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Estimation of stillbirth rates globally is complicated because of the
paucity of reliable data from countries where most stillbirths occur. We com-
piled data and developed a Bayesian hierarchical temporal sparse regression
model for estimating stillbirth rates for 195 countries from 2000 to 2019.
The model combines covariates with a temporal smoothing process so that
estimates are data-driven in country-periods with high-quality data and deter-
mined by covariates for country-periods with limited or no data. Horseshoe
priors are used to encourage sparseness. The model adjusts observations with
alternative stillbirth definitions and accounts for various sources of uncer-
tainty. In-sample goodness of fit and out-of-sample validation results suggest
that the model is reasonably well calibrated. The model is used by the UN In-
teragency Group for Child Mortality Estimation to monitor the stillbirth rate
for 195 countries.

1. Introduction. The United Nations Inter-agency Group for Child Mortality Estima-
tion (UN IGME) defines a stillbirth as a baby born with no signs of life at 28 weeks or more
of gestation (UN Inter-agency Group for Child Mortality Estimation (2020)), consistent with
the International Classification of Diseases (ICD-11, World Health Organization (2019)) def-
inition of a “late gestation fetal death.” Prior estimates highlighted the large global burden
of stillbirths with an estimated 2.6 million stillbirths for the year 2015 (Blencowe et al.
(2016)). Ending preventable stillbirths is one of the core goals of the UN’s Global Strat-
egy for Women’s, Children’s and Adolescents’ Health from 2016 until 2030 (Kuruvilla et al.
(2016)) and the Every Newborn Action Plan (ENAP, World Health Organization (2014)).
These global initiatives aim to reduce the stillbirth rate (SBR, the number of stillbirths per
1000 total births) to 12 or fewer stillbirths per 1000 births in every country by 2030.

Monitoring of SBRs is challenging because of data paucity in countries where most still-
births occur. Estimates of SBRs for a country can be derived from administrative data from
registration systems (e.g., civil registration and vital statistics (CRVS) and medical birth and
death registries). The reliability of SBR estimates from such data sources depends on the ac-
curacy and completeness of reporting and recording of stillbirths and live births. Not all coun-
tries maintain an accurate, timely, and complete registration system for stillbirths. Moreover,
in many low- and middle-income countries (LMICs), stillbirths are not reported in registra-
tion systems at all. For such countries, stillbirth data can be obtained from health management
information systems (HMIS) with limitations similar to the registration systems: stillbirth
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data from registries and HMIS may be reported in different stillbirth definitions and may be
biased due to underreporting, misclassification, and other data quality issues. Lastly, SBR
data can be obtained from household surveys and population-based studies but—in addition
to limitations similar to the other data sources regarding definitions—these data are typically
not available for all years of interest and may be subject to potentially large biases and/or
nonsampling errors.

Blencowe et al. (2016) produced estimates of the SBR for all countries from 2000 to
2015. Yearly estimates for developed countries with high-quality data were obtained from
the data directly, using a Loess smoother. Estimates for all other countries were obtained
from a regression model with country-specific intercepts and global regression coefficients.
The main limitation of this work is the use of the regression model for countries with limited
data: resulting trend estimates are covariate-driven, even if available data suggest deviations
away from covariate-predicted trends. In addition, a stepwise approach was taken to carry out
variable selection which underestimates uncertainty since the model selection process is not
accounted for.

In this paper we propose a new approach to estimating the SBR for all countries, using a
Bayesian hierarchical temporal sparse regression model (BHTSRM). The model is used by
the UN IGME to monitor the SBR globally (UN Inter-agency Group for Child Mortality Es-
timation (2020), Hug et al. (2021)). Our approach updates and extends the work of Blencowe
et al. (2016). As its name implies, BHTSRM combines a hierarchical regression model with
a temporal smoothing process. This type of model produces estimates that track high-quality
data while producing covariate-driven trend estimates for countries with limited or no SBR
data. While this kind of model has been used for estimating global health indicators in other
settings, for example, in Alkema et al. (2017), prior work does not address sparsity. Here, we
extend upon previous work by introducing sparsity-inducing priors for estimating regression
coefficients. In particular, we use horseshoe priors (Piironen and Vehtari (2017a)) to shrink
the less important coefficients toward zero which makes BHTSRM an approach that can deal
with a large number of covariates.

As compared to Blencowe et al. (2016), our proposed model also introduces new statisti-
cal approaches to address various data quality issues. First, we propose a statistical procedure
for data exclusion based on comparing observed ratios of SBR to the neonatal mortality rate
(NMR). Second, we add to the model an estimation approach to incorporate observations
with alternative definitions of a stillbirth (e.g., based on 22 weeks gestational age or 1000
grams birthweight) while accounting for the additional uncertainty associated with such ob-
servations.

This paper is organized as follows: in Section 2 we provide an overview of data sources and
definitions that are available for measuring SBR. We introduce the exclusion of data based on
the ratio of SBR to NMR in Section 3. We describe the SBR estimation model in Section 4,
including the BHTSRM. In Section 5 we present estimates of SBR, data quality parameters,
and validation results. Last, we conclude with a discussion of limitations and future research
directions in Section 6.

2. Data.

2.1. Database construction. SBR data were compiled by the UN IGME from various
sources for the year 2000 and onward. The majority of data collected on stillbirths were
obtained from administrative data systems and health management information systems
(HMIS). UN IGME conducts an annual country consultation to solicit up-to-date administra-
tive data on stillbirths from ministries of health or national statistics offices. Population-based
study data were obtained from a review of the academic literature and a WHO data call to
maternal-newborn health experts. Nationally representative household surveys (e.g., demo-
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graphic and health surveys, multiple indicator cluster surveys, reproductive health surveys)
are another source of stillbirth data.

After data were compiled, general exclusion rules were applied. The evaluation and assess-
ment for data quality were applied to all data sources based on predefined exclusion criteria.
Data were excluded if they lacked information on definition or data collection systems, if the
proportion of reported stillbirths with unknown gestational age or birthweight was above 50
per cent, if data were internally inconsistent, or if coverage of live births in administrative
data systems was estimated as below 80 per cent. Vital registration data with incomplete cov-
erage of child deaths were also excluded, where incompleteness was taken from the WHO
CRVS completeness assessment (WHO Department of Information, Evidence, and Research
(2018)).

2.2. Notation. We use lowercase Greek letters for unknown parameters and uppercase
Greek letters for variables which are functions of unknown parameters (modeled estimates).
Roman letters indicate variables that are known or fixed, including data (in lowercase) and
estimates provided by other sources or the literature (in uppercase).

Data compilation and general exclusion resulted in a global database of observed SBR val-
ues. Observations are available across countries over time and are indexed by i; For each i,
c[i] refers to the country for which the ith observation was recorded and t[i] to the calendar
year of observation i. Index j [i] is used to refer to the source category of observation i. We
define an observed value yi as the SBR calculated from the number of reported stillbirths zi

and number of live births qi from a given source for a country-period with yi = zi/(zi + qi).
Periods refer to calendar years when available, or longer if the source does not provide in-
formation on annual SBR. In the database, data source types are categorized as: (1) adminis-
trative data, (2) HMIS data, (3) household survey data, and (4) population-based study data.
Among population-based studies, we distinguish between population-based prospectively-
collected data, with recruitment prior to 28 weeks of gestation, and follow-up to, at least, 28
days for live births, referred to here as PopPros data (Bose et al. (2015), Ahmed et al. (2018))
and additional data (PopLR).

We denote the set of all available observations resulting after the general exclusion step
as B. The data set B forms the basis of all analyses, as outlined in Figure 1. First, an exclusion
procedure is introduced for observations in the global data set B based on the ratio of SBR yi

to NMR oi . The NMR oi is calculated from the number of neonatal deaths mi and number of
live births qi with oi = mi/qi . The ratio of SBR to NMR is analyzed using the PopPros data
set P . The details of the exclusion are described in Section 3. Other subsets of data set B are
used for fitting the definition adjustment model and the SBR estimation model.

To allow for international comparison, we focus on estimating SBRs reported using the
standard definition (gestational age ≥ 28 weeks). In fitting the SBR model, we used data
based on the standard definition when available. However, for a subset of country-periods
in B, stillbirths were reported using an alternative definition only, based on birthweight or a
different gestational age cut-off. Four kinds of alternative definitions are incorporated in the
analysis: definitions referring to a baby born with no signs of life at: (1) 24 weeks or more
of gestation, (2) 22 weeks or more, (3) birthweight ≥ 1000 grams, and (4) birthweight ≥
500 grams. To use these observations for estimating the SBR, we estimated adjustments and
uncertainties associated with alternative definition d using the definition adjustment data set
Dd . The data set and definition adjustment model are given in Section 4.3.

We denote the subset of observations used for SBR estimation by B−. This database is
obtained after: (i) excluding observations that are identified as outlying based on the SBR to
NMR ratio exclusion approach and (ii) selecting a subset of country-period-specific data in
cases where multiple observations are available for the same country-period; see Figure 1.
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FIG. 1. Data sets and exclusion steps. This chart summarizes the data sets used for estimating the SBR. Data
sets are indicated in rectangle boxes, and the processing steps are summarized by the thick arrows. The global
SBR data set B consists of administrative data (“Admin.”), HMIS, survey and population studies (“Pop. study”),
including population-based prospectively data (“PopPros”), and additional data (“PopLR”).

The approach in (ii) is as follows: if observations are recorded in multiple definitions, we
select only one definition based on the following order of preference: (1) standard definition,
(2) birthweight ≥ 1000 grams, (3) 22 weeks or more of gestation, (4) 24 weeks or more of
gestation, and (5) birthweight ≥ 500 grams. There are 1531 observations from 133 countries
in this SBR model data set B−. Table 1 summarizes the breakdown of observations based on
definition and source.

Data availability is illustrated for selected countries in Figure 2. Data availability ranges
in the selected countries from no included data in Afghanistan to an annual time series of
national administrative data based on the standard 28 weeks definition for Ireland. Botswana,

TABLE 1
Data set B− used for fitting the SBR estimation model by source and

definition for countries in 2000–2019. For example, there are 75 countries
with administrative data. “28 weeks” represents the standard definition. “22
weeks” and “24 weeks” represent 22/24 weeks or more of gestation; “500

grams” and “1000” grams represent birthweight ≥ 500/1000 grams

Data Source Number of Countries Number of Obs

Administrative 75 1157
HMIS 26 162
Household Survey 44 95
Population Study 23 117

Definition Number of Countries Number of Obs

28 weeks 124 1220
24 weeks 3 44
22 weeks 15 85
1000 grams 20 146
500 grams 5 36
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FIG. 2. SBR data and estimates for 2000–2019 for selected countries. Posterior median point estimates from
BHTSRM (red line) with 90% credible intervals (red area) and covariate-based estimates (dashed green line) with
90% credible intervals (green area) are shown. Observed but unadjusted observations are displayed as hollow
symbols. Adjusted data (based on definition adjustments and accounting for survey biases where applicable) and
data that do not require adjustments (nonsurvey data with standard definition) are shown for all source types.
Colors indicate the definition of the observation. Error bars displayed with adjusted observations indicate 95%
confidence interval of the SBR, based on the observation, accounting for its estimated bias and error variance.
Note that the y-axis varies across countries, and that data excluded based on the data quality assessment are not
shown.
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FIG. 2. (Continued).

Malawi, Uganda, and Ukraine are examples of countries with SBR data from multiple
sources, available for selected periods only. In Ukraine, SBR data are available from 2007
to 2017 from administrative systems but recorded using 22 weeks definition. In Uganda, the
only available data comes from surveys and population-based studies. In Malawi, available
data sources are HMIS, population-based studies, and household surveys.
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2.3. Covariates. Blencowe et al. (2016) identified a large number of candidate covari-
ates for estimating SBR based on a conceptual framework. The framework includes distal
determinants, such as socioeconomic factors, demographic and biomedical factors, associ-
ated perinatal outcome markers, and access to health care. Covariate database C contains
information on the 16 covariates for all country-years; further details are given in Table 3 in
the Supplementary Material (Wang et al. (2022)).

3. Exclusion based on the ratio of SBR to NMR. Stillbirths are typically more poorly
recorded than deaths of liveborn neonates which are themselves underrecorded in many set-
tings (Stanton et al. (2006) and Woods (2008)). We exclude data points whose stillbirths are
likely to be underreported based on the ratio of observed SBR to NMR, making use of the
fact that, in settings where stillbirth case ascertainment is poor, the ratio of SBR to NMR is
expected to be low.

We describe the approach in detail in the remainder of this section. In summary, we assume
that each observed log-ratio is the sum of a setting-specific expected log-ratio and random
error. We use the PopPros database P to build a model for the expected log-ratio. We then
calculate observed log-ratios for all observations in the global data set B and exclude obser-
vations that, based on a comparison between the observation and its predictive distribution
using the model for the expected log-ratio, are deemed subject to underreporting. The exclu-
sion process is summarized in Figure 3.

The proposed approach improves upon the approach used previously for SBR estimation in
Blencowe et al. (2016). In the previously used approach, observations were excluded based on
a percentile of the observed distribution of SBR to NMR ratios. This approach did not account
for varying uncertainty associated with the observed ratios, and, contrary to our approach, the
previous approach did not make explicit the probability of a false exclusion.

3.1. Predictive model for the SBR to NMR ratio. In the predictive model for the SBR to
NMR ratio, we assume that each observed log-ratio is the sum of a setting-specific expected
log-ratio and random error. This model is specified as follows. Let ri = yi/oi denote the
observed ratio of SBR yi to NMR oi . We assume that

(1) log(ri)|θi ∼ N
(
θi, v

2
i

)
,

FIG. 3. SBR to NMR ratio exclusion process. This chart summarizes the two-step exclusion process based on
SBR:NMR ratios. The thin arrows indicate the flow of data and parameters.
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where θi = E(log(ri)) refers to the expected log-ratio of SBR to NMR and v2
i refers to the

error variance.
The error variance v2

i is calculated using a Monte Carlo approximation. Specifically, de-
note zi as the number of observed stillbirths and mi as neonatal deaths. Then, we have

zi |yi ∼ Bin(gi, yi),

mi |oi ∼ Bin(qi, oi),

where gi refers to total births and qi refers to the number of live births. Assuming indepen-
dence between stillbirths and neonatal deaths, we obtain samples (z

(s)
i ,m

(s)
i ) and calculate

the associated ratio r
(s)
i ,

r
(s)
i = z

(s)
i /gi

m
(s)
i /qi

.

The variance v2
i is given by the empirical variance of the samples log(r

(s)
i ).

We specify the distribution of the expected log-ratios θi as follows: assuming conditionally
independence and a normal distribution, we set

(2) θi |μθ,σ
2
θ ∼ N

(
μθ,σ

2
θ

)

with μθ referring to the mean log-ratio across different SBR and NMR settings and σ 2
θ refer-

ring to variability across settings. We assign vague priors to μθ and σ 2
θ .

The model is fitted to data from PopPros data set P . Based on the data collection procedure
used by the studies in this data set, data are assumed to be based on complete reporting of
stillbirths. The data set contains 73 data points from 10 LMICs in different years. Based on
the data set, the estimated mean ratio on the log scale is μ̂θ = −0.180 (−0.250, −0.111) and
variance across settings is estimated as σ̂ 2

θ = 0.083. The estimates of θi are shown in Figure 1
in the Supplementary Material (Wang et al. (2022)).

3.2. Exclusion procedure. If stillbirths are underreported relative to neonatal deaths for
a specific observation, its associated observed log-ratio of SBR to NMR log(ri) is biased
downward, as compared to the true log-ratio θi . We calculate observed SBR to NMR ratios
for all observations in data set B and use the fitted model described above to construct a
predictive distribution for each log-ratio. We exclude an observation if its observed ratio is
less than the 5% lower bound of its corresponding predictive distribution of the SBR to NMR
ratio. Specifically, the predictive distribution of the SBR to NMR ratio for the ith observation
follows from equation (1) and is given by

log(ri) ∼ N
(
μ̂θ , σ̂

2
θ + v2

i

)
,

where μ̂θ and σ̂ 2
θ refer to point estimates for the mean and across-setting variance of θ and

v2
i to the error variance of the log-ratio specific to that observation. Let �i denote the lower

5% quantile of the predictive distribution for observation i, �i = μ̂θ + z.05

√
σ̂ 2

θ + v2
i . We

exclude observation i if its observed log ratio log(ri) < �i . Based on the point estimates
of μθ and σ 2

θ , the 5% lower bound of the predictive distribution of the SBR to NMR ra-
tio is exp(�i) = 0.52 for observations with variance vi = 0. For the data with alternative
stillbirth definitions, we apply the exclusion procedure after definition adjustment (see Sec-
tion 4.3).
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FIG. 4. SBR estimation model overview. This chart summarizes the inputs and set up of the SBR estimation
model. The input data includes SBR data set B−, covariate data set C, and point estimates from the definition
adjustment model (see Section 4.3).

4. Methods for SBR estimation.

4.1. SBR estimation model summary. The SBR estimation model is summarized in Fig-
ure 4. We let �c,t denote the main outcome of interest which is the SBR for country c in year
t using the standard definition. The process model specification, referring to the specification
of �c,t = log(�c,t ), is explained in Section 4.4.

�c,t is estimated using data set B−. Following earlier notation, observations are available
across countries over time and are indexed by i; c[i] refers to the country for which the ith
observation was recorded, t[i] the calendar year of the observation, j [i] the data source type
of the observation, and d[i] to its stillbirth definition. The index r[c] refers to the region of
country c. The data model is

(3) log(yi)|�c[i],t[i],ψj [i], σ 2
j [i] ∼ N

(
�c[i],t[i] + ψj [i] + γ̂d[i], s2

i + ϕ̂2
d[i] + σ 2

j [i]
)
,

where �c,t = log(�c,t ) refers to the log-transformed true SBR �c,t for that country-year, s2
i

to variance of log(yi) (see Section 4.2.1), ψj [i] and σ 2
j [i] refer to its source type-specific bias

and variance, respectively (see Section 4.2.2), and γ̂d and ϕ̂2
d to definition-specific adjustment

and variance for observations that are reported using alternative definitions.
Definition adjustment parameters are estimated prior to model fitting. As compared to the

approach used previously in Blencowe et al. (2016), we have made two improvements. First,
we developed predictive models for the differences in SBRs that capture how stillbirths based
on the alternative definition relate to stillbirths reported according to the standard definition.
Second, we assess the variability in the relationship between standard and alternative SBRs
and account for this uncertainty in the SBR estimation model. The approach is described in
Section 4.3.
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4.2. Estimation of data quality parameters.

4.2.1. Variance of log(yi). The term s2
i in the data model equation (3) refers to the vari-

ance of log(yi). For observations administrative data, HMIS, and population studies, we as-
sume a Poisson data-generating process to obtain s2

i . Specifically, for SBR rate yi = zi/gi ,
with stillbirth zi and total births gi for the ith observation, we assume zi | �i ∼ Poisson(gi ·
�i). Then, var(yi) = zi/g

2
i , and by using the delta method, we obtain

ˆvar
(
log(yi)

) = 1

zi · yi

.

Therefore, the variance s2
i for the i-th observation is set to 1

zi ·yi
. For observations from sur-

veys, sampling error si is pre-calculated using a jackknife method (Pedersen and Liu (2012)),
to reflect the survey sampling design.

4.2.2. Source type bias ψj and measurement error variance term σ 2
j . Source type bias

terms ψj are included in model fitting to capture systematic biases associated with spe-
cific source types. We assume there is no source type biases for administrative, HMIS, and
population-based studies, that is, ψj = 0 for j referring to these three source types

ψ1,2,4 = 0.

Liu et al. (2016) and Bradley, Winfrey and Croft (2015) suggest that stillbirths tend to be
underreported in surveys, so we assume that data from surveys have a negative bias term and
estimate this bias term, assigning a a half-normal vague prior to ψ3,

(4) ψ3 ∼ N−(
0,52)

.

Due to errors introduced in reporting, the measurement error variance term σ 2
j captures

nonsystematic errors. These variance parameters are estimated and assigned vague priors

σj ∼ N+(0,1), j = 1, . . . ,4.

4.3. Definition adjustment. To estimate the definition-specific adjustment γd and vari-
ance ϕ2

d in equation (3), we use data sources that reported stillbirths using multiple defi-
nitions. Specifically, we construct definition adjustment data set Dd for each definition d ,
which contains all available paired observations of stillbirth counts (z

(d)
i , zi), where z

(d)
i is

the number of stillbirths under the alternative definition d , zi is the number of stillbirths un-
der standard definition, and the pair refers to the same source, country, and year. We use the
paired counts to estimate γd and ϕ2

d for definition d , without controlling for year and source,
but separately for high-income countries (HICs) and LMICs. Due to lack of data, in LMICs
we assume that 500 grams birthweight is equivalent to 22 weeks of gestational age, and 1000
grams birthweight is equivalent to 28 weeks of gestational age. Table 2 summarizes the data
used for the analysis of the definition and income group combinations.

We define κ
(d)
i as the log-ratio of the SBR as per alternative definition d to standard defini-

tion for observation i: κ
(d)
i = log((

�
(d)
c[i],t[i]

�c[i],t[i] ). With this definition of κ , the true log-transformed

SBR for observation i, under definition d[i], �
(d)
c[i],t[i], can be written as

�
(d)
c[i],t[i] = �c[i],t[i] + κ

(d)
i ,

where �c,t refers to the log-transformed SBR under the standard definition. We use this rela-
tion to define the adjustment term γd and variance ϕ2

d in equation (3): we set the adjustment
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TABLE 2
Data availability in definition adjustment data sets Dd . “22 weeks” and “24 weeks” represent 22/24 weeks or

more of gestation; “500 grams” and “1000” grams represent birthweight ≥ 500/1000 grams

Definition Income Group Number of Countries Number of Obs

22 weeks Low&Middle 14 59
22 weeks High 34 369
24 weeks High 8 28
1000 grams High 34 477
500 grams High 30 355

γd and variance ϕ2
d in the SBR data model equal to the posterior median and variance of the

predictive distribution for κ
(d)
i for each alternative definition d .

In the derivation of the predictive density of κ , we approximate the log-ratio of SBRs κ
(d)
i

by the ratio of stillbirths, justified by the fact that the number of stillbirths are small relative
to live births. Specifically, the true SBR for alternative definition d can be written as follows:

�
(d)
c,t = ϒ

(d)
c,t

qc,t+ϒ
(d)
c,t

, where ϒ
(d)
c,t refers to the “true” stillbirth count associated with the true SBR,

under alternative definition d , and qc,t the number of live births. Given that ϒ
(d)
c,t � qc,t , we

approximate κ as follows:

κ
(d)
i = log

(
�

(d)
c[i],t[i]

�c[i],t[i]

)
≈ log

(
ϒ

(d)
c[i],t[i]

ϒc[i],t[i])

)
.(5)

The assumptions made to obtain the predictive distribution for κ varies by the definition.
Alternative definitions fall into two categories: definitions containing the standard definition
and definitions overlapping with the standard definition. We consider each of these below.
In each setup we work toward providing a predictive distribution for κ

(d)
i by introducing

probabilities that relate the survival based on the alternative definition to that based on the
standard definition.

Definitions containing the standard 28 weeks definition. Stillbirths zi , recorded using the
28 weeks definition, are a subset of stillbirths recorded using the 22 or 24 weeks definitions,
zi ≤ z

(d)
i for d referring to 22 and 24 weeks. Given that stillbirths based on 22 or 24 weeks

definitions contain those with 28 weeks definitions, we may assume

zi |ω(d)
i ∼ Binomial

(
z
(d)
i ,ω

(d)
i

)
,(6)

where ω(d) is the definition-specific probability of a stillbirth with gestational age beyond 28
weeks conditional on being dead after 22 or 24 weeks. The probability ω

(d)
i relates to κ

(d)
i as

follows (as per equation (5) and the definition of ω
(d)
i ),

κ
(d)
i ≈ log

(
ϒ

(d)
c[i],t[i]/ϒc[i],t[i]

) = − log
(
ω

(d)
i

)
.

Based on this equation, we estimate the adjustment γ̂d and variance ϕ̂2
d in equation (3) by the

median and variance of the predictive distribution for − log(ω
(d)
i ). This predictive distribution

is based on the following assumption:

logit
(
ω

(d)
i

)|μω,d, σ 2
ω,d ∼ N

(
μω,d, σ 2

ω,d

)
,(7)
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where μω,d is the mean of the logit-transformed probabilities and σω,d the standard deviation.
We use vague prior for the mean and variance parameters,

σω,d ∼ N+(0,1),

expit(μω,d) ∼ U(0,1).

Definitions overlapping with the standard 28 weeks definition. Stillbirths z
(d)
i recorded

using the 1000 or 500 grams definitions are overlapping with the stillbirths zi using the stan-
dard definition.

In this setting, let Ni = n
(r&d)
i + n

(r)
i + n

(d)
i refer to the total number of stillbirth based

on the standard definition or an alternative definition, with n
(r&d)
i the count of stillbirths that

satisfy the 28-week and alternative definition, n
(r)
i the count of stillbirth with standard defini-

tion rather than alternative definition, and, finally, n
(d)
i the counts of stillbirth with alternative

definition rather than standard definition. We can assume
(
n(r&d), n(r), n(d))|(ω(r&d)

i ,ω
(r)
i ,ω

(d)
i

) ∼ Multinom
(
Ni,

(
ω

(r&d)
i ,ω

(r)
i ,ω

(d)
i

))
,

where ω
(r&d)
i , ω(r)

i and ω
(d)
i refer to the probabilities of a stillbirth satisfying both definitions,

the standard definition only, and the alternative definition only, respectively.
Based on the expression for κi in equation (5) and the definitions of the ω

(·)
i s, we obtain

the following relation:

κ
(d)
i ≈ log

(
ϒ

(d)
c[i],t[i]

ϒc[i],t[i]

)
= log

(
ω

(r&d)
i + ω

(d)
i

ω
(r&d)
i + ω

(r)
i

)
.

Based on this equation, we estimate the adjustment γ̂d and variance ϕ̂2
d in equation (3) by

the median and variance of the predictive distribution for log-ratio of the definition-specific

probabilities 

(d)
i = log(

ω
(r&d)
i +ω

(d)
i

ω
(r&d)
i +ω

(r)
i

).

We assume that the 

(d)
i s are normally distributed,

(8) 

(d)
i |μ
,d, σ 2


,d ∼ N
(
μ
,d, σ 2


,d

)
,

with μ
,d and σ 2

,d referring to the across-setting mean and variance of the log-ratios. To

guarantee that the estimation results in sets of ω
(r&d)
i , ω

(r)
i , and ω

(d)
i that add up to one,

we introduce the constraint 1
1+exp(


(d)
i )

< ω
(r)
i + ω

(d)
i < 1

max{1,exp(

(d)
i )} and incorporate this

constraint through a prior on the sum,

(
ω

(r)
i + ω

(d)
i

)|
(d)
i ∼ U

(
1

1 + exp(

(d)
i )

,
1

max{1, exp(

(d)
i )}

)
.

Vague priors are used for the mean and variance parameters of 

(d)
i ,

σ
,d ∼ N+(0,1),

μ
,d ∼ N(0,20).

When fitting the model to the database Dd for the overlapping definition, we typically have
available data pairs (zi, z

(d)
i ), as opposed to n

(r&d)
i , n(r)

i and n
(d)
i . It follows that zi = n

(r&d)
i +

n
(r)
i and z

(d)
i = n

(r&d)
i + n

(d)
i . We implemented an exact likelihood function to estimate the

ωs from the overlapping data sets.
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4.4. Bayesian hierarchical temporal sparse regression model. We developed a Bayesian
hierarchical temporal regression model (BHTRM) to estimate the SBR for all country-years.
It combines country-specific intercept ςc, linear regression function

∑
k Xk,c,tβk , and a tem-

poral smoothing process δc,t ,

(9) �c,t = ςc + ∑
k

Xk,c,tβk + δc,t .

Country-specific intercepts ςc are estimated hierarchically, with

ςc|ηr[c], σ 2
ς ∼ N

(
ηr[c], σ 2

ς

)
,

ηr |ξw,σ 2
η ∼ N

(
ξw,σ 2

η

)
,

where ηr[c] refers to the regional mean, σ 2
ς to the across-country variance within regions,

ξw to the global mean, and σ 2
η to the across-region variance. Vague priors were used for the

global mean and variances,

ξw ∼ N
(
2.5,22)

,

σς , ση ∼ N+(0,1).

A penalized spline regression model is used for δc,t ,

(10) δc,t =
H∑

h=1

kh(t)αh,c,

where kh(t) refers to the hth spline function, evaluated at time t , and αh,c to its regression
coefficient for country c.

We use equally spaced quadratic B-splines, with knots spaced one year apart and placed at
each integer year (Eilers and Marx (1996), Currie and Durban (2002)). The spline regression
coefficients are modeled with a first-order random walk process with a sum-to-zero constraint
1
H

∑
h αh,c = 0 to ensure identifiability. For each country, we define first-order difference

�αh,c,

�αh,c = αh,c − αh−1,c.

First-order differences are penalized as follows:

�αh,c|σ 2
� ∼ N

(
0, σ 2

�

)
,

where the variance term σ 2
� determines the smoothness of the fit. We address the sensitivity

to these settings in Section 5.4.

Estimating regression coefficients using sparsity-inducing priors. Blencowe et al. (2016)
identified 16 candidate covariates for estimating SBR, based on a conceptual framework, and
used a stepwise approach variable selection. In this study we refrain from stepwise selection
methods and instead use regularized horseshoe priors on regression coefficients (Piironen and
Vehtari (2017b)) to impose sparsity by allowing shrinkage of coefficients to zero. We expand
upon BHTRM by introducing sparsity-inducing priors for estimating regression coefficients
βk and refer to the resulting model set up as a Bayesian hierarchical temporal sparse regres-
sion model (BHTSRM) which can be applied when the number of candidate covariates is
large.

Regularized horseshoe priors for the regression coefficients are defined as follows:

βk|λk, τ, ρ ∼ N
(
0, τ 2λ̃2

k

)
,

λ̃2
k = ρ2λ2

k

ρ2 + τ 2λ2
k

,
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where τ and ρ are global shrinkage parameters and the λks are local (coefficient-specific)
parameters. Priors are set as follows:

λk ∼ C+(0, λ0),

τ ∼ C+(0, τ0),

ρ2 ∼ Inv-Gamma(ρ1, ρ2),

where C+(0, s) refers to a half-Cauchy distribution with location parameter 0 and scale pa-
rameter s; λ0, τ0, ρ1, and ρ2 are fixed. The Cauchy distribution, which—compared to a
normal distribution—has greater density around 0 and a heavier tail, allows the global hy-
perparameter τ to shrink all the parameters toward zero, while the heavy tail allows the
coefficient-specific parameters λk’s to make some coefficients escape from the global shrink-
age. This setup allows for the inclusion of a larger set of candidate covariates and encourages
sparseness by shrinking irrelevant covariates toward zero. It is not a variable selection method
because it does not shrink all posterior samples to zero.

We set λ0 = τ0 = 1, ρ1 = 2, and ρ2 = 8, as per the recommended defaults in Piironen
and Vehtari (2017a), Carvalho, Polson and Scott (2009), and Gelman (2006). We address the
sensitivity to these settings in Section 5.4.

4.5. Computation. A Hamiltonian Monte Carlo (HMC) algorithm is employed to sample
from the posterior distribution of the parameters of the SBR estimation model with the use
of Stan (Carpenter et al. (2017)) and R package Rstan (Stan Development Team (2018)). Six
parallel chains are run with a total of 6000 iterations in each chain. The first 2000 iterations
in each chain are discarded as burn-in so that the resulting chains contain 4000 samples each.
Point estimates are given by medians of the posterior samples. Standard diagnostic checks are
used to check convergence and sampling efficiency. These checks are based on trace plots, the
improved Rhat diagnostic using rank-normalized draws (Gelman and Rubin (1992), Vehtari
et al. (2021)), and various calculations of effective sample size (ESS), including the bulk
ESS and the tail ESS, giving the minimum of the effective sample sizes of the 5% and 95%
quantiles.

4.6. Model validation and comparison. Performance of the SBR estimation model is
assessed through two out-of-sample validation exercises. In the first exercise, we randomly
leave out 20% of the observations and repeat this exercise 20 times (leaving out 306 obser-
vations each time). In the second exercise, we leave out the last observation for each country
to check the predictive performance. To evaluate model performance, we calculate various
measures based on a comparison between left-out observations and their predictive distribu-
tions. We define prediction errors ei as the difference between the left-out observation and
the median of its predictive posterior distribution based on the training set,

ei = (
log(yi) − log(ỹi)

)
/Si,

where yi is the left-out observations and ỹi and Si refer to the estimated median and standard
deviation of the predictive distribution for yi based on the training set. Coverage of prediction
intervals is given by N−1 ∑N

i=1 1[li ≤ yi ≤ ui], where N denotes the total number of left-
out observations considered and li and ui are the lower and upper bounds of the prediction
interval for the ith observation. We also carry out approximate leave-one-out cross-validation
(LOO) which is implemented in the loo package in R (Vehtari et al. (2019)).

For comparing models, we consider the expected log pointwise predictive density (ELPD)
and Pareto K diagnostic (Vehtari, Gelman and Gabry (2017)). The ELPD is the log pointwise
predictive density for a new data set which can be used to evaluate the performance of the
model to predict the future data. The Pareto K diagnostic refers to the estimates of the shape
parameter k of the generalized Pareto distribution. Values larger than one may indicate that
the observation is outlying and influential.
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TABLE 3
Adjustments and standard deviation of alternative definition vs. the 28-week definition

Definition Income group γ̂d (95% CI) eγ̂d (95% CI) ϕ̂d

22 weeks Low 0.214 (0.101, 0.426) 1.239 (1.106, 2.031) 0.084
22 weeks High 0.389 (0.175, 0.777) 1.476 (1.192, 2.175) 0.156
24 weeks High 0.222 (0.058, 0.709) 1.248 (1.060, 2.031) 0.172
1000 grams High −0.065 (−0.074, −0.056) 0.937 (0.929, 0.946) 0.073
500 grams High 0.244 (0.232, 0.257) 1.277 (1.261, 1.293) 0.087

5. Results.

5.1. Data quality and data adjustments. Adjustments γ̂d and standard deviations ϕ̂d as-
sociated with alternative definitions are given in Table 3. For example, adjustments on the
log-scale for 1000 grams definition is −0.065 (−0.074, −0.056), suggesting that the 1000
grams definition data are on average 0.937 (0.929, 0.946) times lower than the standard defi-
nition.

Table 4 summarizes the differences in error standard deviation σj associated with the dif-
ferent source types, ranging from a standard deviation of 0.017 for national administrative
data to 0.239 for population study data. The bias ψj for survey data is estimated at −0.165
(−0.229, −0.100) on the log-transformed scale, suggesting that survey data are on average
0.848 (0.795, 0.905) times lower than the truth.

5.2. Illustrative findings. Estimates for selected countries1 are given in Figure 2, with
final estimates displayed in red and underlying covariate-based estimates (obtained by re-
moving the smoother term δc,t from the model) in green. As highlighted earlier in the paper,
data availability ranges in the selected countries from no data (Afghanistan) to an annual time
series of national administrative data based on the standard definition for Ireland. The BHT-
SRM produces estimates for both countries. Point estimates for Ireland track the observed
SBR from administrative system closely, and credible intervals are close to the uncertainty
associated with each observed SBR. Estimates for Afghanistan are driven by covariates and
the estimates are uncertain due to the absence of data.

Botswana, Malawi, Ukraine, and Uganda are examples of countries with SBR data that
are either subject to bias, substantial error variance, or missing for periods of interest. In
Ukraine, SBR data are available from 2007 to 2017 from administrative systems but recorded
using a 22 week definition. SBR estimates are informed by the adjusted observations and
uncertainty increases in extrapolations past the observation period. The survey data point has

TABLE 4
Source type bias and source type standard deviation

Source type ψ̂j σ̂j

Administrative – 0.017
HMIS – 0.045
Population study – 0.239
Survey −0.165 (−0.229, −0.100) 0.135

1Estimates for all countries see childmortality.org

http://childmortality.org
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a large associated uncertainty and has little influence on the resulting model fit. In Uganda,
the only available data come from HMIS, surveys, and population-based studies. There is
substantial uncertainty associated with survey and population-based study data and resulting
SBR estimates reflect this. There are four different data sources in Botswana and Malawi.
Resulting estimates are more certain in years with administrative or HMIS data, as compared
to population-based, survey, or no data.

The effect of adding the smoother to the regression model on point estimates is most visible
in Ireland where final point estimates differ from the covariate-driven ones. In general, cred-
ible intervals are wider for the model that includes the smoother, as shown in Figure 2. Ex-
ceptions include countries where data are limited except for a short period with low-variance
data, such as Malawi: in such countries the addition of the smoother results in reduced uncer-
tainty in the period with low-variance data (when the estimates are data-driven).

5.3. Covariates. Table 5 summarizes the estimates for regression coefficients, ordered
by absolute point estimates of the coefficients. Given that covariates were standardized, the
coefficients are measured in units of standard deviation of the covariate which are added to the
table for reference. In the analysis by Blencowe et al. (2016), NMR, low birthweight, gross
national income, mean years of female education, and coverage of four antenatal care visits
(log(nmr), log(lbw), log(gni), edu, and anc4 in Table 5) were selected for inclusion in the re-
gression model. Here, we find that these covariates are ranked among the top in terms of their
absolute regression coefficient along with C-section (csec). Comparisons between the model
with horseshoe priors and additional models for sensitive checks are given in Section 5.4.

5.4. Model validation, comparison and sensitivity analyses. Validation results for the
BHTSRM are given in Table 6. For all scenarios, mean residuals are close to zero, and the
mean of the absolute residuals are around 0.1. The approximate leave-one-out validation ex-
ercise suggests that predictive distributions are overdispersed, as compared to the left-out
observations, with the percentages outside of 80% and 90% prediction intervals being lower

TABLE 5
Estimates for regression coefficients under BHTSRM fit. Point estimates of regression coefficients, 95% credible

interval given by the 2.5th and 97.5th percentiles of the posterior, and the standard deviation of the covariate
prior to standardization. Details on covariates are given in Table 3 in the Supplementary Material

Covariates Estimate β̂ 2.5% 97.5% SD (covariate)

log(nmr) 0.414 0.336 0.492 0.999
log(gni) −0.102 −0.212 0.001 1.20
log(lbw) 0.078 0.009 0.141 0.439
edu −0.037 −0.104 0.007 3.41
csec −0.027 −0.082 0.008 11.9
anc4 −0.025 −0.094 0.014 21.8
pab −0.018 −0.050 0.006 11.6
abr −0.017 −0.109 0.023 46.5
urban −0.012 −0.087 0.024 23.1
gini 0.010 −0.017 0.061 8.17
sab −0.010 −0.083 0.026 0.215
anc1 −0.009 −0.067 0.021 14.7
mmr 0.003 −0.057 0.109 288.5
pfpr −0.002 −0.045 0.030 0.118
gdp 0.001 −0.047 0.063 207 · 102

gfr 0.000 −0.057 0.054 0.049
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TABLE 6
Validation results for SBR estimates. “N.test” represent the number of observations in the test set. Validation

exercises “Recent,” “Random,” and “In-sample” represent leaving out recent observations, randomly leaving out
20% of all observations, and approximate leave-one-out validation, respectively. The outcome measures are as

follows: mean of error, mean absolute error, and % of left-out observations below and above their respective 90%
and 80% prediction intervals. Desirable∗ refers to outcomes for models that are unbiased and well calibrated

Validation N.test Mean err. Mean abs. err. below 5% below 10% above 90% above 95%

Desirable∗ – 0 N/A 5% 10% 10% 5%
BHTSRM Recent 112 −0.001 0.091 3.5% 6.2% 2.7% 1.8%
BHTSRM In-sample 1531 −0.002 0.090 1.8% 3.5% 4.2% 1.6%
BHTSRM Random 306 −0.001 0.090 1.8% 3.3% 4.3% 1.8%

than expected. The out-of-sample exercises suggest that the model is reasonably well cali-
brated with slightly less left-out observations falling below their respective predictive inter-
vals than expected.

We compare the performance of the BHTSRM, using sparse priors, to that of a model with
vague priors on the regression coefficient, labeled BHTRM. Regression coefficients estimates
for both the BHTSRM and BHTRM are given in Figure 2 and Table 1 in the Supplementary
Material. Some of the coefficients are closer to zero in the BHTSRM, as compared to in the
BHTRM, due to the shrinkage by the regularized horseshoe prior. We compare predictive
performance between the BHTSRM and the BHTRM in Table 2 in the Supplementary Ma-
terial and find that the mean error and mean absolute error are close to each other. Validation
results by income group do not suggest difference in model performance either. The ELPD
is higher for our reference BHTSRM, as compared to the BHTRM, the 95% CI for the dif-
ference is (−12.6, −0.06) (see Table 7), suggesting improved predictive performance due to
the horseshoe prior.

We also compare the reference model to another BHTSRM that is fitted using an alterna-
tive choice of hyperparameters for the horseshoe prior based on Piironen and Vehtari (2017a).
For standard regression models with yi ∼ N((Xiβ, σ 2), Piironen and Vehtari propose to set
the scale parameter τ0 in the prior for τ as follows:

τ ∼ C+(0, τ0),

τ0 = p0

D − p0

σ√
n
,

TABLE 7
Model comparison based on expected log pointwise predictive density and Pareto K diagnostic values. BHTSRM
is our proposed model, and BHTRM is model with vague prior on covariates. The HS τ0 = 0.001 model stands

for BHTSRM with τ0 = 0.001. Smooth1 and Smooth2 are two models with different settings of smoothers
described in the text. When comparing models, larger ELPD value suggests better model performance. The

percentage of high influential points (Pareto K values > 1) for all models are presented in the “Pareto K diag.”
column, lower outcomes are preferred

ELPD

Model estimate SE 95% CI for difference Pareto K diag.

BHTSRM 1194.5 40.6 reference model 0.5%
HS τ0 = 0.001 1192.7 40.6 (−6.62, 3.07) 0.7%
BHTRM 1188.2 40.7 (−12.59, −0.06) 0.8%
smooth1 1185.9 40.5 (−13.08, −4.15) 0.5%
smooth2 1176.7 40.9 (−11.1, 3.0) 0.3%
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where p0 is the guess of number of relevant predictors, D is the total number of predictors,
σ is the standard deviation of observation log(y), and n is the number of observations. We
cannot directly follow this recommendation because our modeling context differs from the
one where this setting was explored, that is, our setting includes heteroskedasticity of obser-
vations and the regression model is combined with a temporal smoothing term. We obtain
a model fit based on the recommendation as a sensitivity test. Specifically, we obtain the
fit for p0 = 5, D = 16, σ = 0.094 (the median standard deviation across observations), and
n = 1531, corresponding to τ0 = 0.001. Its ELPD is lower than the reference BHTSRM, but
the difference is not significant according to the 95% CI (−6.62, 3.07).

We checked the sensitivity of the choice of the splines in the smoothing term δc,t in equa-
tion (10) by comparing the reference model fit to the fits obtained from two alternative mod-
els. Model specifications were the same for the three models, except for the specification
of the smoothing term. In the reference model a quadratic B-spline model was used, with
knots spaced one year apart and placed at each integer year. In model “smooth1,” a cubic
B-splines model was used while in “smooth2” the knots were spaced two years apart. Table 7
summarizes the differences in ELPD and Pareto K values for different models. There are no
improvements when comparing the alternative smoothers with our reference SBR model.

6. Discussion. We developed a Bayesian hierarchical temporal sparse regression model
(BHTSRM) for estimating SBRs for all countries from 2000 until 2019. Estimating SBRs
is challenging because of data paucity, especially for many LMICs, where most stillbirths
occur, and the substantial uncertainty associated with observations due to reporting issues
and errors associated with the observations. Our BHTSRM extends the approach previously
proposed by Blencowe et al. (2016) to produce estimates that are informed by a covariate
model and available data, accounting for different definitions and uncertainty associated with
the available data. Model validation exercises suggest that the model is reasonably well cali-
brated.

The BHTSRM extends upon previous applications of Bayesian hierarchical temporal re-
gression models through the introduction of sparsity-inducing priors and new statistical ap-
proaches to addresses data quality issues. Sparsity-inducing priors allow for the inclusion of
larger sets of (potentially correlated) candidate covariates into the model. While validation
exercises do not indicate improved performance of the model with the horseshoe prior over
a model with vague priors, improved predictive performance was suggested by higher ELPD
in our application.

To address data quality issues, we developed a statistical procedure for data exclusion
based on comparing observed ratios of SBR to NMR for the population of interest to a refer-
ence distribution of such ratios. This approach improves upon the previously used approach
for data exclusion by defining a predictive distribution for the ratio and a decision rule that
makes explicit the probability of a false exclusion. Second, we developed a new approach
to adjust and estimate additional uncertainty associated with observations using a different
definition of stillbirths. In the model fitting we used a data model that accounts for bias and
varying sources of random error associated with the observations.

While our approach to estimating the SBR improves upon existing approaches, there are
limitations related to the model and data availability. Limited data availability restricted the
analyses we are able to carry out and result in stricter modeling assumptions. For example,
we excluded data based on observed SBR to NMR ratios. In this analysis, we combined data
across settings when constructing a predictive distribution for the expected ratio and chose
5% as the threshold for data exclusion. We acknowledge that the choice of a higher (or lower)
threshold would have resulted in the exclusion of more (or less) data. Additional data related
to the quality of reporting would allow for more detailed analyses and may allow for avoiding
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having to set a threshold. Relative differences in SBRs associated with the use of different
definitions, that is, gestational age, may vary across settings. Data limitations resulted in the
use of a simple dichotomy of high income and low income countries to capture this differ-
ence. With additional data this relationship can be studied in more detail. Lastly, although the
horseshoe prior allows for the inclusion of a larger set of candidate covariates and shrinkage
toward zero of irrelevant covariates, it is not a variable selection method because it does not
shrink all posterior samples to zero.

The BHTSRM as described in this paper is used by the UN IGME to generate estimates for
the SBR globally (UN Inter-agency Group for Child Mortality Estimation (2020), Hug et al.
(2021)). While the modeling approach allows for the construction of estimates for all coun-
tries, we find that uncertainty associated with the estimates is substantial in many settings,
including countries with high SBRs. This highlights the need for additional data collection to
produce more precise information for monitoring and program planning, especially in high-
burden settings.
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