
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 J

un
e 

20
23

 

royalsocietypublishing.org/journal/rsif
Research
Cite this article: Lotto Batista M, Rees EM,
Gómez A, López S, Castell S, Kucharski AJ,

Ghozzi S, Müller GV, Lowe R. 2023 Towards a

leptospirosis early warning system in

northeastern Argentina. J. R. Soc. Interface 20:
20230069.

https://doi.org/10.1098/rsif.2023.0069
Received: 13 February 2023

Accepted: 26 April 2023
Subject Category:
Life Sciences–Earth Science interface

Subject Areas:
bioinformatics, environmental science

Keywords:
leptospirosis, climate, El Niño, Bayesian

modelling, early warning system, outbreak

prediction
Author for correspondence:
Rachel Lowe

e-mail: rachel.lowe@lshtm.ac.uk
© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
†These authors contributed equally.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6631845.
Towards a leptospirosis early warning
system in northeastern Argentina

Martín Lotto Batista1,2,†, Eleanor M. Rees3,4,†, Andrea Gómez5,6,
Soledad López5,6, Stefanie Castell1, Adam J. Kucharski3, Stéphane Ghozzi1,
Gabriela V. Müller5,6 and Rachel Lowe2,3,4,7

1Department for Epidemiology, Helmholtz Centre for Infection Research, 38124 Brunswick, Germany
2Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
3Centre for Mathematical Modelling of Infectious Diseases and 4Centre on Climate Change and Planetary Health,
London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
5Centre for Studies of Climate Variability and Climate Change (CEVARCAM), National University of Litoral (UNL),
S3000 Santa Fe, Argentina
6National Council for Scientific and Technical Research (CONICET), C1425FQB Santa Fe, Argentina
7Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain

MLB, 0000-0002-9437-5270; EMR, 0000-0002-4993-2795; AG, 0000-0001-9724-2847;
SL, 0000-0002-2157-0577; SC, 0000-0003-1762-8462; AJK, 0000-0001-8814-9421;
SG, 0000-0002-3911-9573; GVM, 0000-0003-3843-9089; RL, 0000-0003-3939-7343

Leptospirosis is a zoonotic disease with a high burden in Latin America,
including northeastern Argentina, where flooding events linked to El Niño
are associated with leptospirosis outbreaks. The aim of this study was to
evaluate the value of using hydrometeorological indicators to predict leptos-
pirosis outbreaks in this region. We quantified the effects of El Niño,
precipitation, and river height on leptospirosis risk in Santa Fe and Entre
Ríos provinces between 2009 and 2020, using a Bayesian modelling frame-
work. Based on several goodness of fit statistics, we selected candidate
models using a long-lead El Niño 3.4 index and shorter lead local climate vari-
ables. We then tested predictive performance to detect leptospirosis outbreaks
using a two-stage early warning approach. Three-month lagged Niño 3.4
index and one-month lagged precipitation and river height were positively
associated with an increase in leptospirosis cases in both provinces. El Niño
models correctly detected 89% of outbreaks, while short-lead local models
gave similar detection rates with a lower number of false positives. Our results
show that climatic events are strong drivers of leptospirosis incidence in north-
eastern Argentina. Therefore, a leptospirosis outbreak prediction tool driven
by hydrometeorological indicators could form part of an early warning and
response system in the region.
1. Introduction
Leptospirosis is a major public health threat, which affects roughly 1.03 million
people per year across the globe. Vulnerable populations, such as urban slum
dwellers, are particularly affected [1]. Despite its global distribution and high inci-
dence, leptospirosis continues to be considered a neglected tropical disease [2].
Leptospirosis is especially prevalent in tropical and subtropical regions, with the
highest burden among low- and middle-income countries [1]. Between 10% and
30%of infectionsmanifest as a febrile syndrome,which, in the absence of treatment,
progresses to kidney failure and pulmonary haemorrhage in roughly 10% of
clinical cases, resulting in approximately 59 000 fatal infections per year [1,3].

Manymammalian species are carriers of Leptospira bacteria, with rodents con-
sidered to be themain reservoir of disease in humans [4]. Bacteria are released into
the environment via urine, contaminating soil and water bodies [5]. Human
exposure occurs after contact with a contaminated environment or animals.
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Figure 1. Schematic representation of the transmission and reporting of leptospirosis. Leptospira infection in humans can be direct (resulting from direct contact
with an infected animal) or indirect (via an environment contaminated by Leptospira bacteria). Meteorological variables (including precipitation and temperature)
can influence environmental contamination. Once humans have become infected, this usually results in asymptomatic infection. However, around 10–30% of infec-
tions result in disease. The majority of those who do experience symptoms have a mild self-limiting disease, although in a small percentage of people
(approximately 10%), clinical disease can be severe and result in hospitalization. Depending on the clinical and laboratory capabilities, a proportion of cases
will be reported in the surveillance system. Early indicators of leptospirosis risk could feed into a climate-based EWS to produce short- and medium-term forecasts
of leptospirosis risk.
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Risk factors include occupation (such as farming), inadequate
sanitation and housing infrastructure, and recreational
activities [3,4].

Heavy rainfall and flooding events are often associated
with outbreaks of leptospirosis [4,6]. These events can cause
increased environmental exposure to bacteria via contami-
nated flood water, displacement of rodent populations, as
well as damage and contamination of water and sanitation
infrastructure [7]. Furthermore, periods of abundant rainfall
produce suitable conditions for bacterial survival and
rodent proliferation [5,8].

LatinAmerican countrieswith a tropical and subtropical cli-
mate have a high burden of leptospirosis and outbreaks are
commonly linked to extreme climatic events [1,9]. In Argentina,
Leptospira infections happen in the northeastern and central pro-
vinces, namely Buenos Aires, Santa Fe and Entre Ríos [10].
Outbreaks occur during the rainy season, which spans from
the late spring until early autumn (November–April), and
coincide with heavy rainfall and flooding events [11].
El Niño-Southern Oscillation (ENSO) is a global climate
phenomenon that influences temperatures and precipitation
across theworld. It arises from changes in the sea surface temp-
erature (SST) and atmospheric pressure between the western
and eastern Pacific Ocean [12]. The ENSO cycle has two distinct
phases: the El Niño phase is characterized by positive SST
anomalies, while negative anomalies are found during La
Niña years [12]. In northeastern Argentina, the El Niño phase
tends to lead to an increase in the frequency and intensity of
extreme precipitation events [13].

Currently, response to leptospirosis outbreaks in Argen-
tina relies on passive surveillance of cases, with delays
associated with symptom onset, health-seeking behaviour
and laboratory testing (figure 1) [10]. Early warning systems
(EWS) can help provide advanced warning of an outbreak, so
that interventions can be deployed in a timely manner.

Climate change is expected to increase the frequency and
intensity of extreme weather events, which could increase the
number and magnitude of leptospirosis outbreaks and other
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Figure 2. Leptospirosis cases in Entre Ríos and Santa Fe between January 2009 and December 2020. (a) Location of Entre Ríos and Santa Fe. Paraná River, one of
the most important water bodies of South America, flows in the limit between the provinces. Meteorological information was obtained from stations belonging to
the National Meteorological Service ( points on the map). (b) Number of confirmed leptospirosis cases per 100 000 inhabitants per month recorded in each province
and reported to the SIVILA system.
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climate-sensitive diseases [6]. Previous mathematical and
statistical models in this region have shown promising results
that suggest it may be possible to develop an EWS for leptos-
pirosis [11,14,15]. Building on these efforts, this study aims to
better characterize the effect of hydrometeorological variables
on leptospirosis cases in Santa Fe and Entre Ríos, two pro-
vinces in northeastern Argentina. Additionally, this study
aims to establish a set of predictive models which could con-
tribute to an EWS, based on readily available climate data,
including local weather station data and SST measurements
in the Pacific Ocean.
2. Methods
2.1. Health and population data
Confirmed leptospirosis cases between January 2009 and Decem-
ber 2020 reported to the National Epidemiological Surveillance
System (SIVILA) were provided by the Directorate for Health
Promotion and Prevention, Ministry of Health of the Santa Fe
province, and the Epidemiology Division of the Entre Ríos pro-
vince. In the study period, there were 282 confirmed cases in
Entre Ríos and 586 in Santa Fe (figure 2a,b).

Annual population projections per province between 2010
and 2020 were available from the National Institute for Census
and Statistics (INDEC) [16]. We used linear regression to
extrapolate the population size in 2009.

2.2. Hydrometeorological data
The monthly Niño 3.4 index (anomalies in SST in the Niño 3.4
region of the Pacific Ocean; electronic supplementary material,
figure S1) from 2008 to 2020 was obtained from the National
Oceanic and Atmospheric Administration [17]. Additionally,
we used daily precipitation (mm) between January 2008 and
December 2020 from eight weather stations (figure 2a) [18]. We
aggregated daily data to monthly means (mm day−1) and then
computed population-weighted summaries for each province.
Daily Paraná River height (m) records from Paraná City and
Santa Fe City stations were collected by the Naval Prefecture
and published by the National Institute of Water [19]. Data
were available between 2008 and 2020 and were averaged to
monthly means (m day−1).
2.3. Modelling framework
We fitted a series of Bayesian generalized linear mixed models
independently for each province. We assumed that monthly
leptospirosis case counts followed a negative binomial distri-
bution and included random effects to account for unobserved
seasonality and interannual variability.

Model fitting was based on the work done by Lowe et al. and
Colón-González et al. [20–22]. We started by building an intercept-
onlymodel and then increasedmodel complexity by incorporating
seasonal and interannual random effects. Next, we included
all possible combinations of variables and evaluated their per-
formance using goodness of fit (GOF) statistics described
below. We then evaluated the ability of candidate models to pro-
duce out-of-sample predictions. We fitted models and estimated
marginal posterior predictive distributions of both random and
fixed parameters using the integrated nested Laplace approxi-
mation [23]. Details of model structure and development can be
found in the electronic supplementary material.

Since ENSO acts as a driver of precipitation anomalies in
the region, we explored the role of ENSO independently from
local conditions (precipitation and river height). ENSO models
included SST anomalies lagged from 1 to 12 months, while local
models were built with combinations of precipitation and river
height lagged from 1 to 5 months. In total, we fitted 49 models
for each province: one intercept-only model, one random effects-
only model, 12 ENSO models (lags of 1 to 12 months) and 35
local models (combinations of river height and precipitation,
with lags of 1–5 months each).

2.4. Model selection
A subset of models for each province was selected based on mul-
tiple measures of GOF: (i) deviance information criterion (DIC),
(ii) likelihood ratio R2 and (iii) visual inspection of observed
versus fitted case counts. Based on these criteria, we selected one
ENSO model and one local model for each province (electronic
supplementary material).

2.5. Model predictive check
Once we selected the candidate models, we simulated out-of-
sample predictions and evaluated their performance compared
to a reference model. Since there is no current EWS in place,
we used the least informative model as a reference, which



Table 1. Measures of GOF in candidate models. Models were formulated
with increasing complexity and compared to a non-informative intercept-
only model. ENSO models in both provinces were built using the Niño 3.4
index lagged by three months. Local models comprised river height and
precipitation with one-month lags in both provinces. REs, random effects;
DIC, deviance information criterion; R2(NULL), likelihood ratio R2 with
reference to the intercept-only model; R2(REs), likelihood ratio R2 with
reference to the random effects-only model.

DIC R2(NULL) R2(REs)

Entre Ríos

intercept only 528 – –

RE only model 446 0.53 –

ENSO model 433 0.58 0.1

local model 437 0.57 0.08

Santa Fe

intercept only 725 – –

RE only model 621 0.6 –

ENSO model 618 0.61 0.03

local model 605 0.64 0.12
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included seasonal random effects only. We left 12 consecutive
months out of the training dataset starting with January 2009
and moved one month forward for each subsequent run (144
runs per model). For each run, we drew 1000 samples from the
posterior marginal distribution of the parameters and used
them to compute posterior predictive counts from a negative
binomial distribution. To assess model performance, we used
the continuous rank probability score (CRPS) and the continuous
rank probability skill score (CRPSS), which is a relative measure
of model performance, compared to a reference model (electronic
supplementary material).

2.6. Outbreak detection evaluation
We then assessed the ability of the candidate models to predict
outbreaks. We defined an outbreak threshold as the moving
75th percentile of the observed case counts and computed
an outbreak probability by counting the number of samples
that exceeded this threshold. We used these outputs to create
receiving operator characteristic (ROC) curves to determine a
probability trigger threshold, defined as the point on the curve
that maximized the hit rate (HR), i.e. sensitivity, and minimized
the false alarm rate (FAR), i.e. 1− sensitivity. We compared
performance in outbreak detection in each of the candidate
models to the reference model (monthly random effects-only
model), using the area under the ROC curve (AUC), as well as
the HR and FAR (electronic supplementary material).
3. Results
3.1. Data description
Between 2009 and 2020, there were 282 confirmed leptospiro-
sis cases in Entre Ríos and 586 in Santa Fe. We observed
sporadic outbreaks, with the highest being in 2010, 2014,
2015 and 2016 (figure 2b). The mean annual number of
cases ranged from 0 to 6.69 cases per 100 000 inhabitants in
Entre Ríos and from 0.25 to 4.85 cases per 100 000 inhabitants
in Santa Fe (electronic supplementary material, table S1).
Most leptospirosis cases occurred during and after the wet
season (November–April) in both provinces. Heavy precipi-
tation and flooding events happened in 2010 and 2016,
which coincided with a sharp rise in the number of reported
leptospirosis cases. Additionally, outbreaks occurred during
El Niño phases, while, conversely, very few cases were
recorded in La Niña years, such as 2011 and 2013 (electronic
supplementary material, figure S2).

3.2. Model selection
Hydrometeorological covariates, i.e. the Niño 3.4 index,
Paraná River height and precipitation, improved model
GOF in each province, compared to their respective random
effects-only models. The Niño 3.4 index with a three-month
lag had the best model fit compared to the other lags. Overall,
this model captured 58% of the variability in the data from
Entre Ríos and 61% from Santa Fe. Including the Niño 3.4
index captured an additional 10% of the variability in
the data from Entre Ríos and an additional 3% in Santa Fe,
compared to the random effects-only models (table 1).
Noticeably, the effect of ENSO in Santa Fe was weaker
than in Entre Ríos (electronic supplementary material,
figure S3). This difference is more evident in the time series
of observed versus fitted values (figure 3). In Entre Ríos,
the fitted model values were able to capture the peaks in
2010, 2014, 2016 and 2017. However, in Santa Fe, the model
overestimated cases during periods of low incidence (i.e.
2013 and 2019).

Both precipitation and river height lagged by one
month were good predictors in Entre Ríos and Santa Fe.
Compared to the random effects-only model, including
local climate captured an additional 8% of the variability in
the data from Entre Ríos and 12% from Santa Fe (table 1).
In Entre Ríos, river height had a higher mean posterior
effect size than precipitation, although their 95% credible
intervals overlapped (electronic supplementary material,
figure S3).

3.3. Model predictive checks and outbreak detection
Hydrometeorological candidate models outperformed their
respective reference models in out-of-sample predictions
(table 2). Performance was higher in Entre Ríos than in Santa
Fe. ENSO models showed an improvement in the CRPSS of
39% inEntre Ríos and 9% in Santa Fe, compared to the reference
model, which only included seasonal random effects. Further-
more, local climate models performed better than the
reference models in both provinces and better than the ENSO
model in Santa Fe (electronic supplementary material, tables
S2 and S3, and figure S4).

In Entre Ríos, both candidate models showed high
predictive performance levels, with AUC values of 0.94
for the ENSO model and 0.95 for the local climate model
(figure 4). Additionally, HR values were high in both
provinces, with the local climate models reducing FAR
levels in comparison to the ENSO models (electronic
supplementary material, tables S2 and S3).

3.4. Model translation into an early warning system
We propose a two-stage forecasting approach for leptospirosis.
Public health users would produce an early-stage outbreak
probability using the Niño 3.4 index three months ahead of
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Figure 3. Fitted versus observed leptospirosis cases per month. Posterior median (dashed lines) and posterior 95% credible intervals (shaded area) for number of
leptospirosis cases per month in (a) Entre Ríos and (b) Santa Fe between January 2009 and December 2020. Observed values (solid line) were recorded by the
national surveillance system. Estimates are presented for the random effects-only model, and the best-fitting ENSO and local climate models (dashed lines).

Table 2. Area under the ROC curve (AUC) to show overall model
performance. ENSO models in both provinces were formulated using the Niño
3.4 index lagged by three months. Local models comprised river height and
precipitation with one-month lags in both provinces. Confidence intervals
computed from 2000 bootstrap samples.

AUC (95% CI)

Entre Ríos

seasonal effects only (reference) 0.77 (0.64–0.9)

ENSO model 0.94 (0.89–1)

local model 0.95 (0.89–1)

Santa Fe

seasonal effects only (reference) 0.81 (0.73–0.9)

ENSO model 0.88 (0.82–0.95)

local model 0.92 (0.87–0.97)
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the target month and later update the outbreak probability
with precipitation and river height information from the
month prior to the outbreak. As an example, the ENSO
model computed an outbreak probability for March 2010 of
84% in Entre Ríos. Then, the short-lead local model increased
that percentage to 89% (figure 5).
4. Discussion
In this study, we present statistical models that were able to
quantify the impact of hydrometeorological variables on the
number of leptospirosis cases reported to the surveillance
system and were used to compute out-of-sample predictions
with high performance. This work contributes to the increasing
literature demonstrating the relevance of Bayesian hierarchical
mixed models for making robust predictions for use in public
health responses [24].

During El Niño years, northeastern Argentina experiences
an average increase in the frequency and intensity of extreme
rainfall, which can result in flooding events [25]. Our results
show that leptospirosis cases reported to the surveillance
system are associated with changes in SST in the Niño
region 3.4, which serves as an ENSO phase indicator [26].
Notably, we found that the ENSO models performed better
in Entre Ríos than in Santa Fe. This may be partially
explained by differences in the geomorphological configur-
ation. While the Paraná river has ravines of different sizes
on the Entre Ríos coast, there is a flat and smooth gradient
descending towards the alluvial plain on the Santa Fe side,
creating differences in the association between river levels
and flooding events [27]. Additionally, the presence of less
important water courses with different sensitivities to
ENSO, such as the Salado and Uruguay rivers, may have
affected model performance.

At the local level, the climate models performed well in
fitting leptospirosis cases in both provinces, which coincides
with previous findings in the literature [4,7]. The effect of
river height was greater than that of precipitation in Entre
Ríos, although their credible intervals overlapped. In Santa
Fe, however, we did not see differences between the effects
of local conditions.

We tested the out-of-sample predictive ability of our
models by sequentially leaving 12 months out of the sample.
Since there is no current EWS in place, we used the least
informative model as a reference, which included seasonal
random effects only. In both provinces, the candidate models
outperformed the reference model, particularly in Entre Ríos.

Given these findings, we propose a two-stage prediction
approach for Entre Ríos and Santa Fe provinces, comprising
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an initial forecast using the ENSO model with a lead time of
three months, followed by the local climate model one month
prior to the prediction target. Although local climate models
did not show a large increase in predictive performance in
comparison to the ENSO models, they showed a reduction
in their FARs. A high outbreak probability for the upcoming
month would trigger the deployment of different prevention
strategies such as pre-exposure prophylaxis, identifying popu-
lations at risk and increasing awareness in the local medical
community. To our knowledge, only one study proposed
a prediction model for leptospirosis in New Caledonia [28].
Until recently, development of climate-based EWS for infec-
tious diseases has beenmostly done in academic settings. There
are many challenges in the implementation of EWS, including
lack of historical and real-time data, as well as coarse spatial
and temporal resolutions [29]. Moreover, to translate prediction
models and code into usable, automated tools, funding for
software development and maintenance is necessary. To
implement a leptospirosis EWS, joint efforts between local
stakeholders, national public health agencies and researchers
would be required [24]. Our prediction models could be deliv-
ered in the form of executable packages or dashboards, with
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functions that allowusers to input and explore climate data, and
compute outbreak probabilities. Capacity building would be
another important component of the implementation process
as users need to be able to manage data and interpret model
outputs using their local resources.

Although this study showcases the potential of modelling
tools for informing public health action, there are several limit-
ations. First, spatially aggregated data mask the effects of
hydrometeorological drivers of disease at finer spatial scales.
A recent analysis of the spatial distribution of leptospirosis suit-
ability in Santa Fe province has shown that there is marked
difference with elevation, urban and suburban structure, and
environmental conditions [30]. Most leptospirosis cases were
reported in the largest cities and in some of them there are
other water bodies, such as the Salado River in Santa Fe. More-
over, workingwith surveillance data produced frommandatory
reports can be challenging due to reporting delays, data sparsity
and protection, and limited information regarding socio-
demographic factors, which may act as additional explanatory
variables. Surveillance also depends on presentation of symp-
toms, with mildly symptomatic and asymptomatic cases being
largely underreported. However, predicting the risk of sympto-
matic and severe cases would provide great added value for
planning and prevention through public health strategies.

Data sparsity also affects the quality of hydrometeorologi-
cal records. Flooding events have differences in the degree of
the damage caused and their duration. The severe flood
caused by the Paraná River in 2016, for example, left areas cov-
ered bywater for severalmonths, duringwhich the victims had
to undergo evacuation [31,32]. During this period, there were
more intensive preventive campaigns than in other years,
and this is likely the reason we do not see such a large increase
in cases, even though the climatic conditions were suitable [11].
Furthermore, grouping data at the province level assumes that
there is an even distribution of leptospirosis cases in both pro-
vinces, when case distribution is highly heterogeneous [11].
The ability of the surveillance system to capture cases varies
across the region due to differences in access to healthcare
and socio-economic status, with more rural populations and
those from a lower socio-economic background likely to be
more underreported. The results from this study demonstrate
the benefits that could be gained from further investment
into leptospirosis surveillance in the future. Despite these limit-
ations, we found that the role of climate appears to be
associated with cases even over a large geographical area,
demonstrating the potential utility of an EWS.
In the future, longer lead times for forecasts may be poss-
ible. The local meteorological service and the National Water
Institute produce forecasts with lead times of up to three
months for precipitation and river height, respectively
[18,19]. These forecasts are released to the public as bulletins,
although currently the information they report is not consist-
ent, as the time of reporting and the stations included within
the bulletin vary. In the context of an interdisciplinary collab-
oration with direct access to data, it may be possible to
produce outbreak forecasts with a longer lead time.

The proposed two-stage modelling approach is a first step
towards the creation of a high-performance prediction tool for
a leptospirosis EWS in northeastern Argentina. This would
allow public health services to have advanced warning of an
outbreak, allowing time for the implementation of public
health preventative measures. This will become more impor-
tant in the future with climate change expected to increase
the frequency and intensity of flooding events and, in turn,
outbreaks of leptospirosis and other climate-sensitive diseases.

Data accessibility. The code and data used to produce the analysis can be
found on https://github.com/martin-lotto-batista/lepto-argentina,
archived in a permanent repository: https://zenodo.org/record/
7865639 [33].

Additional details on the methodology can be found in the
electronic supplementary material [34].
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