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Abstract: High blood pressure (HBP) has been implicated as a major risk factor for cardiovascular
diseases in several populations, including individuals of African ancestry. Despite the elevated burden
of HBP-induced cardiovascular diseases in Africa and other populations of African descent, limited
genetic studies have been carried out to explore the genetic mechanism driving this phenomenon.
We performed genome-wide association univariate and multivariate analyses of both systolic (SBP)
and diastolic blood pressure (DBP) traits in 77,850 individuals of African ancestry. We used summary
statistics data from six independent cohorts, including the African Partnership for Chronic Disease
Research (APCDR), the UK Biobank, and the Million Veteran Program (MVP). FUMA was used
to annotate, prioritize, visualize, and interpret our findings to gain a better understanding of the
molecular mechanism(s) underlying the genetics of BP traits. Finally, we undertook a Bayesian fine-
mapping analysis to identify potential causal variants. Our meta-analysis identified 10 independent
variants associated with SBP and 9 with DBP traits. Whilst our multivariate GWAS method identified
21 independent signals, 18 of these SNPs have been previously identified. SBP was linked to gene
sets involved in biological processes such as synapse assembly and cell–cell adhesion via plasma
membrane adhesion. Of the 19 independent SNPs identified in the BP meta-analysis, only 11 variants
had posterior probability (PP) of >50%, including one novel variant: rs562545 (MOBP, PP = 77%). To
facilitate further research and fine-mapping of high-risk loci/variants in highly susceptible groups
for cardiovascular disease and other related traits, large-scale genomic datasets are needed. Our
findings highlight the importance of including ancestrally diverse populations in large GWASs and
the need for diversity in genetic research.
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1. Introduction

Blood pressure (BP) is a quantitative trait that is affected by multifactorial genetic
and environmental factors [1–3]. The heritability of high blood pressure is estimated to
be 30–50% [4]. Elevated blood pressure, otherwise called hypertension, is the leading risk
factor for many cardiovascular diseases such as stroke and coronary artery disease [5,6]. The
global prevalence of hypertension among adults aged 30–79 years increased significantly
from 650 million in 1990 to 1.28 billion in 2019, with two-thirds of this burden coming from
low- and middle-income countries (LMICs) [7]. When compared to other ethnic groups,
African Americans and others of African ancestry show a higher occurrence of high blood
pressure [8–11].

Despite the global rise in the disease burden among individuals of African ancestry,
limited genome-wide association studies (GWASs) of blood pressure traits have been
conducted or included individuals of African ancestry [12–14]. For instance, the largest
GWAS of blood pressure conducted to date in approximately a million individuals was
predominantly composed of Europeans [15]. Additionally, only ~62% of all the genome-
wide significant loci from this GWAS had the concordant direction of effects for individuals
of African ancestry and moderate Pearson correlation coefficients with effect estimates in
Europeans r2 = 0.37 in Africans, compared to the strong r2 = 0.78 for South Asians [15–18].
Another example is that the majority of blood pressure GWASs conducted in African-
ancestry populations have small sample sizes [19–23] and they mostly use a single-trait
approach without giving due consideration to phenotypic relatedness and the relationship
between the two traits (SBP and DBP), which is a possible link between risk-related clinical
measures and arterial properties [24,25]. Thus, many novel insights into blood pressure
traits in people of African ancestry remain to be discovered.

Furthermore, various GWAS reports have shown that the genetic determinants of
blood pressure have small effect sizes and vary significantly between European and non-
European populations [26]. Therefore, our study aimed to extensively study the African
population to better understand the genetic epidemiology underlying blood pressure traits
in individuals of African descent. We also performed a multivariate GWAS in the hope
that it would increase our study’s statistical power over the univariate approach and
consequently increase the overall number of novel loci observed in our study.

We conducted the largest GWAS of blood pressure in over 77,850 people, drawn
from the African Partnership for Chronic Disease and Research (APCDR), African-ancestry
individuals from the United Kingdom (UK Biobank), and the Million Veteran Program
(MVP) in this study. Figure 1 depicts the overall study design; we used fixed-effects meta-
analysis across the cohorts. We then performed a multivariate analysis, fine-mapping, and
pathway and tissue enrichment test analysis to highlight relevant biological processes and
investigate causal relationships with disease traits.
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Figure 1. Study design schematic for discovery and validation of loci. APCDR; African Partnership 
for Control of Disease Research, UKB; United Kingdom Biobank, MVP; Million Veteran Program. 
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the likely causal variants and molecular mechanism(s) that contribute to the genetics of BP 
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Figure 1. Study design schematic for discovery and validation of loci. APCDR; African Partnership
for Control of Disease Research, UKB; United Kingdom Biobank, MVP; Million Veteran Program.

2. Results
2.1. Results Overview

We compiled GWAS summary statistics from three cohorts (Table 1), totaling 77,850 peo-
ple of African descent. We used a univariate meta-analysis and a multivariate GWAS to find
genetic variants linked to BP traits. At a genome-wide significant threshold of (p < 5 × 10−8)
for both known and novel loci; the meta-analysis and multivariate approaches identified both
known and novel loci. We used FUMA and fine mapping to gain more insight into the likely
causal variants and molecular mechanism(s) that contribute to the genetics of BP traits.

Table 1. Description of cohorts used in this study.

Cohort Continent Country Sample Size
(N) Phenotype Imputation Panel and

Genome Build

APCDR-UGR
(27) Africa Uganda 6407 DBP

SBP Africa genome panel, hg19

APCDR-DCC
(27) Africa South Africa 1600 DBP

SBP Africa genome panel, hg19

APCDR-DDS
(27) Africa South Africa 1165 DBP

SBP Africa genome panel, hg19

APCDR-AADM
(27) Africa

Nigeria
Ghana
Kenya

5231 DBP
SBP Africa genome panel, hg19

MVP–AFR America USA 56833 DBP
SBP

1000 Genome,
hg19

UKB–AFR
(28) Europe UK 6614 DBP

SBP
1000 Genome,
hg19

2.2. Univariate GWAS Meta-Analysis

Meta-analysis of all six cohorts (n = 77,850) identified 166 significant variants for SBP
(Supplementary Table S1) and 184 genome-wide significance variants (p < 5 × 10−8) for
DBP (Supplementary Table S2). The significant SNPs for both blood pressure traits were
clumped at ±500 Kb distance, leaving 10 for SBP (Supplementary Table S3) and 9 lead SNPs
for DBP (Supplementary Table S4). After clumping, out of the 19 SNPs identified across
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both traits, 2 were at least 1 Mbp away from any previously reported BP locus and therefore
considered novel: an intergenic variant rs77534700 in AC074290.1 (p = 3.749 × 10−8) and
rs562545, an intronic variant at MOBP (p = 1.823 × 10−9); both are associated with the DBP
trait (Table 2, Figure 2A,B). Commonly known variants in CACNA1D, HTR4, SLC22A14,
NPPA-AS1, C3orf73, KCNK3, RPL35P4, CASZ1, NPPA-AS1, CTC-436K13.2, KCNN3, RSPO3,
ATP2B1, FGF5, ULK4, and NPPA-AS1 were associated with SBP and DBP (Supplementary
Tables S3 and S4).

Table 2. Novel distinct variants identified using a meta-analysis approach.

Nearest
Gene

Lead
SNPs Chr BP Effect

Allele
Other
Allele Trait Beta SE MAF p-Value

Functional
Conse-
quence

AC074290.1 rs77534700 2 194657479 A G DBP −0.0967 0.0176 0.0836 3.749 × 10−8 Intergenic
variant

MOBP rs562545 3 39536524 A G DBP 0.0593 0.0099 0.8973 1.823 × 10−9 Intron
variant
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Figure 2. Manhattan plots showing the minimum p-value for the association across (A) DBP and
(B) SBP blood pressure traits, computed using inverse-variance fixed-effect meta-analysis from
75,850 individuals. Each point on the Manhattan plots denotes a variant, with the X-axis representing
the genomic position and the Y-axis representing the association level −log 10 (p-value). The
horizontal red line shows the genome-wide significance threshold p-value = 5 × 10–8.
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The CACNA1D gene is an intron variant that has previously been identified in other
populations, including African Americans, and is thought to regulate the renin–aldosterone–
angiotensin system. The previously observed associations of the genetic variant in the
meta-analyses were predominantly from the MVP cohorts, which might be driven by the
fact that the largest proportion of our sample size came from the MVP’s African American
population. We plotted the resulting p-values from this association analysis on a Manhattan
plot (Figure 2).

2.3. Functional Mapping and Annotation Analyses from FUMA of the Meta-Analysis

Using the default parameters on FUMA, we performed functional annotation on all
SNPs in linkage disequilibrium (LD) to annotate and prioritize genes obtained from our
meta-analysis. FUMA’s SNP2GENE function revealed that the majority of the markers in
SBP were intergenic, followed by those in the intronic region (Supplementary Table S5). In
DBP, the most significant portion of the markers were intronic SNPs, followed by intergenic
SNPs (Supplementary Figure S1). We identified 19 genes through positional and/or eQTL
mapping in SBP (Supplementary Table S6).

The MAGMA gene set, tissue expression, and pathway analyses were carried out
as part of the FUMA workflow. According to the MAGMA gene set study, after Bonfer-
roni correction, no DBP gene sets were significant, but 10 SBP gene sets were. SBP was
specifically linked to gene sets involved in biological processes such as synapse assembly
(including presynaptic membrane assembly and organization, postsynaptic density, and
specialization assembly), cell–cell adhesion via plasma membrane adhesion molecules (i.e.,
the connection of one cell to another cell through the use of adhesion molecules that are at
least partially embedded in the plasma membrane), and the Takada gastric cancer copy
number (i.e., candidate genes in the regions of copy number loss in gastric cancer cell lines).

Based on MAGMA tissue expression analysis, SBP was not associated with any gene
property analysis for tissue specificity. However, DBP was associated with nine tissue
specificities significantly associated with brain tissues, particularly the hippocampus, brain
substantia nigra, brain amygdala, brain putamen basal ganglia, hypothalamus, cortex,
anterior cingulate cortex BA24, caudate basal ganglia, and nucleus accumbens basal ganglia
(Figure 3). Notably, the strongest enrichment was observed for genes expressed in the
hippocampus, followed by the putamen basal ganglia.
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As part of the FUMA pipeline, we used GENE2FUNC to test differentially expressed
genes (DEGs); DBP found no association with our GTEx v8 54 tissue types, but SBP found
two significantly upregulated DEGs in the sigmoid and transverse colon (Supplementary
Figure S2). Finally, we tested the enrichment of input gene sets (adjusted p < 0.05) and
we found several gene sets previously associated with SBP, DBP, and correlated traits
(Supplementary Figures S2–S8).

2.4. Fine-Mapping of Putatively Causal Variants

We performed Bayesian fine-mapping to pinpoint putative causal variants for distinct
BP association signals using differences in the structure of LD between ancestry groups.
Bayesian fine-mapping of the 19 distinct signals from the meta-analysis after clumping
for DBP and SBP was undertaken in the region mapping 500 kb up- and downstream,
which together accounted for 99% posterior probability and was based on association
summary statistics from the meta-analysis GWAS. Only 11 variants from the lead SNPs
had >50% posterior probability (PP) of being causal, including the novel variant rs562545
(MOBP, PP = 77%) (Supplementary Table S7, Figure 4) and known variants rs3821845
(CACNA1D, PP = 99%), rs12509595 (FGFR, PP = 99%), rs11129785 (SLC22A14, PP = 75%),
rs12476527 (KCNK3, PP = 52%), rs5068 (NPPA-AS1, PP = 64%), rs73437338 (ATP2B1,
PP = 52%), rs7720317 (CTC-436K13.2, PP = 59%), and rs1984285 (KCNN3, PP = 99%). One
of the lead SNPs, rs880315 (CASZ1, PP = 95%), was not the lead variant in the fine-mapping
but was overlapped by other variant rs17035646 (PP = 99%) (Supplementary Table S7).
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2.5. Multivariate GWAS Analysis of Blood Pressure Traits Identifies Additional Novel Loci

Using CPASSOC, we performed a multivariate analysis. This method identified 166
genome-wide significant loci associated with blood pressure (Supplementary Table S8)
(p < 5 × 10−8). After clumping, we identified 21 independent significant SNPs, 3 novel
SNPs, and 18 known SNPs (Supplementary Table S9). Interestingly, using the model
assuming heterogeneity in CPASSOC, we identified 3 novel independent significant vari-
ants (Table 3): rs138493856 (DNAJC17P1/GLULP6, p = 6.132 × 10−9), rs139235642 (RRM2,
p = 2.798 × 10−8), and rs72619992 (LOC105377644, p = 1.134 × 10−8). The resulting p-values
were then plotted and visualized in a Manhattan plot (Figure 5).
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Table 3. Novel variants of blood-pressure traits identified using multivariate methods.

Nearest Gene Lead SNPs Chr BP Effect
Allele

Other
Allele HET_p Value Functional

Consequence

DNAJC17P1/GLULP6
GLULP6GLULP6

GLULP6
rs138493856 2 194678067 A G 6.1322 × 10−9 Intergenic variant

RRM2 rs139235642 2 10278626 T C 2.7981 × 10−8
Intron variant

NMD transcript
variant

LOC105377644 rs72619992 3 39407952 A C 1.1339 × 10−8 Intron variant
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3. Discussion

This study describes the largest GWAS of blood pressure in African ancestry to date,
involving a total of 77,850 individuals from the MVP, APCDR, and UK Biobank cohorts.
The results of this analysis provide additional relevant information on the genetic and
biological architecture of blood-pressure traits in people of African ancestry.

According to our results, the multivariate GWAS approach had greater statistical
power in identifying new variants than the univariate meta-analysis (Figure 6). Previous
GWAS studies had shown the power of the multivariate approach, especially when dealing
with traits that are highly correlated [27].

Five novel variants were discovered using both methods. The multivariate ap-
proach identified three variants: DNAJC17P1/GLULP6 (rs138493856), RRM2 (rs139235642),
and LOC105377644 (rs72619992), while the univariate approach identified two variants:
AC074290.1 (rs77534700) and MOBP (rs562545). The DNAJC17P1/GLULP6 gene, which is
located in the intergenic region, is known to be associated with susceptibility to infectious
disease [28] as well as educational attainment [29]. RRM2 is a protein-coding gene that
encodes one of two non-identical subunits for ribonucleotide reductase and is highly ex-
pressed in the bone marrow (28.1) and lymph nodes (20.5), along with other tissues [30].
High expression of this gene can lead to abnormal proliferation of histiocytes and can also
be used as a marker for malignant changes in ovarian endometriosis [31]. The rs72619992
variant in LOC105377644 is an uncharacterized RNA gene that belongs to the ncRNA class
and does not code for any protein. In AC074290.1, our univariate method identified an
uncharacterized pseudogene. According to the GWAS catalog, the MOBP gene, which is a
myelin-associated oligodendrocyte-associated protein, is linked to Alzheimer’s disease [32],
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cognitive performance, and other brain-related disorders [33]. The MOBP gene is thought
to be involved in both frontotemporal dementia and nervous system development. We
used the largest BP summary statistics from European-ancestry individuals to look up our
lead SNPs, while some of the lead SNPs were found to be replicated at p-value 0.05. None
of the SNPs identified as being novel were replicated (Supplementary Table S10).
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In the meta-analysis results, our in silico functional mapping and annotation analyses
from FUMA revealed several biologically relevant signals. SBP gene sets, for example, were
significantly associated with related biological systems, such as several synapse assembly
components (including components correlated to nervous system development/neurons and
chemical or electrical synapses), candidate genes in regions of copy number loss in gastric
cancer cell lines, cell–cell adhesion via plasma membrane adhesion molecules (possibly part
of action potentials generated by the movement of ions through transmembranous channels).

In addition, the SBP meta-analysis tissue enrichment analysis was associated with sig-
nificantly upregulated DEGs in the sigmoid and transverse colon (Supplementary Figure S1),
which may suggest that gut microbiota may play a role in the regulation of the gastro-renal
axis and blood pressure [34]. Furthermore, the most interesting enrichment of input genes in
gene sets significant in the Reactome was in the cardiac conduction and muscle contraction
pathways for the SBP meta-analysis, which are the mechanisms and pathways that elicit rapid
changes in heart rate and blood pressure and respond to changes in autonomic tone. On
the other hand, our MAGMA DBP tissue expression analysis highlighted nine brain tissue
types associated with DBP. For instance, the putamen, caudate, and nucleus accumbens basal
ganglia are input nuclei as well as part of the corpus striatum, and the substantia nigra is a
basal ganglia function-related nucleus; they are all involved in processing movement-related
information. Dysfunction in this region is known to be associated with movement disorders
like Huntington’s disease, as correlated by the GWAS catalog genes highlighted. In addition,
the GWAS catalog genes included in the gene sets included blood pressure traits and their
interactions with alcohol and cigarette smoking, hence these may be interesting environmental
risk factors that should be investigated for their impact on BP traits in populations of African
descent. Further investigation is needed to understand this, as different regions have different
drinking and smoking habits.

Furthermore, our tissue expression analysis shows that DBP gene expression is en-
riched in the hippocampus (Figure 3), a brain region that is essential for learning and
memory [35]. According to one study, hypertension is linked to decreased functional
hippocampus connectivity and impaired memory [36]. As a result, more research is needed
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to understand our findings from in silico functional mapping and annotation analyses, as
well as their mechanisms.

Our current study has several strengths. First, our study is the largest SBP and DBP
GWAS meta-analysis of an African population; thus, it has allowed us to find novel loci and
replicate prior findings. Secondly, our functional mapping and annotation found several
biologically relevant regions that support our genetic findings, and these regions, tissues,
and pathways are good candidates to explore further to elucidate the pathogenesis of
blood pressure-related disorders like hypertension and prevent or treat them better. Finally,
fine-mapping recommended target candidate loci to test in vivo and in vitro to improve
our understanding of the regulators and genetic factors that affect blood pressure traits.
The CPASSOC used for our multivariate GWAS increased statistical power and reflected
the nature of the multivariate effect of traits on the genetic factor.

One of our limitations is that the “black” participants in our study are primarily from
admixed regions with a variety of characteristics. Our study used a small sample size from
the continental African population and this may be the reason why most of our variants
were identified from the MVP dataset, as this data had the largest sample size (Table 3).
Although our study is the largest study of SBP and DBP genetics, the overall sample size
was small compared to contemporary GWASs for other traits. Thus, future studies will
need to include more continental Africans to make sure our genetic risk factors can be used
to make genetic risk scores that are inclusive of all or most African populations and their
full range of diversity. Due to the diversity in African genomes, latent sub-structuring could
inflate the results, but this effect was minimized by adjusting for principal components of
the contributing cohorts in the GWAS model. Second, the paucity of functional genomics
information specific to African people makes it challenging to evaluate the functional
relevance of the relationships found. Thirdly, regional environmental factors, including
dietary variations, variances in the prevalence of TB and HIV, and other non-communicable
disease factors could potentially have an impact on BP outcomes; however, there is not
enough research on these aspects in our target group. Afrocentric GWAS data are grossly
limited, hence we used blood pressure GWAS data from individuals of African ancestry
available and accessible to the authors.

In conclusion, we have conducted the largest GWAS of blood pressure in African an-
cestry, which has significantly enabled an in-depth understanding of its genetic component.
Our analysis emphasizes the relevance of applying fine-mapping and multivariate methods
to correlated traits and their increase in statistical power toward the discovery of causal
variants. These strategies offer a reliable approach to better understanding the genetic
epidemiology of blood pressure disease in individuals of African ancestry and treatment
development strategy. Lastly, to better understand the implication of these results, future
studies could replicate the results for the European population.

4. Materials and Methods
4.1. Study Population

The full description of the study population can be found in the Supplementary S1
cohort description, while the study design can be found in Figure 1.

4.2. Meta-Analysis of BP Summary Statistics in African-Ancestry Individuals

We aggregated BP association summary statistics across the three cohorts (UK Biobank,
APCDR-UGR, DSS, DCC, and AADM, and the MVP) and performed an inverse-variance-
weighted meta-analysis implemented in GWAMA [37]. We used a total of seventy-seven
thousand eight hundred and fifty sample sizes across the studied cohorts (Table 3). The
resulting output was used for subsequent downstream analyses, and we then plotted the
resulting p-value in a Manhattan plot.
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4.3. Tissue Expression Enrichment Pathway Analysis

We performed a gene-based analysis with MAGMA 1.6 software (Multi-marker Analysis
of Genomic Annotation) [38], which is available in FUMA [39]. MAGMA gene-based analysis
is useful for analyzing and detecting multiple genetic markers in individuals with a weak
effect, which is common in polygenic traits. The 1000 Genomes dataset was used as a reference
to account for LD between SNPs, and the confounding effects of gene density and gene size
were used as covariates. The pathway and tissue expression analyses were performed using
the default parameters in FUMA, using the results obtained from the meta-analysis.

4.4. Functional Mapping and Annotation Analysis

We used an online functional mapping and annotation tool (FUMA) [39] to annotate
SNPs from the GWAMA meta-analysis with their biological functionality, and then mapped
them to genes using positional mapping and QTL association (blood eQTL) [40]. The
independent SNPs were classified based on their p-values as genome-wide significant
(p ≤ 5.0 × 10−8), their independence from each other (r2 < 0.1), and LD threshold within a
1 Mb window. Furthermore, the independent SNPs were annotated for functional effects
on gene function using ANNOVAR [41]. For positional mapping, genes were mapped to
SNPs if the physical distance between them was <10 kb. The eQTL mapping used data
from the blood cis-eQTL, and SNPs were mapped to genes on the premise that the SNPs
had a significant effect on the expression of the gene. In addition, SNPs were filtered using
a CADD score >12.37, which is the threshold for deleterious scores (CADD scores are dele-
terious scores of genetic variants obtained by 63 functional annotations) [42]. Normalized
gene expressions for 53 tissue types were obtained from GTEx. Other clumping parameters
used were a reference panel to compute LD and MAFs (minor allele frequencies) = 1000
Genome project was used (AFR) [43]; minor allele frequency filter > 0.01; maximum dis-
tance between LD blocks to merge into a single locus for genomic risk loci = 250 kb; lead
SNPs were classified as SNPs that were in LD with each other at r2 < 0.1.

4.5. Locus Definition

Lead SNPs from both univariate and multivariate analyses were defined based on
positional mapping using 1 Mb; SNPs that had reached the genome-wide significant
threshold (p < 5 × 10−8) were considered to be associated with BP. Loci were defined by
flanking distance mapping 500 kb up- and downstream of peak SNPs, and we retained
SNPs with the lowest p-value from both the meta-analysis and multi-trait analysis.

4.6. Fine-Mapping Analysis of Sentinel Variants

Following our output results from the multi-trait and meta-analyses, we performed
Bayesian fine-mapping to identify possible causal variants for the locus ± 500 kb of all the
lead SNPs. We used a Bayesian approach [44] to fine-map the loci of the lead SNPs. The
Z-scores for the SNPs were then used to compute the Bayes factor for each SNP denoted as
BFi, given by

BFi = e[
Z∗Z−log (K)

2 ]

where K is the number of studies. The posterior probability of driving the association for
each SNP was computed by

Posterior probability =
BFi

∑j BFj

where the summation in the denominator is over all SNPs at the locus.
Ninety-nine percent credible set sizes were calculated by sorting all SNPs at the locus

according to their posterior probability from highest to lowest and then counting the
number of SNPs required to achieve a cumulative posterior probability greater or equal to
0.99. High confidence was defined as index SNPs that account for more than 50% of the
posterior probability of driving the BP association at a given signal.
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4.7. Multivariate GWAS Analysis

To further increase statistical power for discovery, we employed a cross-phenotype
approach, implemented in CPASSOC software [45]. The cross-phenotype association
analysis accounts for the correlation of summary statistics data among traits and the
participating cohorts and allows for both heterogeneity and homogeneity effects. CPASSOC
analysis generates two statistical tests: SHom and Shet, the latter of which is an extension of
the former and improves statistical power when there is a difference in genetic effect sizes
across traits. Meanwhile, the SHom test, which is similar to the fixed-effect meta-analysis
approach, increases in power when the genetic effect sizes across the traits are the same.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24032164/s1.

Author Contributions: S.F. conceptualized the idea, B.U. and O.S. contributed to the preliminary
analyses and manuscript drafting, O.S. contributed to the meta-analysis and multivariate analyses,
T.M. contributed to the functional analysis, S.F. contributed to the supervision of the manuscript,
T.C. and A.K. contributed to the reviewing of the manuscript. C.C., O.O., M.S., M.W. and O.N. all
read and made contributions to the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: O.S. is supported by the Africa Research Excellence Fund (AREF-325-SORE-F-C0904). S.F.
is supported by the Wellcome Trust, grant 220740/Z/20/Z, at the MRC/UVRI and LSHTM. T.C. is
an international training fellow supported by the Wellcome Trust, grant 214205/Z/18/Z.

Institutional Review Board Statement: This study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Institutional Review Boards for the data used in
this study. The DDS was approved by the Biomedical Research Ethics Committee at the University
of KwaZulu-Natal (reference: BF030/12) and the UK National Research Ethics Service (reference:
14/WM/1061). This UGR-GPC was approved by the Science and Ethics Committee of the UVRI,
the Ugandan National Council for Science and Technology, and the East of England-Cambridge
South NHS Research Ethics Committee, United Kingdom. The DCC was approved by the Biomedical
Research Ethics Committee of the University of KwaZulu-Natal (reference: BF078/08) and the
UK National Research Ethics Service (reference: 11/H0305/6). The AADM study obtained ethical
approval from the Institutional Review Boards (IRBs) of all participating institutions.

Informed Consent Statement: Each participating study obtained informed consent from all participants.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Muñoz, M.; Pong-Wong, R.; Canela-Xandri, O.; Rawlik, K.; Haley, C.S.; Tenesa, A. Evaluating the contribution of genetics and

familial shared environment to common disease using the UK Biobank. Nat. Genet. 2016, 48, 980–983. [CrossRef] [PubMed]
2. Feinleib, M.; Garrison, R.J.; Fabsitz, R.; Christian, J.C.; Hrubec, Z.; Borhani, N.O.; Kannel, W.B.; Rosenman, R.; Schwartz, J.T.;

Wagner, J.O. The Nhlbi Twin Study of Cardiovascular Disease Risk Factors: Methodology and Summary of Results. Am. J.
Epidemiol. 1977, 106, 284–295. [CrossRef]

3. Poulter, N.R.; Prabhakaran, D.; Caulfield, M. Hypertension. Lancet 2015, 386, 801–812. [CrossRef]
4. Levy, D.; Larson, M.G.; Benjamin, E.J.; Newton-Cheh, C.; Wang, T.J.; Hwang, S.-J.; Vasan, R.S.; Mitchell, G.F. Framingham Heart

Study 100K Project: Genome-wide associations for blood pressure and arterial stiffness. BMC Med. Genet. 2007, 8 (Suppl. 1).
[CrossRef] [PubMed]

5. Allen, C.L.; Bayraktutan, U. Risk factors for ischaemic stroke. Int. J. Stroke Off. J. Int. Stroke Soc. 2008, 3, 105–116. [CrossRef]
6. European Stroke Organisation (ESO). Executive Committee; ESO Writing Committee Guidelines for management of ischaemic

stroke and transient ischaemic attack 2008. Cerebrovasc. Dis. Basel Switz. 2008, 25, 457–507. [CrossRef] [PubMed]
7. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in hypertension prevalence and progress in treatment and control

from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet Lond. Engl.
2021, 398, 957–980. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ijms24032164/s1
https://www.mdpi.com/article/10.3390/ijms24032164/s1
http://doi.org/10.1038/ng.3618
http://www.ncbi.nlm.nih.gov/pubmed/27428752
http://doi.org/10.1093/oxfordjournals.aje.a112464
http://doi.org/10.1016/S0140-6736(14)61468-9
http://doi.org/10.1186/1471-2350-8-S1-S3
http://www.ncbi.nlm.nih.gov/pubmed/17903302
http://doi.org/10.1111/j.1747-4949.2008.00187.x
http://doi.org/10.1159/000131083
http://www.ncbi.nlm.nih.gov/pubmed/18477843
http://doi.org/10.1016/S0140-6736(21)01330-1
http://www.ncbi.nlm.nih.gov/pubmed/34450083


Int. J. Mol. Sci. 2023, 24, 2164 12 of 13

8. Carson, A.P.; Howard, G.; Burke, G.L.; Shea, S.; Levitan, E.B.; Muntner, P. Ethnic differences in hypertension incidence among
middle-aged and older adults: The multi-ethnic study of atherosclerosis. Hypertens. Dallas Tex 1979 2011, 57, 1101–1107. [CrossRef]
[PubMed]

9. Berenson, G.S.; Wattigney, W.A.; Webber, L.S. Epidemiology of hypertension from childhood to young adulthood in black, white,
and Hispanic population samples. Public Health Rep. Wash. DC 1974 1996, 111 (Suppl. 2), 3–6.

10. Writing Group Members; Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de
Ferranti, S.; Després, J.-P.; et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association.
Circulation 2016, 133, e38–e360. [CrossRef]

11. Chor, D.; Pinho Ribeiro, A.L.; Sá Carvalho, M.; Duncan, B.B.; Andrade Lotufo, P.; Araújo Nobre, A.; de Aquino, E.M.L.L.; Schmidt,
M.I.; Griep, R.H.; Molina, M.D.C.B.; et al. Prevalence, Awareness, Treatment and Influence of Socioeconomic Variables on Control
of High Blood Pressure: Results of the ELSA-Brasil Study. PloS One 2015, 10, e0127382. [CrossRef] [PubMed]

12. Levy, D.; Ehret, G.B.; Rice, K.; Verwoert, G.C.; Launer, L.J.; Dehghan, A.; Glazer, N.L.; Morrison, A.C.; Johnson, A.D.; Aspelund,
T.; et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 2009, 41, 677–687. [CrossRef] [PubMed]

13. Newton-Cheh, C.; Johnson, T.; Gateva, V.; Tobin, M.D.; Bochud, M.; Coin, L.; Najjar, S.S.; Zhao, J.H.; Heath, S.C.; Eyheramendy, S.;
et al. Eight blood pressure loci identified by genome-wide association study of 34,433 people of European ancestry. Nat. Genet.
2009, 41, 666–676. [CrossRef] [PubMed]

14. Singh, S.; Brandenburg, J.T.; Choudhury, A.; Gómez-Olivé, F.X.; Ramsay, M. Systematic Review of Genomic Associations with
Blood Pressure and Hypertension in Populations with African-Ancestry. Front Genet. 2021, 12, 699445. [CrossRef]

15. Evangelou, E.; Warren, H.R.; Mosen-Ansorena, D.; Mifsud, B.; Pazoki, R.; Gao, H.; Ntritsos, G.; Dimou, N.; Cabrera, C.P.; Karaman,
I.; et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 2018,
50, 1412–1425. [CrossRef]

16. Ehret, G.B.; Munroe, P.B.; Rice, K.M.; Bochud, M.; Johnson, A.D.; Chasman, D.I.; Smith, A.V.; Tobin, M.D.; Verwoert, G.C.; Hwang,
S.-J.; et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011, 478, 103–109.
[CrossRef]

17. Kato, N.; Takeuchi, F.; Tabara, Y.; Kelly, T.N.; Go, M.J.; Sim, X.; Tay, W.T.; Chen, C.-H.; Zhang, Y.; Yamamoto, K.; et al. Meta-analysis
of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat.
Genet. 2011, 43, 531–538. [CrossRef]

18. Warren, H.R.; Evangelou, E.; Cabrera, C.P.; Gao, H.; Ren, M.; Mifsud, B.; Ntalla, I.; Surendran, P.; Liu, C.; Cook, J.P.; et al.
Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat.
Genet. 2017, 49, 403–415. [CrossRef]

19. Adeyemo, A.; Gerry, N.; Chen, G.; Herbert, A.; Doumatey, A.; Huang, H.; Zhou, J.; Lashley, K.; Chen, Y.; Christman, M.; et al.
A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet. 2009, 5, e1000564.
[CrossRef]

20. Hoffmann, T.J.; Ehret, G.B.; Nandakumar, P.; Ranatunga, D.; Schaefer, C.; Kwok, P.Y.; Iribarren, C.; Chakravarti, A.; Risch, N.
Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat.
Genet. 2017, 49, 54–64. [CrossRef]

21. Giri, A.; Hellwege, J.N.; Keaton, J.M.; Park, J.; Qiu, C.; Warren, H.R.; Torstenson, E.S.; Kovesdy, C.P.; Sun, Y.V.; Wilson, O.D.; et al.
Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat. Genet. 2019, 51, 51–62. [CrossRef]

22. Liang, J.; Le, T.H.; Edwards, D.R.V.; Tayo, B.O.; Gaulton, K.J.; Smith, J.A.; Lu, Y.; Jensen, R.A.; Chen, G.; Yanek, L.R.; et al. Single-
trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations.
PLOS Genet. 2017, 13, e1006728. [CrossRef]

23. Fox, E.R.; Young, J.H.; Li, Y.; Dreisbach, A.W.; Keating, B.J.; Musani, S.K.; Liu, K.; Morrison, A.C.; Ganesh, S.; Kutlar, A.; et al.
Association of genetic variation with systolic and diastolic blood pressure among African Americans: The Candidate Gene
Association Resource study. Hum. Mol. Genet. 2011, 20, 2273–2284. [CrossRef] [PubMed]

24. Franceschini, N.; Fox, E.; Zhang, Z.; Edwards, T.; Nalls, M.A.; Sung, Y.; Tayo, B.; Sun, Y.; Gottesman, O.; Adeyemo, A.; et al.
Genome-wide Association Analysis of Blood-Pressure Traits in African-Ancestry Individuals Reveals Common Associated Genes
in African and Non-African Populations. Am. J. Hum. Genet. 2013, 93, 545–554. [CrossRef] [PubMed]

25. Hendry, L.M.; Sahibdeen, V.; Choudhury, A.; Norris, S.A.; Ramsay, M.; Lombard, Z. Insights into the genetics of blood pressure in
black South African individuals: The Birth to Twenty cohort. BMC Med. Genom. 2018, 11, 2. [CrossRef] [PubMed]

26. He, J.; Kelly, T.N.; Zhao, Q.; Li, H.; Huang, J.; Wang, L.; Jaquish, C.E.; Sung, Y.J.; Shimmin, L.C.; Lu, F.; et al. Genome-wide
association study identifies 8 novel loci associated with blood pressure responses to interventions in Han Chinese. Circ. Cardiovasc.
Genet. 2013, 6, 598–607. [CrossRef]

27. Fatumo, S.; Carstensen, T.; Nashiru, O.; Gurdasani, D.; Sandhu, M.; Kaleebu, P. Complimentary Methods for Multivariate
Genome-Wide Association Study Identify New Susceptibility Genes for Blood Cell Traits. Front. Genet. 2019, 10. Available online:
https://www.frontiersin.org/article/10.3389/fgene.2019.00334 (accessed on 2 June 2022). [CrossRef] [PubMed]

28. Nudel, R.; Wang, Y.; Appadurai, V.; Schork, A.J.; Buil, A.; Agerbo, E.; Bybjerg-Grauholm, J.; Børglum, A.D.; Daly, M.J.; Mors, O.;
et al. A large-scale genomic investigation of susceptibility to infection and its association with mental disorders in the Danish
population. Transl. Psychiatry 2019, 9, 283. [CrossRef]

http://doi.org/10.1161/HYPERTENSIONAHA.110.168005
http://www.ncbi.nlm.nih.gov/pubmed/21502561
http://doi.org/10.1161/CIR.0000000000000350
http://doi.org/10.1371/journal.pone.0127382
http://www.ncbi.nlm.nih.gov/pubmed/26102079
http://doi.org/10.1038/ng.384
http://www.ncbi.nlm.nih.gov/pubmed/19430479
http://doi.org/10.1038/ng.361
http://www.ncbi.nlm.nih.gov/pubmed/19430483
http://doi.org/10.3389/fgene.2021.699445
http://doi.org/10.1038/s41588-018-0205-x
http://doi.org/10.1038/nature10405
http://doi.org/10.1038/ng.834
http://doi.org/10.1038/ng.3768
http://doi.org/10.1371/journal.pgen.1000564
http://doi.org/10.1038/ng.3715
http://doi.org/10.1038/s41588-018-0303-9
http://doi.org/10.1371/journal.pgen.1006728
http://doi.org/10.1093/hmg/ddr092
http://www.ncbi.nlm.nih.gov/pubmed/21378095
http://doi.org/10.1016/j.ajhg.2013.07.010
http://www.ncbi.nlm.nih.gov/pubmed/23972371
http://doi.org/10.1186/s12920-018-0321-6
http://www.ncbi.nlm.nih.gov/pubmed/29343252
http://doi.org/10.1161/CIRCGENETICS.113.000307
https://www.frontiersin.org/article/10.3389/fgene.2019.00334
http://doi.org/10.3389/fgene.2019.00334
http://www.ncbi.nlm.nih.gov/pubmed/31080455
http://doi.org/10.1038/s41398-019-0622-3


Int. J. Mol. Sci. 2023, 24, 2164 13 of 13

29. Okbay, A.; Wu, Y.; Wang, N.; Jayashankar, H.; Bennett, M.; Nehzati, S.M.; Sidorenko, J.; Kweon, H.; Goldman, G.; Gjorgjieva, T.;
et al. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3
million individuals. Nat. Genet. 2022, 54, 437–449. [CrossRef]

30. Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson,
A.; Edlund, K.; et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and
antibody-based proteomics. Mol. Cell. Proteom. MCP 2014, 13, 397–406. [CrossRef]

31. Yang, B.; Wang, T.; Li, N.; Zhang, W.; Hu, Y. The High Expression of RRM2 Can Predict the Malignant Transformation of
Endometriosis. Adv. Ther. 2021, 38, 5178–5190. [CrossRef]

32. Sherva, R.; Tripodis, Y.; Bennett, D.A.; Chibnik, L.B.; Crane, P.K.; de Jager, P.L.; Farrer, L.A.; Saykin, A.J.; Shulman, J.M.; Naj, A.;
et al. Genome-wide association study of the rate of cognitive decline in Alzheimer’s disease. Alzheimers Dement. J. Alzheimers
Assoc. 2014, 10, 45–52. [CrossRef]

33. Need, A.C.; Attix, D.K.; McEvoy, J.M.; Cirulli, E.T.; Linney, K.L.; Hunt, P.; Ge, D.; Heinzen, E.L.; Maia, J.M.; Shianna, K.V.; et al. A
genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB. Hum. Mol. Genet. 2009, 18, 4650–4661.
[CrossRef] [PubMed]

34. Yang, J.; Jose, P.A.; Zeng, C. Gastrointestinal–Renal Axis: Role in the Regulation of Blood Pressure. J. Am. Heart Assoc. 2017,
6, e005536. [CrossRef]

35. Anand, K.S.; Dhikav, V. Hippocampus in health and disease: An overview. Ann. Indian Acad. Neurol. 2012, 15, 239–246. [CrossRef]
36. Feng, R.; Rolls, E.T.; Cheng, W.; Feng, J. Hypertension is associated with reduced hippocampal connectivity and impaired memory.

EBioMedicine 2020, 61, 103082. [CrossRef] [PubMed]
37. Mägi, R.; Morris, A. GWAMA: Software for genome-wide association meta-analysis. BMC Bioinform. 2010, 11, 288. [CrossRef]

[PubMed]
38. de Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLoS Comput.

Biol. 2015, 11, e1004219. [CrossRef] [PubMed]
39. Watanabe, K.; Taskesen, E.; Van Bochoven, A.; Posthuma, D. Functional mapping and annotation of genetic associations with

FUMA. Nat. Commun. 2017, 8, 1826. [CrossRef] [PubMed]
40. Westra, H.J.; Peters, M.J.; Esko, T.; Yaghootkar, H.; Schurmann, C.; Kettunen, J.; Christiansen, M.W.; Fairfax, B.P.; Schramm, K.;

Powell, J.E.; et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 2013,
45, 1238–1243. [CrossRef]

41. Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data.
Nucleic Acids Res. 2010, 38, e164. [CrossRef] [PubMed]

42. Kircher, M.; Witten, D.M.; Jain, P.; O’roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative
pathogenicity of human genetic variants. Nat. Genet. 2014, 46. [CrossRef] [PubMed]

43. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015, 526, 68–74. [CrossRef]
44. Hutchinson, A.; Watson, H.; Wallace, C. Improving the coverage of credible sets in Bayesian genetic fine-mapping. PLOS Comput.

Biol. 2020, 16, e1007829. [CrossRef]
45. Li, X.; Zhu, X. Cross-Phenotype Association Analysis Using Summary Statistics from GWAS. Methods Mol. Biol. Clifton NJ 2017,

1666, 455–467. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1038/s41588-022-01016-z
http://doi.org/10.1074/mcp.M113.035600
http://doi.org/10.1007/s12325-021-01888-3
http://doi.org/10.1016/j.jalz.2013.01.008
http://doi.org/10.1093/hmg/ddp413
http://www.ncbi.nlm.nih.gov/pubmed/19734545
http://doi.org/10.1161/JAHA.117.005536
http://doi.org/10.4103/0972-2327.104323
http://doi.org/10.1016/j.ebiom.2020.103082
http://www.ncbi.nlm.nih.gov/pubmed/33132184
http://doi.org/10.1186/1471-2105-11-288
http://www.ncbi.nlm.nih.gov/pubmed/20509871
http://doi.org/10.1371/journal.pcbi.1004219
http://www.ncbi.nlm.nih.gov/pubmed/25885710
http://doi.org/10.1038/s41467-017-01261-5
http://www.ncbi.nlm.nih.gov/pubmed/29184056
http://doi.org/10.1038/ng.2756
http://doi.org/10.1093/nar/gkq603
http://www.ncbi.nlm.nih.gov/pubmed/20601685
http://doi.org/10.1038/ng.2892
http://www.ncbi.nlm.nih.gov/pubmed/24487276
http://doi.org/10.1038/nature15393
http://doi.org/10.1371/journal.pcbi.1007829
http://doi.org/10.1007/978-1-4939-7274-6_22

	Introduction 
	Results 
	Results Overview 
	Univariate GWAS Meta-Analysis 
	Functional Mapping and Annotation Analyses from FUMA of the Meta-Analysis 
	Fine-Mapping of Putatively Causal Variants 
	Multivariate GWAS Analysis of Blood Pressure Traits Identifies Additional Novel Loci 

	Discussion 
	Materials and Methods 
	Study Population 
	Meta-Analysis of BP Summary Statistics in African-Ancestry Individuals 
	Tissue Expression Enrichment Pathway Analysis 
	Functional Mapping and Annotation Analysis 
	Locus Definition 
	Fine-Mapping Analysis of Sentinel Variants 
	Multivariate GWAS Analysis 

	References

