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Not all COVID-19 deaths are officially reported, and particularly in low-income and humanitarian settings, the
magnitude of reporting gaps remains sparsely characterized. Alternative data sources, including burial site
worker reports, satellite imagery of cemeteries, and social media–conducted surveys of infection may offer so-
lutions. By merging these datawith independently conducted, representative serological studies within amath-
ematical modeling framework, we aim to better understand the range of underreporting using examples from
three major cities: Addis Ababa (Ethiopia), Aden (Yemen), and Khartoum (Sudan) during 2020. We estimate that
69 to 100%, 0.8 to 8.0%, and 3.0 to 6.0% of COVID-19 deaths were reported in each setting, respectively. In future
epidemics, and in settings where vital registration systems are limited, using multiple alternative data sources
could provide critically needed, improved estimates of epidemic impact. However, ultimately, these systems are
needed to ensure that, in contrast to COVID-19, the impact of future pandemics or other drivers of mortality is
reported and understood worldwide.
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INTRODUCTION
Accurate ascertainment of infections, cases, and deaths of an
emerging infectious disease is vital to implement an effective
public health response. However, these quantities depend on both
testing capacity and robust vital registration systems. Consequently,
only a subset of the true burden of a disease is captured within of-
ficial statistics. During the coronavirus disease 2019 (COVID-19)
pandemic, official COVID-19 data obscured the perception of the
global burden of the disease (1). For example, in some settings with
low reported COVID-19 death tolls, serological surveys (serosur-
veys) have revealed extensive severe acute respiratory syndrome co-
ronavirus 2 (SARS-CoV-2) transmission (2–4). These levels of
transmission are inconsistent with the number of infections

expected based on officially reported deaths and estimates of the in-
fection fatality ratio (IFR) (5, 6), with the most parsimonious expla-
nation that COVID-19 deaths go unreported (7).

Due to the underreporting of COVID-19 deaths (1), excess mor-
tality has been used frequently as an alternative means by which to
assess the impact of the COVID-19 pandemic (8). On 5 May 2022,
the World Health Organization (WHO) published estimates of the
“full” global death toll of the pandemic based on all-cause excess
mortality (9). Although not subject to the same biases as COVID-
19 deaths, which typically rely on a proven SARS-CoV-2 infection
around the time of the death, estimates of excess mortality still
require complete data on the total number of deaths from all
causes, which in turn requires mechanisms by which to record
these deaths. Unfortunately, robust vital registration systems do
not exist in many parts of the world, with the WHO estimating in
2020 that 40% of the world’s deaths from all causes occur unregis-
tered (10).

In settings without official all-cause mortality data, estimation of
excess mortality during the pandemic has relied solely on model-
based inference by pooling information from countries with
similar socioeconomic and demographic characteristics. An alter-
native approach is to leverage alternative mortality data sources
and epidemic indicators that can rapidly provide a more data-
driven understanding of epidemic dynamics, such as social
media–shared obituary notifications (11). Characterizing the poten-
tial biases in these innovative data sources is crucial to understand-
ing their suitability for tracking the spread of SARS-CoV-2, as well
as more broadly for mortality monitoring in the absence of com-
plete vital registration. In response, we consider here three alterna-
tive data sources generated during the pandemic to understand the
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transmission of SARS-CoV-2 in two cities in sub-Saharan Africa
and one in the Middle East. These include burial site worker
reports in Addis Ababa (12), satellite imagery of cemeteries in
Aden (13), and social media–conducted surveys of symptomatic in-
fection in Khartoum (14) (Table 1).

In each setting, representative serosurveys have also been con-
ducted independently at different time points before the availability
of vaccines. We incorporate these within a previously developed
mathematical modeling framework (11) to quantify how informa-
tive each data source is for explaining population seroprevalence
under different assumptions for the IFR in each setting. In brief,
the model uses a Susceptible-Exposed-Infected-Recovered struc-
ture, which explicitly captures pathways through hospital care and
the impact this has on mortality (see Materials and Methods for
further information). Our default assumption is that the relation-
ship between the IFR and age is consistent with the log-linear rela-
tionship estimated in high-income settings as estimated in multiple
modeling studies (5, 6) and meta-analyses (15), although there is
evidence that IFR may be higher in lower-income settings (7). We
test this hypothesis first by fitting to the alternative sources for mor-
tality (Addis Ababa and Aden) and case incidence (Khartoum) data
using the relationship between IFR and age as estimated by Brazeau
et al. (6). From these model fits, we compare the model-predicted
seroprevalence against the reported seroprevalence estimates using
a chi-square test, arguing that this is good evidence that the alterna-
tive datasets are reliable for tracking the transmission of SARS-
CoV-2 and the assumed IFR is suitable should these values not
differ significantly. In addition, in settings where the alternative
sources and the serosurveys do not agree, it presents an opportunity
to better understand the biases in these alternative datasets and
explore alternative hypotheses for the severity of COVID-19 in
these settings. Full methods are presented in Materials and
Methods and in the Supplementary Materials.

RESULTS
Addis Ababa
In Addis Ababa, excess mortality was derived from cemetery sur-
veillance data collected via the Addis Ababa Mortality Surveillance
Program across January 2015 to January 2021, as detailed by Endris
et al. (12). These data comprise the number of burials per day at all
cemeteries in the city according to official records kept by workers
at each site. As cremation is not practiced in Addis Ababa, this sur-
veillance program is expected to capture the vast majority of deaths
from all causes in the city (12).

Reported COVID-19 deaths (16) largely matched estimated
excess mortality from June 2020 onward, although this was in
part dependent on how baseline mortality was estimated (Fig. 1,
A and B). While the annual number of burials in each year from
2015 to 2018 was largely consistent (average, 12,862; SD, 389),
there was a significant reduction in the number of burials observed
in 2019 compared to the mean from 2015 to 2018 (total, 11,256; χ2
test, P < 0.001; fig. S3). Therefore, we explored two methods for es-
timating baseline mortality in 2020, in which we usedmortality data
either from 2015 to 2019 or exclusively from 2019 [Spearman cor-
relation between excess mortality and COVID-19 deaths over our
study period: r = 0.59 (using 2015–2019 as baseline) and r = 0.69
(using just 2019 as baseline)]. Regardless of the baseline, we ob-
served a peak in excess mortality observed in May 2020 that was
not associated with a peak in reported COVID-19 deaths (Fig. 1,
A and B). We explored whether this peak could be due to
COVID-19 through an additional sensitivity analysis by starting
the model from 5 June 2020 instead of 6 April 2020 (the date of
the first COVID-19 death; Fig. 1D) (Spearman correlation
between excess mortality and COVID-19 deaths from June 2020
onward: r = 0.74 and r = 0.75 for 2015–2019 and 2019-only base-
lines, respectively). Therefore, we considered four excess mortality
scenarios in total for Addis Ababa, which we assumed to be equally
plausible a priori.

We fitted the mathematical model separately to reported
COVID-19 deaths and the four estimated excess mortality time
series and compared the number of infections estimated by the
model to those at the time of a serosurvey conducted by Abdella

Table 1. Sources of alternative data collected at study locations and seroprevalence estimates. See the Supplementary Materials for further details of each
study and the specifics of assays used.

Setting
Alternative data source Seroprevalence

Overview Reference Overview Reported estimate Reference

Addis Ababa,
Ethiopia

Burial site worker cemetery reports
01/01/2015 to 26/01/2021

(12) Random sample of 956
households

22/07/2020 to 10/08/2020

IgG: 1.9% (95% CI, 0.4–3.7%)
Combined IgG/IgM: 3.5%

(95% CI, 1.7–5.4%)

(17)

Aden, Yemen Satellite imagery of cemetery burials
21/07/2016 to 19/09/2020

(13) Cross-sectional household
study of 2001 people

28/11/2020 to 13/12/2020

IgG: 25% (95% CI, 23.2–
26.9%)

IgM: 0.2% (95% CI, 0.1–0.4%)
IgG & IgM: 2.3% (95% CI,

1.7–2.9%)
Combined IgG/IgM: 27.4%
(95% CI, 25.6–29.3%)

(19)

Khartoum,
Sudan

Survey of historic symptomatic infections
conducted through social media channels

26/05/2020 to 03/06/2020

(14) Cross-sectional household
study of 2375 people

01/03/2021 to 10/04/2021

Combined IgG/IgM:
54.6% (95% CI, 51.4–57.8%)

(21)
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et al. (17) in July to August 2020. The study used random sampling
of 956 households in the city and reported a weighted prevalence of
immunoglobulin G (IgG) and combined IgG/IgM antibodies of
1.9% (0.4 to 3.7%) and 3.5% (1.7 to 5.4%), respectively, having
post-stratified by age and sex to account for potential biases in
their sample (see the Supplementary Materials for further
information).

The model fit to COVID-19 deaths produced estimates of sero-
prevalence not significantly different from the values reported by
Abdella et al. (17) (P: 0.884 and 0.334 for IgG and combined IgG/
IgM, respectively), suggesting that officially reported deaths are rep-
resentative of the true COVID-19 death toll in this setting. Similarly,
we observed that most of the seroprevalence estimates based on
model fits to the excess mortality inferred from cemetery burial
data were not statistically significantly different from the reported
seroprevalence by Abdella et al. (17) for both antibody types
(table S2). However, this is expected given the similarity in the
COVID-19 and excess mortality time series (Fig. 1, A and B). The

exception to this was the model fit to excess mortality inferred using
2019 only as the baseline and including the first peak (P: <0.001 and
0.002 for IgG and combined IgG/IgM antibodies, respectively), with
the resulting model-estimated seroprevalence three times and twice
as great as the reported prevalence of IgG and combined IgG/IgM
antibodies of Abdella et al. (17) (Fig. 1D). This suggests that excess
mortality under this baseline scenario overestimated COVID-19
mortality and is unsuitable for informing the size of the COVID-
19 epidemic. Consequently, we approximate that, depending on
the selection of mortality baseline, between 68.7% (1064 of 1549,
reflecting the 2015–2019 scenario with the first peak in May includ-
ed) and 100% of COVID-19 deaths were reported across April to
November 2020 in Addis Ababa. The upper estimate of 100% (com-
plete) reporting reflects both the near agreement between the cem-
etery-inferred excess mortality and reported COVID-19 deaths, and
the nonsignificant difference between the seroprevalence inferred
on the basis of model fits to reported COVID-19 deaths and the re-
ported seroprevalence (Fig. 1C and table S5).

Fig. 1. Mortality reporting and seroprevalence in Addis Ababa, Ethiopia in 2020. (A) Reported COVID-19 deaths compiled from the Ethiopian Public Health Institute
and estimated excess mortality using cemetery surveillance from (12) using data from 2015 to 2019 to derive the baseline. Dashed line indicates the end of the early peak
in excess mortality featured in the sensitivity analysis. (B) As in (A), but with excess mortality derived from 2019 data only. (C) Estimated seroprevalence frommodel fit to
excess mortality under 2015–2019 baseline (median and 95% credible intervals) with the first peak compared to reported values by Abdella et al. (17). Gray shaded area
highlights the sampling period of the serosurvey, with weighted reported estimates both corresponding to this entire period. (D) Seroprevalence estimated undermodels
fit to either reported COVID-19 or different estimates of excess mortality with different baselines (median and 95% credible intervals) compared to reported seropre-
valence in (17).
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Aden
In Aden, excess mortality was estimated from satellite imagery sur-
veillance of all cemeteries in the city to estimate daily burials
between July 2016 and September 2020, by quantifying expansions
to cemetery surface area and validating this with civil death regis-
trations (13). From these data, a wave of excess mortality was esti-
mated to have occurred between April and September 2020, peaking
in early June. Reported COVID-19 deaths were only available via
scraping death counts tweeted daily by the Yemen Supreme Nation-
al Emergency Committee for COVID-19 (18). Excess mortality es-
timates suggested that 2120 [95% confidence interval (CI), 424 to
4137] excess deaths occurred across 1 April to 19 September
2020, compared to just 34 officially reported COVID-19 deaths
during this same period (18), implying substantial under-ascertain-
ment of COVID-19 mortality (Fig. 2A).

In December 2020, Bin-Ghouth et al. (19) conducted a cross-
sectional household serosurvey of 2001 people and estimated that
25.0% (95% CI, 23.2 to 26.9%) and 0.2% (95% CI, 0.1 to 0.4%) of
the population had either IgG or IgM antibodies to SARS-CoV-2,
respectively, with a total of 27.4% (95% CI, 25.6 to 29.3%) estimated
to have IgG and/or IgM antibodies (combined IgG/IgM). Because
of the long delay of approximately 5 months between the peak in
excess mortality and the implementation of the serosurvey in this
setting, it was necessary to consider the decay of antibodies after
infection over time. Antibody kinetics vary substantially among in-
dividuals, resulting in high uncertainty around the duration of se-
ropositivity after infection (20). To the best of our knowledge, these
parameters had not been quantified for the assay used in this study,
and so we conducted sensitivity analyses to explore the impact of
different assumptions for IgG and IgM seroreversion. IgM antibod-
ies endure for a substantially shorter duration than IgG antibodies.

Fig. 2. Mortality reporting and seroprevalence in Aden, Yemen in 2020. (A) Reported COVID-19 deaths and estimated excess mortality from satellite surveillance of
burials from (13). (B) Estimated seroprevalence of combined IgG/IgM (positive for either IgG and/or IgM) from themodel fitted to excess mortality using the default IFR (=
0.3%) under different IgG seroreversion half-lives compared to observed values from (19) [reported seroprevalence: 27.4% (95% CI, 25.6 to 29.3%)]. Dashed vertical line
indicates point in time when seroprevalence dynamics divert due to difference in IgG half-life modeled. (C) As in (B) but for IgG antibodies [reported seroprevalence:
25.0% (95% CI, 23.2 to 26.9%)]. (D) Combined negative log-likelihood of models of IgG and combined IgG/IgM antibodies under varying assumptions of the IFR and IgG
seroreversion half-life. In (B) and (D), the IgM seroreversion half-life is held constant at 50 days. Values associatedwith the highest log-likelihoods (shown here in light blue)
indicate the best fit of the parameter values to the observed data.
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Hence, we found that varying the IgM half-life had a minimal
impact in the context of this analysis and thus assumed a central
value of 50 days as in (6) (nonstatistically significant differences
with reported values; fig. S11 and table S3), but that the IgG half-
life was an important determinant of our estimated seroprevalence
(Fig. 2 and table S3).

Seroprevalence inferred from the model fit to reported COVID-
19 deaths was statistically significantly different from that reported
for all antibody types and under all seroreversion half-lives consid-
ered (P: <0.001 for IgG and combined IgG/IgM, <0.009 for IgM),
suggesting that official reported COVID-19 deaths substantially un-
derestimate the true death toll. However, in model fits to the satel-
lite-derived excess mortality, we found no statistically significant
differences between reported and modeled seroprevalence of IgG
and combined IgG/IgM antibodies (P: 0.651 and 0.563, respective-
ly) with an assumed IgG seroreversion half-life of 180 days. This
finding suggests that these data are a more accurate representation
of the first COVID-19 outbreak in Aden than officially report-
ed deaths.

Although the default IFR (IFR = 0.3%) and IgG seroreversion
half-life (180 days) maximized the combined model log-likelihood
of IgG and combined IgG/IgM antibodies, we were able to find
other parameter combinations that could also explain the reported
seroprevalence (Fig. 2). We found that a slightly higher IFR of 0.4 or
0.5% combined with a slightly longer seroreversion half-life of 200
or 220 days, respectively, also produced nonstatistically significant
differences between reported and modeled seroprevalence of both
antibody types (P: 0.289 and 0.649 for IgG and 0.944 and 0.385 for
combined IgG/IgM antibodies, respectively) and produced similar-
ly high log-likelihoods (Fig. 2 and table S3). Although a lower IFR of
0.2% was able to also produce nonstatistically significant differences
when using shorter seroreversion half-lives (table S3), the model
was unable to recreate the excess deaths from the satellite data, sug-
gesting that IFR in Aden was greater than 0.2% (fig. S10).

Overall, the broad agreement between the two independent data
sources under plausible assumptions of antibody seroreversion and
the IFR strongly supports COVID-19 to be the driver of the ob-
served satellite-inferred excess mortality. Consequently, we estimate
that just 1.6% (34 of 2120) of COVID-19 deaths in Aden in summer
2020 were captured in official statistics (table S5). On the basis of the
uncertainty in the satellite-inferred excess mortality (95% CI, 424 to
4,137), we report our uncertainty in the reporting fraction to be
between 0.8 and 8.0%.

Khartoum
In Khartoum, we leveraged an online survey distributed through
social media channels (14). The survey presented respondents
with a list of symptoms known to be associated with SARS-CoV-2
infection and used to triage patients in Sudan. Respondents were
asked which of these symptoms they had experienced since the
start of the pandemic. Respondents were also asked both whether
they had received (i) a SARS-CoV-2 diagnostic test and (ii) the
outcome of any test taken. From this survey, the SARS-CoV-2 in-
fection status of survey participants who had not received a COVID-
19 test was inferred based on their reported symptom(s), resulting
in an estimate of the symptomatic attack rate in the general popu-
lation. The survey collected responses opportunistically, resulting in
5018 responses from individuals over 15 years old throughout Khar-
toum State between 26 May and 3 June 2020. From these

respondents, 11.0% of individuals were estimated to have experi-
enced a symptomatic infection by 3 June, with lower and upper es-
timates (based on different methods for inferring symptomatic
infection) of 8.3 and 13.7%.

By the end of March 2021 (before a pause in publication of
COVID-19 reports by the Sudan Federal Ministry of Health), 938
COVID-19 deaths had been reported in Khartoum (Fig. 3A). We
fit the transmission model to the observed COVID-19 deaths,
making the assumption that the reported COVID-19 deaths reflect-
ed a fixed proportion of the true total number of COVID-19 deaths
over time (figs. S12 and S13). From these, our central estimate is that
4% of COVID-19 deaths were reported based on comparison
against the 11.0% of individuals estimated to have experienced a
symptomatic infection by 3 June (Fig. 3B).We report our uncertain-
ty in the reporting fraction to be between 3 and 6%, with the
modeled 95% CI for the cumulative proportion of symptomatic in-
fections overlapping with the lower or upper bounds reported of 8.3
and 13.7% (Fig. 3B).

Between 1March and 10 April 2021, a cross-sectional household
mortality and seroprevalence survey was conducted in Omdurman
—a city in Khartoum state estimated to encompass ~35% of the
population of Khartoum state (21). In this survey, 54.6% (95% CI,
51.4 to 57.8%) of the population were seropositive and 7113 excess
deaths (95% CI, 5015 to 9505) were estimated to have occurred,
which when scaled linearly to reflect the population of Khartoum
state would be 20,766 (95% CI, 14,641 to 27,750) excess deaths
(21). By comparison, with 4% of COVID-19 deaths assumed to
have been detected, we estimate that 63.6% (95% CI, 60.6 to
65.7%) of the population would have been seropositive by 20
March 2021 (Fig. 3C), which is significantly different to the report-
ed seroprevalence of 54.6% (χ2 test, P < 0.001; table S4), and that
22,870 (95% CI, 21,150 to 23,640) deaths would have occurred
(Fig. 3D). Consequently, while the inferred reporting fraction of
4% based on the symptomatic survey yields estimates of the epidem-
ic size that are similar to those observed in Omdurman almost a year
later, estimates of the epidemic size are most accurately recreated
with an assumed reporting fraction of 4.5% (fig. S14 and table S5).

DISCUSSION
In this study, we demonstrate the validity of using alternative data
sources, namely, burial site worker reports in Addis Ababa (12), sat-
ellite imagery of cemeteries in Aden (13), and social media–con-
ducted surveys of symptomatic infection in Khartoum (14), to
track the dynamics and burden of the COVID-19 epidemic in
each of these settings. By incorporating these data within a previ-
ously published mathematical modeling framework (11), we could
infer the number of infections implied by each source and validate
the accuracy of these results by comparing themwith independently
conducted serosurveys. Consequently, we estimate that between 67
and 100% of COVID-19 deaths were reported in Addis Ababa, while
in Aden and Khartoum, we demonstrated that there are likely to
have been large unobserved epidemics with 0.8 to 8.0% and 3.0 to
6.0% of deaths reported, respectively (table S5).

Understanding the impact and burden of an infectious disease is
integral to facilitating an effective public health response. Our
results challenge the perception of the global burden of the
disease as reported in official figures which, as shown here in the
cases of Aden and Khartoum, can suffer from underreporting in
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resource-poor settings. In each setting, we found nonstatistically
significant differences between ourmodel-estimated seroprevalence
based on the alternative data source and those reported in serosur-
vey, each of which tested at least 950 participants. This provides rea-
sonable confidence in the accuracy of these sources to describe and
understand the respective epidemic dynamics (tables S2 to S4).
Hence, we consider that these alternative data sources represent a
viable, and likely cost-effective, route to estimating disease burden
and impact in settings where high-quality civil registration system
mortality data are not currently available.

Our framework uses the IFR when comparing mortality inferred
from alternative data sources to reported seroprevalence. Although
this parameter has not been estimated directly within the three set-
tings in this study, we have demonstrated that the default IFR ac-
counting for the demography in Addis Ababa (IFR = 0.22%)
estimated by Brazeau et al. (6) accurately captured the reported se-
roprevalence. However, in Aden, our results suggested that the IFR
is at least 0.3%, which is higher than the IFR estimated by Brazeau
et al. (6) after accounting for the demography in Aden (IFR =
0.17%). Similarly, in Khartoum, an IFR of approximately 0.38%

Fig. 3. Estimates of under-ascertainment of deaths in Khartoum. (A) Daily and weekly mean reported COVID-19 deaths in Khartoum. We fit models to the reported
COVID-19 deaths in (A) under different assumptions for what proportion of the true number of COVID-19 deaths these represent (reporting fractions). In (B), the resultant
model fits were used to estimate the proportion of individuals aged over 15 years that would have experienced a symptomatic COVID-19 infection by 3 June 2020. The
points and vertical bars show the median and 95% CI for each model fit and are compared against the observed cumulative number of symptomatic cases in Khartoum
estimated from a social media–distributed survey (14), suggesting that 4% of COVID-19 deaths were detected. A cross-sectional household mortality and serosurvey
conducted in Omdurman in March to April 2021 estimated seroprevalence to be 54.6% (95% CI, 51.4 to 57.8%) after adjusting for specific test performance (21). This
estimate is depicted in (C) by point and whiskers and is compared against the adjusted seroprevalence (median and 95% CI shown in orange) predicted by a model fit
with an assumedmortality reporting fraction of 4%. On the basis of the same survey, 20,766 (95%CI, 14,641 to 27,750) excess deaths are estimated to have occurred across
Khartoum state. This estimate is depicted in (D) by point and whiskers and is compared against the cumulative number of COVID-19 deaths (median and 95% CI shown in
purple) predicted by a model fit with an assumedmortality reporting fraction of 4%. In (C) and (D), the gray shaded area highlights the sampling period of the serosurvey
and mortality survey in Omdurman.
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accurately captured the reported seroprevalence, which is notably
higher than the default IFR estimated by Brazeau et al. (6) after ac-
counting for the demography in Khartoum (IFR = 0.20%). These
studies should not be viewed as an accurate assessment of the
IFR, with the mortality inferred from these alternative data unlikely
to perfectly reflect the true COVID-19 mortality in each setting.
Nonetheless, in addition to demonstrating that these data are
indeed informative for describing and understanding epidemic dy-
namics, our results provide further evidence that the relationship
between age and IFR that has been consistently observed in high-
income countries (5, 6) also exists in these low-income settings. It
is further possible that the aforementioned relationship with age
could lead to an underestimation of the IFR in some settings, as sug-
gested by a recent meta-analysis of data from developing countries
(7) and supported by our presented analyses of data from Aden and
Khartoum.

Our results could be further corroborated via sources other than
those directly used in our analyses. In Aden, multiple reports of hos-
pital capacity being reached coincided with the epidemic peak esti-
mated via satellite image–derived excess mortality (13, 22). The
saturation of healthcare facilities could also explain the higher IFR
indicated in this setting. A similar situation may also have occurred
in Khartoum, with over 70% of health centers closed in Khartoum
as a COVID-19 containment measure during the first wave (23).
Additional serosurveys have also been conducted in each setting.
In Khartoum, a seroprevalence survey conducted in 22 neighbor-
hoods and relying on voluntary enrolment organized through resis-
tance committees estimated a seroprevalence of 18.3% (95%CI, 16.0
to 20.9%) using rapid antibody immunochromatography tests
between 22 May and 5 July 2020 (24). Polymerase chain reaction
(PCR)–confirmed prevalence of infection in the same survey was
estimated at 35.0% (95% CI, 32.1 to 38.0%), raising concerns that
the sampling scheme had resulted in an upward bias. However,
the seroprevalence inferred from our model fits with an assumed
reporting fraction of 4% was consistent with this survey (P =
0.493), confirming previous viral kinetics modeling of this study
(25). In Addis Ababa, higher seroprevalence of combined IgG/
IgM antibodies has been estimated in other surveys (26), which es-
timated a value of 10.9% in August 2020, with this value rising to
53.7% in December 2020. However, these estimates were derived
from sampling focused on health care workers, who are known to
have a higher risk of exposure to SARS-CoV-2 than the general pop-
ulation (27). Similarly, samples collected fromMédecins Sans Fron-
tières staff in Aden between September and November 2020 and
tested using rapid serology lateral flow tests resulted in an estimated
seroprevalence of 19.4% (95% CI, 17.9 to 20.8%) (28). However, a
follow-up survey of Médecins Sans Frontières staff in Aden during
January 2021 [after a period with very fewCOVID-19 cases reported
in Aden (18)] but analyzed using an electrochemiluminescence im-
munoassay resulted in an estimated seroprevalence of 59.0% (95%
CI, 52.2 to 65.9%) (28). This study both shows high exposure in
health care staff and demonstrates the importance of accounting
for waning rapid test sensitivity. Last, excess mortality published
by the WHO (9) yielded similar magnitudes to those estimated by
our analyses in Aden and Khartoum. However, we estimate a much
greater reporting fraction in Addis Ababa than the corresponding
national estimate (tables S5 and S6 and fig. S15), highlighting
how death registration measured in individual cities or locations

often will not reflect the realities of the whole countries, especially
during periods of crises.

There are a number of limitations of this analysis. First, our es-
timated reporting fractions correspond to the entire study period
and do not account for time-varying trends in detection of
COVID-19 deaths. Second, there is uncertainty as to whether all
excess deaths can be attributed directly due to COVID-19 (9, 29,
30), which is why we have conducted extensive sensitivity analyses
to assess the robustness of our analysis in all three settings. Third,
while we have demonstrated strong agreement between the alterna-
tive sources and seroprevalence estimates, it is still possible that the
mortality inferred from the alternative source does not capture all
deaths in each setting. For example, the Global Burden of Disease
(GBD) (31) model suggests higher annual mortality in Addis Ababa
than that presented in the cemetery surveillance data used in this
study. While the GBD is a model-based estimate and the Addis
Ababa Mortality Surveillance Program has shown to be representa-
tive of historic censuses (32), it is still likely that at least some deaths
are missed by the cemetery data. If the true excess death toll in
Addis Ababa is much higher than found in the Addis Ababa Mor-
tality Surveillance Program, this would suggest that the IFR in Addis
Ababa would need to be higher than in this analysis to be in agree-
ment with the observed seroprevalence. Fourth, SeroTracker (33)
suggested that all three serosurveys may be subject to “moderate”
bias, with corresponding estimates defined as “likely correct for
the target population”, as opposed to “very likely correct” for
studies with “low” bias, based on nine criteria including sampling
technique, sample size, and consistency of reporting results (33, 34).
Nonetheless, throughout our study, we have considered the full
range of uncertainty estimated in the serosurveys and also estimated
from our model fits, with these intervals shown to overlap under
certain assumptions in each study. Analogously to the mortality
data, we have focused on comparing the range of uncertainty inter-
vals as opposed to point estimates alone. This is also applicable to
the social media–based survey in Khartoum, which may suffer from
self-reporting biases. Fifth, SARS-CoV-2 assays are often developed
on high-income populations and the applicability to other settings
has been questioned (35), which could influence the results. Sixth,
we were unable to obtain specific seroconversion and seroreversion
rate estimates for the assays used in these studies and had to rely on a
sensitivity analysis around estimates derived from studies of other
assays. Similarly, our modeling framework operates under the as-
sumption of independence between the likelihood of the detection
of IgG and combined IgG/IgM antibodies due to a lack of data to
prove otherwise. These assumptions may explain why we were
unable to recreate the relatively large difference between IgG and
combined IgG/IgM antibodies observed in the serosurvey in
Addis Ababa, despite adjusting for different seroreversion half-
lives of these two antibody measurements. Crucially, our qualitative
conclusions about the substantial degree of underreporting and the
usefulness of these alternative data sources are robust to the limita-
tions described above. Consequently, while there are likely biases in
the alternative data sources leveraged, we argue that these biases are
substantially smaller than those in official reported COVID-19 sta-
tistics and are thus vitally useful as proxies for COVID-19 mortality
and epidemic dynamics.

The COVID-19 pandemic has caused a substantial loss of life,
but reported deaths are likely to only capture a small proportion
of the true death toll in settings without robust vital registration.
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In the absence of all-causemortality data, we have validated the suit-
ability of alternative data sources, namely, burial site worker reports,
satellite imagery of cemeteries, and social media–conducted surveys
of symptomatic infection, in tracking epidemics in Addis Ababa,
Aden, and Khartoum across 2020. These sources provide a critical
insight into the dynamics of SARS-CoV-2 in these settings and con-
tradict the hypothesis that low-income countries were spared the
worst of the pandemic. Our flexible, data-driven modeling frame-
work is readily adaptable to other settings in which there are alter-
native sources of mortality and estimates of seroprevalence, such as
Lusaka (36) and Haiti (37). However, while the modeling frame-
work can be adapted to other settings and further alternative data
sources, not all data sources will be suitable in other locations. For
example, cemetery burial data are unlikely to be representative in
settings that practice cremation and satellite imagery approaches
may be less reliable in settings with extensive cloud coverage.

The global community must prioritize providing support and
investment in the development of vital registration systems to
capture all-cause mortality across the globe. Better vital registration
is not only essential for future pandemic preparedness plans but
also foundational for evaluating progress made across multiple
areas of public health and is essential for the Sustainable Develop-
ment Goals’ mission to “leave no one behind” (38).

MATERIALS AND METHODS
We explain the general methodology, applicable to each of the three
settings. Information on the specific datasets and sources for each
modeled city are presented in the Supplementary Materials. A sche-
matic diagram of the methods is shown in fig. S1. All data and code
are provided at https://github.com/mrc-ide/covid-alternative-
mortality/ (39).

Mathematical model of SARS-CoV-2 transmission and
disease progression
We use a previously published age-structured SARS-CoV-2 trans-
mission model (40) and fitting framework (11) to fit the weekly es-
timated excess deaths in each setting in our study. In overview, the
model is a Susceptible-Exposed-Infected-Recovered-Susceptible
compartmental model, which is population-based and age-struc-
tured. The model explicitly represents disease severity and resultant
passage through different health care levels, with an assumed elevat-
ed severity when health care capacity is exceeded as defined by
Walker et al. (40). The model is capable of modeling vaccinations
[see (41)], but in all settings considered in this study, vaccination
campaigns had not started.

Model fitting was carried out within a Bayesian framework using
a Metropolis-Hastings Markov chain Monte Carlo–based sampling
scheme, which estimates the epidemic start date, R0, and the time
varying reproduction number, Rt, using a series of pseudo-
random walk parameters (ρn), which alter transmission every 2
weeks, given by

Rt ¼ R0:f ð� ρ1 � ρ2. . . � ρnÞ

where f(x) = 2. exp (x)/(1 + exp (x)). Each randomwalk parameter is
introduced 2 weeks after the previous parameter, serving to capture
changes in transmission every 2 weeks. The last change in transmis-
sion, n, is maintained for the last 4 weeks before the current day to

reflect our inability to estimate the effect size of this parameter due
to the approximate 21-day delay between infection and death. Each
model fit is tailored to each setting, incorporating demographics,
with the population size in 5-year age bands, and the effective
number of general hospital beds and intensive care beds for
each city.

Estimation of seroprevalence
Seroprevalence over time was derived from the total number of in-
fections estimated by the model, adjusted for rates of seroconver-
sion, seroreversion, and serological assay sensitivity.

In each setting, we assumed that seroconversion followed an ex-
ponential distribution with mean time to seroconversion of 13.3
days for IgG antibodies (42). Seroconversion for IgM antibodies
was assumed to occur more quickly, with mean time to seroconver-
sion of 12.3 days (42). Similarly, in each setting, seroreversion was
assumed to follow a Weibull distribution with shape parameter 3.7
(6) and with the scale parameter adjusted to enforce a specific half-
life for IgG or IgM antibodies, respectively. As default, we assumed a
half-life of 50 and 140 days for IgM and IgG, respectively, as estimat-
ed by Brazeau et al. (6). In Addis Ababa, a negligible amount of time
had passed between the start of the epidemic inferred from the al-
ternative mortality source and the serosurvey period, and conse-
quently, the assumed duration of seroreversion does not affect
our findings. However, because in Aden there was a substantial
amount of time between the excess mortality and seroprevalence
studies, we instead conducted a sensitivity analysis by varying the
half-life of IgG antibodies between 100 and 280 days and of IgM
antibodies between 30 and 70 days to capture the uncertainty sur-
rounding the true value of these parameters. Last, in Khartoum, the
observed seroprevalence estimated by Moser et al. (21) for Omdur-
man has already been adjusted to account for decreasing diagnostic
test sensitivity over time as a result of waning antibody titers, which
resulted in an increase from 34.3% crude seroprevalence to an ad-
justed seroprevalence of 54.6% (21). Consequently, we estimate se-
roprevalence from our model using a different approach. We
continue to model the lag from infection to seroconversion, with
a mean of 13.3 days. However, we consider individuals to only
become seronegative again once they have moved from the recov-
ered infection compartment to the susceptible compartment (i.e.,
by definition, they should not have antibodies to detect), which
has a mean duration of 365 days and is described by an Erlang-2
distribution, i.e., is the sum of two independent exponential distri-
butions each with a mean duration of 365/2 days.

Seroreversion and seroconversion distributions for combined
IgG and IgM antibodies were estimated by treating the IgG and
IgM distributions as independent. Although this assumption is un-
likely to hold in reality, we validated our approach using Monte
Carlo simulation, which produced an essentially identical probabil-
ity distribution of seropositivity when the two antibody types were
dependent as to that when they were treated independently (fig. S2).

Testing for differences between observed and expected
seroprevalence
Chi-square tests were used to determine whether the difference
between observed and expected seroprevalence was statistically sig-
nificant. Let θ1 denote reported seroprevalence and let θ2 denote
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our modeled seroprevalence. Our test statistic is

T ¼
ðθ1 � θ2Þ2

varðθ1Þ þ varðθ2Þ

where

varðθ1Þ �
upper confidence limit� lower confidence limit

2�1:96

� �2
,

with 95% CI limits those reported in the serosurveys.
Under the null hypothesis T~χ12, where χ12 denotes a chi-square

distribution with 1 degree of freedom, we assume that there are no
statistically significant differences between θ1 and θ2. A P value
greater than 0.05 indicates that there is not enough evidence to
reject the null hypothesis, and we conclude that there are no statisti-
cally significant differences between the reported and
modeled values.

Estimation of reporting fractions
Reporting fractions are defined as total COVID-19 deaths over the
period divided by total positive excess deaths over the same period
(table S5).

Supplementary Materials
This PDF file includes:
Supplementary Materials and Methods
Figs. S1 to S15
Tables S1 to S6
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