameters of the selected model, F1. Bold values indicate the best model according to AIC.

T A B L E 3 Net survival (NS) at t = 1, 2, 3, 4 years and 95% confidence intervals: Classical model (Model C1) and frailty model (Model F1)

Total population by stage

Classical (C1) Frailty (F1)

Stage Year NS Lower Upper NS Lower Upper

I 1 0.814 0.801 0.827 0.859 0.850 0.873

2 0.722 0.704 0.740 0.737 0.721 0.760

3 0.661 0.640 0.681 0.639 0.620 0.668

4 0.615 0.590 0.637 0.560 0.542 0.591

II 1 0.664 0.642 0.688 0.706 0.685 0.732

2 0.524 0.497 0.551 0.524 0.501 0.557

3 0.440 0.413 0.466 0.409 0.385 0.442

4 0.382 0.355 0.411 0.331 0.309 0.359

likelihood estimators (see Rubio et al7 for more details on this). These confidence intervals confirm that differences in
the estimation of net survival are also present in interval estimates.

Another point that deserves some attention is the interpretation of parameters. From Table 2, we can see that the
estimates of the parameters of the baseline hazards markedly differ for models C1 and F1. The reason for this is that the
estimated baseline hazard associated to model C1 is decreasing, while the estimated baseline hazard associated to model
F1 is increasing. This explains the differences in the estimates of the parameters, which are simply reflecting this con-
trasting shape. However, we would like to emphasize that the baseline hazards associated to models C1 and F1 (more
generally, models with and without frailty correction) are not directly comparable as (i) the estimates for model F1 cor-
respond to a marginal model (marginalized over the frailty term), and (ii) the baseline hazard in the frailty model (8)
controls both the excess hazard in the numerator and the time-varying weight. Despite this difference in nature, compar-
ing them is still useful, as observing differences between the estimates in both models is an indication of UIH as such
discrepancies only appear when the variance of the frailty term is non-negligible.
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1078 RUBIO et al.

T A B L E 4 Maximum likelihood estimates for the models fitted on the stratified data by stage

C1-I.II F1-I.II C1-III F1-III C1-IV F1-IV

𝜎 2.172 2.839 0.430 1.315 0.090 0.689

𝜈 1.099 1.095 1.150 1.074 1.241 1.277

�̂� 3.203 2.560 2.286 0.856 3.110 0.235

agect 0.399 0.354 0.516 −2.119 0.287 0.314

agec 0.564 0.568 0.363 0.691 0.291 0.277

IMD 0.731 0.758 0.172 0.292 0.631 1.507

stage2 0.770 0.836 - - - -

CVD 0.446 0.490 0.262 0.359 0.131 0.333

COPD 0.482 0.511 0.092 0.147 0.085 0.260
̂b - 0.211 - 0.666 - 3.075

AIC 7817.53 7818.49 6986.52 6962.63 5218.65 5214.64

Note: Bold values indicate the best model according to AIC.
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F I G U R E 3 Lung cancer data: Net survival curves for the models fitted on the stratified data by stage. Gray lines represent the net
survival curves associated to model C1 fitted to the corresponding stratum (Stages I-II, Stage III, or Stage IV). Black lines represent the net
survival curves associated to model F1 fitted to the corresponding stratum (Stages I-II, Stage III, or Stage IV)

6.1 Stratified analysis

The differences in the net survival curves for Stages I-IV in Figure 2 suggest that there is UIH, and that, potentially, the
unobserved covariates may have a different conditional distribution at each of the strata. To explore this idea, we now
consider a stratified analysis where we study patients in three different strata: Stage I-II, Stage III, and Stage IV tumors.
There are clinical and biological reasons for this kind of stratification, as different tumor stages indicate the size of the
tumor and spread to other organs (metastasis). We compare frailty and non-frailty models for each of these groups to
evaluate the effects of UIH. For Stages I-II we fit the models: Model C1-I.II: model without frailty with time-level effect of
agec (wi), and hazard-level (xi) effects ofagec,IMD,stage,CVD, andCOPD. Model F1-I.II: frailty model with time-level
effect of agec (wi), and hazard-level (xi) effects of agec, IMD, stage, CVD, and COPD. Models C1-III, F1-III, C1-IV ,
and F1-IV represent the corresponding models for Stage III and Stage IV. Results are reported in Table 4. For Stages I-II,
the model without frailty is slightly favored and the estimated frailty variance is small. For Stage III, the frailty model is
favored, and we observe differences in the estimates of the model parameters. Similarly, for Stage IV, the frailty model is
favored, the estimated frailty variance is large, and there is a clear discrepancy in the estimates of the model parameters.
Thus, we notice that there are different levels of UIH at each of the tumor stage strata. From Figure 3, we can see that
the net survival curves for the models with and without frailty coincide. This indicates that, after stratifying the data by
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stage, UIH has a smaller effect on the estimation of net survival, even though there is evidence of UIH for Stages III and
IV. It is worth noticing that omitting important covariates in the models has an effect on the estimation of the baseline
hazard parameters and the regression coefficients (see, for instance, the values of the estimates in 2 for the models F1,
F2, and F3). This is a well known phenomenon associated to omitting important covariates in hazard regression models
(see Rossell and Rubio16 for an extensive discussion on the effects of omitting covariates in survival regression models).

7 DISCUSSION

We have developed an extension of frailty models to the relative survival framework, and shown that these models induce
a selection of the healthier individuals among survivors of cancer. We have shown that the proposed excess hazard frailty
models are able to capture unobserved individual heterogeneity, a common challenge in population cancer epidemiol-
ogy. We have proposed a general family of parametric excess hazard regression models which guarantee identifiability
of parameters, and which contains hazard structures of practical interest. The proposed model allows for a tractable
implementation of the likelihood function as we can include time-level effects while avoiding the need for numerical inte-
gration. Nonetheless, we point out that other hazard structures could be used as well. Although we have focused on the
gamma frailty distribution, due to its tractability and interpretability, we have also presented several alternative choices
of the frailty distribution that lead to closed-form expressions (see Supplementary material). A thorough comparison of
the impact of the choice of the frailty distribution is beyond the aims of this work, but this will be considered in future
research.

Our simulations show that the proposed model has good inferential properties. The performance of the proposed
approach was evaluated in very challenging scenarios, with a small sample size (n = 500), substantial amount of censoring
(40%), and with a very complicated generating model (the four covariates considered had both an effect on the time
scale and on the hazard level). In real life applications, one would not expect to see all the covariates with effects on
both the time scale and the hazard level. As shown in Aim 2 of our simulations, unobserved heterogeneity may have a
non-negligible effect if the model fitted to the entire population is used to obtain net survival curves for heterogeneous
subgroups. This suggests that discrepancies between net survival curves associated to subgroups of the population using
the classical and the frailty models may indicate a non-negligible effect of unobserved heterogeneity, and that a stratified
analysis may help reduce this heterogeneity.

We have shown that, unsurprisingly, the effects and interpretation of UIH that have been reported in the overall
survival framework25 are also present in the relative survival framework. Our work offers an additional perspective, which
is the exploration of the impact of UIH on the estimation of marginal quantities (such as net survival). We have shown that
the proposed frailty model is able to detect UIH. However, it is important to keep the practical limitations of doing so in
mind, as the presence of UIH can also be an indication of model inaccuracy or model misspecification.40 We have proposed
a frailty GH model which allows for including time-varying effects. The use of a general and flexible model thus helps
reduce UIH associated to model misspecification. Detecting UIH beyond model misspecification is particularly important
when the model fitted to the entire population is also used to estimate marginal quantities associated to subgroups of the
population,41 as the subgroups of interest may have different generating models, or different distributions of the included
covariates. Thus, in the presence of UIH, it would be useful to compare the results against those obtained with a stratified
analysis. This is an interesting finding for analysts interested in estimating marginal quantities for a subgroup of patients.
Of course, since UIH induces a bias on the estimation of the model parameters (for models without individual frailties),
the estimation of conditional quantities (such as excess hazards for specific covariate values) will also be biased. We have
also shown that UIH induces a selection effect over the follow-up time. This type of effect has been also discussed by
Vaupel and Yashin,41 in the overall survival framework, who found that the estimation of conditional (or individual)
quantities can be severely affected by UIH in some scenarios.

We have shown scenarios where a flexible 3-parameter distribution (eg, PGW) is needed for modeling the shape of
the baseline hazard. There exist scenarios where a simpler baseline hazard model (eg, lognormal) or a simpler hazard
structure (such as the AFT or PH) might be favored by the data. In such cases, a model selection tool (such as AIC or BIC)
would help identify the best model for the data (see Rubio et al7 and Rubio and Drikvandi42 for a discussion).

The real data application presents a clear illustration of the fact that discrepancies in the estimation of the net survival
obtained with models with and without frailty terms depend on the distribution of the patients’ characteristics. This is
in line with the conclusions obtained in Aim 2 of the simulation study. The net survival is a marginal measure, as it is
calculated as the average over the observed covariates. Consequently, its estimation naturally depends on the distribution
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of the covariates. In practice, it is important to first compare the different models in order to detect UIH, followed by an
investigation of the effect of the presence of UIH on the estimation of the quantities of interest (such as net survival).
Moreover, the real data application indicates that the level of UIH might depend on the observed covariate (eg, tumor stage
in our illustration). Therefore, extending our approach with a frailty distribution that depends on the observed covariates
could be a very interesting research avenue.

Possible extensions of our work include the use of other parametric baseline hazard distributions, combined with
alternative hazard structures (eg, additive hazard structure). In cancer epidemiology, there are other quantities of interest
which are derived from the estimated excess hazard, such as life years lost, among other quantities.4 Thus, quantifying
the impact of UIH on the estimation of these quantities would be of interest. Since our real data application involves
the use of confidential data, we cannot make it publicly available. However, we have created a repository (https://github.
com/FJRubio67/IFNS) which contains an application using “The Simulacrum” data set, which is a dataset that contains
artificial patient-like cancer data. This repository illustrates the proposed methods and the software provided.

To our knowledge, this is the first study where the impact of UIH on estimated quantities is assessed within the relative
survival framework. Given that the net survival is used for international comparisons and to inform policy-making, a
careful analysis of factors that may induce bias, such as UIH, on the estimation of this quantity seems appropriate, and
the methodology proposed in this article provides a tool for addressing this problem.
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