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ABSTRACT
DNA methylation (DNAm) is commonly assayed using the Illumina Infinium MethylationEPIC 
BeadChip, but there is currently little published evidence to define the lower limits of the amount 
of DNA that can be used whilst preserving data quality. Such evidence is valuable for analyses 
utilizing precious or limited DNA sources. We used a single pooled sample of DNA in quadrupli-
cate at three dilutions to define replicability and noise, and an independent population dataset of 
328 individuals (from a community-based study including US-born non-Hispanic Black and white 
persons) to assess the impact of total DNA input on the quality of data generated using the 
Illumina Infinium MethylationEPIC BeadChip. We found that data are less reliable and more noisy 
as DNA input decreases to 40ng, with clear reductions in data quality; and that low DNA input is 
associated with a reduction in power to detect EWAS associations, requiring larger sample sizes. 
We conclude that DNA input as low as 40ng can be used with the Illumina Infinium 
MethylationEPIC BeadChip, provided quality checks and sensitivity analyses are undertaken.
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Background

Illumina Infinium MethylationEPIC BeadChips 
have been used extensively in epigenetic studies. 
Although Illumina recommend using at least 
250ng of DNA on their BeadChips, there has 
been little published work examining the possibi-
lity of using less DNA than this. As DNA methyla-
tion (DNAm) profiling becomes more widespread, 
there is a need to ensure robust and reliable data 
can be generated from precious (e.g., clinical or 
historic) or limited (e.g., archaeological) biosam-
ples. Three previous studies have assessed the 
effect of low levels of input DNA on the Illumina 
Infinium HumanMethylation450 BeadChip by 
generating data from multiple dilutions of the 
same biological samples. The first reported that 
correlations between genome-wide DNAm profiles 

remain above 0.96 for dilutions containing as little 
as 10ng of DNA [1]; the second reported correla-
tions with input of 1 µg for total input as low as 
10ng remained above 0.92 [2]. The third and most 
recent reported that input of 125–500ng total 
DNA resulted in highly replicable DNAm data 
for measurements taken over two days; and that 
63ng and under total DNA input resulted in less 
replicable data [3]. However, no study has yet 
investigated the expected increase in signal varia-
bility or noise induced by low input DNA and its 
impact on statistical power to detect associations 
with DNAm; this is important because a number 
of studies have demonstrated that many probes on 
these BeadChips have low reliability, particularly 
where DNAm sites are either highly methylated or 
unmethylated and have low variance [4–6], and 
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conceivably this might be exacerbated by low 
levels of input DNA applied to the BeadChip. 
Additionally, no comparison of data generated 
using different input levels has yet been carried
out using a large population dataset.

Here we assess whether low yields of input 
DNA are sufficient to reliably detect associations 
with DNA methylation measured using the 
Illumina Infinium MethylationEPIC BeadChip. 
The study consists of two parts: an initial analysis, 
where we assess reliability and noise within 
a single sample at three DNA concentrations; and 
a subsequent assessment of total input DNA on 
data quality and power to detect EWAS associa-
tions, using an independent population-based 
DNAm dataset of 328 individuals from the My 
Body My Story (MBMS) study [7]. We believe 
this is the first study assessing the impact of low 
input DNA explicitly utilizing data from a large 
and socially diverse cohort.

Materials and methods

Study participants

The initial analysis (which we refer to as Study 1) 
included varied DNA dilutions from a single 
source, utilizing a DNA sample pooled from sev-
eral individuals stored at −80°C. Unfortunately no 
data were available about the individuals contri-
buting to this pooled sample. The sample was used 
to generate three dilutions resulting in three quan-
tities of total DNA input (40ng, 200ng, and 
400ng), in quadruplicate, resulting in 12 samples. 
Concentration of DNA was assessed using 
a Thermo Scientific NanoDrop™ spectrophot-
ometer. We selected 40ng as the lowest reasonable 
quality based on previous work [1,2], and 200ng 
and 400ng as higher input comparisons.

The second analysis (which we refer to as 
Study 2) utilized the MBMS cohort. MBMS is 
a cohort recruited from four community health 
centres in Boston between 2008 and 2010, and 
was designed to investigate how racial discrimina-
tion affects risk of cardiovascular disease, taking 
into account a range of social and environmental 
factors. The cohort and recruitment procedures 
have previously been described in detail [7]; 
briefly, the study recruited 1005 individuals who 

met study inclusion criteria and were randomly 
selected from the patient rosters of the community 
health centres. Participants were eligible if they 
were aged between 35 and 64 years, were born in 
the US, and self-identified their race/ethnicity as 
white non-Hispanic or black non-Hispanic.

Among the 1005 MBMS participants, 85% pro-
vided a finger prick blood sample on to filter paper 
(409 black; 466 white), and consequently biological 
material was limited and in some instances of poor 
quality. Blood spots were stored at −20°C, and 
DNA was extracted from blood spots using the 
QIAamp DNA Investigator Kit for FTA and 
Guthrie cards, with samples randomized across 
96 well plates. Of the 875 participants who pro-
vided blood spots, 472 of the samples were judged 
to be suitable for DNA extraction (blood spots 
judged not to be suitable were primarily the first 
community health centre where recruitment took 
place, whose membership was predominantly 
white). Of those, 48 yielded less than 40ng of 
DNA, the lowest input level investigated in Study 
1, so we removed them from further analysis. 
Although 40ng showed higher variability in study 
1, most probes passed quality thresholds so we
included samples with inputs as low as 40ng in 
study 2 to maximize study sample size whilst being 
mindful that the samples with lower DNA input 
might be of reduced quality. The amount of DNA 
extracted was assessed using Invitrogen Quant-iT™ 
PicoGreen™ (Thermo Fisher Scientific). After 
removing a further 96 participants from the sam-
ple set due to poor quality DNA extraction (as 
determined by high numbers of undetected probes 
on the EPIC BeadChip), there were 328 partici-
pants with DNA methylation data for analysis. 
DNAm data were generated using the Illumina 
Infinium MethylationEPIC BeadChip as described 
below.

DNA methylation data generation

For both studies, extracted DNA was bisulphite 
converted with the EZ DNA Methylation- 
Lightning™ Kit (Zymo Research) according to the 
manufacturer’s instructions. The eluant from the 
bisulphite-converted DNA was then applied to the 
Illumina Infinium MethylationEPIC Beadchip to 
measure DNA methylation, according to the 

EPIGENETICS 2367



manufacturer’s protocol. The EPIC BeadChips 
were scanned using Illumina iScan, with an initial 
quality review conducted with GenomeStudio. 
Sample QC and normalization were conducted 
using the pipeline implemented in the meffil 
R package, which has previously been described 
in detail [8]. Blood cell composition was estimated 
for MBMS using a deconvolution algorithm [9] 
implemented in meffil, based on the blood 
gse35069 complete’ cell type reference. DNA 
methylation is reported in beta values; this mea-
sures methylation on a scale of 0 (0% methylation) 
to 1 (100% methylation).

Study 1: assessing reliability of DNAm 
measurement with low input DNA

Scripts to conduct all analyses can be found at https:// 
github.com/shwatkins/Low_input_DNA. Using the 
single pooled sample of DNA described above, we 
used two methods to assess the reliability of DNAm 
measurements at different input DNA levels. Firstly, 
we assessed how well the measurements at the lower 
input levels (200ng and 40ng) replicate the measure-
ments obtained with 400ng input DNA. To do this we 
calculated the mean methylation at each DNAm site 
across the four technical replicates at each input level. 
We then partitioned DNAm sites into bands based on 
their methylation level measured at 400ng (used as the 
reference level) in increments of 5%. Within each 
partition we calculated the standard deviation of the 
DNA methylation levels across all sites in the partition 
and visualized this variation using boxplots at 40ng 
and 200ng. Stronger replication of the 400ng mea-
surements would correspond to smaller variation 
within each partition.

Secondly, we assessed the noise in DNAm mea-
surement within each of the three DNA input 
levels using their four replicates. At each DNAm 
site, we took the mean of replicates 1 and 2, and 
used these means to partition the dataset into 
bands of 5% methylation as we did for the first 
analysis. Within each partition we then calculated 
the mean of replicates 3 and 4 at each DNAm site. 
We visualized the variation within each partition 
using boxplots of the mean of replicates 3 and 4 
for all sites within the partition. Levene’s test 
(leveneTest in the R package car) was used to 
determine whether lower DNA input was 

associated with greater variance within each parti-
tion. Greater measurement noise would corre-
spond to greater variance. As we tested 20 
partitions, we used a p-value threshold corrected 
for multiple tests (p < 0.05/20).

Study 2: assessing the impact of low input DNA 
in a cohort study

We then assessed how low DNA input affects the 
quality of Illumina Infinium MethylationEPIC 
Beadchip data using data from our cohort study, 
MBMS. We conducted two sets of analyses: we 
calculated a variety of QC-related metrics, and 
evaluated the effect of input DNA level on robust 
associations that have been reported in the DNAm 
literature.

We utilized two standard QC metrics to repre-
sent data quality: proportion of probes with low 
signal, and median methylated signal across all 
probes on the BeadChip. Low signal was assessed 
using detection p-values, which 
indicates confidence that the signal from a probe 
is detectable above background noise. We used 
a detection p-value threshold of 0.01 to distinguish 
between detection success and failure. We plotted 
the relationship between the number of undetected 
probes and DNA input level and correlated the 
two variables using Spearman correlation to test 
the strength of the association. Median methylated 
signal refers to the strength of probe signal due to 
binding of methylated DNA to a probe. We 
plotted median methylated signal per sample 
against DNA input level, and tested their 
association.

In addition to these QC steps, we compared 
DNAm measurements for each sample against 
a gold standard derived from all 135 samples 
with DNA input >200ng by simply calculating 
the mean for each individual probe on the 
BeadChip across the 135 samples. For all remain-
ing samples with DNA <200ng (n = 193), we 
calculated the difference between the methylation 
value at each probe and that of the gold standard, 
and summarized these differences per sample by 
taking the mean absolute difference, or MAD. We 
then evaluated the association between MAD and 
DNA input level using plots and by calculating 
Spearman correlation.
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We tested whether variance in DNAm is asso-
ciated with DNA input level at each site on the 
BeadChip using a procedure detailed elsewhere 
[10]. We firstly use the function rq (a least abso-
lute deviation regression) from the R package 
quantreg to test the association between methyla-
tion at each cpg site and DNA input level, includ-
ing batch, cell counts, age, gender, smoking, and 
BMI as covariates in the model. From this model 
we take the absolute values of the residuals, and 
then test for an association between those resi-
duals and DNA input level using linear regres-
sion (lm in R). We extracted coefficients and 
p-values from the model and applied 
a Bonferroni-corrected threshold of 5.8e-08 
(0.05/857774) to identify associated sites. We 
took the -log10 of the p-values and created 
a Manhattan plot.

To assess how DNA input level might affect the 
ability to detect effects in EWAS analyses, we 
conducted power analyses to show how power 
and required sample sizes differ by level of input 
DNA. Firstly, we performed a power analysis 
based on four partitions of MBMS defined by 
DNA input quartiles (each containing 73 to 74 
individuals). Power was calculated for testing 
DNA methylation differences using a two-sided 
t-test between two groups. For each power analy-
sis, the inputs were the same except for the probe 
standard deviation (sample size n was the number 
of participants in the quartile (n = 73 to 74)), the 
significance threshold was 0.05 Bonferroni- 
corrected for testing each of 850 K sites on the 
EPIC array, and the delta values (effect sizes) ran-
ged from values as high as 0.2 which have been 
observed in smoking studies [11, 12] down to 
values as low as 0.01 that have been observed in 
some studies of social adversity [13,14]. Probe 
standard deviation differed between MBMS parti-
tion, with higher values observed in partitions with 
lower DNA input. We used the 90th percentile of 
probe standard deviation calculated in the corre-
sponding partition of MBMS. Secondly, we ran 
power calculations asking instead the sample size 
that would be needed for power of 0.8, at a range 
of effect sizes, and given the SDs that we found for 
the quartiles of MBMS based on DNA input These 
analyses indicate how power varies in MBMS by 
DNA input level.

Results

Participant characteristics

Three quarters (74%) of participants in our study 
identified their race/ethnicity as Black non- 
Hispanic, 56% lived in areas with high numbers 
of individuals below the poverty line, and two
thirds (66%) had less than 4 years of college edu-
cation. Characteristics of the 328 participants are 
summarized in Table 1. DNA quantity is margin-
ally associated with smoking status (lower quanti-
ties for former and never smokers compared to 
current smokers), race/ethnicity (lower quantities 
for white participants), and education (with less 
than high school education as the reference group; 
lowest quantities for participants with <4 years of 
college education, and highest quantities for parti-
cipants with less than high school education).

DNA methylation data

In Study 1 quality control identified 58,072 probes 
for removal, including 55,706 that failed detection 
at the standard threshold of 0.1 (predominantly in 
samples with 40ng input DNA – see Figure 1a). 
Probes failing detection in Study 1 had 3.4% lower 
GC content (t -test p value<2.2e-16), suggesting 
that lower GC content might contribute to weaker 
probe binding where DNA quantities are low. 
There was little evidence for a difference in SNP 
frequency between the excluded and included 
probes (chi squared test p = 0.09). This left 
807,787 CpG sites for further analysis. For 
MBMS (Study 2) we generated DNAm data for 
the 424 participants with over 40ng of DNA. We 
removed 96 participants because the blood spot 
samples were suspected to be poor quality and 
had problematic extraction; this was confirmed 
by very high numbers of undetected probes (up 
to 20%) on the EPIC BeadChip. These 96 samples 
had substantially lower levels of DNA than the 328 
remaining for analysis (136.8ng vs 220.7ng; t-test 
p = 1.9e09); due to the problems with extraction 
they were not included in the analyses. Quality 
control identified 8,085 probes for removal, 
including 8,018 probes failing detection, leaving 
a total of 857,774 DNAm sites for analysis. 
Probes failing detection in Study 2 had 5.4% 
lower GC content (t -test p value<2.2e-16), 
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suggesting again that lower GC content might 
contribute to weaker probe binding where DNA 
quantities are low. Additionally, there was evi-
dence of a higher proportion of SNP frequency 
in the excluded probes in Study 2 (chi squared 
test p = 1e-05). Of the 328 participants, 35 samples 
had a mismatch between the gender they reported 
in the study and sex as predicted by probe signal 
intensities targeting sites on the X and 
Y chromosomes. Furthermore, whereas correlation 
between chronological age and age estimated from 
DNA methylation was reasonable for the age range 

in MBMS (SD 7.9) in the 293 participants who did 
not have a mismatch (Horvath clock R = 0.63, 
Hannum clock R = 0.69), correlation among the 
35 with a mismatch was very low (Horvath clock 
R = −0.01, Hannum clock R = 0.18). We included 
these 35 samples in our assessment of data quality 
using QC analyses as they displayed no evidence of
low quality, and there was no relationship between 
predicted sex/gender mismatch and DNA concen-
tration (p = 0.72, Wilcoxon rank sum test); but 
they were removed from the power analysis, leav-
ing 293 individuals in the power analysis.

Table 1. Characteristics of the 328 MBMS participants with DNAm data passing QC.
N (%) unless otherwise 

stated (total = 328)
Regression coefficient/ Mean 

input DNA (ng)
Association with total 
input DNA (p value)

Age Mean (years) 48.9 (mean) 0.05 0.97
Standard deviation (years) 7.9 (SD)

Gender Women (cis-gender) 210 (64%) 231.7 ng reference
Men (cis-gender) 118 (36%) 201.1 ng 0.13

Smoking Current 150 (46% 248.7 ng reference
Former 63 (19%) 189.9 ng 0.03
Never 115 (35%) 201 ng 0.03

Race/ethnicity Black non-Hispanic 242 (74%) 234.2 ng reference
White non-Hispanic 86 (26%) 182.7 ng 0.02

Census tract poverty, 
% (2005–2009)

<5% below poverty line 17 (5%) 230.2 ng reference
≥5%,<10% below poverty line 53 (16%) 246.1 ng 0.75
≥10%,<20% below poverty line 75 (23%) 176.4 ng 0.26
≥20%,<40% below poverty line 
(poverty area’)

131 (40%) 231.7 ng 0.97

≥40% below poverty line 
(extreme poverty area’)

52 (16%) 227.7 ng 0.96

Education Less than high school 42 (13%) 273.7 ng 0.003
> High school, < 4 years college 218 (66%) 226.2 ng 0.02
4+ years college 68 (21%) 170.3 ng reference

Figure 1. A: Number of probes that fail the detection p-value at 40ng, 200ng and 400ng. Each bar represents one sample. B: Density 
of methylation beta values across the EPIC BeadChip for 40ng, 200ng and 400ng DNA (post normalization).
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Study 1 results: assessing reliability of DNAm 
measurement with low input DNA

The overall distributions of the methylation mea-
surements across the BeadChip are virtually iden-
tical at 200ng and 400ng of input DNA, but it is 
skewed towards higher methylation levels for the 
40ng dilution (Figure 1b). To investigate the relia-
bility of methylation measurements when samples 
have low input DNA, we assessed how well mea-
surements at 200ng and 40ng replicated those at 
400ng by binning methylation sites according to 
methylation levels determined at 400ng, our refer-
ence. For both 40ng and 200ng, variance within 
each bin tends to be larger in bins representing 
intermediate methylation levels at 400ng. The 
main difference is the variation as measured by 
standard deviation tends to be 2–4 times larger at 
40ng (SD = 0.02 to 0.17) than at 200ng (SD = 0.01 
to 0.04) (Figure 2b,c; Supplementary Table S1). 
This indicates a reduced replication of 400ng sig-
nal at 40ng compared to 200ng.

As we had quadruplicate measurements for the 
three DNA input levels we were also able to assess
the noise within each input level. This is important 
because measurements by Illumina Infinium 
MethylationEPIC Beadchips are known to be 
noisy, and low concentrations of DNA may 
exacerbate this issue [6,15]. To assess noise at 
each DNA input level, we used two replicates to 
partition methylation sites by methylation level, 
and then calculated the variance of each bin from 
the other two replicates. Plotting these bins 
(Figure 3) suggests 40ng results in increased 
within-sample noise. Using Levene’s test of 

variance to compare these bin variances between 
DNA input levels, we show that 200ng is noisier 
than 400ng in 17 out of the 20 partitions (at 
p < 0.05/20); and that 40ng is noisier than both 
400ng and 200ng in all 20 partitions (at p < 0.05/ 
20). This demonstrates that as DNA input level 
decreases, measurement noise increases. Levene’s 
test statistics are detailed in Supplementary 
table S2.

Study 2 results: assessing the impact of low input 
DNA in a cohort study

DNA for the MBMS cohort was extracted from 
dried blood spots and resulted in a range of DNA 
quantities for the 472 participants for whom DNA 
was extracted (mean 173ng, range 0ng to 1186.8ng). 
As we excluded participants with less than 40ng 
DNA, and those with poor quality DNA extraction, 
DNA quantities were higher for the 328 partici-
pants who were included in the analyses included 
in this paper (mean 220.7ng, range 40.6ng to 
1186.8ng). We assessed the impact of DNA input 
level on the quality of the MBMS DNAm data in 
three ways: the proportion of probes failing detec-
tion p-value, the median strength of methylated 
signal, and the mean absolute deviation of samples 
with lower than recommended DNA (200ng) in 
comparison to a gold standard based on measure-
ments from the samples with at least 200ng DNA. 
For samples passing undetected probe QC checks, 
the proportion of undetected probes increases 
strongly as input DNA decreases (Spearman’s 
rho = −0.61,p = <2.2e-16) (Figure 4a). Similarly, 

Figure 2. A: boxplot of the methylation of DNAm sites at 40ng, grouped in bins of 0.05 based on the methylation level of the DNAm 
site at 400ng. B: boxplot of the methylation of DNAm sites at 200ng, grouped in bins of 0.05 based on the methylation level of the 
DNAm site at 400ng.
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although median methylated signal is correlated 
with DNA input level (Spearman’s rho = 0.55, 
p < 2.2e-16), the signal also does not fall below 
the threshold used in typical Illumina QC pipelines 
(3 standard deviations from the mean [8]; 
(Figure 4b). Finally, as expected, samples with 
lower DNA input level tend to have higher mean 
absolute deviation from the gold standard based on 
samples with at least 200ng of DNA (Spearman’s 
rho = −0.37, p = 1.1e-08; Figure 4c). Samples with 
lower DNA input (<114ng) also have higher probe 
standard deviation (90th percentile SD = 0.76) than 
those with higher DNA input (>270ng; 90th percen-
tile SD = 0.068), showing that low input is asso-
ciated with higher measurement variation. Thus, 
we have shown that although samples with as little 
as 40ng can pass standard QC thresholds, measure-
ment quality and precision decrease with input 
DNA levels.

We then asked whether low DNA input level 
affects the variance of methylation measurements 

at specific individual sites on the BeadChip. Using
linear regression with a BeadChip-wide Bonferroni- 
corrected threshold of 5.8e-08, we observe associa-
tions between variance in methylation value and 
DNA input level at 17 sites (Figure 4d and 
Supplementary table S3). These sites are enriched 
for lower GC content only for B allele probes (used 
as part of type I probes; t-test p value = 0.02). 
However, they are not enriched for coincident com-
mon SNPs (chi squared test p = 0.26) or cross 
reactivity (chi squared test p = 1).

Finally, we asked to what extent DNA input level
might affect power to detect associations in EWAS 
analyses. Using MBMS, we find that power is 
reduced for lower DNA input levels. For example, 
power to detect a 5% DNA methylation difference 
in n ~ 70 samples decreases from <0.5 down to >0.3
when decreasing input DNA from above 270ng to 
below 114ng (Figure 5a). DNA methylation differ-
ences below 5% are commonly observed in pub-
lished EWAS; in the EWAS catalogue [16] (as 

Figure 3. Plots of sample noise at A 40ng, B 200ng and C 400ng total input DNA. All CpG sites were binned into 5% partitions of 
methylation beta value based on the mean of replicates 1 and 2, and the mean of replicates 3 and 4 was used to create the 
boxplots.
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downloaded on 06/05/2022), 65% of CpG- 
phenotype associations at p < 2.4e-07 have differ-
ences of less than 5%. To observe these effects with 
80% power, sample sizes must be increased by at 
least 30% for input DNA below 114ng compared to 
input DNA above 270ng (Figure 5b; Table 2).

Discussion and conclusions

This study demonstrates that although as little as 
40ng can be sufficient to produce Illumina Infinium 
MethylationEPIC Beadchip DNAm data that pass 
standard QC checks, data quality and reliability 
diminish as DNA input decreases; and increased 
numbers of samples with low DNA may fail stan-
dard QC thresholds. However, this reduction in data 
quality may reduce power to detect EWAS effects. 
We hope this demonstration can empower studies 
to conduct DNAm investigations where it might 
have previously been assumed that samples were 
too limited to provide sufficient DNA; but due to 
the increase in both noise and variance that we have 

demonstrated, we would recommend caution and 
use of sensitivity analyses when working with less 
than 200ng DNA on the Illumina Infinium 
MethylationEPIC Beadchip.
Our evaluation of DNA from a single source at three 
dilutions illustrates that using 40ng of DNA pro-
duces noisier measurements than using 200ng, and 
using 200ng is noisier than 400ng. This corresponds 
to reduced agreement we report between measure-
ments at 40ng than at 200ng compared to those at
400ng. Analysis of data from a cohort of 328 indivi-
duals shows a clear impact of decreasing DNA input 
on the proportion of probes failing detection and on 
the strength of methylation signal; this is presumably 
because there is less DNA binding to probes. This 
also appears to be the reason for the clear impact of 
decreasing DNA input level on increasing deviation 
from a gold standard composite profile based on 
samples with at least 200ng DNA. Importantly, our 
analyses show how fast data quality decreases as 
input DNA decreases, so our findings can be used 
to identify thresholds on input DNA suited to 

Figure 4. The relationship between DNA input level and, A: proportion of probes failing detection p-value, B: median methylated 
signal, C: mean absolute deviation from a composite of the high-input samples, D: variance at each site on the Illumina Infinium 
MethylationEPIC Beadchip.
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specific research questions. It is notable that data 
quality is acceptable as assessed by common quality 
control metrics when input DNA as low as 40 ng, 
although we did find that lower DNA input is likely 
to lead to an increase in probes failing quality con-
trol. If these probes were included in our analyses 
then it is possible lower DNA input would perform 
less favourably; but we removed them as future stu-
dies would be unlikely to retain probes failing QC.

We would strongly recommend that research-
ers using DNA input of less than 200ng should 
run quality checks and sensitivity analyses with 
the lower concentration samples. As we show 
DNA input is strongly associated with variance 
at many specific DNAm sites, we would suggest 
extra caution around these sites as they may be 
particularly affected by low DNA concentrations. 
We have provided the full summary statistics 
from this variance EWAS in Supplementary 
table 3 so that researchers can utilize these 
results with p-value or effect thresholds appro-
priate to their data and research question. 
Finally, we show that power to detect EWAS 
effects in a large community-based sample is 
reduced for a range of effect sizes for lower 
DNA input levels.

Strengths of our study include complementary 
analyses of both control and human cohort DNA 

Figure 5. A: Power to detect EWAS associations in MBMS quartiles based on DNA input levels, at a range of effect sizes. B: Number 
of participants needed to detect EWAS effects at 80% power, based on DNA input level.

Table 2. Number of participants required to achieve 80% power 
to detect a range of EWAS effect sizes within DNA input quartiles.

EWAS effect 
size

40 to 
113ng

114 to 
163ng

164 to 
270ng

271 to 
1187ng

0.2 17.8 16.7 15.8 15.6
0.15 23.5 21.7 20.4 20
0.1 38.2 34.5 31.9 31
0.075 57.9 51.5 47 45.6
0.05 113.4 99.1 89.1 86.1
0.025 411.1 354.1 314.3 302.2
0.01 2492.9 2136.4 1888.3 1812.6
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samples; and both the large number and social diver-
sity of individuals in the cohort analysis (n = 328). 
Social diversity is very important for study general-
izability because DNAm is affected by our social 
environment. The main limitation is that the impact 
of DNA input level may well be different for differing 
sample types and provenances, as DNA quality is 
affected by storage and extraction methods. Indeed 
this is demonstrated by the much larger number of 
probes failing detection p-value thresholds from the 
40ng samples of pooled frozen DNA from study 1, in 
comparison to samples with close to 40ng that were 
extracted from dried blood spots as part of the 
MBMS study (study 2). In some studies, including 
low-input samples could improve power whereas, in 
other studies, the noise introduced by low-input 
samples could actually reduce power. We therefore 
recommend sensitivity analyses in studies with low- 
input samples to determine their effects on study 
findings. However, we were not able to measure 
DNA quality in this study so cannot comment 
further on how this may impact results. As MBMS 
comprised only blood samples, there may also be 
differences between different tissue types. 
Variability in DNAm may of course differ across 
cohorts, as DNAm is affected by many aspects of 
our environment. Consequently, the effects of low 
input DNA in different studies will likely differ 
between studies, and we recommend sensitivity ana-
lyses in studies with low-input samples to determine 
their effects on study findings. Additionally, we did 
not assay less than 40ng DNA, so we cannot com-
ment on how data quality might be affected by lower 
levels of DNA input; future studies may want to 
investigate data quality using lower inputs.
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