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Abstract 
Background 
Vaccines are an important tool in global disease burden reduction, with vaccine dose 

amount (hereafter ‘dose’) being a key decision during vaccine development. Vaccine 

dose selection is often conducted through empirical comparison of a small number of 

potential doses, which is likely to fail to find the optimal dose if none of the doses are 

optimal. Mathematical modelling has been suggested as a method for identifying 

optimal vaccine dose and has been historically important in determining optimal dose 

of, and informing clinical trials for, drug development. Mathematical modelling is 

however not commonly used in either the design of vaccine dose ranging trials nor in 

the selection of optimal vaccine dose based on the resulting clinical trial data. 

To address this gap, recently ‘Immunostimulation/Immunodynamic’ (IS/ID) modelling 

has been proposed to encompass quantitative modelling for vaccine dose 

optimisation. Initial IS/ID work has been used to find the maximally immunogenic 

dose for tuberculosis and influenza vaccines, and has shown that, contrary to 

widespread belief, vaccine dose-efficacy response may be peaking rather than 

saturating. However, as the field is new, there are many gaps including: uncertainty 

in the prevalence of such peaking dose-response curve shape, primarily only 

efficacy-maximisation has been considered, the impact of incorrectly assuming a 

peaking/saturating dose response has not been assessed, and mathematical 

modelling has been performed retrospectively of clinical trials rather than informing 

them during the trial itself (e.g. in an adaptive trial design). Further, there has also 

been little research into multi-dimensional vaccine dose-optimisation, where there is 

a need to choose prime doses, boost doses, adjuvant doses, and/or time between 

doses, which may complicate the dose-response relationship through potential for 

synergism/antagonism.  
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My aim for this thesis was to explore and expand the field of IS/ID and mathematical 

modelling for vaccine dose optimisation, addressing the gaps described above. My 

objectives were:  

1. To gather dose-response data through a systematic review of dose-ranging 

studies for a specific class of vaccine (adenoviral vector), and to find the 

distribution of the number of doses typically investigated in these studies. 

2. Using dose-response data from objective one and mathematical models, 

determine the prevalence of predicted saturating versus peaking dose-

response curves. 

3. To extend IS/ID beyond efficacy-maximisation into multi-factor dose 

optimisation by proposing alternative utility functions and investigate the 

impact of the choice of utility function on the selection of ‘optimal’ dose. 

4. To evaluate the potential impact of correctly or incorrectly assuming a 

peaking/saturating dose-efficacy response, along with the impact of adaptive 

trial design, on optimal vaccine dose selection. 

5. To evaluate the use of a non-parametric dose-response model for the 

purpose of optimal vaccine dose selection in the adaptive trial design setting, 

with emphasis on multi-dimensional vaccine dose-optimisation.  

Methods 
For objective one, a class of vaccine (adenoviral vector) was selected, and dose-

response data were extracted from a systematic review of single-dose dose-ranging 

studies. I conducted a descriptive analysis of these studies to investigate the number 

of doses that were typically investigated. 

For objective two, representative peaking and saturating dose-response models 

were calibrated to the data from objective one. I assessed which of the two 

mathematical models best described the data through the use of Akaike Information 

Criterion. I determined the prevalence of dose-response data which was peaking or 

saturating and investigated potential covariates that may impact dose-response 

shape.  
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For objective three, I calibrated dose-response models to efficacy and toxicity data 

from a phase I dose-ranging study of a recombinant adenovirus type-5 COVID-19 

single-dose vaccine (Ad5-nCoV). Using these mathematical models, I predicted 

optimal dose for three potential dose selection criteria, namely i) achieving herd 

immunity, ii) balancing efficacy and toxicity, and iii) balancing efficacy, toxicity, and 

cost. 

For objective four, I used a simulation-based study to assess the impacts of different 

assumed efficacy models and trial dose selection methods on optimal dose selection 

and ethical trial design. Comparison was done using simulated clinical trials, using a 

utility function that involved both efficacy and ordinal toxicity and both peaking and 

saturating dose-efficacy curves across 14 dose-optimisation scenarios. 

For objective five, I conducted a second simulation-based study to assess a novel 

non-parametric dose-response model, the ‘Continuously Correlated Beta Process’ 

model, in identifying optimal dose. This was compared to other mathematical model-

based and mathematical model-free methods of vaccine dose optimisation. The 

simulation study included both single-dose and multi-dimensional dose-optimisation 

scenarios.  

Results 
For objective one, data from 35 studies were extracted and I found that adenoviral 

vector vaccine dose ranging trials were designed around selecting between a small 

number of doses (94% of studies investigated < six doses).  

For objective two, I found that the data from the available dose-ranging trials were 

often insufficient to provide evidence for either a peaking or saturating dose-efficacy 

curve, with the peaking model best describing 22% of the data, the saturating model 

best describing 4.7% of the data, and there being no significant difference for 73.3% 

of the data. Further, the species being vaccinated and the response type of interest 

may be more predictive of dose-response curve shape than the adenoviral serotype 

or route of administration of a vaccine. 



 
6 
 

For objective three, I found that vaccine optimal dose depends on the utility function 

that is being maximised, with the optimal doses for the Ad5-nCoV vaccine being i) 1.3 

x 1011, ii) 1.5 x 1011 or iii) 1.1 x 1011 viral particles.  

For objective four, I showed that assuming a peaking dose-efficacy curve or using 

weighted model averaging was typically preferable to assuming a saturating dose-

efficacy curve for the purpose of selecting optimal dose. Adaptive trial design may 

not typically improve dose selection relative to a ‘sufficiently explorative’ trial design 

but may lead to trial participants receiving more optimal doses. 

For objective five, I found that the non-parametric model was able to optimise dose 

well despite using a simpler set of assumptions than the parametric models, in 

particular for multi-dimensional dose-optimisation problems. Using mathematical 

model-based and/or adaptive design-based approaches of vaccine dose optimisation 

consistently selected a more optimal dose using less trial participants than using 

neither mathematical modelling nor adaptive design. 

Discussion 

In this work I explored and expanded the field of IS/ID and mathematical modelling 

for vaccine dose optimisation. 

I collated and summarised adenoviral vector vaccine data that can now be used for 

quantitative adenoviral vectored vaccine dose optimisation analysis. There is 

evidence from these dose-ranging trial data to support the hypothesis that for some 

adenoviral vector vaccines the dose-efficacy response was peaking, so vaccine 

adenoviral vector developers should not assume that increasing dose always leads 

to more efficacious vaccine response. 

I have shown that the ‘optimal dose’ predicted by modelling is likely to depend on 

which utility function is used to define ‘optimal’, so vaccine developers should have a 

clear definition of optimal dose prior to conducting clinical trials. I have also shown 

that adaptive trial design informed by mathematical modelling can be used both to 
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improve vaccine dose selection and benefit clinical trial participants, suggesting that 

vaccine developers could consider adaptive trial design.  

Additionally, I showed that using a weighted average of peaking and saturating 

models to describe the dose-efficacy response may be beneficial, suggesting that 

vaccine developers should consider using a weighted average of peaking and 

saturating models to describe dose-efficacy response. However, my results also 

suggested that a non-parametric model was able to optimise dose at least well as 

using parametric models, despite using a simpler set of assumptions, in particular for 

multi-dimensional dose-optimisation problems, suggesting that vaccine developers 

could consider using non-parametric models as an alternative. 

Finally, my results showed that using mathematical modelling and/or adaptive trial 

design reduced the number of trial participants required to find an optimal vaccine 

dose when compared to using neither modelling nor adaptive design, and so vaccine 

developers should consider using modelling and/or adaptive design in vaccine dose-

finding trials to increase efficiency.  

I believe there is merit to continued development and validation of IS/ID methods in 

order to provide tools for identifying optimal vaccine dose, ultimately saving lives.  
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Chapter 1. Background and thesis overview  
Immunostimulation/Immunodynamic (IS/ID) modelling is a new field that aims to 

allow vaccine developers to better select optimal vaccine doses through the 

utilisation of mathematical modelling. Towards this aim, IS/ID modellers must 

consider not only mathematical modelling techniques, but also how these modelling 

techniques can best be applied to find optimal vaccine dose, and indeed what is 

meant by ‘optimal’ vaccine dose. 

In this chapter, I will describe vaccines and vaccination, along with the importance of 

selecting optimal vaccine doses. I will then provide a narrative review of 

mathematical modelling ideas that may be relevant to vaccine dose selection, 

drawing inspiration from the field of model-based drug development. This will be 

followed by the thesis rationale, thesis aims and objectives, and then the thesis 

overview. Not all of the topics of this chapter are explicitly investigated within the 

research papers of this work. Similarly, this does not represent an exhaustive review 

of all possible considerations in modelling dose-response or dose-optimisation. 

However, these topics were included to provide a holistic overview of the concepts 

that are relevant to mathematical dose-response modelling and vaccine dose 

selection. In this chapter I hope to provide a background that highlights the research 

gaps I aimed to fill, the wealth of literature that exists outside of the field of IS/ID 

modelling, and the relevance of these gaps within the continued development of the 

field of IS/ID modelling. 

Vaccination and difficulty in finding optimal vaccine dose 
In this section, I will discuss vaccination and difficulty in finding optimal vaccine dose. 

I will discuss the history and present state of vaccination globally, then highlight the 

vaccine development pathway. In particular, I will focus on the selection of vaccine 

dose as part of this pathway, including a discussion of factors that developers may 

need to consider when selecting optimal vaccine dose. These include: prime/boost 

administration vaccines, antigen/adjuvant administration vaccines, immunological 

surrogates and correlates of protection, and vaccine toxicological profile. 
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A brief history of vaccination 

Vaccination is an important and highly relevant tool in global disease control and 

eradication. Whilst variolation was reportedly practised prior, the work of Edward 

Jenner in 1796 is often considered the foundation of modern vaccination[1]. This 

early work involved gathering pus from the wounds of individuals recovering from 

cowpox and then administering this matter subcutaneously to healthy individuals. 

The individuals that were inoculated in this way were bestowed a degree of 

protection against fatal smallpox infection. 

This early work has been expanded upon and has led to vaccination becoming a 

widespread public health measure globally, with the United Kingdom’s 

recommended childhood immunisation schedule including vaccination against eight 

diseases prior to the first birthday [2]. There now exist many vaccine platforms that 

have been investigated or seen clinical use [3–5]. Classically these platforms used 

either inactivated or attenuated whole virus or bacteria, or protein/virus-like subunits 

that are co-administered with an adjuvant. Next-generation vaccine development has 

also considered viral vector and nucleic acid platform vaccines, which are hoped to 

better induce cellular immunity in vaccinated individuals[6]. Vaccines can also be 

used in both prophylactic and therapeutic settings, which respectively aim to prevent 

infection or disease in presently healthy individuals and alleviate symptoms in 

presently diseased individuals [5]. 

Such implementation of vaccination programmes has led to the eradication or near 

eradication of smallpox, rinderpest, and polio in the modern world [7]. Despite this, 

due to public hesitance around vaccines and vaccination and the burden of care, 

there is still a great need to ensure that vaccines are developed in such a way that 

the vaccines that are selected for wide-scale implementation are not only effective in 

offering protection but also safe and affordable [8]. 

Vaccine development and dosing 

Vaccine development 
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The vaccine development pathway is the standardised route for vaccines to go from 

initial research to clinical use. This can be divided into the exploratory, pre-clinical, 

clinical, regulatory, manufacturing, and quality control stages, after which the vaccine 

can be marketed/distributed [9–12]. The clinical stage is divided into phases, phase 

I, phase II and phase III, though phase II is often divided into phase IIa and IIb and 

sometimes clinical trials are hybrids of these phases [figure 1]. Pre-clinical trials are 

often animal models, where efficacy and safety in some animal species such as mice 

or non-human primates is assumed to be indicative that the vaccine may be safe and 

effective in humans. These may also inform the doses that will be used in phase I 

trials. Phase I-III trials are conducted on human participants and increase in size as 

the vaccine development pathway is furthered, from n=20-80 in phase I trials [13] to 

potentially n>1000 in phase III trials [14]. 

Figure 1.1. Overview of the stages of the clinical pathway for vaccine development. 
Market/distribution and phase IV stages are separated as these may not always be considered as 
part of the vaccine development pathway. 

Phase I trials aim to determine whether a vaccine can cause immunogenicity and is 

safe at some dose level. These trials may be used to make some decisions 

regarding dose and mode/schedule of administration. Phase II trials are expected to 

have sufficient statistical power to provide clinically meaningful estimates of the 

immunogenicity and toxicity. Phase II may also be used to choose the dose that will 

be continued on into phase III trials and potentially clinical use. Phase III vaccine 



 
28 
 

trials aim to show that a vaccine at the chosen dose is safe, immunogenic, and 

protective at a population level. Phase IV trials are also sometimes conducted after a 

vaccine has already been made available to market and are either used to 

investigate vaccine effectiveness in special populations or to evaluate the vaccine for 

side-effects that were not observed in phase I-III trials1 [15]. Preclinical and phase I-II 

trials are typically the phases that aim to determine a dose that is effective and safe 

and will be of most relevance to the scope of this thesis. 

Whilst these steps are important to ensure that undue resources are not wasted on 

investigating vaccines that are unlikely to be suitable for wide scale implementations, 

this development pathway leads to vaccine development being expensive and time 

consuming, often costing over $300 million and taking over 10 years to develop a 

vaccine from preclinical development to clinical use [16,17]. Whilst there has been 

great effort made to accelerate vaccine development in response to the COVID-19 

global health crisis, there is still much work needed to ensure safe and effective 

vaccination is achieved at shorter time scales [18]. 

Dose selection in clinical vaccine development 

One of the key questions in preclinical and phase I-II clinical trials is the amount of 

vaccine that should be administered. This can be measured in volume, viral 

particles, infectious units, or various other units, but will be called ‘dose’ in this work. 

Many considerations exist regarding what is meant by optimal vaccine dose, and I 

will discuss some of these throughout this work. However, there are in brief three 

factors that I would consider to be most important: efficacy, safety/toxicity, and 

cost/dose-sparing.  

Firstly, there is of course the need for the vaccine to be dosed in such a way that it is 

efficacious. This may mean protection in the case of prophylactic vaccines, or it may 

mean that the vaccine is capable of treating some disease in the case of therapeutic 

 

1  Phase IV trials to determine vaccine efficacy or toxicology in special populations may be relevant for the future 
development of IS/ID modelling to refine optimal vaccine dose for older or immunocompromised populations but 
will not be discussed in this work. 
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vaccines. There would likely be no reason to administer a vaccine that is not 

efficacious for the purpose of preventing or treating some disease.  

Secondly, vaccine dose must be selected such that the vaccine is ‘safe’. This is to 

say that the risk of adverse events is justified by the vaccine's effectiveness or that 

the vaccine induces toxicity below some regulatory defined threshold [19]. Given that 

vaccines may be prophylactic, it is often preferable that only a small proportion of 

vaccinated individuals should experience adverse events that prohibit their daily life. 

Toxicity in vaccine dose-ranging trials has historically been low for this reason [20], 

as developers may be unlikely to test doses with a high risk of high-grade toxicity. 

Finally, vaccine dose must be selected with dose sparing in mind. This may be to 

reduce the cost of a population wide vaccine rollout, or to allow for a wider vaccine 

rollout in the case that there be limited capacity for vaccine manufacture. In 

particular, for the 17DD yellow fever vaccine it was found that a tenfold in dose 

decrease relative to the approved dose was similarly protective and would have 

allowed to a greater number of vaccinations and saved lives if that reduced dose had 

been used [21]. These and a myriad of other factors may be relevant in vaccine dose 

selection. 

The actual selection of vaccine dose in preclinical and phase I-II is typically 

empirical. A number of different dosing groups are suggested, trial individuals are 

divided among these groups, and these individuals receive the dose assigned to 

their group. Various immunological readouts and incidence of adverse events are 

recorded for each group. Statistical analysis for significant differences between 

dosing groups is conducted, and then clinicians use the resulting data and statistical 

analysis to select which dosing group(s) had the response that they believe is most 

likely to be optimal. Optimal may be defined in this case as the dose that 

maximises/minimises the observed immunological/toxicological profile, or as any 

dose for which the lower confidence bound for the posterior prediction of efficacy is 

above some previously defined threshold [22]. This dose or doses are then carried 

forward for investigation further down the vaccine development pathway, or 

development of the vaccine may be discontinued if none of the doses are considered 

to have a favourable efficacy and toxicity profile.  
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It has been suggested that this empirical dose selection methods may have 

historically caused suboptimal doses to be selected for clinical use, for example the 

17DD yellow fever vaccine mentioned above. It has also been suggested that this 

empirical procedure (sometimes called ‘data-analytic’ or ‘hypothesis testing’ 

approaches) requires more individuals to identify optimal dose relative to modern 

dose-selection methods that have been developed to select optimal dose in drug 

development [23–25].  

Prime and boost dosing 

When conducting pre-clinical and clinical trials and selecting optimal dose for a 

vaccine, developers may need to consider vaccines that are administered using the 

‘prime-boost’ paradigm. Whereas the ‘single-administration’ paradigm involves giving 

a single dose of a vaccine, the ‘prime-boost’ paradigm involves giving two or more 

vaccine doses, with the first called the ‘prime’ and latter doses being called ‘boost’ 

doses[26,27]. These may be administrations of the same vaccine, called 

‘homologous’ prime-boosting, or of different vaccines, called ‘heterologous’ prime 

boosting. For both homologous and heterologous prime-boost vaccines, vaccine 

developers must choose a dose for each administration.  

There has been discussion about how best to dose vaccines using a prime-boost 

paradigm. Clearly, a dose for each prime/boost must be selected, but this may not 

be the dose that would be safe/effective if that prime/boost dose were given as a 

single administration. It has been suggested that a decreased ‘prime’ dose may 

allow for a greater immunological response following the boost dose2, meaning that 

these dose choices cannot be made independently of each other. Further, there is 

also the question of the time between administrations. It is possible that increasing or 

decreasing the time between administrations may lead to changes in the 

immunogenicity/toxicity that is observed [28,29]. 

 

2  One theorised mechanism behind this effect is that the smaller prime dose reduces antigen availability in 
germinal centres, which in turn means that only naive immune cells with high affinity to the antigen would be 
activated. When boosted, these high affinity activated immune cells proliferate to a high degree, resulting in a 
large cohort of high affinity immune cells and improved protective efficacy. 
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Vaccine and adjuvant dosing 

As noted above, there are a number of vaccine platforms that have been 

investigated and seen clinical use. One of the classical platforms are 

‘antigen/adjuvant’ vaccines. Here the vaccine consists of some antigenic material 

(typically a protein or virus-like subunit) and an adjuvant.  

The antigen contains the genetic material that allows the adaptive immune system to 

develop specific responses to the pathogen of interest but is not typically capable of 

stimulating an immune response [30]. An adjuvant is therefore given at the same 

time as the antigen, functioning as the necessary delivery or immunostimulation 

molecules to allow shuttling of antigen to the primary lymphatic organs and hence 

initiate the proliferation of specific adaptive immune response. Historical adjuvants 

include aluminium salts, oil-water emulsions, and lipid vesicles adjuvants. Therefore, 

like for prime-boost paradigm vaccines, there is the need to choose multiple different 

doses, one each for adjuvant and antigen. These are co-administered, and so the 

time between administrations does not need to be chosen. Both antigen and 

adjuvant dose may be important for ensuring that a vaccine is both safe and effective 

[31]. 

Surrogates and correlates of protection in vaccine development 

I noted above that a chosen vaccine dose should be effective. In the case of 

therapeutic vaccines, this may be obviously measurable as reduction in symptoms or 

adverse disease outcomes. However, in the case of prophylactic vaccines, 

effectiveness may be defined by prevention of future infection, symptoms, 

hospitalisation and/or death in individuals who are presently healthy. In order to 

determine whether prophylactic vaccines are effective, typically either challenge 

studies or large phase III population level trials must be conducted [32]. Challenge 

studies involve exposing individuals to potential infection, which may not be ethically 

justifiable [33], and large population level trials are expensive and time consuming 

[34]. Therefore, in order to select dose it is common to use correlates or surrogates 

of protection [35].  
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A correlate of protection is some immunological response that can be measured 

after vaccine administration, and that it is assumed an increase in that response 

reflects an increase in the protection that the vaccine offers. It has previously been 

suggested that it may be possible to directly predict probability of protection using 

these immunological correlates of protection, however data to allow for such 

prediction typically requires challenge or population studies [36], which I have 

previously stated may not be feasible. Instead, sometimes a ‘surrogate of protection’ 

may be used. This is some threshold for which, if a vaccinated individual had an 

immune response in excess of this threshold, they would be considered protected, 

and otherwise they would be considered unprotected. An example surrogate of 

protection is used in considering influenza vaccines, with individuals with a post-

vaccination anti-HA antibody titre greater than 40 being considered ‘seroprotected’ 

[37]. The dose which best maximises these correlates/surrogates of protection may 

be predicted to be considered to be most effective/protective.  

There have been conflicting results regarding whether common correlates and 

surrogates of protection are effective targets when attempting to maximise vaccine 

protection. For example, the works of Khoury [38] and Gilbert [39] found that fold-

increase in antibody titre was effective as both a correlate and surrogate of vaccine 

efficacy/protection. Later work by Gilbert [40] however claimed that fold increase in 

antibody titre may not be a ‘mechanistic’ correlate of protection, which is to say that 

an increased antibody titre was not causal of greater protection, and that there may 

be some unmeasured variable that causes both an increase in antibody titre and 

increase in protection. Regardless of this, correlates and surrogates of protection are 

still commonly used is practice when selecting vaccine dose.  

Toxicity and vaccine safety 

It is possible that a vaccinated individual may experience adverse events that they 

may not have experienced if they had not been vaccinated. This is referred to as 

vaccine associated toxicity or just ‘toxicity’, and vaccine safety involves reducing the 
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risk of vaccine toxicity3. Typically, vaccine related adverse events are acute and non-

life threatening, requiring at most mild pain-relief and disruption of daily activity that 

lasts less than a week [41]. Whilst serious toxicity has been associated with some 

vaccines [42], these are typically rare and may be unlikely to occur during smaller 

vaccine clinical trials. A serious adverse event that involves hospitalisation or death 

during a vaccine clinical trial may require the stopping or pausing of that clinical trial 

until evidence to regarding whether this was associated with the vaccination can be 

determined [43]. When serious adverse events have previously occurred during a 

clinical vaccine trial, it has often been found that the serious adverse event was not 

related to the vaccine [20]. Regardless of the minimal risk of serious vaccine toxicity, 

the reduction of vaccine toxicity is still considered important, both to meet regulatory 

requirements set in place by governing bodies or to reduce vaccine hesitancy and 

increase vaccine uptake. Therefore, it is important to choose a dose with vaccine 

safety in mind. 

A narrative review of mathematical dose decision making 
in vaccines and drugs 
In the previous section we highlighted that vaccine dose is a crucial decision in 

accelerating vaccine development whilst ensuring that effective, safe, and affordable 

dosing is achieved. It may be that the empirical method of dose selection that is 

presently used for vaccine dose selection could be improved. In this section we 

discuss other approaches that could be used to select optimal vaccine dose, with a 

focus on introducing mathematical modelling techniques used in the drug 

development process.  

Applying techniques from drug dose decision making to vaccines 

Mathematical model-based drug development (MBDD) and 

pharmacokinetic/pharmacodynamic modelling (PK/PD) have been well established 

for making decisions relating to drug dosing. There exists a vast literature and a 

multitude of methodologies that have previously been suggested, evaluated, and 

 

3 Risk may be a factor of probability and/or severity of these adverse events. 
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used to accelerate and improve the decisions processes in drug development 

[24,44–47]. Recently the field of vaccine IS/ID has been suggested [23], which aims 

to be an equivalent to MBDD and PK/PD methodologies in the vaccine development 

setting through adapting techniques already in the MBDD and PK/PD literature. 

However, whilst there have been a number of works that explore these 

methodologies [48–52], IS/ID is still novel and not commonly used as part of 

practical vaccine development. 

Whilst MBDD and PK/PD have seen effective practical use in drug dose decision 

making, these techniques may need to be adapted for the vaccine setting. For 

example, many PK/PD mathematical models are derived through the assumption 

that drug kinetics and response follow ‘mass action laws’ [53], which may not be a 

reasonable assumption for vaccines. Additionally, in drugs it is typically reasonable 

to assume that an increase in dose leads to either an increased or equivalent 

efficacy and toxicity, the so-called ‘saturating’ dose-response curve [54]. This may 

not be reasonable in vaccines. Recent work showed that for both the TB vaccine 

H56+IC31 and IAV/HPIV influenza inoculation the relationship between dose and 

immunogenicity/protection was ‘peaking’, meaning there was some dose that 

maximised immunogenicity/protection and that increasing the dose beyond this value 

only decreased effectiveness [49,50]. Thus, many mathematical models and 

techniques that have been effective in PK/PD may not be reasonable in vaccine 

development. 

Despite this, the potential for accelerated, quantitatively informed vaccine 

development or improvements in vaccine efficacy, safety and affordability means 

that IS/ID and mathematical modelling for vaccine dose selection warrant further 

investigation. The remainder of this section will give description of prior techniques 

that have been used in drug and vaccine dose selection, drawing from drug literature 

where there has been little previous investigation in vaccines.  

Mathematical models 

In this work ‘mathematical models’ refer to equations or systems of equations that 

can be used to describe the relationship between dose and a response variable of 
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interest. Typically, this will be either a correlate of protection, probability of a 

surrogate of protection, probability of an adverse event occurring, or cost. These are 

typically functions of dose with some parameters that are either known and fixed to a 

value using pre-existing literature or must be estimated using clinical trial data. 

Broadly speaking there are two types of mathematical model that are used in MBDD 

and IS/ID modelling; mechanistic and statistical [55]. These are also sometimes 

referred to respectively as ‘compartmental’ and ‘noncompartmental’ models in 

MBDD. Statistical models have also been called ‘empirical models’, but this name is 

not used in this thesis due to potential confusion with traditional empirical vaccine 

dose selection.  

Statistical versus mechanistic models 

Mechanistic models leverage knowledge of the underlying biology to describe 

vaccine dose-response. Such models have been used for modelling of both vaccine 

[49,50,56] and drug [57–59] dose-response and are sometimes called ‘Quantitative 

Systems Pharmacology’ models. These typically are composed of either systems of 

nonlinear differential equations [49] or use agent-based models [60–62], and these 

models are typically used to describe longitudinal data. These models may benefit 

from leveraging biological knowledge to allow extrapolation [63], and may benefit 

from values for some model parameters already being known from prior studies. 

These two factors combine to make mechanistic modelling very useful for including 

sub-population analysis [64–66]. The downside of mechanistic modelling is that it 

requires knowledge of the underlying biological processes that determine dose-

response. It may not always be the case that such knowledge is available, for 

example many different mechanistic models of CD8+ T Cell proliferation have been 

suggested [67–70], and which may lead to different dose decisions depending on 

which model is assumed to be true. Additionally, underlying biological processes 

may vary for different immunological responses (CD4+ T cell, CD8+ T cell, B Cell, or 

antibodies as examples), or for different vaccine platforms (MRNA, Adjuvant, Viral 

Vector). This may complicate the modelling process. An additional weakness of 

these models is that they require large amounts of data at multiple time points in 
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order to allow for parameter estimation. For example, Tam et al. found that for a 

relatively simple4 mechanistic model of rifampicin PK in mice, data would have to be 

collected at eight time points for dosing groups defined by 11 different dosing 

strategies in order to estimate the model parameters with sufficient accuracy [71]. 

The other type of modelling that has commonly been used is statistical modelling. 

Here modellers do not aim to explicitly describe the underlying biology, and instead a 

simpler set of assumptions about the general shape of the dose-response curve are 

used. These statistical models typically have fewer parameters than are used for 

mechanistic models, and thus may require less data to estimate model parameters 

than mechanistic models and also have less risk of overfitting to small data sets [72]. 

As these models only assume a certain shape and make minimal assumptions about 

the underlying biology, they are often able to be applied quite generally across 

different classes of drugs. However, extrapolation may be less valid than it would be 

if an appropriate mechanistic model was used [55,73,74] as these models do not 

consider the casual immunological pathways behind vaccine response. Hence, they 

are not limited to predicting biologically feasible dose-response curves, therefore 

extrapolated predictions are neither justified by data nor biological theory. Statistical 

models are less commonly used for describing longitudinal data but are commonly 

used in MBDD for describing the relationship between dose and toxicity.  

Recently a third class of models has been suggested as potentially useful for 

selecting optimal dose. These are called ‘non-parametric’ or ‘curve-free’ models [75–

78]. Here neither assumptions regarding underlying biology nor dose-response curve 

shape are made. Instead, simpler assumptions are made, such as that a small 

change in dose should result in a small change in response. Non-parametric 

modelling has been suggested as beneficial for model dose-response when a 

saturating dose-response curve cannot be assumed, as may be the case for 

vaccines, and so these may merit investigation for potential use in the future 

development of IS/ID modelling.  

 

4 A two-compartmental model with 9 parameters describing clearance and absorption. 
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For all types of models, these can be ‘fit’ or ‘calibrated’ to observed clinical data from 

dose-ranging trials, which allows modellers to predict dose-response mathematically. 

In chapters 2 through 6 I considered only statistical and non-parametric models, as 

these may be more widely applicable in cases where the underlying 

immunodynamics are less well known and may require less data. For simplicity, 

when I refer to statistical modelling, I also include non-parametric modelling unless 

otherwise specified. A description of many potential statistical dose-response models 

is given in Appendix A.A. 

Modelling dose-efficacy 

Vaccines must be effective at protection in the case of prophylactic vaccines or 

treatment in the case of therapeutic vaccines, and that this efficacy may be defined 

by many clinical endpoints. Reduction in transmission, symptoms, hospitalisation, 

and death are all clinical endpoints that may be of interest. Broadly we may consider 

these to be binary outcomes, either a vaccine reduces the risk of transmission, 

symptoms, hospitalisation, or death, or it does not. However, as stated before, 

clinical trials measuring efficacy directly may not be possible. Instead, we can use 

surrogates or correlates of protection. In this section I consider how dose-efficacy 

may be modelled either directly through surrogates of protections or indirectly 

through a combination of dose-immunogenicity and immunogenicity-efficacy models. 

Modelling of vaccine dose-efficacy 

If a surrogate of protection is available, then it is possible to approximate the 

modelling of dose-efficacy by modelling the relationship between dose and the 

proportion of individuals for which the immunological surrogate of protection is 

achieved. Such a binary surrogate of protection may involve humoral immune 

responses, cellular immune responses, or some combination of immune responses. 

Historically, modelling of dose-efficacy has been conducted using statistical 

modelling techniques in MBDD, where efficacy is often directly measurable [79]. 

Statistical models such as the sigmoid saturating function have commonly been used 

to model dose-efficacy in drugs [80].  
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Modelling of vaccine dose-immunogenicity 

If a surrogate of protection is not available, then instead dose-immunogenicity may 

be modelled to predict what the expected value for a correlate of protection would be 

for a given dose. Either statistical or mechanistic models can be used for this 

purpose. For mechanistic modelling of dose-immunogenicity, we can see examples 

in the works of Handel et al., Moore et al., Mayer et al., Zarnitsyna et al. and 

Farhang-Sardroodi et al. [49,67–69,81]. Handel used a mechanistic model to 

describe the impact of dose on generation of humoral immune response IAV/HPIV 

influenza inoculation. Moore et al., Mayer et al., and Zarnitsyna al. considered 

mechanistic models of CD8+ T Cell response to yellow fever vaccine, listeria 

monocytogene infection and influenza A infection respectively, though only Mayer et 

al. discuss using their model to predict optimal vaccine dose. Farhang-Sardroodi 

considered mechanistic models of cellular, humoral and cytokine responses to the 

COVID-19 ChAdOx1-S vaccine, though they do not explicitly discuss the relationship 

between dose and immunogenicity. Rhodes used statistical modelling techniques to 

describe the dose-immunogenicity of IFN-y T cells in mice when administered the 

H56+IC31 tuberculosis vaccine [50].  

Modelling of immunogenicity-efficacy 

Modelling of vaccine dose-immunogenicity on its own may be reasonable if the 

definition of optimal dose is defined strictly as the dose that maximises some 

immunological correlate of protection. However, it may be possible to also model the 

relationship between immunogenicity and efficacy. This has been suggested by 

Dudášová et al., who used a statistical modelling approach to describe the 

relationship between specific antibody titre and protection from influenza, dengue 

fever, and herpes zoster, and the implications that this could have for vaccine 

decisions making [36]. Again, building such a model requires data from challenge or 

population level trials that gather both immunological and clinical outcome data, 

which may not be practical or ethical, as was discussed in the section ‘Correlates 

and surrogates of protection’. 

Such models may be beneficial as they can be used to predict the potential clinical 

outcome benefit that results from some dose-dependent increase in immunogenic 
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response. If both dose-immunogenicity and immunogenicity-efficacy models are 

available, then these could be combined to form a two-stage dose-efficacy model. 

This two-stage modelling approach was used by Handel et al.[49], but due to the 

aforementioned difficulty in parameterising immunogenicity-efficacy models they 

were forced to choose an arbitrary parameterisation for that model. The work of 

Kumbhari et al. [82] also combined both dose-immunogenicity and immunogenicity-

efficacy modelling to predict a dose-efficacy curve using a complex mechanistic 

model of peptides, dendritic cells, Helper T cells and Cytotoxic T cells. This was 

however for a therapeutic cancer vaccine, so an efficacy outcome ‘percentage of 

cancer cells killed’ could be measured directly. As stated, this may not be feasible for 

prophylactic vaccines.  

Modelling dose-toxicity 

Modelling of dose-toxicity has been relevant in MBDD, where statistical models of 

dose-toxicity are commonly used. Toxicity is typically defined by either binary or 

ordinal outcome variables.  

Binary toxicity response 

A common method of describing toxicity in vaccines of drugs and then modelling the 

dose-toxicity relationship is to consider toxicity as a binary outcome measure. 

Different toxicity outcomes may be of interest, for example pain, nausea, or 

inflammation, but toxicity is often considered to have occurred for a vaccine recipient 

if any of these potential outcomes exceeded some level. If any of these toxicity 

outcomes exceeds some thresholds set by clinicians or regulators, then that 

individual can be said to have experienced a toxicity response. It is typically 

assumed that the vaccine dose-toxicity curve is saturating, and that therefore a 

sigmoid saturating model is often appropriate [83]. Mandreker et al. [79] discussed 

application of a trivariate model of binary outcomes for both efficacy and toxicity with 

potential for application for both vaccines and drug dose selection. 

Ordinal toxicity response 

Ordinal grading systems of toxicity have been suggested for use in both drugs and 

vaccines. These ordinal grading systems typically classify toxicity outcomes in 
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increasing order of severity. For example, these gradings might be; None, Mild, 

Moderate, Severe, Serious [84]. A numeric rating of toxicity may also be given, with 

grades 0 through 4 corresponding respectively to grades None through serious. 

Grade 5 (death) may also be considered, though this would likely be an 

unacceptable vaccine outcome. For each of these gradings, different prevalence 

may be acceptable. Models have been suggested for this for the purpose of 

selecting optimal drug dose when attempting to minimise ordinal measures of toxicity 

[85]. Two such models are the probit model and proportional odds model.  

Maximum tolerated dose 

In cases where dose-efficacy can typically be assumed to be saturating, a common 

technique in MBDD is to use the so-called ‘Maximum tolerated dose’ [86]. Here, a 

threshold on the prevalence of some adverse event is set, then the purpose of dose-

finding studies is to find the maximum dose for which the prevalence of toxicity is 

less than this threshold [87]. This is the maximum tolerated dose (MTD) and has 

typically been suggested as the dose that should then be continued onto further 

research and clinical use. It has been shown repeatedly through simulation studies 

that using statistical models of dose-toxicity can reduce the number of trial 

participants that are required to find the MTD [88]. The use of an MTD may not be 

appropriate when dose-efficacy cannot be assumed to be saturating, or if efficacy 

can be assumed to have saturated for a dose that is less than the maximally 

tolerated dose. In that case, a multi-objective optimisation approach is preferred 

[89,90], aiming to find the dose that best balances efficacy against toxicity (in some 

literature called the ‘optimum biological dose’). Multi-objective optimisation will be 

discussed in detail later in this chapter. 

Modelling dose-cost 

Previous work related to optimal vaccine dose selection has highlighted economic 

considerations that arise in selecting optimal vaccine dose. Typically, the models and 

parameters associated with dose-cost relationships can be calculated explicitly, and 

do not rely on clinical trials. 
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I consider that the economics involved in vaccine dose selection can be broadly 

described in two major economic settings for public rollout of vaccine, the limited 

supply, and the unlimited supply setting.  

In the limited supply setting, there is only some limited supply of vaccine that is 

available as part of a vaccination campaign, and this must be used efficiently to 

maximise disease burden reduction. For example, say that there is only sufficient 

vaccine supply to vaccinate 50% of a population with a standard dose. If a standard 

dose is 90% protective against symptomatic disease, and a half dose is 80% 

protective, it may be preferable at a population level to roll out the vaccine using the 

half-dose [91]. Epidemiological modelling has shown that fractioning of dose may be 

beneficial when vaccine supply is limited [92]. 

In the unlimited supply setting, there is capacity to produce sufficient vaccine supply 

for an entire population of interest. Reducing or increasing vaccine dose will not alter 

the proportion of the population that is vaccinated, however increasing the dose 

would lead to a vaccination campaign being more expensive. Where a vaccine 

campaign is government funded, taxpayers may only have a certain ‘willingness-to-

pay for such a campaign, and thus a dose must be selected that is cognizant of the 

willingness-to-pay’ per year of lost life or disability adjusted life year that is averted 

by the vaccine campaign [93]. Where vaccination is privately funded, increased cost 

may reduce the number of individuals that are willing to pay for a vaccine, therefore 

reducing the potential benefit that the vaccine will have [94]. 

In both the limited supply and unlimited supply settings dose has economic 

implications that may impact public opinion towards, uptake of vaccines, and overall 

public health benefit.  

When considering economic factors of dose, it is important to note that there will be 

costs associated with a vaccination campaign that are not dose-dependent, so a 

halving of dose would not cause a halving of the costs associated with the vaccine 

campaign. Du et al. estimated that a 50% reduction in standard dose of the COVID-

19 ChAdOx1-S vaccine would reduce the cost of vaccine administration per person 

from $12.00 to $10.50, which would only be a 12.5% reduction in cost [93].  
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Multi-objective optimisation and utility functions 

I have argued that dose is a crucial decision in vaccine development, with dose 

impacting efficacy, toxicity, and cost. Ideally a dose should be chosen that 

maximises efficacy/immunogenicity, minimises risk of vaccine toxicity, and minimises 

cost. There may also exist other potential factors that must be minimised/maximised 

when choosing an optimal vaccine dose. It may be possible that there does not exist 

a single dose that is optimal for all of these objectives, and hence we would have to 

consider vaccine dosing as a multi-objective optimisation5 problem. Using modelling 

to predict optimal solutions to multi-objective optimisation problems is commonly 

used in many fields [95].  

Multi-objective optimisation is a problem that occurs whenever there are multiple 

objectives that need to be optimised. Two potential methods of solving such 

problems are to consider either ‘Pareto fronts’ or ‘utility functions’. When these 

problems are non-trivial (there does not exist a single solution/dose that is optimal for 

all objectives), the concept of Pareto optimality must be considered [96]. A dose 

would be considered Pareto optimal if, for all other solutions/doses, an improvement 

with regards to each objective function could only be achieved by deteriorating 

performance with respect to at least one other objective function. The set of all such 

solutions is called the Pareto front, and any solution along this front could be 

considered optimal.  

With regards to drug or vaccine multi-objective single-administration dose-

optimisation where efficacy/immunogenicity must be maximised, toxicity must be 

minimised, and efficacy and toxicity are assumed to be saturating with respect to 

dose, all doses would lie on this Pareto front [appendix A.B.]. This means that all 

doses could be considered optimal, so consideration of the Pareto front may not 

bring useful insight with regards to vaccine dose selection. 

 

5 ‘Multi-objective optimisation’, ‘multi-factorial optimisation’, and ‘multi-factor optimisation’ are all used 
interchangeably, both within this work and other literature. 



 
43 
 

The utility function method is to use some function that maps the multiple objective 

function values (probability of efficacy/immunogenicity, probability of toxicity, cost, 

etc.) onto a single numerical value. The dose or doses that maximise this value are 

considered optimal6. Utility functions have been commonly used in drug dose-

optimisation and other multi-objective optimisation problems outside of dosing [97–

99]. Model predictions in combination with utility functions can be used to select an 

optimal dose.  

Choosing which utility function will be used is an important question, as the utility 

function should include any factors that vaccine developers consider relevant when 

deciding dose (efficacy, toxicity, etc,) and should align closely with vaccine 

developers' intuitions regarding the relative importance of these objectives. Choosing 

the form and parameters of utility functions is suggested to involve modellers eliciting 

information from vaccine developers, clinicians, and stakeholders, and building a 

utility function that reflects this information. Thall and Cook [100] and Branke [101] 

both suggest methods of calculating utility function parameters through stakeholder 

elicitation, though Peterson [102] highlights that such methods may have faults, 

namely assuming that stakeholders have preferences that are self-consistent and 

obey the laws of utility-expectation maximisation. In the next two sections I highlight 

some utility functions that have historically been used for selection of optimal drug 

dose, and then discuss some potential objectives that could be considered when 

designing a utility function that would be used for defining optimal vaccine dose. 

Historical utility Functions 

Within vaccine and drug dose-optimisation there have been a number of utility 

functions that have been considered. Thall and Russel [103,104] considered a 

trivariate approach to selecting optimal dose, where three possible outcomes are 

possible with probabilities depending on dose; neither efficacy nor toxicity, efficacy 

but no toxicity, or toxicity (regardless of efficacy). The optimal dose was that which 

 

6 Whether the optimal solution is that for which the utility function is maximised or minimised depends on the 
context and are equivalent. Any utility function f() which is to be minimised can be equivalently described by a 
utility function g() to be maximised by setting g() = -f(). I will therefore refer to optimal doses as those that 
maximise the relevant utility function.  
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maximises the probability of efficacy without toxicity in vaccinated individuals. This is 

technically a single-objective optimisation problem but represents how dose-

response modellers have attempted to address multi-objective dose-optimisation 

without the need to consider Pareto fronts or utility functions. 

Simple threshold utility functions have been used for drug dose decision making 

[105,106]. Here, for each objective there is some set of thresholds. If modelling or 

data predict that a dose would be within bounds for all objectives, then it is 

considered acceptable/optimal, but there is no distinction between doses otherwise. 

A more complicated utility function was suggested by Brocke et al. [107]. for defining 

optimal dose of the drug ponatinib, with the utility function considering both efficacy 

and toxicity probabilities and being called the utility contour utility function. Handel et 

al. [49]  proposed a utility function that aimed to maximise protection and minimise 

morbidity as measured by a transform of the innate immune response. See 

[Appendix A.C.] for a more detailed discussion of these and other utility functions 

that have been used in dose optimisation in drugs and vaccines.  

Potential objectives for vaccine dose optimisation utility functions 

Efficacy, toxicity, and cost/dose-sparing are all important objectives to consider when 

choosing optimal vaccine dose as stated above. However, when selecting optimal 

vaccine doses, these may not be the only objectives that may be influential. Here I 

discuss some objectives that may need to be considered in addition to or in 

replacement of efficacy, toxicity, or cost. I also discuss how the topics of disability 

weighting, epidemiological modelling and game theoretic modelling may be useful 

when designing utility functions and selecting optimal vaccine dose. 

Practical limitations on maximum and minimum vaccine doses 

There may be practical limitations which may affect which dose should be selected 

as optimal. For example, vaccine dose may be limited by administration volumes. 

For example, the maximum bolus of vaccine that can be delivered intramuscularly to 

the deltoid region is 1 millilitre [108]. A standard industrial process for production of 

an adenoviral vector vaccine was estimated to produce an average concentration of 

6.8 x 1014 [109] viral particles per litre, equivalent to 6.8x1011 viral particles per 
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millilitre. Therefore, even if modelling predicted that a dose of 1012 viral particles 

would be optimal in terms of maximising efficacy, such a dose could not be 

practically given. Whilst dilution may be used to reduce the concentration of a 

vaccine and allow for precise delivery of smaller doses, there may be practical 

limitations that provide a minimum possible dose. For a trivial example, given that 

viral particles are discrete, any dose that was less than 100(=1) viral particles would 

be equivalent to the placebo dose. Practical limitations on dose have been noted by 

the Food and Drug Administration, who suggest that it is common for toxicity in 

therapeutic cancer vaccines to be so low that dose is limited by anatomic or 

manufacturing issues rather than toxicity [110]. 

Immunogenicity 

I have noted that correlates and surrogates of protection may be used to predict 

vaccine efficacy, and noted that these predictions of vaccine efficacy or protection 

may be used as an objective to be maximised as part of a utility function which 

defines optimal vaccine dose as suggested by Handel et al [49]. For vaccines where 

predictive immunogenicity-efficacy models are not available, such approaches may 

be limited. In these cases, immunogenic responses could be used as objectives 

which the utility function aims to maximise. For example, Rhodes et al. [50] defined 

optimal dose as the dose that maximised interferon-gamma spot forming units per 

million splenocytes. They did not consider in this a prediction of efficacy or protection 

that such immunogenicity would cause. This was likely because there were no 

reliable correlates of protection for tuberculosis [111]. If only one immunogenic 

response would be used to predict efficacy, the utility function includes only one 

objective (maximising efficacy), and the relationship between that immunogenic 

response and efficacy/protection can be assumed to be monotonically increasing, 

then such a simplification is valid.  

However, for multi-objective vaccine dose optimisation, using efficacy/protection may 

be preferable to using immunogenicity where this is possible. This is because it may 

be simpler to elicit stakeholder preference for trade-offs between efficacy and 

toxicity/cost than it would be to elicit stakeholder preference for trade-offs between 

immunogenicity and toxicity/cost. For example, whether a 10% increase in protection 
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would justify a 5% increase in prevalence of severe (grade 3) adverse events may 

be easier to answer than whether an increase of 100 interferon-gamma spot forming 

units per million splenocytes would justify a 5% increase in prevalence of severe 

adverse reactions.  

Disability metrics 

For decisions regarding vaccine rollout and policy, it is common to use disability 

metrics to compare different vaccination policies. Examples of such metrics are 

disability adjusted life years (DALYs), quality adjusted life years (QALYs), or years of 

lost life (YLLs) [112]. Salomon et al. suggested that different negative clinical 

outcomes could be described using ‘disability weights’, which can be used to 

calculate DALYS averted, QALYS averted, or YLLs averted [113]. The vaccination 

policy that averts the most disability, as measured by any of these metrics, is then 

considered as optimal. For example, Drolet et al. used ‘DALYs averted’ as the metric 

to suggest that the optimal vaccination policy for a human papillomavirus vaccine 

was to vaccinate 14-year-old girls only rather than to also vaccinate boys [114]. In 

that sense, disability metrics were used as a utility function to predict optimal 

vaccination policy, which might suggest that it would be reasonable to consider 

disability metrics when choosing vaccine dose.  

As noted, vaccine dose may affect both efficacy and toxicity. An increase in efficacy 

could lead to a decrease in risk of infection and disease, leading to a reduction in 

expected disability for vaccinated individuals. An increase in vaccine toxicity could 

instead increase expected disability in vaccinated individuals. Therefore, utility 

functions could be designed to consider the average disability that would be 

expected for vaccinated individuals and use minimisation of this relative to 

unvaccinated individuals as an objective function. 

A similar comparison was conducted to predict whether benefits (efficacy) outweigh 

the risks (adverse events) for vaccines. The European Medicines Agency considered 

reduction in COVID-19 hospitalisation, intensive care unit admission and death 

relative to risk of thrombosis with thrombocytopenia syndrome for individuals who 

were administered the Vaxzervria vaccine [115]. Funk et al. conducted a similar 
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analysis for the Pfizer-BioNTech COVID-19 vaccine [116]. In these cases, the 

comparison was only between vaccination and no vaccination, but this could easily 

be adapted for consideration of different potential vaccine doses. Such metrics 

therefore may be reasonable to consider, and method for computing immunisation 

related DALYs has been discussed by McDonald et al [117]. 

Epidemiology  

For dose optimisation of typical drugs, only the individuals treated by a drug will have 

been directly impacted by the drug and hence only they are directly impacted by any 

dosing decisions. This means that utility functions might only require considering the 

expected benefits (efficacy) and deficits (toxicity, cost) for each individual that 

receives the drug. Whilst such utility functions might also be practical for vaccines, 

and have been used in the works described above, the concept of ‘herd immunity’ 

means that population level effects of prophylactic vaccine efficacy might also be 

considered. Herd immunity is the epidemiological concept that as a larger proportion 

of a population develops immunity to infection, there are fewer individuals available 

to continue proliferation of the disease throughout a population, which will indirectly 

protect individuals who have not developed immunity [118]. This can lead to disease 

eradication if a sufficient proportion of a population is immune to infection, with that 

proportion not needing to be 100%. 

One method for determining the population effects of increased vaccine efficacy 

might be to consider epidemiological models of infectious diseases. These are 

models which attempt to describe and predict the transmission and burden of 

disease at a population level. These can be used to predict the reduction in 

incidence, cases, hospitalisation, or mortality that might be expected given a certain 

vaccine efficacy when a vaccination programme is used in a population. For 

example, modelling of a vaccination programme against COVID-19 in New South 

Wales predicted that a 60% efficacious vaccine would prevent ~10400 deaths 

relative to a 50% efficacious vaccine, but that a similar 10% efficacy increase from 

80% to 90% would only prevent an excess 300 deaths [119]. 
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These epidemiological predictions could then be used to predict DALY metrics 

associated with a vaccine programme for specific efficacy and toxicity probabilities, 

with these then being used as part of the utility function used to define optimal dose. 

Vaccine uptake and vaccination game theory  

A final consideration regarding vaccine dose regards the impact that toxicity may 

have on the rollout of a vaccine at the population level. As stated above, the efficacy 

of a vaccine may impact vaccine benefit to the population through herd immunity. 

Whilst there is no exact parallel for toxicity (there is no ‘herd toxicity’), a review of 

vaccine related game theoretic analysis by Chang et al. has suggested that 

increased vaccine toxicity may lead to decreased vaccine uptake at a population 

level [120].  

This review also discusses that as a population tends towards a herd immunity 

threshold, a rational population may begin to consider the small risks associated with 

vaccines to outweigh the benefits they would receive through vaccine efficacy. This 

may lead to so-called ‘free-riders’, individuals who receive protection against disease 

through herd immunity but who themselves are not willing to be vaccinated [121]. 

Indeed, analysis has suggested that a completely rational and self-interested 

population with perfect information would never have enough individuals willingly 

vaccinated to achieve complete herd immunity and disease eradication [122]. 

Whilst this might be the case theoretically, given that individuals in a population do 

not have access to perfect information, they may make decisions based on their 

perceived notion of vaccine safety within their social network. A further game 

theoretical analysis discussed the possibility that the occurrence of rare but severe 

vaccine related adverse events may lead to a reduction in vaccine uptake that is not 

proportional to the actual risks associated with such events and are hence not 

‘rational’ [123].  

‘Free-riders’, vaccine hesitancy due to rare but severe adverse events, and the 

emergence of ‘conspiratorial thinking’ [121] are all game theoretic factors that have 

been suggested to cause a reduction in vaccine uptake. It has been suggested that 

mandatory safety practices such as vaccination are a necessity to ensure complete 
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disease control [122]. Where this is not deemed ethical, choosing a vaccine dose 

that minimises the risk of adverse events might lead to increased uptake [124]. 

Unfortunately, there may be a possibility of rare but serious adverse events being 

undetected during dose-ranging trials due to the small size of these trials and rarity 

of these events, which may limit ability to account for such occurrences when 

selecting optimal dose.  

Multi-dimensional optimisation: Optimisation of prime/boost dose or interval, or 

antigen/adjuvant dose 

Much work in MBDD for selection of optimal dose focuses on drugs for which only a 

single dose must be selected. For vaccine development, developers may wish to 

optimise not only single administration vaccine doses, but also to determine optimal 

prime/boost dosing or interval between doses or optimal doses of co-administered 

antigen/adjuvant vaccines. In the language of multi-objective optimisation, the 

number of factors that developers and modellers are trying to optimise would be 

called the dimension of the optimisation problem [125]. For example, if developers 

must predict optimal prime dose, optimal boost dose, and the optimal time between 

these two doses, then this would be a three-dimensional optimisation problem.  

There has been work in drugs and vaccines that we should consider when 

considering multi-dimensional dose optimisation problems, but these are all 

presently limited.  

Mechanistic models have been used in vaccines for optimisation of both prime/boost 

dose and time between doses. De Boer and Perelson used a mechanistic model to 

describe proliferation and expansion of naive, activated, and memory T cells in 

response to a prime/boost administration of lymphocytic choriomeningitis virus 

[126,127]. Whilst this model was able to effectively describe the longitudinal time-

immunogenicity relationship well, the data of this work was not from a dose-ranging 

study, the model predictions were not validated, and dose optimisation was not 

discussed.  

Mayer et al. presented a simple mechanistic model of peptide-affinity dependent T 

Cell expansion, and predicted that T Cell fold-expansion is inversely proportional to 
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the magnitude of initial T cell population [69]. They calibrated this model to data and 

used this model to predict that administration of pigeon cytochrome C and 

lipopolysaccharide over three prime/boost/second-boost doses would be more 

immunogenic than giving the same volume as a single bolus. However, the data of 

this work was not from a dose-ranging study [128], the model predictions were not 

validated, and this mechanistic model would be unable to explain peaking dose-

immunogenicity response. They also do not include the dose of the adjuvant 

lipopolysaccharide as part of the model, reducing the dimension of the optimisation 

problem.  

Kumbhari, Kim, and Lee [82] used mechanistic modelling to predict optimal dose and 

interval between doses for an anti-cancer vaccine (melanoma antigen glycoprotein 

100). They first built a complicated mechanistic immunological model that included 

more than 16 compartments7 for peptides and 39 parameters. 35 of these 

parameters were literature derived, and 4 were found through model calibration to 

data [129]. In a second work they then used this ‘full’ model to generate data that 

could be used to fit a simpler ‘minimal’ model [130]. With each model they used in-

silico simulation to predict optimal dose and dosing interval, as defined by reduction 

in cancer concentration at 60 days or mean avidity difference. Hence, whilst this was 

not described as IS/ID modelling, it fits well within the scope of the field. The authors 

attempted to validate the model using data from other studies. Whilst the authors 

claim that the model was validated, their model predicted that T cell expansion 

peaked at approximately 2 days post-vaccination, where-as the experimental data 

suggested the peak was at ten days. Additionally, the predictions of the ‘minimal’ 

model were qualitatively different to those of the ‘full’ model for high avidity killer T 

cell compartment. Thus, I believe further validation of their model and findings would 

be needed. 

 

7 The models divided some of its compartments into a number of subscripted compartments reflecting the 
amount of vaccine associated peptide-major histocompatibility complexes presented on the surface of maturing 
dendritic cells, and also reflecting different avidities of naive and effector T cells. The number of these sub-
compartments is not detailed in this work, so the total number of compartments was not specified. 
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Statistical models have also been used for such multi-dimensional problems. For 

optimisation of prime/boost dose within vaccines, Rhodes et al used IS/ID modelling 

to predict the prime/boost dose of the antigen/adjuvant paradigm vaccine 

TB10.4/Ag85B which was maximally immunogenic [50]. However, this work 

assumed that the prime and boost dose should be equal at both the prime and boost 

time points. They also did not attempt to optimise time between doses or adjuvant 

dose in this work, as such analysis would have required a more complex and 

expensive ‘checkerboard’ experimental design. This assumption meant that the 

optimisation was still single-dimensional.  

Within MBDD, statistical modelling has been used to predict effectiveness or toxicity 

for treatments that require multiple drug administrations (either at the same time or at 

different time points). This is typically done through the use of Bliss/Loewe 

independence and additivity models [131]. For each ‘monotherapy’, a marginal dose-

response curve is found. The effect of the joint therapy for each dose combination is 

predicted by assuming that the treatment effects are independent. A joint therapy is 

then tested, and modellers compare the predicted joint treatment effect to the 

empirical joint treatment effect in order to build a multi-dimensional drug dose-

response model that can account for treatment being synergistic or antagonistic 

[132]. 

Bliss/Loewe model may not be appropriate for multi-dimensional vaccine dose-

response modelling and optimisation. Firstly, the best-known Bliss independence 

models require the assumption that an increase in either of the doses cannot lead to 

a decrease in response [133]. As noted, IS/ID modelling has already suggested that 

this assumption may not be reasonable in vaccine dose-response. Secondly, these 

models typically rely on ‘copula’ methods [131], which may not be appropriate for 

vaccines. For example, if the respective seroprotective rate for given monotherapy 

doses of drug A and B were 5% and 7% of patients, then the maximum 

seroprotective rate that could be predicted by a copula method for the joint therapy 

of these doses would be 12% (=5% + 7%) and the minimum would be 7%(=minimum 

of 7% and 5%)[134]. This limitation may render such methods inappropriate for 

modelling antigen/adjuvant dose-response, as it would be common that 

monotherapies of antigen or adjuvant are not efficacious, but the joint treatment is. 
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Thirdly, Bliss/Loewe models have not been used for optimising time between doses 

to my knowledge. 

I therefore believe that previous findings in drugs and vaccines using either 

mechanistic or statistical modelling are presently limited in their implications for multi-

dimensional IS/ID modelling, and that more research is needed into building models 

that can be used for multi-dimensional vaccine dose optimisation.  

Model uncertainty: selection and averaging 

As stated, IS/ID modelling has suggested that for some vaccines dose-

immunogenicity and dose-efficacy may be better described by a peaking dose-

response curve as opposed to a saturating dose-response curve. Hence there may 

be uncertainty in the correct choice of assumed dose-response curve for IS/ID 

modelling of vaccine dose-efficacy. The topic of ‘model uncertainty’ is common in 

many mathematical modelling fields, and methods of accounting for model-

uncertainty in drug dose-response modelling have been previously developed [135–

137]. These have been used even when efficacy could be assumed to always 

increase with dose, as there may be uncertainty between multiple ‘saturating’ models 

[138]. 

There are two common methodologies used for accounting for model uncertainty: 

selection and averaging. For both selection and averaging, for each candidate model 

a ‘goodness-of-fit’ metric is calculated. The ‘goodness-of-fit’ metrics may be an 

information theoretic criterion such as the Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), or corrected AIC (AICc) [139]. Alternatively, 

squared-error metrics such as mean squared error (MSE) or root mean squared 

error (RMSE) have also been suggested [140]. Models which minimise these metrics 

for a given dataset are said to be a better description of the data. The information 

theoretic criteria normally include penalty terms which aim to prevent ‘overfitting’. For 

example, the formula for the AICc for a model that has been calibrated to a given 

[141] dataset has been given as  

𝐴𝐼𝐶𝑐 = 𝑛 × ln
𝑆𝑆
𝑛

+ 2𝐾 +
2𝐾(𝐾 + 1)
𝑁 − 𝐾 − 1
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With N as the number of data points, K as the number of fitted model parameters 

and SS is the sum of the squared residuals of the calibrated model. The ln  term 

is decreased for models that better approximate the observed data, and the 2𝐾 +
( 1)

1
 term is the penalty term that increases with the number of model 

parameters.  

With the ‘selection’ method of accounting for model uncertainty, the model which 

minimises the goodness-of-fit metric is selected as the ‘’best’ model and used to 

make any predictions or decisions. Some modellers suggest using only this best 

model. Others suggest that only models which have a significantly worse goodness-

of-fit should be rejected as candidate models, and that models which are not 

significantly worse than the best model should not be rejected and should still be 

considered as potential alternative models when making predictions/decisions [142].  

With the ‘averaging’ method, all candidate models contribute to an overall prediction, 

with models contributing to the overall prediction with a weighting that is dependent 

on their goodness-of-fit metric. Models which have a poor goodness-of-fit metric 

compared to the ‘best’ model contribute little to the overall prediction, whereas if two 

models have equal goodness-of-fit metrics they will contribute equally to the overall 

prediction.  

There is not a consensus that either of selection or averaging is better than the other 

for accounting for model uncertainty. The selection method might be more 

reasonable if the modeller is primarily interested in determining which model best 

describes a dose-response relationship. For the purposes of response prediction, 

model averaging has been found to outperform model selection in simulation studies 

[143].  

Clinical trial design: gathering the data that are used to choose optimal dose  

An important consideration for vaccine dose-selection, regardless of whether 

mathematical modelling will be used, is in how dose-response data will be 

generated. Typically, these data are collected through the use of dose-ranging 

studies. Therefore, vaccine developers and modellers must consider the clinical trial 
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design of such dose-ranging trials, and any impact this may have on the selection of 

optimal vaccine dose.  

Clinical trial design includes many factors, for example, the total number of trial 

participants, the number of dosing groups that should be investigated, how trial 

participants are to be distributed between those groups, which responses are to be 

measured, whether any interim analysis will be conducted, and any safety 

considerations that may result in early trial termination. One key consideration in trial 

design is the number of dosing groups. For a given total trial size N, if there are K 

equally sized dosing groups, then each dosing group contains n=N/K individuals. 

With fixed N, decreasing K increases n, increasing statistical power to distinguish 

potential differences in response between dosing groups. For traditional empirical 

dose selection, increased statistical power might be desirable, however it has been 

suggested that using too few dosing groups (small K) may inhibit selection of optimal 

dose [144].  

There are many clinical trial designs that have been used or suggested for use in 

conducting dose-finding trials in vaccines and drugs. One method of categorising 

these trial designs would be in whether they include elements of ‘adaptive’ trial 

design[145]. Adaptive trial design involves conducting analysis at interim time points 

during a dose-ranging study, and preferentially assigning trial participants to certain 

dosing groups depending on the interim analysis. In this section I provide examples 

of potential vaccine dose-ranging trial designs, both adaptive and non-adaptive.  

A common, non-adaptive design for vaccine dose-ranging trials is to randomise all 

trial participants approximately evenly between different dosing groups. Such trial 

designs can include or exclude dose-response modelling when predicting optimal 

dose. This was the trial design used by Zhu et al. [146], Pollock et al. [147], and 

Sadoff et al. [35], who did not discuss using modelling to select optimal dose. 

Rhodes et al. used this trial design to inform dose-response modelling for the 

selection of optimal vaccine dose [50]. Despite its frequency of use in vaccine dose-

ranging trials, I have not found a naming convention for this trial design within dose-

ranging literature, other than potentially ‘1:1 randomisation’. Consideration of vaccine 
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dose-optimisation as a so-called ‘multi-armed bandit’ problem8 would label this as 

‘uniform exploration’ [148]. 

Adaptive designs without the use of mathematical modelling have been suggested 

for use in clinical trials since first described by Thompson in 1933 [149]. Whilst 

initially discussed as a method of ethical trial design when comparing multiple 

different treatments, adaptive design has been applied for locating optimal drug and 

vaccine dose. Aziz et al. provide a description of these adaptive designs for dose-

ranging trials [150], and Lui et al. recommend further adoption of such methods in 

vaccine dose-ranging trials in order to accelerate vaccine development and better 

identify optimal vaccine dose [151]. Chen at al. used an adaptive trial design during a 

phase IIb/III clinical vaccine trial to determine an optimal treatment arm between a 

four-valent human papillomavirus vaccine and three different dosing groups (low, 

medium, high) of a nine-valent human papillomavirus vaccine [152]. 1240 human 

trial participants were uniformly divided between the four treatment arms. Interim 

analysis was conducted, and only the four-valent human papillomavirus vaccine and 

middle dosing groups of a nine-valent human papillomavirus vaccine were continued 

into the second phase of the trial. Again, this form of adaptive design has a canonical 

name within multi-armed bandit literature, ‘sequential halving’ [148].  

The predominant form of adaptive design in vaccine dose-ranging trials are so called 

‘rule-based’ trial designs, which are specifically prevalent in conducting dose-ranging 

trials for therapeutic cancer vaccines. The typical example given for ‘rule-based’ trial 

design is the ‘3+3’ design, which is used to locate the minimum dose at which the 

probability of ‘dose-limiting toxicity’ (DLT) is no longer acceptable [153]. DLT is 

 

8  Multi-armed bandit problems are problems in which an investigator is faced with multiple potential actions that 
can be taken, with each action having a stochastic reward associated with it. The investigator does not know a-
priori the distribution of rewards for each action and must find a strategy to locate optimal actions. These may aim 
to maximise the total reward achieved over a finite number of actions taken (the ‘average regret’ setting), or to 
predict an ‘optimal’ action after a finite number of actions taken (the ‘simple regret’ setting). 

Considering ‘actions’ as ‘doses’ and ‘rewards’ as efficacy, toxicity, etc., we can see that vaccine dose-ranging 
trials fall into this class of problem. Multi-armed bandit problems and their solutions also were initially conceived 
as a method of conducting ethical clinical trials, which is why I consider this topic and its language relevant to 
vaccine dose-optimisation. 
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typically defined as the occurrence of a grade 3/severe adverse event. With this 

design, three trial participants initially receive the lowest possible dose. If none of 

these individuals experience DLT, then the next cohort of three trial participants are 

enrolled at an increased dose. This is repeated until at least one individual 

experiences DLT. If only one individual experiences DLT, another cohort of three 

individuals receives the same dose. If two or more out of the six individuals for a 

dose experience DLT, then dose de-escalation occurs, and the prior dose level is 

expanded to six trial participants. If after six individuals have received a given dose 

no more than one of these experienced DLT, the trial concludes, and that dose is 

chosen as the maximum tolerated dose (MTD). The original mathematical theory 

behind this design suggested that the probability for DLT at that dose is selected by 

such a design is ~17%, which the Food and Drug Administration (FDA) defined as 

the threshold above which DLT prevalence is not acceptable for therapeutic cancer 

vaccines [19].  

Whilst rule-based designs have seen common use in drug dose selection and dose 

selection for therapeutic cancer vaccines, they have also been criticised. Theoretical 

analysis has repeatedly shown that these designs are not reliable in their prediction 

of the MTD and may require more trial participants than other trial designs [153]. In 

particular, if the dose-efficacy relationship cannot be assumed to be saturating, or 

can be assumed to saturate for a dose that is less than the MTD, then this design is 

not recommended [154]. The Medical Research Council Network of Hubs for Trials 

Methodology Research’s Adaptive Designs Working Group strongly recommends 

that these designs should not be used for phase I clinical trials [155], and state that 

such dosing-ranging trial designs require more trial participants due to being 

‘memory-less’. If adaptive design is to be used, then it has therefore been suggested 

that trial designs that are model-based are superior to rule-based designs [156].  

Model-based adaptive trial design designs aim to leverage mathematical modelling 

to improve dose-selection, increase benefit to trial participants, and reduce dose-

ranging trial size relative to the designs described above. In 1990, O’Quigley, Pepe 

and Fisher published a description of the ‘Continual Reassessment Method’ (CRM) 

of clinical trial design for locating the MTD [157]. This is conducted by performing 

mathematical modelling at interim time points throughout a clinical trial. After each 
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cohort, any dose-response models are updated using all available data, and then 

individuals in the next cohort are given doses that are predicted to be optimal whilst 

following potential dose-escalation rules. This has since come to be accepted as a 

highly effective method of locating optimal doses [158], with O’Quigley suggesting 

that the CRM may approach the theoretical upper bound for optimal trial design for 

locating MTD [159]. The CRM has since been extended broadly [85]. In particular, an 

early extension by Thall and Cook was to include modelling of dose-efficacy as well 

as dose-toxicity [100]. This ‘EffTox’ variant of the CRM has been used in locating 

optimal dose of the drug Ponatinib, which similarly to vaccines has been suggested 

to have a potentially peaking dose-efficacy curve shape [107]. Wheeler et al. provide 

a description of how dose-ranging clinical trials can be conducted using the CRM 

[160]. 

If mathematical modelling is to be used for the selection of optimal dose, then 

optimal design theory can also be considered [161,162]. Trials designed using 

optimal design theory aim to support mathematical modelling by distributing trial 

participants between dosing groups in a way that maximises expected gain in 

information regarding model parameters or predictions. Here modelling may be used 

before any data are gathered if modellers have access to a-priori knowledge 

regarding likely dose-response models and parameters. Trial designs that use 

optimal design in an adaptive trial design manner have also been proposed [163].  

There have been a number of other designs that have been suggested for selection 

of optimal drug dose, but the above represent the most common methods of trial 

design. For example, the ‘Simple Toxicity and Efficacy Interval Design’ (STEIN) is a 

more recent rule-based trial design that was suggested as a method of trial design 

for dose ranging trials when efficacy cannot be assumed to be increasing with dose, 

and the authors of that recommend its use over CRM style trial design [77]. 

However, Takahashi et al. found that STEIN was outperformed by the EffTox variant 

of the CRM, which used a parametric model, and by their Bayesian Optimal Design 

(BOD) trial design, which used a non-parametric model [75]. Zang et al. suggested 

another model-based adaptive trial design that was not considered as a CRM-style 

trial design [164]. This leveraged a double-isotonic modelling to describe dose-
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efficacy and was found to have satisfactory performance for the selection of optimal 

dose in simulation studies.  

A remark that is important to make is that dose-ranging trials may include interim 

analysis to reduce the risk that any trial dose has an unacceptable risk of harm, 

without being ‘adaptive’ in the sense that is typically meant. For example, Pollock et 

al. conducted a dose-escalation study of the COVAC1 vaccine [147]. A sub-study of 

this investigated immunogenicity and toxicity of three potential doses, 0.1, 0.3, 1.0 

µg. They conducted an initial dose-escalation phase, where one individual received 

0.1 µg of COVAC1 vaccine. If this was ‘safe’ (which was defined by adverse events 

being mild or short lived if they were severe), three more individuals were to be 

vaccinated with the same dose. If this was ‘safe’, then this process was to be 

repeated with 0.3 µg, and then twice with 1.0 µg. If safety for all doses was 

acceptable (which it was), the remaining trial participants were randomised uniformly 

between those three doses. I do not believe that, given the final randomisation was 

uniform between the three doses, that this should be considered adaptive design. 

However, it is representative of how interim analysis can presently be used to inform 

vaccine dose-ranging trial design. 

An aspect of Pollock et al. that is interesting from the perspective of developing 

mathematical modelling methods for vaccine dose selection is that these 

researchers considered a linear model of dose-immunogenicity when planning this 

study. This was not used to guide selection of clinical vaccine dose, as is 

recommended in IS/ID modelling, but instead was used to aid in power calculations 

for determining sample size. Furthermore, in the supplementary material the authors 

suggested a non-linear dose-immunogenicity relationship could prohibit such sample 

size calculations, suggesting that uncertainty in the curve shape of vaccine dose-

immunogenicity and dose-efficacy may already be a limiting factor in current vaccine 

dose-finding studies. 

Leveraging expert knowledge and existing data for trial design/dose selection 

When selecting an optimal vaccine dose for a vaccine with minimal (or no) existing 

human data it may be beneficial to consider relevant expert knowledge and existing 
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data regarding ‘similar’ vaccine dose-response and preclinical dose-response data. 

These could also be beneficial, and are often used, in guiding design of early phase 

clinical trials. Here I will describe previous works in vaccines and drugs that aimed to 

improve modelling for trial design/dose selection through leveraging such existing 

knowledge or data.  

Leveraging expert knowledge and opinion for trial design/dose selection 

Expert opinion is an important consideration in designing vaccine dose-ranging trials. 

The selection of the doses to be investigated in dose-ranging trials is currently 

primarily decided by consideration of the set of doses that clinicians and experts 

believe are most likely to be acceptable or optimal (personal communications, T 

Evans). Therefore, it may be important to leverage this expert knowledge to inform 

modelling. Various methods have been proposed in order to accomplish this, though 

presently these all have noted limitations. 

A common type of model that has been used for dose-finding trials in the style of the 

CRM is the so-called ‘power skeleton’, [Appendix A.A.3.Power Skeletons]. This 

model easily incorporates expert opinion, as rather than directly model the 

relationship between dose and some response, modellers elicit expected response 

probabilities for all potential doses in the clinical trial to form a model ‘skeleton’ [165]. 

The calibration of the model in response determines whether the expert opinions 

were under-estimations or over-estimations. The limitation of this approach is that 

the default power-skeleton model assumes that the elicited expert predictions are 

accurate up to linear translation. This is to say that if experts predict that a certain 

dose is most efficacious, then the model will always predict that as the maximally 

efficacious dose regardless of any observed dose-efficacy data. This limitation can 

be minimised by using model-averaging of multiple skeletons but doing so is 

computationally expensive and may be less intuitive with regards to stakeholder 

elicitation [166]. 

Alternative methods for incorporating expert opinion into mathematical modelling 

have been suggested for when statistical mathematical models are used; notably 

either sigmoid saturating or latent quadratic models [appendix A.A.]. These are 
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parametric models which have used between two and four parameters and that are 

common in CRM-style clinical trials. If these models are to be calibrated using either 

maximum likelihood or least-squares methodologies, then the use of pseudo-data 

has been suggested [167]. Pseudo-data are simulated trial participants that are 

simulated to have observed responses that are dependent on dose-response 

predictions elicited from experts and are down-weighted relative to real data during 

model calibration. However, in practice pseudo-data are more commonly 

recommended to be minimally informative, functioning to stabilise the model 

calibration rather than capturing expert opinion [85].  

Alternatively, statistical models can be calibrated using Bayesian inference, with 

Bayesian priors being placed over the parameters. Lee and Cheung suggested that 

these priors should be calculated by simulating CRM-style clinical trials over a so-

called ‘calibration set’ of potential dose-response curves that experts have confirmed 

could be possible for the drug for a number of different parameter-priors [168]. The 

prior that most often led to selection of the ‘true’ optimal dose in these simulations 

should then be used. This is intuitive but is computationally expensive and reliant on 

the scenarios that experts suggest being reflective of the true dose-response curve 

for the drug or vaccine. Thall proposed an algorithm involving elicitation of prior 

probability intervals for expected predicted efficacy at each dose, calibration of priors 

to jointly minimise least squares error between expert predictions and prior model 

prediction whilst targeting an ‘effective sample size’, which can be considered as the 

number of individuals worth of data that the parameter priors will contribute to the 

model prediction [169]. Thall suggested that this was effective but would be 

expensive in terms of computation and labour, and also suggested that the algorithm 

he proposed was sensitive to certain hyper-parameters that the modeller must 

choose which may limit practical use. 

Leveraging historical data for trial design/dose selection 

Similar to the inclusion of prior expert knowledge, modelling methods for conducting 

vaccine dose-ranging trials and selecting optimal vaccine dose may be improved if 

historical dose-response data can be leveraged to inform mathematical models. 

Specifically Rhodes et al. suggested that open access to historical dose-response 



 
61 
 

data may be needed to maximise effective IS/ID modelling [23]. When planning 

dose-ranging trials or selecting optimal dose for a novel vaccine, modellers and 

developers could consider historical data from trials of vaccines that are ‘similar’ to 

the novel vaccine and assume that ‘similar’ vaccines have ‘similar’ dose-response 

curves. In theory, this historical dose-response data could be incorporated into 

modelling and trial design in the same ways I mentioned for including prior expert 

knowledge, for example as down-weighted pseudodata. I have however not been 

able to find any instance of such a methodology being used for vaccine dose-

response modelling. There is also likely to be a question of what would be meant by 

‘similar’ vaccines which would have to be answered as part of the modelling process. 

Modellers have also used immunological parameter values derived from literature as 

part of mechanistic modelling [130]. 

Historical data may already be being used to inform the design of vaccine ranging 

trials already, though without mathematical modelling. As an example, dose-ranging 

trials for two novel ChAdOx1 adenoviral vectored vaccines against middle eastern 

respiratory syndrome and COVID19 both investigated the same three potential 

doses, 5.0 × 109, 2.5 × 1010, and 5.0 × 1010 viral particles [170,171]. This may 

suggest that the vaccine developers considered similar historical data when 

determining the doses to be investigated.  

Leveraging pre-clinical data to inform clinical trials: Interspecies allometric scaling 

The field of MBDD has been benefited by the possibility of ‘interspecies allometric 

scaling’ [172]. This comprises methods which allow developers and modellers to 

predict human dose-response using dose-response data from pre-clinical dose-

response experiments in animals. Typically, a prediction of ‘optimal’ drug dose in an 

animal species can be multiplied by a scalar to predict a reasonable estimate of 

‘optimal’ human dose [173]. As with expert opinion and historical data, vaccine 

modellers and developers may hope to leverage this preclinical data to better inform 

dosing decisions. Rhodes et al. suggested that allometric scaling is another concept 

from MBDD that could benefit IS/ID modelling if it is possible to replicate in vaccines 

[23],  and provided a proof-of-concept study for allometric scaling to predict human 

interferon-gamma response using macaque time-response data [51]. 
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There are however a number of potential limitations in interspecies allometric scaling 

for vaccine development. Firstly, the biological assumptions that justify allometric 

scaling of drugs is that the dominant predictor of drug clearance and metabolism is 

body mass [174], and that metabolic rate is highly predictive of drug effect given that 

concentration is predictive of drug effect. The so-called ‘¾ rule’ for allometric scaling, 

which states that the parameter value of the exponent of the power relation between 

body mass and metabolic rate equals 0.75, can be derived theoretically [174] and 

has been validated empirically [172]. There may not be as much theoretical or 

empirical justification to assume that there is a causative path between metabolic 

rate and vaccine effect. 

Secondly, the parameters used to define allometric scaling factors for drugs are 

typically consistent. For example, whilst there have been detractors of the ¾ rule that 

claim that ⅔ would be a better value for the value of the exponent parameter, the 

majority of data and studies of metabolic rate are consistent with the value being 

0.75, and most species’ empirical metabolic clearance lies near the prediction that 

would be expected based on their mass using this rule [172]. This contrasts with the 

observation that estimates of potential allometric scaling parameters for prediction 

between murine and human dose for tuberculosis vaccines have varied between 0.5 

and 100 [23].  

Thirdly, we must be cautious to define what allometric scaling is being used to 

predict. If ‘optimal’ dose is being predicted, then as I noted before this may be 

dependent on the utility function used to define optimality. If model parameters or 

biological quantities such as immunological response are being predicted, then it 

may be necessary to assume that the same or similar models can be used to 

describe dose-response in both species. Whilst this assumption did not limit the work 

of Rhodes et al. [51], validation of consistency in dose-response curve shape 

between host species may be needed.  

Finally, though linked to the third limitation, it may be questioned whether there 

exists a biological reason to assume that animal experiments are predictive of 

human vaccine response. It may be necessary to consider for which animal species 

immunological and toxicological response will most reflect human immunological and 
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toxicological vaccine response. Rhodes et al. cautiously suggested that data from 

Indonesian cynomolgus macaques best predicted longitudinal human interferon-

gamma response to BCG vaccination, and that Chinese cynomolgus macaque were 

a comparatively less predictive animal model of human dose-response for that 

vaccine. More generally, extrapolation to predict that a vaccine is 

immunogenic/efficacious in humans from the observation that it was 

immunogenic/efficacious in an animal model is not always justified [175]. This is due 

to inherent differences in immune mechanisms between species. If intraspecies 

prediction of whether a vaccine is immunogenic/efficacious can only be done 

cautiously, there may need to be caution in predicting dose-response curves or 

optimal dose through interspecies allometric scaling. 

Incorporating individualised dosing 

For certain classes of drugs, particularly those that may be highly toxic, 

mathematical modelling can be effective for creating ‘individualised dosing’ 

schedules [176]. This ‘individualised dosing’ allows modellers to predict doses that 

are not only optimal on average for a population but are instead predicted to be 

optimal for the specific individual that will receive the drug. This has been historically 

done using ‘covariate’ models. Example covariates that have been used in MBDD 

include weight, age, co-medication status, or genotype [177]. Separate models can 

be calibrated based on data stratified on these covariates, or alternatively a 

hierarchical or mixed-effects modelling approach to parameterisation can be used, 

where model parameters may potentially vary between individuals in a population 

[178]. The parameters for each individual cannot be directly measured but can be 

assumed to follow some distribution that will be determined through model 

calibration and that may depend on covariates. This can allow modellers to 

determine which covariates may affect individual response, and hence which 

covariates may need to be accounted for when predicting individualised dosing.  

Once these covariate models are parameterised through a combination of literature 

review or calibration to clinical trial data, these can be used to predict individually 

optimal doses. For example, modellers built a mechanistic covariate model to predict 

optimal dose for the oncology drug Paclitaxel [179]. One of the parameters of this 
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model, ‘maximum elimination capacity’, was found to be typically higher in men. 

Therefore, modellers predicted that the optimal doses per square metre of height 

were respectively 200 and 175 milligrams for men and women. When clinicians 

determine that a patient should receive this treatment, they can individualise the 

dose depending on the patient’s sex.  

A further extension of individualised dosing that can be used for patients receiving 

multiple administrations of a drug is ‘therapeutic drug monitoring’/’model informed 

precision dosing’ [180]. A covariate model using a hierarchical/mixed effects 

interpretation of model parameters is used to determine the initial dose(s) that a 

patient will receive [181]. Observations after these initial doses administrations allow 

modellers to update the model to better reflect that individual’s data, and then better 

predict individualised optimal dose for later administrations. 

In consideration of individualised vaccine dosing using IS/ID modelling, Rhodes et 

al.'s modelling of longitudinal interferon-gamma response to BCG vaccination in 

humans used a covariate model [51]. They found that prior BCG vaccination status 

was an important covariate to include in the model. This was done to account for 

variability in response between individuals, not to predict an optimal dose dependent 

on the covariate of prior BCG vaccination. 

Individualised dosing has been effective in the field of MBDD, and the potential for 

covariate models to be used in IS/ID modelling has been shown. Research into 

mathematical modelling for individualised vaccine dosing may be justified if it is 

believed that covariates may affect optimal dose and that it is clinically practical to 

individualise vaccine dose for different individuals.  

Further, model informed precision dosing is primarily recommended for highly toxic 

drugs which will be administered many times and for which monitoring of biomarkers 

at timepoints between administrations will be conducted, for example hospital 

patients receiving a course of rifampicin [182]. This is very dissimilar to the typical 

way in which prophylactic vaccines are administered, and so it may be unlikely that 

model informed precision dosing would be useful in IS/ID modelling to select optimal 

vaccine dose.  
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Simulation studies: how to evaluate approaches for selecting optimal dose 

Many approaches have been suggested for locating optimal dose (‘dose-optimisation 

approaches’). Developers must determine which approaches to use, including the 

choices of whether to use modelling or empirical comparison, which modelling 

techniques to use, which trial design to follow, how to include potential historical/pre-

clinical/expert knowledge into dose selection and trial design, and many other factors 

that I have discussed throughout this background.  

Vaccine developers may want to know which dose-optimisation approaches are 

effective, safe, and efficient. For example, they may want to know whether 

conducting a CRM style dose-ranging trial improves dose selection relative to more 

traditional dose-finding trial design. To assess this empirically, multiple dose-ranging 

trials could be conducted for a given vaccine, half using a CRM-style dose-

optimisation approach and the other half conducted under a more traditional vaccine 

trial dose-optimisation approach. Due to dose-ranging trials being expensive, and 

caution over whether novel trial designs and dose-selection methods will be ethical, 

such studies are not likely to be feasible. Additionally, due to the stochastic nature of 

vaccine dose-ranging trials, it is possible that even if one of these approaches is 

“better” for locating optimal dose ‘on average’ than the other, the “better” approach 

may appear less effective or less safe than the “worse” approach if only a small 

number of empirical trials were conducted. This stochastic nature also means that it 

would not be possible to know whether a clinical trial found the ‘true’ optimal dose, 

and so we would likely still be unable to say which approach was truly most effective 

for locating optimal vaccine dose safely and efficiently.  

These problems can be addressed by conducting ‘simulation studies’, which are 

important methods for evaluating statistical and mathematical modelling tools when 

empirical evaluation is limited by expense, ethical requirements, or stochastic effects 

[183–185]. Simulation studies require modellers to specify ‘true’ dose-response 

curve called ‘scenarios’. Modellers then simulate a large number of clinical trials; 

each being conducted using the different dose-optimisation approaches of interest 

for the different scenarios. This addresses the three limitations of empirical 

investigation mentioned above, as computation simulation is considerably less 
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expensive than empirical dose-ranging trials, can be repeated many times, and as 

the ‘true’ dose-response is known modellers can determine how well an approach 

optimises dose. 

The weakness of these methods is that, given these scenarios are defined by 

modellers, they may not reflect real life vaccine dose-response curves. This 

represents a potential decrease in ecological validity, but the benefits discussed 

have led to simulation studies being very prevalent in assessing MBDD dose-

optimisation approaches. Ecological validity can be improved by increasing the 

number of scenarios used to evaluate dose-optimisation approaches, or by ensuring 

that there are scenarios with dose-response curves that reflect the real-life vaccine 

dose-response expected by relevant vaccine experts and stakeholders. 

Previous simulation studies commonly find that we should not expect that any dose-

optimisation approach will always be able to locate optimal dose, particularly with the 

small number of trial participants in typical vaccine dose-finding trials [75,159]. 

Based on results in multi-armed bandit literature, we should also not expect that a 

single dose-optimisation approach exists which would be most effective or safe for 

all potential vaccines [186]. However, simulation studies can be used to assess 

which dose-optimisation approaches are typically most effective for some expected 

real-life vaccine dose-response by carefully choosing the scenarios.  
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Thesis Rationale: Mathematical modelling for optimal 
selection of vaccine dose.  
Vaccine dose is an important factor in how efficacious, safe, and cost-effective 

vaccines are, and sub-optimal dosing may lead to the public health benefit from life-

saving vaccines being reduced. There is reason to believe that traditional vaccine 

dose-optimisation approaches may not be maximally effective, fast, cost-efficient, or 

beneficial to trial participants. Mathematical Immunostimulation/Immunodynamic 

(IS/ID) modelling has been suggested to address this, and it is hoped that 

developing this field may potentially improve the process of vaccine dose-selection 

and the quality of selected vaccine doses. This suggestion is supported by 

preliminary research in vaccine dose-response modelling; however, this field is 

presently small. This suggestion is also supported by findings in model-based drug 

development (MBDD), which are numerous but may not be applicable for vaccine 

dose-optimisation. It would be beneficial to consider or augment techniques from 

MBDD in a vaccine dose-optimisation setting, aiming to validate and apply 

techniques that can be used generally across the majority of future vaccines. 

This thesis will aim to expand the field of IS/ID mathematical modelling. The broad 

terminal goal of this field is to use mathematical modelling to improve selection of 

optimal vaccine dose. In order to achieve this goal, we need to establish: 

x ‘What mathematical model(s) should be used to model vaccine dose-

response’? 

x ‘What is meant by ‘optimal’ vaccine dose?’ 

x ‘How should we use these models and incorporate them into vaccine-dose 

selection?’ 

Consideration of these questions and the narrative review of the relevant literature 

led to the objectives that I considered in this thesis.  

Which model(s) should be used to model vaccine-dose response to improve vaccine dosing? 

Many different mathematical models could potentially be used to model vaccine 

dose-response. I intend to investigate statistical mathematical models rather than 
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mechanistic models, due to their comparative simplicity and ease of use, potential to 

be applied to vaccines more generally, and to their prevalence within MBDD.  

To reflect the previous findings that an increased vaccine dose may not always 

increase vaccine immunogenicity and efficacy, IS/ID modellers may need to consider 

‘peaking’ dose-response models. Research is needed into the prevalence of vaccine 

data for which a ‘peaking’ curve better describes vaccine dose-efficacy, and into 

whether incorrectly assuming a peaking or saturating curve for dose efficacy would 

actually decrease the effectiveness of modelling-based dose optimisation. Further, 

both ‘selection’ and ‘averaging’ methods for accounting for model uncertainty have 

been suggested in other fields and warrant investigation in vaccine dose-response 

modelling.  

For many vaccines there may not be pre-existing data available to define a known 

parsimonious parametric model of dose response, meaning a model which is 

capable of describing dose-response accurately and with minimal complexity or 

number of parameters. In the absence of a parsimonious model, non-parametric 

modelling could be useful. In particular, investigation is warranted for non-parametric 

models of prime/boost paradigm vaccine dose-efficacy, as there does not presently 

exist well validated IS/ID modelling which can account for potential response 

interactions between the prime and boost doses.  

I will investigate the prevalence of dose-immunogenicity data for a class of vaccines 

(adenoviral vector vaccines) for which dose-response is best described by peaking 

or saturating curves. This will be done by conducting a systematic review and meta-

analysis using model-selection methods. I will use simulation study methods to 

investigate the potential impact of model-misspecification on optimal vaccine dose 

selection, and whether model-averaging methods or non-parametric dose-response 

models can address this. I will also use simulation studies to compare these model 

informed adaptive designs to traditional vaccine dose-optimisation approaches to 

evaluate whether there is potential for model informed adaptive designs to improve 

vaccine dose selection and benefit to vaccine clinical trial participants. 
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What is meant by ‘optimal’ vaccine dose? 

To investigate what is meant by ‘optimal dose’, I will follow on from the work of 

Handel and formally describe vaccine dose-optimisation under the perspective of 

multi-objective optimisation. Within the narrative review I highlighted that there are a 

number of potential objectives that may need to be considered when optimising 

vaccine dose, regardless of whether that is done by mathematical modelling 

methodologies or not. I also described the concept of ‘utility functions’, how these 

can be used to quantitatively define stakeholder/developer preference, and 

examples of these being used in MBDD. Utility functions may need to be specified to 

quantitatively define what is meant by ‘optimal’ vaccine dose. 

To demonstrate that multiple definitions of ‘optimal’ can be used I will consider 

multiple such utility functions and how they may be used to define ‘optimal’ dose in 

IS/ID modelling. These will include both single and multi-factor objective utility 

functions and span a number of objectives that may be highly relevant to vaccine 

developers. These objectives will include various cellular and humoral 

immunogenicity responses, efficacy, any-grade toxicity, high-grade toxicity, ordinal 

toxicity, and cost. I will also describe that qualitatively different vaccine doses may be 

selected depending not only on modelling choices, but also on this choice of utility 

function.  

How should we use these models and incorporate them into vaccine dose selection? 

I intend not only to investigate the statistical modelling of vaccine dose-response, but 

also to consider the use of these for vaccine dose-optimisation and whether such 

modelling can actually be used to improve vaccine dosing and clinical trial design. I 

intend to do this by considering how modelling has been presently applied within the 

context of IS/ID modelling, the data that may be available to modellers from current 

vaccine dose-ranging trials, and clinical trial designs from MBDD that may benefit 

and benefit from IS/ID modelling.  

The application of IS/ID modelling has been retrospective thus far. Data from dose-

ranging trials were used to calibrate mathematical models, which were used to 

predict optimal dose, but these predictions were not used to guide future dose-
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response studies. If retrospective modelling is to continue to be prevalent in IS/ID 

modelling, modellers may need to consider what data are typically available for this 

purpose. For example, modelling may not be feasible if the number of parameters of 

dose-response models exceeds the number of dosing groups. Therefore, modellers 

may need to be aware that the complexity of retrospective modelling may be limited 

by trial design and should be aware of the number of dosing groups that are typically 

used. 

Rhodes et al. [23] recommend that models could be used to guide not only dose 

selection but also future trial design. Given the effectiveness of model-informed 

adaptive design and CRM-style trial design in MBDD, investigation into the 

application of such methods in vaccines was warranted. 

Additionally, traditional trial designs are optimised to determine whether there exists 

a statistically difference between dosing groups, and hence select optimal dose 

using that analysis. If modelling is to be used to select optimal dose retrospectively, 

then it may be beneficial to design trials to support this modelling rather than to 

support traditional hypothesis testing. For example, this might mean investigating 

many small dosing groups rather than few large groups.  

I therefore consider modelling published vaccine dose-response data to provide a 

case study of retrospective modelling in selecting optimal vaccine dose. I also 

investigate through simulation study methods the capacity for model-informed and 

model-free adaptive trial design to improve vaccine dose selection. I also use 

simulation study methods to determine whether a large number of small dosing 

groups can be effective for locating optimal vaccine doses using mathematical 

modelling. 

Summary of thesis data, models, and model calibration  

Full details of data, models and calibration are outlined in the relevant chapters, but 

an overview is given here.  

For chapters 2 and 3 I used dose-immunogenicity data that was gathered from 

published dose-response studies of single-administration paradigm, replication-
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deficient adenoviral vector vaccines. These were gathered using a systematic 

literature review. Full details of inclusion and exclusion criteria for that review were 

included in chapter 2. For chapter 4, I used publicly available data from a 

recombinant adenovirus type-5 COVID-19 single-dose vaccine (Ad5-nCoV) dose-

ranging study. In that work I assumed that a four-fold increase in neutralising 

antibody titre (‘seroconversion’) was a surrogate of protective immunity (‘efficacy’). 

For chapters 5 and 6, all data were generated through simulation study 

methodologies. The code used to generate these simulation studies, along with the 

data that were generated, were made publicly available to aid reproducibility and 

auditing of my findings.  

All models in this work were statistical dose-response models. For all chapters, a 

three-parameter sigmoid saturating model was used as the representative dose-

response model for ‘saturating’ vaccine dose-immunogenicity/efficacy for single 

administration vaccines. For chapters 2, 3, and 4, the three-parameter gamma PDF 

model was used as the representative dose-response model for ‘peaking’ vaccine 

dose-immunogenicity/efficacy for single administration vaccines. These followed the 

suggestions of Rhodes et al. [50]. For chapters 5 and 6, the three-parameter latent-

quadratic model was used as the representative dose-response model for ‘peaking’ 

vaccine dose-efficacy for single administration vaccines. This followed the 

suggestions of Brocke and O’Quigley [45,107]. For chapter 6, five and seven 

parameter latent-quadratic models were used as the representative dose-response 

model for vaccine dose-efficacy for prime/boost and prime/boost/second-boost 

administration vaccines respectively. These were my own extensions of the three-

parameter latent-quadratic model, which was found to be useful for dose-

optimisation of vaccine dose in chapter 5.  

For chapters 4 and 6, a two-parameter sigmoid saturating model was used as the 

representative dose-response model for vaccine dose-toxicity for single-

administration vaccines. For chapter 5, a four-parameter probit model was used as 

the representative dose-response model for ordinal vaccine dose-toxicity for single-

administration vaccines. For chapter 6, three and four parameter sigmoid-saturating 

models were used as the representative dose-response model for vaccine dose-
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toxicity for prime/boost and prime/boost/second-boost administration vaccines 

respectively. 

In chapter 6 I also used the continuous correlated beta process (CCBP) model to 

model dose-efficacy and dose-toxicity for single-administration, prime/boost, and 

prime/boost/second-boost administration vaccines. 

For chapters 2, 3 and 4 I conducted model calibration by minimising the sum of 

squared error between data and models. Calibration was conducted using the R 

statistical programming language, using the in-built ‘nls’ function [187]. For chapters 

5 and 6 I conducted model calibration by maximising likelihood. Calibration was 

conducted using the python programming language, using the ‘optimize.minimize’ 

function of the SciPy package [188]. I implemented the CCBP model in python 

myself, using the ‘stats.beta’ function of the SciPy package, with the CCBP models 

being updated in response to data using the algorithms detailed in that chapter. 

Thesis Aims and Objectives 
The overall purpose of this thesis was to explore and expand the field of IS/ID 
and mathematical modelling for vaccine dose optimisation, addressing gaps 
that existed in the field.  

This aim was achieved using the following objectives: 

Objective one:  Preliminary gathering of dose-ranging data through systematic 

review of dose-ranging studies. These were limited to dose-ranging studies for a 

specific class of vaccine (replication-incompetent adenoviral vector vaccines). 

Objective two: Determination through mathematical modelling of the data from 

objective one the prevalence of predicted saturating versus peaking dose-response 

curves.  

Objective three: Extension of IS/ID to multi-factor dose optimisation using ‘utility 

functions’ to balance efficacy, toxicity, and cost and consideration of the impact of 

the choice of utility function on the selection of ‘optimal’ dose.  
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Objective four: Evaluation of the potential for misspecification of dose-efficacy 

models to impact optimality of model-predicted optimal dose, along with the potential 

impact of model informed adaptive trial design. 

Objective five: Design and evaluation of a novel vaccine dose-optimisation approach 

combining non-parametric modelling and adaptive trial design, with consideration of 

vaccine dose optimisation as a potentially multi-dimensional, multi-objective 

optimisation problem.  

Thesis Overview 
Figure 1.2 outlines the aim of this thesis, the objectives to achieving this aim, how 

the objectives align with the thesis chapters, research papers, and the data and 

methods required for completing the objectives.    
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There are seven chapters in this thesis. Chapter one provides a detailed background 

to the thesis. I highlight the vaccine development pathway with emphasis on the 

importance of selecting optimal vaccine dose and provide a narrative review of topics 

related to mathematical modelling for vaccine dose optimisation and 

‘Immunostimulation/Immunodynamic’ (IS/ID) modelling. This also includes topics that 

have been relevant in mathematical modelling for the optimisation of drug dose. In 

the concluding section of this chapter, I identify the research gaps highlighted by the 

narrative review that limited the field of IS/ID, present my aim and objectives to 

address these gaps, and present this thesis overview.  

Chapters 2 through 6 are research papers, four of which are published and one is 

submitted at the time of writing. Research paper chapters are structured to include 

an introduction, then the paper. Any section of supplementary material considered 

important in the context of this overall thesis are then included. Due to the length of 

some of the supplementary documents, some sections of the supplementary 

documents for the papers were included in the appendix [Appendix A.D.]. The 

closing chapter of the thesis includes discussion of the findings of the thesis and 

implications for future research and development of the field of IS/ID mathematical 

modelling for the selection of optimal vaccine dose.  

I note here that these research papers were written as standalone articles. 

Therefore, there was some repetition of information. Effort was made to use 

consistent terminology; however, this was not always possible. Partially this was due 

to some of the topics discussed in this thesis having been inconsistently named 

across available literature. Partially this was done to maximise effective parsing of 

each work individually. For example, in chapter 5/paper 4 I define ‘dose-optimisation 

approaches’ as a combination of the mathematical dose-efficacy model that was 

used, the method through which clinical trial doses were selected, and the size of 

simulated clinical trials. In the broader scope of the thesis, I would consider a ‘dose-

optimisation approach’ to comprise any choice made by modellers or developers that 

may influence how vaccine dose is selected, but I believed that the simpler definition 

used in paper 4 would aid readers of that work.  
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References for the thesis body are at the end of the thesis main body. Each paper 

has its own set of references, as does the appendix.  

 

Chapter 2 is a research paper (paper 1) gathering dose-immunogenicity data for 

single-administration replication-incompetent adenoviral vector vaccines across 

multiple host species, serotypes, routes of administration and immunogenicity 

responses. 

Main objectives of this paper: 

1. Assess the number of available papers, including adenoviral dose-response 

studies, and the distribution of host species and adenoviral serotypes within 

these papers. 

2. Assess which immunological responses dose-response data were available. 

3. Assess the dosing strategies used in adenoviral dose-ranging studies, 

including number and magnitude of dose levels. 

This chapter corresponds to objective 1 of this thesis.  

Citation: Afrough S, Rhodes S, Evans T, White R, Benest J. Immunologic Dose-

Response to Adenovirus-Vectored Vaccines in Animals and Humans: A Systematic 

Review of Dose-Response Studies of Replication Incompetent Adenoviral Vaccine 

Vectors when Given via an Intramuscular or Subcutaneous Route. Vaccines (Basel). 

2020 Mar 17;8(1):131. doi: 10.3390/vaccines8010131. 

 

Chapter 3 is a research paper (paper 2) using the dose-immunogenicity data from 

chapter 2/paper 1 to assess the prevalence of adenoviral vector vaccine data that is 

best described by a peaking or saturating dose-response curve.  

Main objectives of this paper: 
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1. Assess the prevalence of peaking/saturating dose-response curve shapes in 

published adenoviral vector vaccine studies. 

2. Assess whether dose-response curve shape may be predicted by response 

type, host species, adenoviral species, and route of administration (RoA). 

3. Assess which of host species, adenoviral species and RoA are the most likely 

predictors of dose-response curve shape. 

This chapter corresponds to objective 2 of this thesis.  

Citation: Benest J, Rhodes S, Afrough S, Evans T, White R. Response Type and 

Host Species may be Sufficient to Predict Dose-Response Curve Shape for 

Adenoviral Vector Vaccines. Vaccines (Basel). 2020 Mar 30;8(2):155. doi: 

10.3390/vaccines8020155. 

 

Chapter 4 is a research paper (paper 3) using published dose-efficacy and dose-

toxicity data from a phase I dose-ranging study of a recombinant adenovirus type-5 

COVID-19 single-dose vaccine to perform a case study of multi-factor model-based 

dose-optimisation. 

Main objectives of this paper: 

1. Using published data, calibrate mathematical models to the relationship 

between dose and seroconversion, safety, and cost of a single inoculation. 

2. Identify the minimum dose that is predicted to theoretically induce herd 

immunity. 

3. Identify the dose that maximises immunogenicity and safety. 

4. Identify the dose that maximises immunogenicity and safety whilst minimising 

cost. 

This chapter corresponds to objective 3 of this thesis.  

Citation: Benest J, Rhodes S, Quaife M, Evans TG, White RG. Optimising Vaccine 

Dose in Inoculation against SARS-CoV-2, a Multi-Factor Optimisation Modelling 
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Study to Maximise Vaccine Safety and Efficacy. Vaccines (Basel). 2021 Jan 

22;9(2):78. doi: 10.3390/vaccines9020078. 

 

Chapter 5 is a research paper (paper 4) using simulation study methodologies to 

evaluate the impact that assumed statistical dose-efficacy model, trial size, and 

clinical trial design (method of trial dose selection) may have on mathematical 

modelling-based vaccine dose optimisation.  

Main objectives of this paper were to investigate: 

1. When the method of trial dose selection is fixed, how dose-optimisation 

approaches are affected by the assumed statistical efficacy model and trial 

size. 

2. When trial size is fixed, how dose-optimisation approaches are affected by the 

assumed statistical efficacy model and method of trial dose selection. 

This chapter corresponds to objective 4 of this thesis.  

Citation: Benest J, Rhodes S, Evans TG, White RG. Mathematical Modelling for 

Optimal Vaccine Dose Finding: Maximising Efficacy and Minimising Toxicity. 

Vaccines (Basel). 2022 May 11;10(5):756. doi: 10.3390/vaccines10050756. 

 

Chapter 6 is a research paper (paper 5) on the design and evaluation through 

simulation study methodologies of the novel correlated beta approach for 

optimisation of vaccine dose, which combines non-parametric Continuous Correlated 

Beta Process models with adaptive trial design. This evaluation considered vaccine 

dose optimisation as a potentially multi-factorial and multi-dimensional optimisation 

problem.  

Main objectives of this paper: 
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1. Evaluate the Correlated Beta Dose Optimisation Approach for optimising 

vaccine efficacy for a single dose administration. 

2. Evaluate the Correlated Beta Dose Optimisation Approach for optimising 

vaccine efficacy for a prime-dose/boost-dose administration. 

3. Evaluate the Correlated Beta Dose Optimisation Approach for optimising 

vaccine utility, maximising efficacy, and minimising toxicity. 

4. Evaluate the use of expert knowledge informed Continuously Correlated Beta 

Process priors for vaccine dose-optimisation. 

This chapter corresponds to objective 5 of this thesis.  

Citation: Benest J, Rhodes S, Evans TG, White RG. The Correlated Beta Dose 

Optimisation Approach: Optimal vaccine dose selection using mathematical 

modelling and adaptive trial design (Submitted) 

Author Contributions 
The overall idea for this PhD project to further extend and improve the field of IS/ID 

modelling for optimising vaccine dose was generated by Dr Sophie Rhodes, Dr 

Thomas Evans, and Professor Richard White. Author contributions for papers 1-5 

are outlined in the associated chapters. 

Funding 
This PhD project was funded through a studentship granted and co-funded by the 

BBSRC (Industrial CASE award) and Vaccitech (a vaccine development company) 

that was awarded prior to my start on the project. This was through the London 

Interdisciplinary Doctoral (LIDo) Training Programme.   
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Chapter 2. Collation of dose-response data 
and exploration into trial design for 
adenoviral vector vaccine dose-ranging 
studies:  

Chapter 2 Introduction 
The objective of paper two was to collate and describe dose-response data that are 

available within the published literature on replication-deficient adenoviral vector 

vaccines. This data could then be used to conduct the analysis of dose-response 

curve shape for chapter 3/paper 2. This work addresses objective 1 of this thesis.  

Another objective of this paper was to assess the dosing strategies used in 

adenoviral dose-ranging studies, including number and magnitude of dose levels. 

Providing the distribution for the number of dosing groups that are typically 

considered within adenoviral vector vaccine dose-ranging trials may be informative 

to future modellers when choosing the complexity of vaccine dose-response models. 

Similarly, the distribution of the magnitude of the dosing levels is important, to 

approximate the range of dosing magnitudes over which adenoviral vector vaccines 

may currently be assumed to have ‘optimal’ dose. 

This work was intended to be descriptive and enable future modelling. The search 

strategy and inclusion/exclusion criteria for this systematic review had been decided 

prior to my period of study. 
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Abstract: Optimal vaccine dosing is important to ensure the greatest protection and safety. Analysis of
dose-response data, from previous studies, may inform future studies to determine the optimal dose.
Implementing more quantitative modelling approaches in vaccine dose finding have been recently
suggested to accelerate vaccine development. Adenoviral vectored vaccines are in advanced stage
of development for a variety of prophylactic and therapeutic indications, however dose-response
has not yet been systematically determined. To further inform adenoviral vectored vaccines dose
identification, historical dose-response data should be systematically reviewed. A systematic literature
review was conducted to collate and describe the available dose-response studies for adenovirus
vectored vaccines. Of 2787 papers identified by Medline search strategy, 35 were found to conform to
pre-defined criteria. The majority of studies were in mice or humans and studied adenovirus serotype
5. Dose-response data were available for 12 di↵erent immunological responses. The majority of
papers evaluated three dose levels, only two evaluated more than five dose levels. The most common
dosing range was 107–1010 viral particles in mouse studies and 108–1011 viral particles in human
studies. Data were available on adenovirus vaccine dose-response, primarily on adenovirus serotype
5 backbones and in mice and humans. These data could be used for quantitative adenoviral vectored
vaccine dose optimisation analysis.

Keywords: dosing; dose-response; adenovirus-vectored vaccines; immunogenicity; clinical;
pre-clinical

1. Introduction

The methods of finding doses for optimal vaccine delivery in humans is an empirical science.
Frequently, vaccine developers have relied on historic information to conduct small dose-ranging
studies in animal models, and then used these data to design further studies in humans, despite
the relationship between animal and human dose being unproven [1]. Unlike allometric analysis
used in pharmacokinetic/pharmacodynamic assessments in small molecule drug development [2],
there are no published or widely accepted allometric scaling factors to easily translate animal vaccine
dose-responses to human vaccination. Thus, each vaccine development group collates the relevant
literature, and their own data, to determine how to design initial animal or human dose-response
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studies. Unfortunately, recent evidence suggests that this empirical method of dose selection has, in
part, led to suboptimal dose identification in humans for diseases, such as yellow fever, meningitis and
malaria [3–6].

Recently developed mathematical modelling methods, referred to as
immunostimulation/immunodynamic (IS/ID) modelling, attempts to address these issues [7–10]. IS/ID
modelling was developed to address the lack of quantitative methods in vaccine development [11].
The aim of IS/ID is to translate pharmacokinetic/pharmacodynamic (PK/PD) methodology to vaccine
development, and preliminary IS/ID modelling has shown promise in accelerating vaccine dosing
decisions. Modelling of the dose-response curve and cross-species translation of tuberculosis vaccine
dosing data have predicted a lower human dose than previously tested [7,9], and showed that
antibody response against human parainfluenza virus may be maximised by an intermediate dose [12].
To inform future IS/ID modelling, dose-response data must be collated. However, these data can also
provide valuable insight into study designs that are currently used to explore vaccine dose-response,
as understanding the scope of previous dose-ranging trials may be of use in determining the cause of
suboptimal dosing.

Adenovirus vectored vaccines have been widely investigated for their ability to induce antibody
and T cell responses against infectious diseases and cancers [13]. However, the dose-response for
adenoviral vectored vaccines has not yet been systematically investigated. In this systematic review,
we aim to explore and collate available adenoviral dose-response data for the purpose of informing
adenoviral dosing towards safer and more e↵ective vaccination. Our objectives were to:

1. Assess the number of available papers, including adenoviral dose-response studies, and the
distribution of host species and adenoviral serotypes within these papers.

2. Assess which immunological responses dose-response data were available.
3. Assess the dosing strategies used in adenoviral dose-ranging studies, including number and

magnitude of dose levels.

This systematic review should help inform adenoviral vaccine developers in choosing dose amounts
for first-in-human trials. The collated data on dose-response, and replicating incompetent adenovirus-based
vaccines, will also be used to inform IS/ID modelling studies for vaccine dose optimisation.

2. Materials and Methods

The study protocol was registered in PROSPERO (CRD42017080183).

2.1. Study Types, Study Design, Population, Intervention and Outcome Measures

Papers on clinical trials and in-vivo pre-clinical studies, that presented data from adenovirus
vector-induced immunogenicity, were included in the review. These could include data from humans
and animals of any age, sex and genetic background who received adenoviral vectored vaccines
administered intramuscularly or subcutaneously. We did not assess study design aspects, such as
methods of randomisation or use of control groups. The primary outcome measures were humoral
and cellular immunity.

2.2. Search Strategy

The MEDLINE (PubMed) database was searched from inception to 27 November 2018. The search
was limited to papers published in English and included terms relating to the following concepts:
Adenovirus-vectored vaccines, immunogenicity, and dose-response (Appendix A, Criteria A1).

2.3. Paper Selection (Inclusion/Exclusion Criteria)

A three-stage screening process was used to systematically screen retrieved references and assess
whether they met the inclusion criteria. Papers were first screened by title then by abstract before a
full-text screen was conducted (Appendix A, Figure A1).
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We included papers that presented data from studies with immunological response at three or more
dose levels of an adenoviral vectored vaccine. We included papers that captured CD4+/CD8+ T-cell
response, as measured by cytokine release using either ELISPOT or multiparameter flow cytometry
and/or humoral responses, including binding and neutralising antibody titres against the vector
and antigen. Exclusion criteria were chosen to minimize the probability of response being altered
by a non-dosal e↵ect, for example excluding cancer models and prime-boost paradigm vaccination
(Appendix A, Figure A2).

2.4. Data Extraction

Using a pre-designed data extraction spreadsheet, information relating to study characteristics
were extracted from studies that met the inclusion criteria. Numerical data from figures were extracted
using GraphClick version 2.9.2 (Arizona Software, Los Angeles, CA, USA). Papers could contain data
from multiple dose-response studies, and these studies may vary in adenoviral serotype, route of
administration, host species, or disease.

2.5. Assessment of Methodological Quality

Bias was controlled for by having two individuals participate in the original search, and on
abstract review. A review of 10 articles known to be relevant was conducted, to evaluate the degree of
completeness. No statistical methods were performed to assess publication bias.

2.6. Comparing Doses

Three di↵erent units of measurement of dose were used in the extracted studies; viral particles
(VPs), particle units (PUs), or plaque forming units (PFUs). Doses measured in VPs and PUs were
considered equivalent as they both measure the number of physical viral particles [14]. PFUs were
considered a separate outcome, as the ratio of VPs/PUs to PFUs were not constant in adenoviral
vaccines studies [15].

3. Results

3.1. Objective 1: Assess the Number of Available Papers Including Adenoviral Dose-Response Studies, and the
Distribution of Host Species and Adenoviral Serotypes within These Papers

Following removal of duplicate entries, 2787 references remained and were screened by title.
581 references were screened by abstract and 300 were screened by full text. After evaluation of the
full text, 265 of the papers were excluded. Therefore, 35 papers were included in this review [16–50].
The majority of papers contained studies conducted in mice (60%), followed by humans (26%) (Table 1).
Although, it is likely that many studies may have been carried out by industry using the same construct
in mice and humans, the number of published studies using the same adenoviral strain, route and
antigen insert across di↵erent species was limited.

Table 1. The number of papers that included dose-response studies for each host species identified in
the review.

Number of Papers (%) Host Paper References

21 (60%) Mouse [18,22,24–26,29,32–36,39–41,43–45,47–50]
9 (26%) Human [16,17,19–21,23,27,28,30]
2 (6%) Monkey [38,42]
2 (6%) Rat [37,45]
1 (3%) Rabbit [31]
1 (3%) Cattle [46]
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Out of all the adenoviral serotypes, the most common was human adenovirus 5 (46%), followed by
human adenovirus 35 (26%) (Table 2). The route of administration was more frequently intramuscular
(84%) than subcutaneous (16%).

Table 2. The number and percentage of papers that included dose-response data for each
adenovirus serotype.

Human Non-Human Primates

Ad5 (16, 46%) [22,24,25,29,31,33,34,38,39,42–46,49,50] ChAd63 (3, 9%) [24,30,43]
Ad35 (9, 26%) [19,21,23,24,26,28,35,36,39] ChAd3 (3, 9%) [16,17,24]
Ad26 (4, 11%) [26,27,32,37] AdC6 (1, 3%) [41]
Ad6 (2, 6%) [38,47] AdC7 (1, 3%) [40]
Ad28 (1, 3%) [24] sAd11 (1, 3%) [24]

sAd16 (1, 3%) [24]
sAdv-36 (1, 3%) [48]
ChAdOx1 (1, 3%) [20]

3.2. Objective 2: Assess for Which Immunological Responses Dose-Response Data Were Available

The immunogenicity data recorded also varied widely among the published studies, including
antibody responses (both binding and neutralizing), T cell ELISpot data, and CD4+ and CD8+ T cell
responses by intracellular cytokine staining. The majority of papers (51%) included studies of antibody
dose-response. (Table 3).

Table 3. The number and percentage of papers that included dose-response data for each immunological
response type.

Number of Papers (%) Response Type Paper References

18 (51%) Antibody [16,17,20–23,25–28,31,33,36,39,40,42,45,48]
12 (34%) T cell count [16,20,21,26–28,30,32,36,38,42,47]
12 (34%) CD8+ T cell count [19,22,24,32,34–36,38,39,48–50]
11 (31%) Virus Neutralisation Titre [22,25,27,29,30,34,36,37,43,44,46]
4 (12%) CD4+ T cell count [19,32,35,38]
3 (9%) CD8+ T Cell, IFN-y+ Percentage [19,21,41]
3 (9%) CD4+ T Cell, IFN-y+ Percentage [19,21]
2 (6%) CD4+ T Cell, TNF-a+ Percentage [19,21]
2 (6%) CD8+ T Cell, TNF-a+ Percentage [21]
2 (6%) CD4+ T Cell, IL-2+ Percentage [19,21]
2 (6%) CD8+ T Cell, Il-2+ Percentage [21]
1 (3%) CD4+ T Cell, Il-17+ Percentage [19]

3.3. Objective 3: Assess the Dosing Strategies Used in Adenoviral Dose-Ranging Studies, Including Number
and Magnitude of Dose Levels

3.3.1. Number of Dose Levels

The majority of papers (60%) included studies with three dose levels, which was the minimum
number of dose levels for a study to be included; 23% included four dose levels, and 20% included five
or more levels (Table 4).

Table 4. The number and percentage of papers containing studies at each number of dosing levels.

Number of Papers (%) Number of Dose Levels Paper References

21 (60%) 3 [17,19,22,24,25,27–30,32,34,35,37,38,40,42,44,46,48,49]
8 (23%) 4 [16,20,21,23,26,36,40,43]
5 (14%) 5 [18,33,39,41,45]
1 (3%) 6 [31]
1 (3%) 7 [47]



Vaccines 2020, 8, 131 5 of 12

3.3.2. Magnitude of Dose Levels

For VP/PU, the geometric mean human dose was 1.6 ⇥ 1010 (range 5 ⇥ 108–2 ⇥ 1011) (Figure 1a).
No human dose-response studies were measured in PFU. In VP, the geometric mean mouse dose was
4.9 ⇥ 107, (range 5 ⇥ 101–5 ⇥ 1011) (Figure 1b). The mean human dose was therefore approximately
3.2 ⇥ 102 times larger than the mean mouse dose. Four mouse dose-response studies measured dose in
PFU, with doses ranging between 1 ⇥ 104 and 1 ⇥ 109 PFU. Details on the magnitude of dose levels are
found in Appendix A, Figure A2.
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4. Discussion

In this review we aimed to collate data on adenovirus-based vaccines in preparation for
mathematical modelling to characterize the dose-response curve by host species, serogroup of
the adenovirus or route of administration. After screening, 35 papers were extracted that provided
dose-response immunogenicity data following intramuscularly or subcutaneously administered
adenovirus vectors in animals and humans. Data were primarily from mouse and human studies, and
included multiple di↵erent response types. From the adenoviral dose-response papers considered,
studies typically used three dose levels, with the average human dose being two orders of magnitude
larger than the average mouse dose. There were unfortunately very few comparator trials in which the
same vaccine was used in human and animal models, and much of the pre-clinical data from larger
industry companies are unlikely to have been published.

This review represents the first attempt to collate vaccine dose-response data, which has not
yet been done for adenoviral vectored or non-adenovirus vectored vaccines. The review found that
dose-response data existed for a wide range of immunological responses, both humoral and cellular.
This suggests that published dose-response data may exist for many important correlates of protection.
The broad spectrum of available data will be used to inform an IS/ID modelling study on adenoviral
dose-response curve shape. However, the majority of studies used too few doses to allow for true dose
response relationships to be clearly established, and thus, the majority of studies conducted are not
su�cient to allow the authors to clearly justify their dose selection. To establish a true sigmoidal curve
fit, at least five data points are needed to accurately model the response.

Whilst this review was able to identify 35 papers that may be useful in understanding adenoviral
vectored vaccine dose-response behaviour, there are factors that may limit the utility of the collated
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data. Firstly, it is likely that there exist vaccine dose-response studies that have not been published [51].
In order to predict dose-response in humans from animals for future vaccines, dose-response data
from an existing vaccine in multiple species is required. The unavailability of these data may hinder
attempts to develop an allometric scaling approach, therefore publishing of both clinical and pre-clinical
dose-response studies is of great importance. Secondly, most of the doses were measured in viral
particles, which may be a sub-optimal measure [52] as the infectious ratio, the number of viral particles
per infectious unit, can vary between vaccines [15]. Therefore, the use of VP in measuring vaccine dose
limits the comparisons in dose between di↵erent vaccines. Finally, when applying IS/ID modelling to
define the dose-response curve, it is also possible that, whilst three dosing levels may be su�cient to
theoretically define simple curves like a sigmoid function, this may not be a large enough number of
doses to determine dose-response behaviour with an appropriate degree of certainty.

The strategies used to optimise vaccine dosing are likely to be suboptimal. There might exist
mathematical descriptions of dose-response that are informative when choosing the various doses to
use for a given construct in a given species which have not yet been identified. Indeed, both Darrah
and Belovsky have shown that the highest dose was not the most e↵ective dose for adenoviral vectored
vaccination against Leishmania and non-adenovirus vectored vaccination against HIV [53,54], and yet
the bias to choose the maximum safe dose remains among most vaccine developers.

New methods of vaccine dose optimisation need to be developed. Understanding adenoviral
vaccine dose-response may be able to be achieved through reviewing and comparing historical
dose-response data and combining these with mathematical modelling methods. This may aid in
ensuring that the optimal dose for protection and safety is identified, while minimising the number of
human and animal participants required to decide that dose.
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Appendix A

Criteria A1. Search Terms, PubMed

Strategy PUBMED Search #

Concept 1 Adenovirus adenovirus OR adenoviral OR adenovector OR adenovectors OR adenoviridae 1

Concept 2 Dose
dose OR doses OR dosage OR dosages OR dosing OR dosed OR dose response
OR dose-response OR dose responses OR dose-responses OR dose response
relationship OR dose-response relationship

2

Concept 3 Immune
response

immunity OR immune OR immune-response OR immune response OR
immune responses OR immune-responses OR immunostimulation OR
immunodynamic OR immunodynamics OR immunisation OR immunisations
OR immunization OR immunizations OR immunise OR immunises OR
immunize OR immunizes OR immunised OR immunized OR immunising OR
immunizing OR immunogenecity OR immunogenic OR immunology

3

Combine with AND #1 AND #2 AND #3
Add filter: Humans, Other Animals, English
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Criteria A2. Exclusion Criteria

A study was excluded if it; (a) was a gene transfer study, (b) was conducted in cancer models,
(c) presented no immunological readouts, (d) used replication-competent adenovirus, (e) did not
administer adenovirus via an intramuscular or subcutaneous route, (f) used adenovirus as a boost in
a heterologous prime-boost vaccination regimen, (g) used adenovirus as a prime, in a heterologous
prime-boost regimen, and did not report on immunological parameters post-prime and pre-boost,
(h) presented a homologous dosing regimen with no reported immunological parameters after the
initial dose, (i) only reported on immune parameters following a disease challenge, (j) co-administered
an adjuvant, administered an adjuvant prior to adenovirus delivery or used an ad-juvant-encoded
adenovirus vector, (k) only reported on pulmonary immunity to the adenovirus (l) presented only
data on gene expression, (m) used a sample size of less than five mice per group, or less than
three for non-human primates, (n) presented in-vitro derived data, or (o) was a systematic review
or meta-analysis.
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Chapter 3. Analysis of adenoviral vector 
vaccine dose-response curves in prior 
studies: Paper 2 

Chapter 3 Introduction  
For chapter 3, I used the data that was gathered through the systematic review 

described in chapter 2/paper 1 to evaluate the prevalence of single-administration 

non-replicating adenoviral vector vaccine dose-response that was best described by 

representative peaking and saturating curve shapes. This was a modelling meta-

analysis, using a ‘model-selection’ approach where the representative curves were 

calibrated to the available dose-response data, and the model that best described 

the data determined by the Akaike Information Criterion. This chapter addresses 

objective 2 of this thesis. 

As I have noted, previous work has observed the potential for vaccine dose-

immunogenicity response to be better described by peaking that saturating curves. 

The relevance of this observation to clinical vaccine development depends on the 

prevalence of ‘peaking’ or ‘saturating’ dose-response. For example, if peaking dose-

response is rarely observed then the negative impacts of a saturating dose-response 

assumption in practical vaccine development may be minimal. Additionally, if the true 

prevalence of peaking/saturating dose-response could be determined, then this 

information could be used to inform priors for model averaging methods in future 

vaccine development [189]. Whilst such application across all vaccines would require 

a meta-analysis of as many vaccines as possible, I considered only single-

administration non-replicating adenoviral vector vaccines. This was done to limit 

scope and to leverage the domain expertise in adenoviral vector vaccines that was 

available through my supervisory team. 

I hypothesised given previous IS/ID findings that there would be available both dose-

response data that were best described as peaking and that were best described as 

saturating [49,50]. If this was true, it may be relevant to be able to predict which 

dose-response curve shape will best describe dose-response for a novel vaccine. 
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Discussion with my supervisor Thomas Evans suggested that the vaccine attributes 

of immunological response type, host species, adenoviral species and route of 

administration may be attributes that could affect dose-response curve shape. 

Therefore, I also considered whether these attributes may be likely predictors of 

vaccine dose-response curve shape. In objective 2 of this chapter, I considered 

whether curve shape is typically the same for vaccines that are alike in all four of 

these attributes. In objective 3, I considered whether curve shape is typically the 

same for vaccines that were alike in three of these attributes to investigate which of 

these attributes that may be less likely to affect curve shape.  
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Abstract: Vaccine dose-response curves can follow both saturating and peaking shapes. Dose-response
curves for adenoviral vector vaccines have not been systematically described. In this paper,
we explore the dose-response shape of published adenoviral animal and human studies. Where data
were informative, dose-response was approximately five times more likely to be peaking than
saturating. There was evidence that host species and response type may be su�cient for prediction of
dose-response curve shape. Dose-response curve shape prediction could decrease clinical trial costs,
accelerating the development of life-saving vaccines.

Keywords: dosing; dose-response; adenovirus-vectored vaccines; dose dynamics

1. Introduction

Vaccination is e↵ective globally at preventing disease and reducing morbidity and disability [1].
Over recent decades, adenovirus, a vaccine vector used for prophylactic and therapeutic vaccination,
has been widely applied, due to both the safety and induction of specific antibodies and T-cells by
adenoviral-vectored vaccines [2]. However, adenoviral vaccine developers must still take care to avoid
potentially severe adverse e↵ects whilst ensuring that the developed vaccines are e�cacious and
a↵ordable [3].

A key step in implementing a new vaccine is optimisation of the dosing quantity (hereafter
‘dose’) [4]. As the dose per individual is increased, the cost per individual vaccinated and vaccine toxicity
may also increase [5]. We might also assume that the protective e�cacy of a vaccine may vary with dose.
Optimising a vaccine dose requires establishing a dose that is protective, or induces the highest desired
immunological response, whilst avoiding dose-dependent toxicity and minimising cost. Optimising
adenoviral vaccines should therefore be approached using multi-objective optimisation methods.

To e↵ectively optimise dose, the relationship between magnitude of dose and immunological
response must first be understood. Qualitatively, one might assume that as a dose increases,
two types of dose-response relationships may occur, saturating or peaking. A saturating relationship,
usually referred to as a sigmoidal response, implies the response is strictly increasing as dose increases,
but plateauing so that an increase in dose gives a negligible increase in response beyond a certain
threshold. A peaking relationship implies that there exists some dose for which the response is
maximised, and that an increase in dose would lead to a decreased response. Historically, pre-clinical
trials typically have made the assumption of a saturating curve shape [6]; however, research has
shown that for both tuberculosis and influenza vaccines a peaking shape may better describe the
dose-response curve [7,8]. Adenoviral vaccine dose-response curve shape has not yet been established.
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We aim to provide insight into adenoviral dose-response such that vaccine developers may better
optimise adenoviral vector vaccines dosing. Our objectives were:

1) assessing the prevalence of peaking/saturating dose-response curve shapes in published adenoviral
vector vaccine studies.

2) assessing whether dose-response curve shape may be predicted by response type, host species,
adenoviral species and route of administration (RoA).

3) assessing which of host species, adenoviral species and RoA are the most likely predictors of
dose-response curve shape.

Understanding these objectives may be key in predicting likely dose-response curve shape,
reducing the number or trial subjects required to determine curve shape and therefore reducing cost
for adenoviral dose-response trials.

2. Materials and Methods

2.1. Data Collation and Preparation

The data were identified in a systematic review of adenoviral dose-response [9], summarised here.
In summary, PubMed was searched systematically using terms related to the concepts of adenovirus
vector vaccines, immunogenicity, and dose-response through 23 November 2018. Inclusion required
prime response data for replication-defective adenovirus vector vaccines with intramuscular (IM)
or subcutaneous (SQ) RoA. We excluded cancer models and data where the vaccine was adjuvant
coadministered or was recorded post challenge or boost. Non-primate studies were excluded if there
were less than 5 animals per dose, and non-human primate data excluded if there were less than 3
individuals per dose. As both representative curves had three unknown parameters, only studies with
at least three non-placebo dose-response datapoints were included.

Data collation included vaccine name, vaccine backbone, host species, RoA, response type,
response units, time point, whether the response was a summary statistic or individual and the endnote
reference for the paper. Studies that provided dose-response data from multiple experiments, and/or
multiple time points within the same experiment, were included as separate datasets. In almost
all cases the titres were reported as viral particles (VPs), which are less informative in cross study
comparisons than infectious units (IUs) [10]. The ratio of VP:IU ranges from 20:1 to 150:1 but is usually
found in the 40–80 range.

2.2. Objective 1: Assessing the Prevalence of Peaking/Saturating Dose-Response Curve Shapes in Published
Adenoviral Vector Vaccine Studies

In this objective we chose representative peaking and saturating curves and calibrated both curves
to the dose-response data. Goodness-of-fit tests were used to determine which curve shape best
described each trial dataset, and the prevalence of “peaking” or “saturating” curves across the whole
dataset was calculated.

2.2.1. Representative Curves

A sigmoidal and gamma probability density function (PDF) were chosen as the representative
dose-response curves for saturating and peaking behaviour respectively (Figure 1). See the Appendix A
for the curve equations (Equations (A1) and (A2)).
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Figure 1. Examples of a representative curve for (a) peaking and (b) saturating behaviour.

2.2.2. Calibrating Curves to Data

Calibration of the curves to the data was done by finding the parameter estimates that minimise
squared error iteratively. Specifically, the nls and nls2 functions in R were used [11,12], which used
a brute force algorithm to find reasonable starting parameters and the nl2sol algorithm to further
minimise the squared error [13].

The Akaike Information Criterion (AIC) was calculated for both the calibrated peaking and
saturating curve for each dataset. The curve shape with the lower AIC was defined as best describing
the dataset [14]. The absolute di↵erence between the AIC between peaking and saturating curves for
a given dataset was defined as DAIC. DAIC was used to calculate the support a dataset had for one
either curve shape, as follows [14]:

• Provides no evidence, DAIC <2
• Positive evidence, 2  DAIC < 6
• Strong evidence, 6  DAIC < 10
• Very strong evidence 10  DAIC

A dataset where DAIC was greater than or equal to 2 was defined as a dataset “providing
evidence” towards either peaking/saturating curve shape and not providing evidence otherwise.
Figure 2 shows an example of calibrated peaking and saturating curves and their respective AICs for a
three datasets, one for which no curve is superior to the other (DAIC <2), and one each for which the
peaking/saturating curve was superior (DAIC >2)

2.2.3. Calculating Dose-Response Curve Shape Prevalence

The prevalence of datasets providing evidence for either of the curve shapes were calculated.
One-sampled, two-tailed t-tests were used to estimate the 95% confidence interval for the probability
of a dataset providing evidence for peaking or saturating shape. We also calculated the prevalence of
curve shapes by response type, and in only human studies.

2.2.4. Exploring Potential Bias of Independence Assumption

To explore if our conclusions on prevalence of peaking vs saturation curve share were robust to
removing datasets from multiple time points with the same study, we repeated the analysis with each
study contributing only one dataset.
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Figure 2. An example of three datasets; (a) does not provide evidence to support one curve shape
over the other (i.e., DAIC = 0.05 < 2), (b) provides evidence to support a saturating curve shape over
a peaking curve shape (i.e., DAIC = 6.63 > 2), and (c) provides evidence to support a peaking curve
shape over a saturating curve shape (i.e., DAIC = 13.43 > 2). For each dataset, the top plot shows
the calibrated peaking curve and associated Akaike Information Criterion (AIC), and the bottom plot
shows the calibrated saturating curve and associated AIC. Black dots represent individual mice and
blue dots represent the mean response for that dose.

2.3. Objective 2: Assessing whether Dose-Response Curve Shape may be Predicted by Response Type,
Host Species, Adenoviral Species, and Route of Administration (RoA)

In this objective we grouped each dataset by response type, host species, adenoviral species and
RoA. Within groups, consistency of curve shape was evaluated. This allowed us to assess whether
these attributes could predict dose-response curve shape.

2.3.1. Grouping

We grouped each dataset by response type, host species, adenoviral species and RoA.

2.3.2. Evaluating Consistency

This analysis used groups with at least two datasets providing evidence (2  DAIC). A group
was defined as consistent if all datasets within that group provided evidence for the same curve
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shape, and inconsistent if not. A binomial test was used to determine the confidence interval for the
probability of within group consistency.

2.4. Objective 3: Assessing which of Host Species, Adenoviral Species and RoA are the most likely Predictors of
Dose-Response Curve Shape

In this objective we paired datasets that di↵ered in one of the attributes host species, adenoviral
species and RoA. Within pairs consistency of curve shape was evaluated. Pairwise consistency was
evaluated stratified by the attribute that di↵ered in the pair. This allowed us to assess whether a change
in host species, adenoviral species or RoA would lead to a change in dose-response curve shape.

2.4.1. Pairing

Only datasets that provided evidence (2  DAIC) were considered in the analysis. We defined a
pair as two datasets with the same response type and two of host species, adenoviral species and RoA
the same (Figure 3).

Figure 3. A representation of the definition of a comparing across group, simplified to the 2 attributes
of host and route of administration (RoA). For analysis of consistency of shape across groups, a
dataset from group Mouse/IM (purple cell) would be paired with only datasets from group Mouse/SQ
when predicting across RoA (red cells), and with only datasets from groups Human/IM, Rat/IM and
Monkey/IM when predicting across host species (blue cells). This was extended to the full 4 attribute
dimensions in the analysis.

2.4.2. Evaluating Consistency

A pair was defined as consistent if both datasets within that pair provided evidence for the same
curve shape, and inconsistent if not. For each of the attributes of host species, adenoviral species
and RoA an exact one-sided binomial test was conducted, with trials being the number of pairs for
that attribute and successes being the number of consistent pairs for that attribute. This was used to
determine the confidence interval for the probability that altering that attribute would not alter the
dose-response curve shape. For example, an Antibody/Mouse/Species C/IM dataset could be paired
with an Antibody/Mouse/Species C/SQ dataset to examine consistency when varying on RoA.

3. Results

3.1. Data

The systematic review identified 2787 references, reduced to 581 by title screening, then 300
by screening of the abstract. Screening by full text reduced the number of papers available for
analysis to 35 [15–49]. These ranged across five Adenoviral species (B,C,D,E and G), six Host species
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(Cattle, Human, Monkey, Mouse, Rabbit and Rat), and two routes of administration (IM and SQ).
The data ranged across 12 di↵erent responses including antibody, T-cell and neutralization titre.
The full list of response types considered are in Table 1, and the matrix of papers and their response
type/hosts/adenoviral species/RoA can be found in Table A1. Details of the vectors in these papers,
including species and origin, can be found in Supplementary S1a and S1b.

3.2. Objective 1: Assessing the Prevalence of Peaking/Saturating Dose-Response Curve Shapes in Published
Adenoviral Vector Vaccine Studies

3.2.1. Overall Prevalence

In total, 191 datasets were extracted from the 35 papers (Supplementary Figure S1, Supplementary
Tables S1–S12). Datasets on Antibody, T-cell, and CD8+ response data were the most common,
each with 30+ datasets. 20+ datasets were available on virus neutralising titre.

Of the 191 datasets, 73.3% (140/191) did not provide evidence for either curve shape (Total that
provided evidence, Table 1). Also, 22.0% (42/191) of datasets provided evidence for a peaking shape,
and 4.7% (8/191) of datasets provided saturating evidence (total provided evidence = 26.7% (50/191)).

Of datasets that provided evidence for peaking or saturating curve shape, datasets were five times
more probable to provide peaking evidence than saturating evidence. Using two-tailed binomial tests
with 95% confidence intervals, we estimated that the true probability of a dataset providing peaking
evidence across all data was 16.3% to 28.5%, versus 1.8% to 8.1% for saturating evidence.

3.2.2. Prevalence by Response Type

Similarly, the true probability for datasets providing very strong peaking evidence was in the
interval 6.9% to 16.3%, compared to 0.0% to 2.9% for very strong saturating evidence [Table 1]. Antibody,
T-cell, and Virus Neutralisation responses had datasets providing evidence for both peaking and
saturating behaviour. All other responses provided evidence for peaking shape curve shapes only.

3.2.3. Prevalence in Human Data

37 datasets provided data on humans (Table 2). Of these, 56.8% were shown to provide no
evidence for either curve shape, 43.2% provided evidence for a peaking shape and 0.0% provided
evidence for a saturating shape.

3.2.4. Exploring Potential Bias of Independence Assumption

37 datasets were available after excluding multiple datasets from the same study. Our results were
robust to this analysis, with the peaking to saturating evidence ratio remaining approximately 5:1.

3.3. Objective 2: Assessing whether Dose-Response Curve Shape may be Predicted by Response Type, Host
Species, Adenoviral Species, and Route of Administration (RoA).

52/720 (7.2%) groups contained at least one dataset (Supplementary Tables S1–S12).

Evaluating Consistency

11/52 groups contained at least two datasets that provided evidence (DAIC>2) (Table 3). Of these
groups 100% (11/11, 95%CI = 71.5–100%, p <0.001) were consistent, i.e., all datasets provided evidence
for the same curve shape. Of the 11 groups, 18.2% (9/11) only had evidence towards a peaking shape
and 81.8% (2/11) only had evidence towards a saturating shape.
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Table 1. Number of datasets for each level of evidence, sorted by response type.

Total Number of All Datasets by Level of Evidence and Response

Response Type
Very Strong

Peaking 10 DAIC

Strong Peaking

6 DAIC <10

Positive Peaking

2 DAIC <6

No Evidence

DAIC<2

Positive Saturating

2 DAIC <6

Strong Saturating

6 DAIC <10

Very Strong

Saturating 10 DAIC

Total Number of

Datasets for Response

Antibody 3 0 2 46 1 1 1 54
T-Cell 1 2 0 27 3 1 0 34
CD4+ 1 1 0 4 0 0 0 6
CD8+ 11 3 7 42 0 0 0 63

CD4 IFN�+ 1 1 0 0 0 0 0 2
CD8 IFN�+ 1 0 0 2 0 0 0 3

CD4+ TNF↵+ 0 0 1 1 0 0 0 2
CD8+ TNF↵+ 0 0 1 0 0 0 0 1
CD4+ IL-2+ 1 0 0 1 0 0 0 2
CD8+ IL-2+ 0 0 1 0 0 0 0 1

CD4+ IL-17+ 0 0 1 0 0 0 0 1
Virus Neutralization Titre 2 0 1 17 1 1 0 22

Total that provided
evidence (%)

42
(22.0%)

140
(73.3%)

8
(4.7%) 191

The far left column indicates response for that row type, the far right column gives the response type distribution of the whole dataset. The other columns indicate type of evidence and the
number of datasets found for that response type and type of evidence. The opacity of the red colouring was equal to the proportion of datasets for that row’s response type for which that
type of evidence was found, so a darker red indicates that for this response type this type of evidence was more prevalent than for a cell in that row with a lighter red. The opacity of the
blue colouring for each response type in the far right column was equal to the proportion of total datasets which had that response type, so a darker blue indicates that this response type
was more prevalent in the whole dataset than for a cell with a lighter blue. The final row summarises the number of datasets that provided peaking evidence, saturating evidence, or no
evidence across all datasets.

Table 2. Number of datasets for each level of evidence, for human only data.

Total Number of Human Datasets by Associated Level of Evidence

Very Strong

Peaking 10DAIC

Strong Peaking

6DAIC<10

Positive Peaking

2DAIC<6

No Evidence

DAIC<2

Positive Saturating

2DAIC<6

Strong Saturating

6DAIC<10

Very Strong

Saturating 10DAIC

All responses (%) 6 (16.2%) 4 (10.8%) 6 (16.2%) 21 (56.8%) 0 (0%) 0 (0%) 0 (0%)
Total that provided evidence (%) 16 (43.2%) 21 (56.8%) 0 (0%)

The opacity of the red colouring was proportional to the percentage of datasets that with that associated level of evidence, so a darker red indicates that this type of evidence was more
prevalent than for a cell in that row with a lighter red.
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Table 3. Summary of consistency of curve shape within groups.

Group

(Response Type /Host/Adenoviral

Species/Route of Administration)

Number of Datasets Providing

Evidence Towards a Peaking

Shape

Number of Datasets Providing

Evidence Towards a Saturating

Shape

Consistency

Antibodies/Human/B/IM 2 0 Consistent

Antibodies/Mouse/C/IM 2 0 Consistent

Antibodies/Monkey/C/IM 0 3 Consistent

T Cell/Mouse/C/IM 0 3 Consistent

CD4+/Human/B/IM 2 0 Consistent

CD8+/Human/B/IM 2 0 Consistent

CD8+/Mouse/C/IM 5 0 Consistent

CD8+/Mouse/C/SQ 6 0 Consistent

CD8+/Mouse/G/SQ 4 0 Consistent

CD4+ IFN�+/Human/B/IM 2 0 Consistent

Virus Neutralization Titre/Mouse/C/IM 2 0 Consistent

B= species B adenoviral vector. C= species C adenoviral vector. G= species G adenoviral vector. IM= intramuscular
RoA. SQ = subcutaneous RoA.

3.4. Objective 3: Assessing which of Host Species, Adenoviral Species, and RoA are the most likely Predictors of
Dose-Response Curve Shape

3.4.1. Evaluating Pairwise Consistency for Host

Of the 50 datasets with evidence, we found 14 pairings such that only the host species was di↵erent
(Figure 4). 5/14 pairs (27.3%) were consistent. An exact one-sided binomial test with 5 successes in
14 trials gave the 95% confidence interval for the probability of a pairing being consistent as 15.3% to
100.0% with p-value = 0.91. This was not considered significant evidence to support predicting curve
shape across host species.

Figure 4. Pairings that di↵ered in host species, examined for analysis of consistency between groups.
Each point represents a dataset that provided evidence, where P/S denotes the dataset had evidence
towards a peaking/saturating shape, respectively. Datasets were colour coded according to their host.
A solid line shows consistent pairings and a dashed line shows inconsistent pairings. B = species B
adenoviral vector. C = species C adenoviral vector. IM = Intramuscular route of administration.
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3.4.2. Evaluating pairwise consistency for adenoviral species

Of the 50 datasets with evidence, we found 64 pairings such that only the adenoviral species was
di↵erent (Figure 5), and 60/64 pairs (93.8%) were consistent. An exact one-sided binomial test with 60
successes in 64 trials gave the 95% confidence interval for the probability of a pairing being consistent
as 86.3% to 100% with p-value < 0.0001. This was considered significant evidence to support predicting
curve shape across adenoviral species.

Figure 5. Pairings that di↵ered in host species examined for analysis of consistency between groups.
Each point represents a dataset that provided evidence, where P/S denotes the dataset had evidence
towards a peaking/saturating shape, respectively. Datasets were colour coded according to their
vector species. A solid line shows consistent pairings and a dashed line shows inconsistent pairings.
B = species B adenoviral vector. C = species C adenoviral vector. D = species D adenoviral vector.
E = species E adenoviral vector. G = species G adenoviral vector. sAd16 = adenoviral vector was
sAd16. IM = Intramuscular route of administration. SQ = Subcutaneous route of administration.

3.4.3. Evaluating pairwise consistency for RoA

Of the 50 datasets with evidence, we found 31 pairings such that only the RoA was di↵erent
(Figure 6). 30/30 of these pairings (100%) were consistent. A one-sided binomial test with 31 successes
in 31 trials gave the 95% confidence interval for the probability of a pairing being consistent as 90.8%
to 100%, with p-value < 0.001. This was considered significant evidence to support predicting curve
shape across RoA.
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Figure 6. Pairings that di↵ered in RoA species examined for analysis of consistency between groups.
Each point represents a dataset that provided evidence, where P/S denotes the dataset had evidence
towards a peaking/saturating shape, respectively. Datasets were colour coded according to their Route
of Administration. A solid line shows consistent pairings and a dashed line shows inconsistent pairings.
C = species C adenoviral vector. E = species E adenoviral vector.

4. Discussion

In this work, peaking and saturating curves were fit to adenoviral data to determine dose-response
curve shape overall, and potential adenovirus vaccine attributes were assessed for their potential to
determine curve shape. The results suggested that evidence towards a peaked adenoviral dose-response
curve occurred five times more frequently than for a saturating curve. Curve shape was consistent
within groups, suggesting curve shape was determined by the combined attributes of response type,
host species, adenoviral species and RoA. There was strong evidence to support curve shape prediction
across adenoviral species and RoA, but not host species.

This study is the first of its kind in the field of adenoviral dose optimization, exploring broad
scale patterns in adenoviral dose-response across a large number of di↵erent candidate vaccines.
The broadness of the data allowed for exploration of the e↵ect of a wide range of vaccine attributes
on adenoviral vaccine dose-response, which has not been previously attempted. To our knowledge,
a systematic review to extract and evaluate vaccine dose-response data has never been done and this is
the first adenoviral example of describing dose-response curve shape.

This work represents the use of an approach towards using quantitative methods to better optimise
vaccine dosing. We have presented a rigorous statistical investigation into the prevalence of peaking
and saturating curve shapes and into the potential of using vaccine study attributes to predict curve
shape. Applying mathematical and statistical methods is novel in adenoviral dose optimisation and
was shown to be a reasonable approach towards predicting adenoviral dose response curve shape,
a potential advance from more empirical approaches to dose optimisation. Additionally, the calibration
of curves and shape analysis did not require specialised software or complex mathematical models,
meaning that a similar methodology could be implemented easily in future clinical trials, informed by
this work.

There were weaknesses and limitations to our work. Firstly, while we used data covering a broad
spectrum of published adenoviral studies, data was relatively sparse, and studies predominantly
used mouse hosts and species C adenoviral vectors. Secondly, for 73% of the data, no evidence for
either curve shape could be determined. A potential cause for this was that, for some of the datasets,
the number of doses analysed was too few or doses too similar in magnitude. It was rare for doses to
cross more than three log10, which is likely needed to see large di↵erences. Even for datasets where
evidence supporting one of the curve shapes was found, further empirical data collection may be
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useful to confirm the model classifications. Thirdly, it may be possible that neither the simple peaking
or saturating shape are optimal to describe adenovirus dose-response curves and there may exist more
complex curves that better describe dose-response data for specific groups. However, these simple
curves were deemed biologically plausible and chosen to analyse the consistency within and between
groups in order to make predictions where possible. Further assessment of curve fitting could be
considered if there were enough data sets with greater than 4 points over multiple logs of doses.
Fourthly, there was a lot of heterogeneity in the data sets. For example, the extracted data structure was
heterogeneous with some datasets on the individual level and others summarised across individuals.
The heterogeneity limited the modelling approaches that could be applied to the data.

The methods of this work align well with the new field of Immunostimulation/Immunodynamic
(IS/ID) modelling [4]. This field suggests modelling as a useful approach towards understanding how a
vaccine’s e�cacy depends on dose. Similar to our work, other IS/ID modelling studies have fit statistical
curves and mathematical models to dose-response data for novel tuberculosis vaccine, H56+IC31 [8]
and parainfluenza/influenza vaccines HPIV-3 and IAV [7] to determine curve shape. For H56+IC31 and
HPIV-3, peaking curve shape was found to be a better description of the dose-response curve shape
compared to a saturating shape [7,8], consistent with our results for adenoviral vaccines. However, the
influenza vaccine, IAV, was found to be saturating [7].

We found that for adenoviral vaccines, peaking dose-response curve shapes are more prevalent
than saturating shapes. Dose escalation studies may therefore not be an appropriate method of
adenoviral dose optimisation, as they typically assume a saturating dose-response curve shape and
select the maximal safe dose. As such, we recommend that adenoviral dose-response studies should
include analysis of immunogenic outcomes chosen by their likelihood of association with protective
responses, and not just toxicology, to optimise dose.

In objectives 2 and 3 we showed it may be possible to predict adenoviral dose-response curve
shape using data from similar adenoviral dose-response studies. We suggested the likely attributes
that would need to be the same to justify that prediction, i.e., response type, host species, adenoviral
species, and RoA. We also showed that host species and response type may be su�cient for prediction
of dose-response curve shape. Hence, if the dose-response curve shape is known for one vaccine for a
given host species and response type, we may be able to inform and predict dose response curve shape
for another vaccine regardless of di↵erences in adenoviral species and RoA.

We could not explore the e↵ects of other potential attributes that could influence dose-response
curve shape. Stratifying by pathogen would have reduced group size, preventing analysis of curve
shape within group. There exist other attributes that some of the data did not measure, which could
similarly not be used to establish impact on dose response curve shape. Whilst this is a limitation of
our work, we still found groups to be 100% consistent. This may imply that attributes that were not
explored in this work are not required for predicting curve shape. This would support prediction of
dose-response curve shape using dose-response data from vaccine targeted against a di↵erent pathogen.
We did not stratify by whether adenovirus vectors were simian or human derived. This could be future
areas of adenoviral dose-response curve research.

Though we have shown that prediction of adenoviral vaccine dose-response may be possible,
validating such predictions would be an important area of future research. Which attributes cause the
shape to be peaking and which cause the shape to be saturating should also be determined, as we
assessed consistency of shape not the causal pathway in which attributes may alter dose response
curve shape. Understanding the attribute causation of curve shape could result in the development of
a tool that can suggest the probability that a novel vaccine will have a peaking or saturating curve
shape. Aggregation of future adenoviral dose-response studies with those analysed here would aid
in developing such a tool. Even without such a tool, this work suggests that to predict curve shape
all that is required is to have a previously established adenoviral dose response curve shape for that
response type and species.
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Whilst this work showed evidence that vaccine dose-response curve shapes may be either peaking
or saturating, a method of optimally designing vaccine trials to best determine dose-response curve
shape is yet unknown. This is another area where future research could lead to better dose optimisation.

Statistical models, like those in this paper, allow shape to be determined. With su�cient data,
a mechanistic model, like those used in [7,8], may allow for a more accurate prediction of optimal
dose and deeper understanding of longitudinal dose-response, and such approaches merit further
investigation in an adenoviral context.

5. Conclusions

We found that where data were informative, dose-response was approximately five times more
likely to be peaking than saturating. We also found that there was evidence that host species and
response type may be su�cient for prediction of dose-response curve shape. We found that where
data were informative, dose-response was approximately five times more likely to be peaking than
saturating. We also found that there was evidence that host species and response type may be su�cient
for prediction of dose-response curve shape.
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Figure S1: All datasets complete with peaking and saturating curves after parameter estimation and associated
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Appendix A

Equations A1 and A2
Functions of x for the Equation (A1) sigmoidal and Equation (A2) gamma PDF functions, with

parameters a,b,c, and G being the gamma function.
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Table A1. Table of papers analysed and the respective response types, vector species, host species and RoA analysed in those papers. Also included is a reference list
for adenoviral papers from which data were extracted. Papers were stored and denoted by their identification number in the bibliography software used and are
referred to as such in the supplementary document of datasets.

Response Type
Vector

Species
Host Species

Route of

administration

Papers Antibodies T cell CD4+ CD8+
%CD4+
that is

IFN+

%CD8+
that is

IFN+

%CD4+
that is

TNF+

%CD8+
that is

TNF+

%CD4+
that is

IL2+

%CD8+
that is

Il-2+

%CD4+
that is

Il-17+

Virus

Neutralization

Titre

B C D E G None Rabbit Mouse HumanCattle MonkeyRat SQ IM

140 [15] 1 1 1 1
249 [16] 1 1 1 1
305 [17] 1 1 1 1
309 [18] 1 1 1 1 1 1 1 1 1 1
417 [19] 1 1 1 1 1
441 [20] 1 1 1 1 1 1 1 1 1 1 1
461 [21] 1 1 1 1 1 1
467 [22] 1 1 1 1
555 [23] 1 1 1 1 1 1 1 1 1
574 [24] 1 1 1 1 1
578 [25] 1 1 1 1 1 1
594 [26] 1 1 1 1 1 1
633 [27] 1 1 1 1 1
669 [28] 1 1 1 1
686 [29] 1 1 1 1 1
744 [30] 1 1 1 1
924 [31] 1 1 1 1 1 1
936 [32] 1 1 1 1

1039 [33] 1 1 1 1
1201 [34] 1 1 1 1 1
1269 [35] 1 1 1 1 1 1 1
1343 [36] 1 1 1 1
1474 [37] 1 1 1 1 1 1
1492 [38] 1 1 1 1 1 1
1539 [39] 1 1 1 1
1801 [40] 1 1 1 1
1877 [41] 1 1 1 1 1
2030 [42] 1 1 1 1 1
2505 [43] 1 1 1 1
2531 [44] 1 1 1 1 1
2841 [45] 1 1 1 1
2916 [46] 1 1 1 1
2919 [47] 1 1 1 1 1
2980 [48] 1 1 1 1
3018 [49] 1 1 1 1

Sum 18 12 4 12 2 3 2 1 2 1 1 11 9 18 4 9 1 1 1 21 9 1 2 2 5
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Supplementary material for paper 2 
These supplementary are adapted from those that were included with the published 

version of this paper, which can be found online [190].  

Supplementary Figures 
Figures showing calibrated peaking and saturating curves for all available data. 

Figures are arranged hierarchically by response type, vector species, host species 

and route of administration, and paper number, in that order. For each dataset, the 

time since inoculation is given, along with the vector if there were more than one 

used in that paper. For each dataset two plots are shown, with the left plot including 

the calibrated saturating curve and the right plot the calibrated peaking curve. The 

AIC is included for each. Blue dots represent the mean response for each dosing 

group. Black dots represent individual responses or upper and lower confidence 

intervals, depending on the data availability for that dataset. The x axis for each plot 

is the log10 of the given dose, and the y axis is this recorded response for that 

dataset, as given in the paper that the dataset was taken from.  

I only show the subfigures for the first paper of the first group of data 

(Antibody/Vector Species B/ Host Species Mouse/RoA IM) here for demonstration, 

the other figures are included in the appendix of this thesis [A.D.1.Supplementary 

Figures] 

Response Type: Antibody 
Vector Species: B 
Host Species: Mouse 
Route of Administration: IM 
Paper 578:  
Day 28 - Ad35 Zaire 

 
Day 28 - Ad35 Angola 
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Day 28 - Ad35 S/G 

 
Day 28 - Ad35 Ravn 

 
Day 28 - Ad35 I.C 

 

Figure S.Figures.A. A small subsection of the plotted calibrated models. Left shows the 
saturating curve and right shows the peaking curve. 

Supplementary Tables 

These tables summarise the datasets in Supplementary Figures S1 including the 

level of evidence towards either a peaking or saturating curve shape, determined by 

AIC difference. An ‘x’ is used to identify the level of evidence. There exists a table for 

each response type. Bold lines are used to show when the group the dataset 

belongs to changes. The left most column combined with the response type of the 

table gives the group. Each dataset also includes the paper number the dataset was 

gathered from and the days post inoculation that the responses were measured.  

I only show the first table here for demonstration, the other tables are included in the 

appendix of this thesis [A.D.1.Supplementary Tables] 
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Antibodies 
Group 

(Adenoviral Species/Host 
Species/Administration 

Route) 

Paper Days post 
inoculation 

Absolute 
Peaking 
Evidence 

(>10) 

Strong 
Peaking 
Evidence 

(10-6) 

Slight 
Peaking 
Evidence 

(2-6) 

No 
Evidence 

(<2) 

Slight 
Saturating 
Evidence 

(2-6) 

Strong 
Saturating 
Evidence 

(10-6) 

Strong 
Saturating 

Evidence (>10) 

B/Mouse/IM 
578 

28    x    

28    x    

28    x    

28    x    

28    x    

1269 56    x    
1492 14    x    

B/Human/IM 
441 28    x    

467 60   x     

633 28 x       

C/Rabbit/IM 744 28    x    

C/Mouse/IM 

461 
7    x    

14    x    

574 

7    x    

21    x    

35   x     

49    x    

63    x    

77    x    

91    x    

119    x    

147    x    

161    x    

1492 14    x    

2531 
10 x       

10    x    

C/Mouse/SQ 936 
35    x    

35    x    

C/Human/IM 

140 28    x    

249 
14    x    

28    x    

180    x    

C/Monkey/IM 1877 

28      x  

56       x 
84    x    

112     x   

140    x    

C/Rat/IM 2531 
10    x    

10 x       

D/Mouse/IM 578 28    x    
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28    x    

28    x    

28    x    

28    x    

D/Human/IM 594 14    x    

E/Mouse/IM 
1539 

14    x    

28    x    

42    x    

14    x    

28    x    

42    x    

2919 20    x    

E/Human/IM 417 
14    x    

21    x    

Count 3 0 2 46 1 1 1 

Table S1. Evidence for antibody response 

Vectors by Paper 

Paper 
Number Present Paper Name Vector(s) 

140 [15] 

Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian 
adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label 
and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-
controlled trial ChAd3 

249 [16] A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA ChAd3 

305[17] 

Characterization of T-Cell Responses to Conserved Regions of the HIV-1 Proteome in BALB/c 
Mice ChAdV63 

309 [18] 
The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated 
with BCG, and induces dose-dependent CD4 and CD8T cell responses Ad35 

417 [19] 
Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored 
vaccine expressing conserved Influenza A antigens ChAdOx1 

441 [20] 

A phase 1b randomized, controlled, double-blinded dosage-escalation trial to evaluate the 
safety, reactogenicity and immunogenicity of an adenovirus type 35 based circumsporozoite 
malaria vaccine in Burkinabe healthy adults 18 to 45 years of age Ad35 

461 [21] 
Beta-defensin 2 enhances immunogenicity and protection of an adenovirus-based H5N1 
influenza vaccine at an early time Ad5 

467 [22] 
Randomized, placebo-controlled trial to assess the safety and immunogenicity of an 
adenovirus type 35-based circumsporozoite malaria vaccine in healthy adults Ad35 

555[23] 

Comparative analysis of the magnitude, quality, phenotype, and protective capacity of 
simian immunodeficiency virus gag-specific CD8+ T cells following human-, simian-, and 
chimpanzee-derived recombinant adenoviral vector immunization 

Ad35, sAd11, sAd16, 
ChAd3, Ad5, Ad28, 
ChAd63 

574 [24] 
Recombinant adenovirus expressing type Asia1 foot-and-mouth disease virus capsid proteins 
induces protective immunity against homologous virus challenge in mice Ad5 

578 [25] 
Ad35 and ad26 vaccine vectors induce potent and cross-reactive antibody and T-cell 
responses to multiple filovirus species Ad35, Ad26 

594[26] 
First-in-human evaluation of the safety and immunogenicity of a recombinant adenovirus 
serotype 26 HIV-1 Env vaccine (IPCAVD 001) Ad26 

633 [27] A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 Ad35 

https://www.zotero.org/google-docs/?QzxfFm
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adenovirus subtype 35 vector vaccine in healthy uninfected adults 

669 [28] 
Impact of preexisting adenovirus vector immunity on immunogenicity and protection 
conferred with an adenovirus-based H5N1 influenza vaccine Ad5 

686 [29] 
Clinical assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine 
vector ChAd63 

744 [30] 
A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile 
immunity against classical swine fever Ad5 

924 [31] 
TLR4 Ligands Augment Antigen-Specific CD8+ T Lymphocyte Responses Elicited by a Viral 
Vaccine Vector Ad26 

936 [32] A Candidate H1N1 Pandemic Influenza Vaccine Elicits Protective Immunity in Mice Ad5 
1039[33] Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine Ad5 

1201 [34] 
Impact of Recombinant Adenovirus Serotype 35 Priming versus Boosting of a Plasmodium 
falciparum Protein: Characterization of T- and B-Cell Responses to Liver-Stage Antigen 1 Ad35 

1269 [35] 
Increased immunogenicity of recombinant Ad35-based malaria vaccine through formulation 
with aluminium phosphate adjuvant Ad35 

1343 [36] 

Recombinant low-seroprevalent adenoviral vectors Ad26 and Ad35 expressing the 
respiratory syncytial virus (RSV) fusion protein induce protective immunity against RSV 
infection in cotton rats Ad26 

1474 [37] 

A novel adenovirus type 6 (Ad6)-based hepatitis C virus vector that overcomes preexisting 
anti-ad5 immunity and induces potent and broad cellular immune responses in rhesus 
macaques Ad5, Ad6 

1492 [38] 
Immunogenicity and Protection of a Recombinant Human Adenovirus Serotype 35-Based 
Malaria Vaccine against Plasmodium yoelii in Mice Ad5, Ad35 

1539 [39] 
Induction of Protective Immunity to Anthrax Lethal Toxin with a Nonhuman Primate 
Adenovirus-Based Vaccine in the Presence of Preexisting Anti-Human Adenovirus Immunity AdC7 

1801[40] 
Induction of CD8+ T cells to an HIV-1 antigen through a prime boost regimen with 
heterologous E1-deleted adenoviral vaccine carriers AdC6 

1877 [41] 

Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia 
virus, and replication-defective adenovirus vectors expressing a human immunodeficiency 
virus type 1 gag gene Ad5 

2030 [42] 
Novel, Chimpanzee Serotype 68-Based Adenoviral Vaccine Carrier for Induction of 
Antibodies to a Transgene Product Ad5, ChAd63 

2505 [43] 
A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine 
carrier Ad5 

2531 [44] 
Isogenic adenoviruses type 5 expressing or not expressing the E1A gene: efficiency as virus 
vectors in the vaccination of permissive and non-permissive species Ad5 

2841 [45] 
Efficacy of an adenovirus-vectored foot-and-mouth disease virus serotype A subunit vaccine 
in cattle using a direct contact transmission model Ad5 

2916[46] 
Functionally inactivated dominant viral antigens of human cytomegalovirus delivered in 
replication incompetent adenovirus type 6 vectors as vaccine candidates Ad6 

2919 [47] 
A prime-boost immunization regimen based on a Simian Adenovirus 36 vectored multi-stage 
malaria vaccine induces protective immunity in mice sAd36 

2980 [48] 
Early life vaccination: Generation of adult-quality memory CD8+ T cells in infant mice using 
non-replicating adenoviral vectors Ad5 

3018 [49] Inhibitory receptor expression on memory CD8 T cells following Ad vector immunization Ad5 

Table S13a. Vectors by paper 

 

https://www.zotero.org/google-docs/?zkuqPf
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Species and origin of vectors 

Name Species Origin 

Ad26 D Human 

Ad28 D Human 

Ad35 B Human 

Ad5 C Human 

Ad6 C Human 

AdC6 E Simian 

AdC7 E Simian 

Chad3 C Simian 

ChAd63 E Simian 

ChAdOx1 E Simian 

sAd11 G Simian 

sAd16 N.A. Simian 

sAd36 E Simian 

Table S13b. Species and origin of vectors 
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Chapter 4: A case study in multi-factor 
optimisation: a modelling study to 
maximise vaccine safety, efficacy, and 
affordability: Paper 3 
Chapter 4 Introduction  

The objective of this paper was to extend IS/ID beyond optimising vaccine dose to maximise 

efficacy, by considering the selection of ‘optimal’ vaccine dose as a multi-objective 

optimisation problem where trade-offs between the value of different dose-dependent 

objectives (i.e., efficacy, toxicity, cost) must be considered. I hypothesised that model-

predicted ‘optimal’ doses may depend on the utility functions used to quantify these trade-

offs. This chapter addresses objective 3 of this thesis.  

Using data from a phase I dose-ranging study of a recombinant adenovirus type-5 COVID-

19 single-dose vaccine (Ad5-nCoV), I calibrated models of dose-seroconversion and dose-

grade 3 toxicity. Using the dose-seroconversion as a surrogate dose-efficacy model, I 

predicted optimal dose for this vaccine using three utility functions that could potentially be 

used as criterion for selection of optimal dose, namely i) achieving herd immunity, ii) 

balancing efficacy and toxicity, and iii) balancing efficacy, toxicity, and cost.  

I choose to use published and publicly available data to calibrate these models. When I 

conducted this work, the vaccine was in development, and as such no dose had been 

chosen for clinical use. I also had no direct consultation with the developers or researchers 

of the dose-ranging study. I considered this beneficial as it meant that my research was 

unbiased by knowledge of which dose was found ‘optimal’ by the developers, and reduced 

potential for conflicts of interest. 

I was interviewed to discuss this paper as part of its inclusion in a featured news article for 

the journal Nature discussing the future of computational mathematical modelling in vaccine 

development [191].  
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Abstract: Developing a vaccine against the global pandemic SARS-CoV-2 is a critical area of active
research. Modelling can be used to identify optimal vaccine dosing; maximising vaccine efficacy
and safety and minimising cost. We calibrated statistical models to published dose-dependent
seroconversion and adverse event data of a recombinant adenovirus type-5 (Ad5) SARS-CoV-2
vaccine given at doses 5.0 ⇥ 1010, 1.0 ⇥ 1011 and 1.5 ⇥ 1011 viral particles. We estimated the optimal
dose for three objectives, finding: (A) the minimum dose that may induce herd immunity, (B) the
dose that maximises immunogenicity and safety and (C) the dose that maximises immunogenicity
and safety whilst minimising cost. Results suggest optimal dose [95% confidence interval] in viral
particles per person was (A) 1.3 ⇥ 1011 [0.8–7.9 ⇥ 1011], (B) 1.5 ⇥ 1011 [0.3–5.0 ⇥ 1011] and (C) 1.1
⇥ 1011 [0.2–1.5 ⇥ 1011]. Optimal dose exceeded 5.0 ⇥ 1010 viral particles only if the cost of delivery
exceeded £0.65 or cost per 1011 viral particles was less than £6.23. Optimal dose may differ depending
on the objectives of developers and policy-makers, but further research is required to improve the
accuracy of optimal-dose estimates.

Keywords: dosing; dose-response; adenovirus-vectored vaccines; dose dynamics; COVID-19

1. Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been an un-
precedented burden on global health throughout 2020 [1]. Due to the health risks associated
with infection, countries have had to implement policies of isolation and quarantine, caus-
ing global disruption to economic and health systems [2]. Vaccination is a vital tool in
improving global health [3] and an effective vaccine against SARS-Cov-2 could drastically
reduce the spread of this highly infectious pathogen. There is an urgent need to accelerate
the development of a SARS-CoV-2 vaccine to protect the population [4]. However, main-
taining safety and immunogenicity standards within vaccine development is paramount.
Decisions relating to vaccine development need to be made quickly and accurately. One
important decision is determining vaccine dose, defined as the quantity or magnitude of
vaccine given.

Model-based drug development is commonly used to accelerate drug decision mak-
ing, and the field of Immunostimulation/Immunodynamic (IS/ID) modelling has been
developed to adapt these methods for vaccine development [5]. IS/ID modelling has
shown promise in discovering optimal dose for TB and influenza inoculations [6,7] and for
exploring dose-response trends for adenoviral-vectored vaccines [8], however, the previous
works have focused entirely on optimising dose with respect to immunological response.
In these studies, the modelling of dose-response and hence finding the dose that maximises
response can be considered single-objective optimisation problems.
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Whilst optimising response with respect to vaccine dose is essential to ensuring ef-
fective vaccination, the change in financial cost and safety of vaccination with respect to
vaccine dose are also important. A vaccine should ideally maximise protective immuno-
genicity, minimise the risk of vaccine-related toxicity and minimise the cost of using that
vaccine. Optimising dose in relation to immunogenicity, safety and cost is a multi-objective
or multi-criteria-decision-analysis problem [9]. Using models to analyse the dose-response,
dose-safety and dose-cost relationships can provide insight into the multi-dimensional
dose-utility curve and hence optimal dose. There may also exist cases where the cost of
vaccination can be ignored, for example, if the vaccine is not limited in supply. This could
also be true for cases where there is a very high willingness to pay for vaccination by
policymakers, which permits costs to be nearly ignored to ensure a maximum reduction in
disease burden.

Approximately 180 SARS-CoV-2 vaccines are in development [10], and there is much
interest in which vaccines may offer the greatest efficacy in reducing the burden of SARS-
CoV-2 on global health [11–13]. Not only should the dose of any vaccine implemented
be optimised with regards to safety, immunogenicity and cost, but appropriate dosing is
equally important to ensure that unbiased estimate of vaccine immunogenicity and safety
is used. In addition to establishing optimal dose at an individual level, the potential of a
candidate vaccine to induce herd immunity in an entirely vaccinated population can also
be considered.

Whilst accelerating these decisions and improving dosing is important now [14], it
is also hoped that modelling and multi-objective optimisation can aid in rapid vaccine
response to future epidemics.

In this work, we aimed to optimise the dose of a recombinant adenovirus type-5 (Ad5)
vectored SARS-CoV-2 vaccine using IS/ID modelling and multifactorial optimisation. Our
objectives were:
(1) Using published data, calibrate mathematical models to the relationship between

dose and seroconversion, safety and cost of a single inoculation.
(2) Identify the minimum dose that is predicted to theoretically induce herd immunity.
(3) Identify the dose that maximises immunogenicity and safety.
(4) Identify the dose that maximises immunogenicity and safety whilst minimising cost.

2. Materials and Methods

2.1. Data
Data were extracted from a published phase 1 study of a SARS-Cov-2 adenoviral-based

vaccine [15]. Data on neutralising antibody-based seroconversion and adverse events were
extracted for 108 healthy human participants inoculated with the candidate vaccine on day
0. Individuals were divided into three dose groups (5 ⇥ 1010, 1 ⇥ 1011 and 1.5 ⇥ 1011 Viral
Particles (VP)) and their responses were measured at day 28.

Seroconversion was chosen as a surrogate of protective immunity and was defined as
a neutralising antibody response post-vaccination of at least a four-fold increase relative to
baseline, above which an individual was protected [16].

Safety was defined by the proportion of individuals that experienced adverse events
within 0–28 days post-vaccination. Vaccine adverse events can be graded depending on
severity (Table 1), with grade 3 or above considered severe [17,18]. As a measure of safety,
we considered both the proportion that experienced “any grade” adverse events and the
proportion that experienced grade 3 or above adverse events. Whilst the designation
“Grade 3+” is used to be consistent with the terms used by the original authors, no adverse
events above grade 3 were reported.
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Table 1. Description of adverse event grading in vaccine clinical trials.

Adverse Reaction Grade General Descriptions

1 Mild. Does not interfere with normal activity
2 Moderate. Interference with normal activity. Little or no treatment required.
3 Severe. Prevents normal activity. Requires treatment.

4 Serious or Potentially Life-Threatening. Generally requires hospitalisation and stopping of any
clinical trial where this grade is observed.

2.2. Objective 1. Using Published Data, Calibrate Mathematical Models to the Relationship
between Dose and Seroconversion, Safety and Cost of a Single Inoculation
2.2.1. Dose-Seroconversion Relationship

We calibrated a sigmoid function to the dose-seroconversion data using the nls func-
tion in R [19,20]. Sigmoid functions are commonly used to describe biological processes,
including in both drug and vaccine response modelling. The formula is

sigmoid(Dose) = BaseResponse +
MaxResponse � BaseResponse

1 + e�Scale⇥(Dose�Dose50)
(1)

where Dose was log10 (Viral Particles), and BaseResponse (the minimum output of the
function), MaxResponse (the maximum output of the function), Dose50 (the dose which
defines the functions midpoint) and Scale (which determines the steepness of the curve)
were the model parameters.

We also calibrated a representative non-saturating (“peaking”) curve, using the meth-
ods discussed in [8]. However, as these methods did not support the non-saturating curve
providing a better description of the data, we assume that the dose-response follows a
sigmoidal function (Supplementary S1).

In the absence of seroconversion data from a placebo group, a base seroconversion
rate of 0% was assumed (BaseResponse = 0). We predicted the dose-seroconversion curve
for doses of up to 1015 VP, to ensure previous adenoviral dosing ranges are explored [21]
and state the dose that would induce 50% and 90% seroconversion.

2.2.2. Dose-Safety Relationship
We calibrated a sigmoid function (Equation (1)) to the dose—”any grade adverse

event” data using the nls function in R, and another to the dose—”grade 3+ adverse event”
data. Again, in the absence of a placebo group, a base adverse event rate of 0% was
assumed for both curves (BaseResponse = 0). Further, we assumed that for sufficiently large
doses, 100% of individuals would experience adverse events. We predict the probability of
an adverse event for doses of up to 1015 VP.

Lastly, we found the doses for which the proportion of individuals that would expe-
rience grade 3+ adverse events above the thresholds of 30% and 17%. 30% of grade 3+
adverse events has been defined as a threshold for unacceptable toxicity in dose-escalation
studies [22–24]. However, of the commonly CDC recommended vaccines, the largest grade
3+ adverse reaction rate is 17% for the Shingrix herpes zoster vaccine [25].

2.2.3. Dose-Cost Relationship
We assumed that the cost of a single individual receiving a vaccination can be de-

scribed by
CostTotal(Dose) = CostDelivery + CostDose�dependant(Dose) (2)

where CostTotal(Dose) was the total cost in British Pounds Sterling (GBP, £) to vaccinate
one person with a given dose. We assumed that this was the sum of “Delivery” costs, which
are independent of dose, and the dose-dependent cost. Expected costs for doses of up to
1015 VP were calculated using this formula and parameters in Table 2.
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Table 2. Parameter values for the cost function. Where needed, a conversion rate of 0.78 U.S. Dollars per GBP was used [26], and a 10-year inflation rate was estimated as 1.35 2020 GBP per 2010
GBP Pound [27].

Name of Parameter Value Unit Description References

CostPersonnel(£ per vaccination) = 4.398707

AnnualWage 30,615 £ per years GBP per NHS Band 5 Income per annum (2020/21) [28]
AnnualHours 1740 hours per years Work hours per year for average UK nurse [29]

Timeper
vaccination 0.25 hours per

vaccination Recommended hours per vaccination appointment [30]

CostStorage(£ per vaccination) = 0.014

CostStoragepermonth 0.014 £ per month GBP per vaccination per month’s storage. Converted and adjusted for
inflation from $0.014 2010 USD. [31]

Costmaterials(£ per vaccination) = 0.83

CostGloves 0.08 £ per vaccination GBP of gloves for one vaccination. Converted and adjusted for
inflation from $0.08 USD. [31]

CostAlcohol 0.03 £ per vaccination GBP of sterilising alcohol for one vaccination. Converted and
adjusted for inflation from $0.03 2010 USD. [31]

CostPFS 0.40 £ per vaccination GBP of the pre-filled syringe for one vaccination. Converted and
adjusted for inflation from $0.39 2010 USD. [31]

CostNeedles 0.32 £ per vaccination GBP of needle for one vaccination. Converted and adjusted for
inflation from $0.31 2010 USD. [31]

Costperviralparticle(£ perVP) = 7.6 ⇥ 10�12

CostAdenoviralBatch 342,000 £ per Batch GBP per single-use reference process batch (converted from
450,000 US Dollars) [32]

Adenoviral
Concentration 9 ⇥ 1013 VPper L Viral Particles per litre in single-use reference process batch [32]

Batchvolume 500 L per Batch Volume of Adenovirus produced in single-use reference process batch [32]
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Specifically, the delivery costs included the cost of disposable materials used in vacci-
nation (gloves, sterilizing alcohol, prefilled syringes, needles), storage (assumed to be 1
month of storage costs), and personnel costs (15 min of nursing time). The delivery cost
formula was therefore calculated as

CostDelivery(Dose) = CostMaterials + CostStorage + CostPersonnel (3)

where

CostMaterials(Dose) = CostGloves + CostAlcohol + CostPFS + CostNeedles (4)

CostStorage(Dose) = CostStoragepermonth ⇥ 1(months) (5)

CostPersonnel(Dose) = (AnnualWage ÷ AnnualHours)⇥ Timepervaccination (6)

The dose-dependent cost was the cost of the manufactured adenoviral vaccine mea-
sured in viral particles, assuming bulk production, which increased linearly with the
vaccine dose. The dose-dependent cost formula was therefore calculated as

CostDose�dependent = Viralparticlespervaccination(Dose)⇥ Costperviralparticle (7)

With

Costperviralparticle = CostAdenoviralBatch ÷ (AdenoviralConcentration ⇥ BatchVolume) (8)

These costs were a simplification of real-world costs but represent an approximate
cost of vaccination. The delivery cost of vaccination (CostDelivery) was calculated as £5.24,
and the cost per 1011 VP (CostDose-dependent) of adenovirus was £0.76 ( Table 2).

2.3. Objective 2. Identify the Minimum Dose that Is Predicted to Theoretically Induce
Herd Immunity

An optimal vaccine dose should maximise response (maximise the proportion that
will seroconvert), safety (minimise the proportion that experience adverse events), and
affordability (minimise cost per vaccination). Increasing dose may increase seroconversion,
but would also increase cost and adverse event prevalence. Vaccinating a population is
often done to induce herd immunity, and so a factor in selecting the optimal dose is whether
that dose could induce herd immunity in an entirely vaccinated population. Therefore, one
approach to dose-optimisation is to choose a dose that can induce herd immunity within
the population, and specifically to choose the minimum such dose to minimise cost and
adverse event prevalence.

We used the suggested 65.5% of the population required to be protected to cause herd
immunity in the United Kingdom (UK) [33] to establish whether there exist doses for this
vaccine that could induce this 65.5% seroconversion and hence induce herd immunity in
an entirely vaccinated population. We then identified the minimum such dose that could
do so. A 95% confidence interval for optimal dose was determined using a parametric
bootstrapping approach (Supplementary S2.3.1).

2.4. Objective 3. Identify the Dose that Maximises Immunogenicity and Safety
Another approach to dose optimisation is to choose the dose which maximises the

proportion of individuals that “safely” seroconvert. To do this, a multifactorial utility
function was derived, defined here as a mathematical formula that estimates the “worth”
or utility of doses relative to each other.

Using the assumption that the probability of seroconversion, Ps, and the probability
of grade 3+ adverse events, Pt, were mutually independent, the probability of a safe
seroconversion was equal to

PS ⇥ (1 � Pt) (9)
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(Figure 1). Therefore, the utility function, UCostless, to be maximised was

UCostless(Dose) = Ps(Dose)⇥ (1 � Pt(Dose)) (10)Vaccines 2021, 9, x FOR PEER REVIEW 6 of 15 
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Figure 1. Venn diagram representation of possible outcomes of inoculation, where the left set includes individuals that
experience grade 3+ adverse events and the right set includes individuals that experience seroconversion. We aimed
to maximise the number of individuals that experience seroconversion and do not experience grade 3+ adverse events,
represented in the green segment of the diagram. Black diamonds represent individuals that experience both outcomes,
black pentagons represent individuals that experience grade 3+ adverse events with no seroconversion, and black triangles
represent individuals that experience neither outcome.

Optimal dose was defined as the dose that maximised this function. A 95% confidence
interval for optimal dose was determined using a parametric bootstrapping approach
(Supplementary S2.3.2).

2.5. Objective 4. Identify the Dose that Maximises Immunogenicity and Safety Whilst
Minimising Cost

We can also include the increased cost associated with an increased dose into the
previous utility function (Equation (10)). In the case where cost is included as a potential
limiting factor, a potential costed utility function was

UCosted(Dose) =
Ps(Dose)⇥ (1 � Pt(Dose))

CostTotal(Dose)
(11)

Using this utility function, we predicted the optimised dose for maximising serocon-
version and minimising adverse events and cost. Note that UCostless(Dose) (Equation (10))
is precisely the numerator of the UCosted(Dose) (Equation (11)). A 95% confidence inter-
val for optimal dose was again determined using a parametric bootstrapping approach
(Supplementary S2.3.2).



Vaccines 2021, 9, 78 7 of 15

Threshold Analysis
Due to the difficulty in accurately estimating cost parameters, we conducted a thresh-

old analysis on the parameter values of the cost model (Equations (3)–(8)). This was
conducted to determine how much error would be needed in our costing model param-
eters to qualitatively alter the optimal predicted dose. We chose 5 ⇥ 1011, 1 ⇥ 1011 and
5 ⇥ 1010 VP as the thresholds of interest.

To conduct a threshold analysis of parameters CostDelivery, we fixed all other parameters
at the calibrated/literature derived value and allowed CostDelivery to vary. The region over
which we varied CostDelivery was +/� 3 orders of magnitudes of the value (£5.24) we used
in the main model. In other words, we considered the effect of CostDelivery being 1000 times
larger or smaller (from £0.0052 per vaccination to £5240 per vaccination) on the prediction of
optimal dose. This range was considered certainly to almost contain a reasonable estimate
of the dose-independent costs of a single vaccination. This procedure was then repeated
for Cost per 1011 viral particles, ranging from £0.00076 to £760 per 1011 VP.

We found the parameter ranges for which the dose that optimised UCosted(Dose) were
above and below the stated thresholds (5 ⇥ 1011, 1 ⇥ 1011, 5 ⇥ 1010 VP).

3. Results

3.1. Objective 1. Using Published Data, Calibrate Mathematical Models to the Relationship
between Dose and Seroconversion, Safety, and Cost of a Single Inoculation
3.1.1. Does-Seroconversion Relationship

The empirical data showed that doses of 5.0 ⇥ 1010, 1.0 ⇥ 1011 and 1.5 ⇥ 1011 in-
duced 50%, 50%, 75% seroconversion on day 28, respectively. The calibrated saturating
dose-seroconversion curve is displayed in Figure 3.3a. 50% and 95% seroconversion were
predicted at a dose of 5.9 ⇥ 1010 and 2.4 ⇥ 1012 VP, respectively. Population demograph-
ics including age, gender and pre-existing adenovirus neutralising antibody titre were
described [15] (Supplementary S3).

3.1.2. Dose-Safety Relationship
The study showed that doses of 5 ⇥ 1010, 1 ⇥ 1011 and 1.5 ⇥ 1011 VP induced 86%,

83% and 75% any grade adverse events and 6%, 6% and 17% grade 3+ adverse events,
respectively. The calibrated saturating dose-adverse event curves are displayed in Figure
3.3b,c. The two thresholds of safety we previously chose were 17% and 30% grade 3+
adverse reaction proportion. The calibrated dose-adverse curve predicted that a rate of
adverse events greater than 17% occurs for doses in excess of 1.58 ⇥ 1011 VP and exceeds
30% at 2.45 ⇥ 1011 VP.

3.2. Objective 2. Identify the Minimum Dose that Is Predicted to Theoretically Induce
Herd Immunity

The dose-seroconversion prediction for the minimum dose that could induce the-
oretical herd immunity is shown in Figure 3a. Given that an estimate for the critical
herd immunity threshold in the UK has been estimated as 65.5%, a dose of 1.3 ⇥ 1011

VP would be required to reach this threshold, assuming the entire UK population was
vaccinated. The 95% confidence interval for optimal dose was (8.0 ⇥ 1010, 7.9 ⇥ 1011)
(Supplementary S2.3.1). Using the dose-safety model, this dose was predicted to cause
13.5% of vaccinated individuals to have a grade 3+ adverse event.
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Figure 2. The three curves displaying the relationship between dose and (a) percentage of vaccinated
individuals predicted to seroconvert, (b) percentage of vaccinated individuals predicted to experience
any grade adverse events and (c) percentage of vaccinated individuals predicted to experience grade
3+ adverse events. The curves are sigmoid curves calibrated to data. Black dots represent the data
the curves were calibrated to. In (a) the solid and dashed red lines show respectively the doses for
which 50% and 90% of individuals are predicted to seroconvert. In (c) the solid and dashed red lines
show respectively the doses for which 17% and 30% of individuals are predicted to experience grade
3+ adverse events. We note that the percentage of individuals experiencing any grade adverse events
in (b) qualitatively decreased with increasing dose, whereas the model curve was increasing. This
decreasing trend could be explained by the expected stochasticity in the data, hence the sigmoid
model did not seem unreasonable (Supplementary S4).

3.3. Objective 3. Identify the Dose that Maximises Immunogenicity and Safety
The dose-utility prediction is shown in Figure 3b. The dose that optimised this function
was 1.5 ⇥ 1011 VP (Figure 3b, red diamond). It was predicted that dosing at this magnitude
would lead to a seroconversion rate of 67.6%, and cause 15.8% of vaccinated individuals to
have a grade 3+ adverse event (83.0% any grade adverse events).
Sensitivity analysis (Supplementary S2) showed that the prediction of the optimal dose
was most sensitive to variance in the Dose50 parameter of the dose-seroconversion sigmoid
function and the Dose50 parameter of the dose-safety sigmoid function (Supplementary
S2.2.1). These were respectively equal to the doses that were predicted to induce 50%
of vaccinated individuals to seroconvert and 50% to experience grade 3+ adverse events
(with an increase in these parameters qualitatively shifting the curves in Figure 3.3a,c
to the right). The 95% confidence interval for optimal dose was (2.9 ⇥ 1010, 5.0 ⇥ 1011)
(Supplementary S2.3.2).
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Figure 3. Displays of the predicted utility of doses between 100 and 1015 VP. (a) shows dose-
seroconversion, with the horizontal red line indicating the 65.5% seroconversion threshold required
for herd immunity. (b) shows the relationship between dose and the costless utility function and
(c) shows the relationship between dose and the costed utility function. The black dots represent
Table 1. 3 ⇥ 1011, (b) 1.5 ⇥ 1011 VP and (c) 1.1 ⇥ 1011 VP.
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3.4. Objective 4. Identify the Dose that Maximises Immunogenicity and Safety Whilst
Minimising Cost

The dose-utility relation including cost is shown in Figure 3c. The dose that optimised
this function was 1.1 ⇥ 1011 VP. It was predicted that dosing at this magnitude would
lead to a seroconversion rate of 62.20%, cost £6.07 per dose, and cause 10.32% of vacci-
nated individuals to have a grade 3+ adverse event (82.2% any grade adverse events).
The 1 ⇥ 1011 VP dose had the highest utility of the doses tested in the study, and both of
the 5 ⇥ 1010 and 1.5 ⇥ 1011 VP doses appeared to be near-optimal. This analysis, therefore,
suggested that if the cost was included in the utility function then a marginally reduced
dose was found optimal relative to the costless utility function. The predicted cost is within
the expected range [$5–$37] for a single SARS-CoV-2 vaccine dose [34].

Again, we found that the prediction of the optimal dose was most sensitive to variance
in the Dose50 parameter of the dose-seroconversion sigmoid function. This parameter is
equal to the dose that we predict would induce 50% of vaccinated individuals to seroconvert
(with an increase in these parameters qualitatively shifting the curve in Figure 3.3a to the
right). Optimal dose was not sensitive to <10% error in the estimation of CostDelivery or
Costperviralparticle (Supplementary S2.2.2). The 95% confidence interval for optimal dose
was (2.1 ⇥ 1010, 1.5 ⇥ 1011) (Supplementary S2.3.3).

Threshold Analysis
For CostDelivery, we found that the predicted optimal dose was independent of the

parameter value for large values (Figure 4). We found that the optimal dose was in excess
of 1 ⇥ 1011 and 5 ⇥ 1010 VP for CostDelivery values in excess of £3.79 and £0.65, respectively
(hence optimal dose was only less than 5 ⇥ 1010 VP for CostDelivery less than £0.65). These
values were respectively 0.7 and 0.1 times the value that was used in the main analysis. We
find that the optimal dose was not in excess of 5 ⇥ 1011 VP for any CostDelivery values.
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For Cost per 1011 viral particles, we found that the optimal dose was independent of
the parameter value for large values (Figure 5). We found that the optimal dose was in
excess of 1 ⇥ 1011 and 5 ⇥ 1010 VP for Cost per 1011 viral particles values in less than £1.06
and £6.23, respectively (hence optimal dose was only less than 5 ⇥ 1010 VP for Cost per
1011 viral particles greater than £6.24). These values were respectively 1.3 and 8.2 times the
value that was used in the main analysis. We find that the optimal dose was not in excess
of 5 ⇥ 1011 VP for any Cost per 1011 viral particles values.
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We additionally explored varying both parameters simultaneously (Supplementary S5).
If Cost per 1011 viral particles was less than 0.2 times CostDelivery, then the predicted optimal
dose was between 1.0 ⇥ 1011 and 1.5 ⇥ 1011 VP.

4. Discussion

Vaccination is an important part of global healthcare and disease prevention. Vac-
cination must be protective, safe, and affordable at a population level, and all of these
factors may be impacted by dose. We used modelling and multifactorial optimisation
approaches to predict the optimal dose of an adenoviral vectored vaccine against SARS-
CoV-2 based on protection, safety and cost. A dose of 1.1 ⇥ 1011 VP of this vaccine was
found to be optimal with respect to seroconversion, safety and cost. However, an increased
dose of 1.3 ⇥ 1011 VP or 1.5 ⇥ 1011 VP could be justified depending on the objectives of
developers and policymakers. These methods highlight how quantitative analysis can be
used to ensure that vaccines are dosed optimally, and could aid in accelerating vaccine
development.

The IS/ID methods used in this work have previously been used to analyse and
optimise vaccine dose-response [7,34]. Compared to those studies, this work is novel in its
inclusion of dose-safety and dose-cost models and multi-objective optimisation methods.
This work used data published as part of a vaccine development protocol, which highlights
how these methods do not require additional complexity in trial design. Using only the
published data, we were able to hypothesize the best dosing for a candidate SARS-CoV-2
vaccine. Such methods could routinely be used to evaluate dose for other clinical and
preclinical vaccine trials. Given the pandemic setting in which the SARS-CoV-2 candidates
are being developed where trials are being accelerated and progressing faster than would
normally be expected, modelling may be even more of an important adjunct in ensuring
optimal vaccine dosing.

We had to make some assumptions in this work. Firstly, the assumed cost function
was based on a simplification of a vaccine campaign cost estimate suggested by the World
Health Organisation [35,36], discounting costs incurred by vaccine wastage and incre-
mental costs of maintaining hospitals and clinics. Additionally, the exact cost per viral
particle of the vaccine was unknown and would vary with production scale, however, the
threshold analyses showed that the optimal-dose prediction may still be robust despite
this uncertainty. As this was a financial rather than economic analysis, we did not account
for “Disability Adjusted Life Years” [37] (DALYs) gained by reducing SARS-CoV-2 impact
or societal costs incurred by missing work to be vaccinated. Including DALYs or similar
measures into the cost function may give a greater understanding of whether this vaccine
would be a cost-effective approach to controlling SARS-CoV-2. However, the focus of the
work was not in producing a fully functional economic evaluation of implementing this vac-
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cine. Additionally, to analyse potential DALYs averted would have required the inclusion
of economic and epidemiological models that were beyond the scope of this paper.

An additional assumption of the utility model was that avoiding grade 3+ adverse
events was as important to the utility function as inducing seroconversion. To address this,
a weighting function may be applied if the expected discomfort of a SARS-CoV-2 infection
is greatly in excess of a grade 3+ adverse event and a discomfort ratio between these two
outcomes can then be determined (see Supplementary S6). Alternatively, thresholds for
acceptable levels of seroconversion and adverse events could be determined, and any doses
predicted to meet these thresholds considered optimal.

We found that dosing at 2.45 ⇥ 1011 VP would likely induce grade 3+ adverse events
in greater than 30% of individuals vaccinated, which is a typical threshold for safety in
clinical trials. Previous work has found that human-hosted adenoviral vector vaccine trials
typically do not dose in excess of 2 ⇥ 1011 [21]. This suggests that adenoviral vaccine
trials are being dosed at magnitudes that ensure that grade 3+ adverse reactions remain
below the 30% threshold. However, for this vaccine, the available data was not sufficient to
determine whether the dose-seroconversion curve shape was better described by a peaking
or saturating curve shape. This implies that we cannot be confident that the percentage of
individuals that seroconvert would continue to increase as dose increases beyond those
empirically tested. This is likely the result of using too few doses or not dosing at a
sufficiently large dose to observe peaking or saturating dose-response behaviour. We
have previously shown that curve shape could not be determined for 75% of adenoviral
dose-response data [8]. However, in this case, it is possible that dosing at a large enough
magnitude to determine curve shape could cause an unacceptable number of grade 3+
adverse events.

There were limiting factors to our analyses. We had to assume that seroconversion
implies that an individual was protected against SARS-CoV-2 infection. This seemed
appropriate in the absence of a validated model for predicting SARS-CoV-2 protective
immunity or a challenge study, but could be updated as a greater understanding of SARS-
CoV-2 correlates of protection is developed [38–40]. Additionally, we had to assume that the
base seroconversion and adverse events percentage was 0%. That is to say that individuals
that received no vaccine dose would not seroconvert or experience any adverse events. This
was reasonable given the lack of a placebo group in the data but may limit the predictive
validity of toxicity and seroconversion at lower doses.

Further limitations are due to the non-inclusion of potential population effects and
covariates in the model. The proportion of individuals that the vaccine needs to protect may
change depending on the number of individuals that have been previously infected or on
the extent that a prior infection provides lasting immunity. Additionally, prior adenoviral
exposure or age of vaccinated individuals could impact the probabilities of seroconversion
and adverse events. Individuals younger than 45 were shown to be less likely to experience
fever and more likely to experience seroconversion [15] which, given that there existed
some heterogeneity in age distribution between dosing groups in the data, may impact the
model’s future predictive validity. Finally, given that no grade 4 (serious/life-threatening)
events were observed, no analyses could be done to assess the dose-varying probability of
these events.

This work implies that the doses that have been trialled for this vaccine were near the
theoretical optimal dose. Whilst we predicted 1.1 ⇥ 1011 VP of the vaccine would be the
dose that optimises safety, cost, and protective immunity, if vial size restricts precision on
which doses can be administered then, of the previously empirically tested doses, both
the 1.0 ⇥ 1011 and 1.5 ⇥ 1011 doses could be reasonable. We also predicted that inducing
complete herd immunity in an otherwise entirely susceptible population may be feasible
with this vaccine given 100% uptake, but we predict that approximately 13.5% of vaccinated
individuals would experience grade 3+ adverse events and that this would require a dose
of at least 1.3 ⇥ 1011 VP. As the dose optimising the costless utility function was in excess of
this threshold, but not the dose optimising the utility function with cost, this work implies
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that to fully protect the UK population with this vaccine would require accepting some
level of cost inefficiency.

We anticipate the following future work. Firstly, to ensure that the models used to
make these suggestions are accurate and valid, further clinical trials would need to be
conducted, preferably at a wider spread of doses for which empirical data do not yet
exist. In particular, a placebo group could allow for adjustment of the assumption that
individuals that receive no vaccine dose do not seroconvert or experience any adverse
events. This may help to increase accuracy in the prediction of optimal dose. Secondly,
the simple assumptions made in developing the optimisation utility functions mean the
function could be applied broadly but should be adapted to the specific knowledge and
needs of vaccine developers and policymakers. For example, including a specific adverse
reaction threshold that has been defined in the study protocol, or by predicting protective
immunity as highlighted in [41].

Thirdly, these methods applied to other candidate SARS-CoV-2 vaccines may provide
a method to compare the relative utility of these candidates. Fourthly, with respect to the
dose-safety model, including a weighting of the relative risks/discomforts associated with
SARS-CoV-2 infection/adverse events would be informative. Fifthly, the data was gathered
from individuals residing in the Wuhan region only. Similar data should be gathered from
other populations to assess potential differences in response and safety. Given sufficient
data, incorporating the covariates of age and pre-existing rAd5 neutralising antibody titre
into the model could aid in predictive validity across various populations and in assessing
dose effect.

Sixthly, this work only considers a single dose of the vaccine and response at one time-
point. Further modelling could be attempted to address dose-optimisation the different
time points or to consider a prime-boost paradigm. Finally, the dose-seroconversion and
dose-safety models developed in this work could also be incorporated into the epidemi-
ologic transmission and economic models to more accurately determine the health and
economic impact of a given dose.

5. Conclusions

The SARS-CoV-2 pandemic has caused global health and economic issues and has
led to increased pressure to rapidly develop a potentially life-saving vaccine. Dose is a
key attribute in determining vaccine immunogenicity, safety and cost, and therefore dose-
optimisation is an important aspect of vaccine development. Modelling and multifactorial
optimisation methods allow for fast, quantitatively-based dosing decisions. Given the
increased pressures for rapid vaccine development in response to pandemics, these tools
should be considered a useful approach to accelerating vaccine development.
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Supplementary material for paper 3 
These supplementary are adapted from those that were included with the published 

version of this paper, which can be found online [192]. 

Any references in these supplementary documents use the reference numbers of 

paper 3. 

S1. Peaking vs Saturating 
We calibrated both the sigmoid function and a representative peaking curve as we 

have previously described in [8], and calculated AIC (Akaike Information Criterion) of 

both. As the difference in AIC between the models was less than 2.0, there was not 

considered to be evidence to choose the peaking curve over the saturating curve. 

Thus, the saturating (sigmoidal) curve was assumed to describe the dose-

seroconversion dynamics.  

 

 

Figure S1. Calibrated peaking (left) and saturation/sigmoidal(right) curves. The y axis is 
predicted seroconversion, and black points are the available data. AICs are given and were within 2 of 
each other. 

S2. Sensitivity 
We attempted to account for uncertainty in the data and models.  
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S2.1. Distribution of parameters  

Available seroconversion data gave the number of individuals per dosing group and 

the number that was seroconverted. Following a Bayesian perspective of the data 

and a parametric bootstrapping approach, we consider each dosing group as being 

sampled from a binomial distribution with n = 36 and the unknown true probability of 

seroconversion p. The likelihood distribution of p was calculated for each of the 

dosing groups, and we can consider that the true probability of seroconversion 

follows these likelihood distributions for each group. This was repeated for the 

adverse event data (Figure S2). 

 

 

Figure S2. Likelihood distribution of true seroconversion (top) or true grade 3+ adverse 
reaction (bottom) probabilities for binomial processes with 36 trials and S successes. Top left 
shows the distribution given S = 18 (dose = 5 x 1010, 1 x 1011), top right shows the distribution given S 
= 27 (dose = 1.5 x 1011), bottom left shows the distribution given S = 6 (dose = 5 x 1010, 1 x 1011 ), 
bottom left shows the distribution given S = 17 (dose = 1.5 x 1011 ). 

We sampled from each of these likelihood distributions 5000 times to create 5000 

bootstrap dose-response data sets. For each of these data sets, we calibrated a 

sigmoid curve and recorded MaxResponse, Scale, and Dose50 for each. This gave a 
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distribution of the values of MaxResponse, Scale, and Dose50 for the seroconversion 

that were reasonable giving the observed data. This was repeated for the adverse 

event data to give a distribution of the values of Scale and Dose50 for the safety curve 

(Figure S3). 

 

 

 

 

 

 

Figure S3. Distribution of model parameters following bootstrapping process with 5000 
samples. 

The two Scale parameters appeared to be the least well identified, and 

MaxResponse appeared well identified. We calculated a non-parametric 95% 

confidence interval for parameters by finding the 2.5th and 97.5th percentile of the 
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parameter distributions. This is given in the varying range column of Table S1. As 

the parameters of the cost model were literature derived, we instead allowed them to 

vary in a 10% region around the value derived from literature. We write Cost per 1011 

viral particles rather than Cost per viral particle due to the small size of the Cost per 

viral particle parameter. Note that this does not alter the analysis.  

Parameters Model Description Value Varying 
range 

MaxResponse  Seroconversion Predicted seroconversion 
given infinite dose.  

100 [70.17,100] 

Scale 
(Seroconversion) 

Seroconversion Gradient of 
seroconversion sigmoid 
function 

1.83145 [0.53, 4.31] 

Dose50 

(Seroconversion) 
Seroconversion Dose required to reach 

50% of MaxResponse 
seroconversion 

10.767948  [9.49,10.97] 

Scale 
(Safety) 

Safety Gradient of safety sigmoid 
function 

3.76339 [0.67, 
14.17] 

Dose50 
(Safety) 

Safety Dose required to reach 
50% of individuals 
experiencing grade 3+ 
adverse events 

11.6145 [11.12, 
12.35] 

CostDelivery Cost Dose independent 
vaccination costs 

5.24 [4.72, 5.77] 

Cost per 1011 viral 
particles 

Cost Dose dependent 
vaccination costs (per 
1011VP) 

0.76 [0.68, 0.84] 

Table S1. Parameters that were explored through sensitivity analysis. The ‘value’ column gives 
the numerical value which were used in objectives 2 and 3 and the ‘varying range’ column gives a 
reasonable bound on the parameter values as in supplementary S2.1. 

S2.2. Parameter Sensitivity 

These parameters define the utility function. To determine the sensitivity of the 

optimal dose prediction to a parameter, θ, we fix all other parameters at the 

calibrated/literature derived value and allow θ to vary in the region around it that we 

just defined [Table S1]. The optimal dose for each of these varying θ values were 
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calculated and plotted. We did this analysis for both the costless and cost utility 

functions.  

S2.2.1. Costless 

The utility function was most sensitive to variance in the Dose50 (Seroconversion) and 

Scale (Safety) parameters, but some uncertainty in optimal dose may also be 

caused by variance in the estimated Scale (Seroconversion) parameter. 

  

 
 

 

 

Figure S4a. Sensitivity of costless optimal dose by the model parameters of MaxResponse, 
Scale (Seroconversion), Dose50 (Seroconversion), Scale (Safety), Dose50 (Safety). 
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S2.2.2. Costed 

The utility function was again most sensitive to variance in the Dose50 (Seroconversion) 

parameter but was less sensitive to uncertainty in the Scale (Safety) parameter. Again, 

optimal dose may also be caused by variance in the estimated Scale (Seroconversion) 

parameter. Optimal dose did not appear to be sensitive to variance in either cost parameter. 
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Figure S4b. Sensitivity of costed optimal dose by the model parameters of MaxResponse, 
Scale (Seroconversion), Dose50 (Seroconversion), Scale (Safety), Dose50 (Safety). CostDelivery  
and cost per 1011 viral particles 

S2.3. Optimal dose Confidence Interval 

We resampled with replacement from the bootstrap dose-response data calibrated 

parameter sets. We did this for a combined 10,000 seroconversion/safety parameter 

sets. For these we calculated the optimal dose as defined by all utility functions. This 

was used to calculate an approximate 95% confidence interval for the optimal dose 

of both utility functions.  

S2.3.1. Herd Immunity 

Optimal dosing follows an approximate skewed normal distribution (figure S4), with 

the qualitative peak being approximately 1011.11 (=1.3 x 1011). The calculated 2-tailed 

95% distribution of the data had lower bound 1010.90 (= 0.8 x 1011) and upper bound 

1011.90 (= 7.9 x 1011). 
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Figure S5. Distribution of optimal dose based on herd immunity from parametric bootstrapping 
of the data.  

S2.3.2. Costless 

Optimal dosing follows an approximate normal distribution (figure S4), with the 

qualitative peak being approximately 1011 (=1.0 x 1011). The calculated 2-tailed 95% 

distribution of the data had lower bound 1010.46 (= 0.29 x1011) and upper bound 

1011.67 (= 5.0 x 1011). 
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Figure S6. Distribution of optimal dose without including cost from parametric bootstrapping 
of the data.  

S2.3.3. Costed 

Optimal dosing follows an approximate left-skewed normal distribution (figure S5), 

with the qualitative peak at approximately 1010.9 (= .75 x 1011). The calculated 2-

tailed 95% distribution of the data had lower bound 1010.32 (= 0.21 x 1011) and upper 

bound 1011.18 (= 1.54 x 1011). 

 

Figure S7. Distribution of optimal dose (log10 scale) including cost from parametric 
bootstrapping of the data.  

S3. Population demographics 
Population demographics of age, gender, and pre-existing adenovirus neutralising 

antibody titre as described in the body of work the data were extracted from. 
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Dose (VP) 

 
5.0 x1010 1.0 x 1011 1.5 x 1011 

Age 

18–29 9 (25%) 12 (33%) 10 (28%) 

30–39 13 (36%) 14 (39%) 15 (42%) 

40–49 8 (22%) 3 (8%) 7 (19%) 

50–60 6 (17%) 7 (19%) 4 (11%) 

Mean age (years) 37.2 (sd =10.7) 36.3 (sd = 11.5) 35.5 (sd = 10.1) 

Sex 

Male 18 (50%) 19 (53%) 18 (50%) 

Female 18 (50%) 17 (47%) 18 (50%) 

Pre-existing adenovirus type-5 neutralising antibody 

≤200, titre 16 (44%) 17 (47%) 20 (56%) 

>200, titre 20 (56%) 19 (53%) 16 (44%) 

Mean geometric mean titre 168.9 (13.9) 149.5 (10.5) 115.0 (13.4) 

Table S2. Distribution of sample covariates for each dosing group. Data are given as number 
(percentage). 

S4. Variability in the data. 
We note that in plot 2b the data shows that for the three dosing groups (5.0 x1010, 

1.0 x 1011 and 1.5 x 1011), 86%, 83%, and 75% of individuals experienced any grade 

adverse events respectively. This represents respectively that for each of the three 

dosing groups of size N=36 (31,30, and 27) individuals of individuals experienced 
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any grade adverse events. There is a qualitative downwards trend, which our strictly 

increasing sigmoid model would be unable to model.  

We considered using this data whilst taking the interpretation that individuals are 

independent samples of an underlying Bernoulli process, we can calculate the 95% 

confidence interval on the true probability of experiencing any grade adverse events, 

using a similar approach to that described in [S2]. These are: 

x For dose 5.0 x1010; 86% (71%,95%)  

x For dose 1.0 x 1011; 83% (67%,94%)  

x For dose 1.5 x 1011; 75% (58%,88%)  

As these confidence intervals do overlap, we did not believe that there was sufficient 

justification to consider the possibility that an increased dose could reduce the 

number of adverse events experienced, even given the downward trend observed. 

We believe it more likely that all three data points have similar probabilities of any 

grade adverse events. 

To illustrate this point please consider the below plot, which shows the data 

described overlaid with the 95% confidence intervals for Bernoulli trials assuming 

that our underlying model is correct. As all of the points are within these bounds, 

again this model seems reasonable with the available data.
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Figure S8. A plot of the expected any-grade adverse event data compared to observed data. 

The black line plots the calibrated curve. The red area plots the 95% confidence interval for the 

percentage of individuals that would experience any-grade adverse events in a 36-per-group trial 

assuming that this is the true model (for example, if the true probability of an adverse event  for a 

given dose is 0.5, then approximately 95% of trials of that dose with size 36 would have between 

13(=36%) and 23(=63%) individuals experiencing adverse events) 

However, further investigation into the relationship between dose and proportion of 

individuals experiencing adverse events would be useful if there was sufficient data. 

S5. Threshold analysis, Bivariable 
We considered varying both of the CostDelivery and Cost per 1011 viral particles 

parameters in the +/- 3 orders of magnitude range at the same time, and found that 

for high values of CostDelivery the optimal dose was independent of Cost per 1011viral 

particles (Figure S6). If these plots are censored to include only points where the 

predicted optimal dose is less than 1011, 5 x 1010 and 1010 VP, we find the behaviour 

observed in Figures S7, S8, and S9 respectively. A clear linear separation is 

observed for all three plots. By finding the line between (0,0) and the point with the 

maximum CostDelivery, we can approximate these decision boundaries as respectively  
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1011: Cost per 1011 viral particles= 0.2 x CostDelivery 

5 x 1010: Cost per 1011 viral particles= 1.3 x CostDelivery 

 1010: Cost per 1011 viral particles= 17.9 x CostDelivery 

Hence, we can suggest that, assuming no uncertainty in the safety and 

seroconversion related model parameters: 

x If the cost per 1011 VP is greater than 0.2 times the cost per vaccination that is 

independent of dose, optimal dose is less than 1011 VP. 

x If the cost per 1011 VP is greater than 1.3 times the cost per vaccination that is 

independent of dose, the optimal dose is less than 5 x 1010 VP. 

x If the cost per 1011 VP is greater than 17.9 times the cost per vaccination that 

is independent of dose, the optimal dose is less than 1010 VP. 

x In all other cases optimal dose is greater than 1011, with the largest 

recommended dose across all costing parameters was 1.5 x 1011 VP, which is 

the dose recommended by the results in objective 2.  
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Figure S9. Optimal predicted dose for +/- 3 orders of magnitude (log10 scale) around Cost per 
1011 viral particles and CostDelivery. The top has Cost per 1011 viral particles at a log10 scale, and the 
bottom scaled normally.  
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Figure S10. Pairs of Cost per 1011 viral particles and CostDelivery for which the optimal 

predicted dose was less than 1011 VP. Black line represents the estimated decision boundary. 

Figure S11. Pairs of Cost per 1011 viral particles and CostDelivery for which the optimal predicted 
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dose was less than 5 x 1010 VP. Black line represents the estimated decision boundary.

 

Figure S12. Pairs of Cost per 1011 viral particles and CostDelivery for which the optimal predicted 
dose was less than 1010 VP. Black line represents the estimated decision boundary. 

S6. Weighted Utility Functions 

In this section I considered a further two utility functions similar to that used in 

chapter 5. See appendix [A.D.2.]. 
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Chapter 5: Theoretical analysis of 
mathematical modelling for vaccine dose 
optimisation: efficacy curve shape, trial 
size, and trial dose selection method: Paper 
4 
Chapter 5 Introduction  

In chapter 4 I investigated vaccine dose-optimisation as a multi-objective 

optimisation problem and predicted potential optimal doses for three different utility 

functions using mathematical modelling of publicly available clinical trial data. 

Whether these predicted optimal doses for that vaccine were indeed optimal for their 

respective utility functions could not be validated without conducting extensive 

clinical trials that were outside the scope of this PhD or having perfect knowledge of 

the true vaccine dose-response curve. Additionally, in both chapter 4 and chapter 3 I 

had found that adenoviral vector vaccine clinical trial data are often not sufficient for 

modellers to be able to discriminate between peaking/saturating dose-response 

curve shape.  

Following these observations, in chapter 5, I investigated the true optimality of doses 

that are predicted optimal using mathematical models, and into whether model 

misspecification could lead to suboptimal vaccine dosing. In order to do this, I used 

simulation study methodology, which meant that I had access to perfect knowledge 

of the true vaccine dose-response curve. In doing so, I simulated vaccine clinical 

trials, and therefore had to decide the trial designs that these simulated trials would 

follow. In particular, I hypothesised that a weighted model averaging technique could 

limit the potential for model misspecification to cause suboptimal dose selection. 

Additionally, I hypothesised that a trial design with a ‘uniform’ method of trial dose 

selection with many dosing groups would be a reasonable trial design to support 

modelling. I also used this as an opportunity to investigate the use of modelling to 

inform adaptive trial designs, which is considered beneficial in drug dose-finding 

studies. As part of this investigation, I also considered that trial size may influence 
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the effectiveness of mathematical modelling methods of vaccine dose selection. The 

aspects of modelling for optimal vaccine dose selection that were investigated in this 

work were therefore: 

1. The assumed model of vaccine dose-efficacy (peaking, saturating, or a 

weighted average) 

2. The trial design, consisting of: 

a. Trial size (10-100 trial participants) 

b. Method of trial dose selection (uniform with retrospective modelling, or 

one of three example adaptive design/continual modelling methods) 

Whilst the above topics form the backbone of this paper’s place in this thesis and 

within IS/ID modelling, there were three other topics that were included in this work 

that I believed warranted investigation. Firstly, whilst the CRM style of dose-

response modelling is considered as an effective method of conducting dose-finding 

trials in drugs, I hypothesised that only investigating the dose that is predicted 

optimal during trial dose selection could lead to suboptimal final dose selection due 

to the exploration/exploitation trade-off. I believed this due to previous findings in the 

separate field multi-armed bandit problems and model-based reinforcement learning. 

Thall [193] also suggested that ‘greedy’ trial dose selection may be suboptimal but 

did not provide a demonstration of this phenomena. 

Secondly, I hypothesised that the error in predictions of utility at a model predicted 

optimal dose could be assumed to be symmetrically distributed around the true utility 

value of utility at that dose if the assumed efficacy and toxicity models were 

appropriate. I primarily conducted the analysis of inaccuracy to investigate whether 

the variance of this error term was altered by trial size/continual modelling. The 

results of this paper contradict this hypothesis, which may have ramifications for 

future IS/ID modelling. 

Thirdly, I modelled toxicity under an ordinal grading system. In paper 3, I suggest 

that this was possible with sufficient data, and therefore believed that it would be 

appropriate to highlight such a model.  
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Abstract: Vaccination is a key tool to reduce global disease burden. Vaccine dose can affect vaccine
efficacy and toxicity. Given the expense of developing vaccines, optimising vaccine dose is essential.
Mathematical modelling has been suggested as an approach for optimising vaccine dose by quantita-
tively establishing the relationships between dose and efficacy/toxicity. In this work, we performed
simulation studies to assess the performance of modelling approaches in determining optimal dose.
We found that the ability of modelling approaches to determine optimal dose improved with trial
size, particularly for studies with at least 30 trial participants, and that, generally, using a peaking or
a weighted model-averaging-based dose–efficacy relationship was most effective in finding optimal
dose. Most methods of trial dose selection were similarly effective for the purpose of determining
optimal dose; however, including modelling to adapt doses during a trial may lead to more trial
participants receiving a more optimal dose. Clinical trial dosing around the predicted optimal dose,
rather than only at the predicted optimal dose, may improve final dose selection. This work suggests
modelling can be used effectively for vaccine dose finding, prompting potential practical applications
of these methods in accelerating effective vaccine development and saving lives.

Keywords: dosing; dose response; modelling; clinical trials; adaptive design; continual modelling

1. Introduction

Vaccination is a key tool in global disease burden reduction and disease prevention.
However, developing a vaccine for clinical use is an expensive and time-consuming process.
As the magnitude of vaccine dose amount (hereafter ‘dose’) can affect the efficacy, toxicity,
and cost of administering the vaccine, finding optimal vaccine dose is important. It is
important to ensure that the chosen dose best balances maximal efficacy and minimal
toxicity [1]. Preclinical and early phase 1/2 dose-finding trials aim to achieve this, typically
through direct comparison of the efficacy and toxicity profiles of a small number of doses [2].
However, if none of these small number of doses is the optimal dose, then the vaccine will
proceed to further study or clinical use with a suboptimal dose. This could reduce the
potential for disease burden reduction, either due to reduced vaccine efficacy or decreased
vaccine uptake arising from increased risk of vaccine-related adverse events. Hence,
choosing from only a small number of doses may cost lives and be wasteful, given the
expense of vaccine development. However, generating data on a larger number of doses
requires larger and more expensive trials.

Mathematical-modelling-based approaches for vaccine dose optimisation have been
explored previously and represent a solution for identifying optimal dose amongst a large
number of possible doses without greatly increasing the size of trials [3–6]. Under these
approaches, rather than comparing the efficacy and toxicity data directly between dosing
groups, the data are used to inform models that attempt to describe the dose–efficacy
and dose–toxicity relationships. These models are then combined and used to inform
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vaccine dose decision making, similar to the idea of ‘model-based drug development’,
which is prevalent in selecting optimal drug dose [7]. These ‘models’ are equations or
systems of equations that are used to describe the relationship between vaccine dose
and vaccine response. These models can either be mechanistic, leveraging knowledge of
immunodynamics to describe an approximation of the dose-dependent immune system
dynamics [3,4], or statistical, using a simpler set of assumptions about the general nature of
the relationship between dose and efficacy/toxicity [8–11]. Although both approaches have
been used to explore vaccine dose optimisation, neither approach has been fully validated,
accepted, and used. We will be discussing statistical models of dose efficacy and dose
toxicity throughout the remainder of this work.

Given that modelling is not consistently used in finding optimal vaccine dose, there
are a number of questions that arise concerning its implementation. Firstly, which types of
mathematical models would be most useful for determining optimal dose? Secondly, how
many individuals in the trial population are required for modelling to generate reliable
evidence? Thirdly, how should the trial population be dosed to improve the model’s ability
to determine optimal dose? This final question include is whether modelling should be
used only retrospectively (as has been done in the past [3,4,11]) or whether it should be
used continually at interim timepoints to guide dose selection throughout the trial (in
the style of adaptive design or continual reassessment modelling [12–14]) in combination
with retrospective modelling. Continual modelling/dose recommendation approaches
have previously been suggested to be a more ethical approach to conducting dose-ranging
studies in drugs [14,15].

Although modelling has previously been applied in vaccine dose optimisation us-
ing real-world data, such data are often noisy, and true underlying dose–efficacy and
dose–toxicity relationships are unknown. This means that whether the doses that have
been selected by these dose-optimisation approaches are truly optimal is unknown. By
simulating clinical trial data, where the underlying dose–efficacy and dose–toxicity relation-
ships are known, a ‘simulation study’ [15–17] allows for analysis of these dose-optimsation
approaches not hampered by noisy data [17,18].

In this work, we aimed to use simulation of dose-finding clinical trials to assess the
capability of statistical mathematical models to determine optimal dose. To answer the
questions posed above, we investigated modelling-based dose-optimisation approaches,
which were defined by:
i. Assumed statistical efficacy model.
ii. Trial size.
iii. Method of trial dose selection.

In order to perform this analysis, we used a number of qualitatively different ‘scenar-
ios’, each representing a different ‘true’ vaccine dose–efficacy and dose–toxicity relation-
ship. We considered three metrics of the quality of a dose-optimsation approach: not only
the quality of the final selected dose but also the accuracy of predictions and benefit to
trial participants.

Specifically, our objectives were to investigate, through simulation studies over many
qualitatively different scenarios:
1. When the method of trial dose selection is fixed, how dose-optimisation approaches

are affected by the assumed statistical efficacy model and trial size.
2. When trial size is fixed, how dose-optimisation approaches are affected by the as-

sumed statistical efficacy model and method of trial dose selection.

2. Materials and Methods

Here, we summarise the simulation study used in this approach, then detail the
component parts.
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2.1. Overview of Simulation Study Methodology
We would like to evaluate how (i) assumed statistical efficacy model, (ii) trial size,

and (iii) method of trial dose selection affect how well optimal dose is determined and
use a simulation study to do this (Figure 1). Optimal dose was defined as a function that
aims to maximise efficacy and minimise toxicity (3.2). We propose ‘dose-optimsation ap-
proaches’, which vary in (i–iii) (3.4). These varying dose-optimsation approaches are tested
by simulating clinical trials. These clinical trials are simulated using a number of ‘scenarios’
representing theoretical vaccines that could be optimised (3.3). Each clinical trial was a
pairing of a dose-optimsation approach and a scenario and therefore represents how well
that dose-optimisation approach could optimise the vaccine represented in that scenario.

 

Figure 1. Visual depiction of the process of conducting simulation studies used in this work to
assess mathematical-modelling-based dose-optimisation approaches. The aim was to evaluate dose-
optimisation approaches (red), in particular the effect of changing the assumed dose–efficacy model,
trial size, and trial dose-selection method. These were tested by simulating clinical trials (purple)
based on ‘scenarios’ (blue). Repeated simulation of clinical trials was conducted for different dose-
optimisation approach/scenario pairs, and metrics related to how effectively optimal dose was located
were calculated. These were tabulated and compared to assess whether the assumed dose–efficacy
model, trial size, and trial dose-selection method influence the consistency of dose optimsation.

The fact that the ‘true’ dose–efficacy and dose–toxicity curves are known in these sce-
narios allows these dose-optimisation approaches to be assessed. By repeatedly simulating
different dose-optimisation approaches/scenarios we can evaluate the effect of varying
(i–iii). Using different scenarios reduces the probability that we would recommend a dose-
optimisation approach that does not optimise dose well in general, despite optimising dose
well in simulations.

2.2. Efficacy, Toxicity, and Utility
We introduce the concept of dose-utility as a function of dose efficacy and dose toxicity

and define the mathematical models that we used to describe these relationships.

2.2.1. Dose Efficacy
Vaccine efficacy or protection can be defined by many clinical endpoints, for example,

reduced risk of infection, reduced risk of symptoms, reduced risk of severe symptoms, or
reduced risk of hospitalisation [19]. Without the use of challenge studies or larger phase 3
studies determining relative reduction in disease, the probability of protection can be
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difficult to determine [20]. Instead, immunological data are typically used in early trials as
an anticipated surrogate of protection [21].

Although immunological data may be continuous in nature, a predictive model be-
tween immunological readout and probability of efficacy is often unknown [22]. Hence, it
is common to define a threshold and consider individuals with immune response in excess
of that threshold to have experienced an efficacious response [23]. Therefore, the actual
desired endpoint (e.g., protection/survival) is likely binary in nature, and surrogates are
often also binary. For simplicity and to aid in general usability, we therefore assumed that
for dose-ranging studies, there would exist a binary efficacy outcome that can be measured
and that the probability of this binary efficacy outcome is aimed to be maximised.

Even under these assumptions, there was a further challenge in modelling dose-
efficacy. Whereas for many drugs, we can assume that an increased dose increases efficacy,
for vaccines, this may not be the case. It is possible that there exists some dose for which the
probability of efficacy is maximised and that increasing this dose decreases the probability
of efficacious response [3,24–26]. Below, we define approaches for modelling vaccine
efficacy. We chose a sigmoidal curve to represent the former “saturating” dose–response
curve shape (Figure 2a) and a latent quadratic function to represent the latter “peaking”
dose–response curve shape (Figure 2b). These equations are presented below and have
previously been suggested in the literature [27,28]:

Saturating(Dose) =
maximum

1 + e(gradient(midpoint�Dose)) (1)

Peaking(Dose) =
1

1 + e(base+gradient1⇥ Dose+gradient2⇥Dose2)
(2)

 
(a) (b) 

Figure 2. Example curves for (a) saturating and (b) peaking dose efficacy.

Further details of these models can be found in Supplementary S1.
In the case of uncertainty in the true dose–efficacy shape, a model averaging technique

could also be considered [29]. Here, the saturating model and peaking models make
predictions and are then combined based on how well each model describes the data. The
mathematics behind this are discussed in Supplementary S2 and [22] and a visual depiction
is presented in (Figure 3).
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Figure 3. Visual example of model averaging. When the saturating Akaike weight is 0, the predicted
efficacy curve is defined entirely by the peaking model (blue). When the saturating Akaike weight is
1, the predicted efficacy curve is defined entirely by the saturating model (green). If both models are
equally as likely, given the available data, then the saturating Akaike weight and the peaking Akaike
weight are both 0.5, and the predicted efficacy curve is the midpoint of the saturating and peaking
curves (orange).

2.2.2. Dose Toxicity
As vaccine adverse events are typically less severe than adverse events for drugs

and vaccines are preventive rather than therapeutic, we decided that only modelling
higher-grade adverse events was unrealistic. It is likely that in vaccine dose-optimisation,
minimising lower-grade adverse events may be preferable and relevant to vaccine uptake.
Hence, we modelled vaccine dose toxicity using the ordinal dose-toxicity model [15]. Here,
toxicity was described by four grades using a four-level toxicity grading system (Table 1).

Table 1. Description of the assumed grades of adverse events. These follow the gradings described
in [30,31].

Adverse Reaction Grade General Description

0 None.
1 Mild. Does not interfere with normal activity.

2 Moderate. Interference with normal activity. Little or no
treatment required.

3 Severe. Prevents normal activity. Requires treatment.

We modelled the relationship between dose and the ordinal toxicities using the probit
method described in [15] and discussed further in Supplementary S1. A visual description
of an example ordinal model is given in Figure 4. Four parameters were needed to define
this model. Three parameters defined the dose thresholds for which at least 50% of
individuals experience greater than grade 0, grade 1, and grade 2 adverse events. The final
parameter defined the steepness of these thresholds.



Vaccines 2022, 10, 756 6 of 24

Figure 4. Visual example of ordinal dose toxicity. The plot shows the proportion of individuals that
would experience different adverse event grades for each dose. In this example, at low doses, grade
0 (blue) adverse events are most likely. By dose 6, grade 1 (yellow) and grade 2 (green) adverse
events are likely but grades 0 and 3 are also possible. By the maximum dose, approximately 50% of
individuals would experience a grade 3 adverse event, and almost all others would experience grade
2 events.

2.2.3. Dose Utility
Optimising vaccine dose can be considered a multi-objective optimisation problem, in

which we aim to maximise efficacy and minimise toxicity. To better define this problem, we
made use of a utility function that attempts to balance maximising efficacy and minimising
toxicity in a manner that should be clinically meaningful (Supplementary S3). Although
many utility functions might be reasonable, to reduce complexity, a simple and interpretable
dose-utility function was chosen [32].

For each dose, we assumed that there is some (predicted or true) probability of
efficacy, P(Efficacy|Dose). Additionally, we assume that there are probabilities for each
grade of toxicity, P(Toxicity = 0|Dose), P(Toxicity = 1|Dose), P(Toxicity = 2|Dose), and
P(Toxicity = 3|Dose). We then defined utility weights, which were:
• WeightEfficacy
• DisabilityWeightToxicity0
• DisabilityWeightToxicity1
• DisabilityWeightToxicity2
• DisabilityWeightToxicity3

These were measures of how beneficial an efficacious response was relative to the detrimental
effect of the different adverse event grades. For example, if WeightEfficacy > DisabilityWeightToxicity2,
then the protection that may be gained from an efficacious vaccine response would out-
weigh the discomfort of the grade 2 event. Conversely, if WeightEfficacy < DisabilityWeightToxicity3,
then the protection that may be gained from an efficacious vaccine response would be
outweighed by the discomfort of the grade 3 event. The disability weight for each grade
was increasing (i.e., a grade 2 adverse event was worse than a grade 1 adverse event)
(Table 2).

The dose-utility function is given by:

Utility(Dose) = WeightEfficacy ⇥ P(Efficacy|Dose)� WeightedToxicity(Dose) (3)
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WeightedToxicity(Dose) =
3

Â
Grade=0

P(Toxicity = Grade|Dose)⇥ DisabilityWeightGrade (4)

A similar idea of vaccine risk/benefit is discussed in relation to the recent COVID-19
AstraZeneca vaccine [33]. WeightEfficacy would vary depending on the disease’s severity,
prevalence, and level of confidence in the surrogate of protection. Hence, in this work,
we chose WeightEfficacy to be similar relative to DisabilityWeightToxicity3 (Table 2). This
ensures that both maximising efficacy and minimising toxicity are important and prevents
the optimal dose from being one that is optimal with regards to only one of these goals.
Practically, WeightEfficacy could be chosen based on epidemiological models [34].

Table 2. Disability and efficacy weights for the utility functions.

Weight Value Source

WeightEfficacy 0.133 or 0.266
Chosen to be equal to either

DisabilityWeightToxicity3 or twice
DisabilityWeightToxicity3

DisabilityWeightToxicity0 0.000 Chosen to be 0, as no discomfort/toxicity is caused
DisabilityWeightToxicity1 0.006 [35]
DisabilityWeightToxicity2 0.051 [35]
DisabilityWeightToxicity3 0.133 [35]

2.3. Scenarios
We considered it preferable to ensure that any dose-optimisation approaches that are

used in clinical practice are ‘consistent’, which is to say that they optimise dose well for any
vaccine they are applied to [36]. The opposite possibility would be for a dose-optimisation
approach to be ‘overly specific’, which is to say that the approach would optimise dose
very well for a small number of possible vaccines but would fail to choose a good dose
for the majority of possible vaccines. To test whether these dose-optimisation approaches
were ‘consistent’, we generated a number of qualitatively different ‘scenarios’ that dose-
optimsation approaches could be tested on, similar to the study designs used in other
dose-optimisation modelling studies [17,28].

Scenarios can be considered as simulated potential ‘truths’ for future vaccine dose/
toxicity/response characteristics. Here, a ‘scenario’ was defined by a dose–efficacy curve, a
dose–toxicity curve, and utility weights, i.e., the dose–utility curve resulting from these
three scenarios (Figure 1, blue box). These scenarios were defined in order to be qualitatively
different from each other, covering a broad range of potential dose/toxicity/response
characteristics, not based on historical data.

We created and then tested our approaches on 14 such scenarios. For their true dose–
efficacy curves, five scenarios used the sigmoid saturating curve, another five scenarios
used the latent quadratic peaking curve, and the remaining four scenarios used curves
that deviate from the parametric form of those two curves. Visualisations for three of the
scenarios are shown in Figure 5, and further visualisation and parameterisation for all
14 scenarios can be found in Supplementary S4.
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Scenario Name 

(Optimal Dose) 

Efficacy Curve Toxicity Curve Utility Curve 

Saturating 1 

(8.0) 

   

Peaking 1 

(6.8) 

   

Other 4 

(4.8) 

   

Figure 5. Three examples of the 14 tested scenarios. For each scenario, we show dose efficacy, dose
toxicity, and the resultant dose–utility plots. Optimal dose is also given. For the toxicity plots, grade
0, 1, 2, and 3 adverse event probabilities are represented by blue, orange, green, and red, respectively.

2.4. Dose-Optimisation Approaches
A dose-optimisation approach can be considered as the combined approach by which

a vaccine dose-finding study is conducted, data are gathered, and an ‘optimal’ dose is
chosen based on these data. Although there are many possible considerations for doing
so, we only considered a subsection of modelling-based dose-optimisation approaches.
Therefore (Figure 1, red boxes), for the purposes of this work, a dose-optimisation approach
was defined as a combination of:
i. An assumed efficacy model (saturating, peaking, or weighted);
ii. A trial size (10/30/60/100);
iii. A method of trial dose selection (with either retrospective or continual modelling).

Objective 1 focuses on i and ii, and objective 2 focuses on i and iii.
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2.5. Additional Details
Throughout this work, we considered dose on a log10 scale, although we did not

otherwise assume units. For viral vector vaccines, these units would likely be viral particles
or infectious units. Additionally, we consistently used a dose range of 0–10 on the log10 scale.
This was purely for convenience and could be rescaled to the minimum and maximum
possible dose for any given vaccine. This is referred to as the ‘dosing space’.

For all models, parameter estimation was conducted by minimising negative log
likelihood. This was done using the simplex method of Nelder and Mead [37] with the
SciPy optimisation package in python [38]. Bounds were placed on parameters to ensure
biological plausibility, see Supplementary S1.

2.6. Objective 1: When the Method of Trial Dose Selection Is Fixed, How Dose-Optimisation
Approaches Are Affected by the Assumed Statistical Efficacy Model and Trial Size

We first assessed the use of dose-optimisation approaches using the three models
of dose efficacy discussed above (saturating, peaking, and weighted) with regards to
retrospective modelling with various trial sizes. Using the definition of a dose-optimisation
approach outlined above, we assessed the following approaches:
i. Efficacy model: saturating, peaking, or weighted;
ii. Trial dose-selection method: full uniform exploration;
iii. Trial size: 10, 30, 60, or 100.

The method of dose selection for this objective was ‘full uniform exploration’. This
method distributes trial participants uniformly over the dosing space. For example, if there
were only 6 available trial participants over the [0–10] log10-scale dosing space, we would
have assigned test doses at 0, 2, 4, 6, 8, and 10. This method of dose selection is reasonable as
a naive method, as it would ensure that all areas of the dosing space were evenly explored.
As these data would then be a representative sample of all possible doses, this should have
allowed for good model calibration and hence a good suggestion of optimal dose.

We assessed 4 different trial sizes explored in this objective. These were 10, 30, 60,
and 100 individuals, representing reasonable sizes for vaccine phase I and II trials [39–41].
Hence, there were 12 (=4 ⇥ 3) dose-optimisation approaches, reflecting a combination
of the 4 trials sizes and 3 assumed efficacy models. Each scenario/approach pairing
was simulated 100 times for a total of 16800 (=12 ⇥ 14 ⇥ 100) simulated trials and
840,000 simulated individuals.

2.6.1. Metrics for Comparison between Approaches
We compared dose-optimisation approaches by calculating ‘simple regret’, ‘percentage

simple regret’, ‘inaccuracy’, ‘absolute inaccuracy’, ‘average regret’, and ‘percentage average
regret’ for each simulation (Figure 6).

Simple Regret
Simple regret in this setting was defined by the true utility score of the predicted

optimal dose compared to the true optimal utility for the given vaccine. Ideally, this should
be minimised. This is shown in Figure 6a and given by the following formula:

Simple Regret = UtilityTrueOptimal � UtilityChosen (5)

As the maximum and minimum possible utilities varied between scenarios, we also
used the percentage simple regret (PSR) metric to allow for meaningful comparison across
combinations of scenarios. PSR is given by the following formula:

PSR = 100 ⇥
UtilityTrueOptimal � UtilityChosen

UtilityTrueOptimal � UtilityTrueLeastOptimal
(6)
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where a PSR of 100 implies the least optimal dose was chosen, and a PSR of 0 implies that
the optimal dose was chosen.

 
(a) (b) 

 
(c) 

Figure 6. Visual description of (a) simple regret, (b), inaccuracy, and (c) average regret.

Inaccuracy
Inaccuracy in this setting was defined by the predicted utility score of the predicted

optimal dose compared to the true utility at that dose. This is shown in Figure 6b and given
by the following formula:

Inaccuracy = PredictedUtilityChosen � UtilityChosen (7)

Ideally, this should be as close to zero as possible, which is equivalent to minimising
the metric of absolute inaccuracy, which is given by:

Absolute Inaccuracy = max(Inaccuracy,�Inaccuracy) (8)

Average Regret
Each trial individual experiences a certain level of utility from receiving a vaccine.

This utility can be subtracted from the true optimal utility to determine the ‘regret’ for that
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individual. Average regret in this setting was defined by the utility that the average trial
individual experienced relative to the true utility at the true optimal dose. Ideally, this
should be minimised. This is shown in Figure 6c and given by the following formula:

Average Regret = Cumulative Regret / n (9)

where n is the number of trial participants and

Cumulative Regret =
n

Â
individual=1

RegretIndividual (10)

where
RegretIndividual = UtilityIndividual � UtilityTrue Optimal (11)

We further defined percentage average regret to again enable comparison between scenarios.

Percentage Average Regret =
Average Regret

UtilityTrue Optimal � UtilityTrue Least Optimal
(12)

2.7. Objective 2: When Trial Size Is Fixed, How Dose-Optimisation Approaches Are Affected by the
Assumed Statistical Efficacy Model and Method of Trial Dose Selection

For this objective, we assessed different methods of trial dose selection in combination
with the three efficacy models. In addition to the full uniform exploration described
in objective 1, which was retrospective, we considered three continual-modelling-based
methods of trial dose selection. Using the definition of a dose-optimisation approach
outlined above, we investigated the following approaches:
i. Efficacy model: saturating, peaking, or weighted;
ii. Trial size: 30;
iii. Trial dose-selection method: full uniform exploration, standard fully continual modelling,

balanced exploration (softmax) fully continual modelling, or three-stage (softmax).
Hence, there were 12 (=4 ⇥ 3) dose-optimisation approaches, reflecting a combi-

nation of the 4 methods of trial dose selection and 3 assumed efficacy models. Each
scenario/approach pairing was simulated 100 times for a total of 16800 (=12 ⇥ 14 ⇥ 100)
simulated trials and 840,000 simulated individuals.

Although the ‘full uniform exploration’ trial design assessed in objective 1 seemed
a reasonable design for improving model calibration, there are drawbacks to this design.
Many individuals may be trialled with a suboptimal dose due to the uniform nature of the
design. Modelling is also performed retrospectively; therefore, the generated data are not
used to improve trial dosing. Hence, for this objective, we considered approaches that use
continual-modelling-based methods of trial dose selection, which have been proposed to
lead to more ethical trials [13]. These essentially repeat a cycle of:
1. Conducting a small trial on a select set of doses;
2. Gathering efficacy and toxicity data from this experiment;
3. Updating the efficacy and toxicity models based on these data;
4. Using the models to select either the next set of doses to test or to select the final dose

to predict as ‘optimal’.

2.7.1. Fully Continual Standard
The standard fully continual method is the simplest continual modelling dose-selection

method. Each ‘experiment’ consists of one individual tested with the model-predicted
optimal dose.

2.7.2. Fully Continual, Balanced Exploration (Softmax)
The standard fully continual dose-selection method above has previously been shown

to be potentially useful in drug dose optimisation; however, analysis of optimisation
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problems outside of dose finding have shown that testing only the predicted optimal
may not be beneficial [42]. Being willing to ‘explore’ doses that are not predicted to be
optimal may ultimately improve the final selected dose. As such, we considered softmax
selection [43,44], where doses with higher predicted utilities were more likely to be selected;
however, the selected trial doses were not always exactly at the predicted optimal. The
degree of exploration was controlled by an exploration parameter, and further detail is
given in Supplementary S5.

2.7.3. Three-Stage (Softmax)
Whereas the fully continual modelling process has been shown to be effective in drug

dose optimisation, typically in that setting, the time between treatment and measurement
of effect is short. In the vaccine setting, the time between vaccination and measurement of
effect (immunological response) could be days, weeks, months, or even years. Hence, the
application of a fully continual modelling process could take much longer than is feasible.
We therefore considered a dose-selection method that contained elements of both the fully
continual and fully retrospective modelling designs.

There are many ways this could be implemented. We considered a three-stage ap-
proach as follows:
1. Stage 1.

a. 1/3 of the trial population is dosed following the full uniform exploration
approach outlined in objective 1.

b. Efficacy and toxicity models are calibrated using these data and pseudo-data [3.7.5].
2. Stage 2.

a. The second 1/3 of the population is dosed according to the utility predictions of
the combined efficacy and toxicity models, using the softmax selection method
with relatively high exploration.

b. Efficacy and toxicity models are calibrated using these data, data from step
one, and downweighted pseudo-data.

3. Stage 3.

a. The final 1/3 of the population is dosed according to the utility predictions of
the combined efficacy and toxicity models, using the softmax selection method
with relatively low exploration.

b. Efficacy and toxicity models are calibrated using all collected data, with pseudo-
data being ignored. The predicted optimal dose is selected according to the
utility predictions of the combined efficacy and toxicity models.

2.7.4. Dose-Escalation/De-Escalation Rules
We also included a simple escalation/de-escalation rule for the fully continual dose-

selection methods, which is typically suggested for such continual modelling dose-selection
methods. The first dose was always 5 on the log10 scale (that is to say the middle dose). A
dose could not be in excess of 1

2 a log above of the maximum previously tested dose or
more than 1

2 a log below the minimum previously tested dose. For example, dose 10 (1010)
could not be tested unless a dose of at least 9.5 (109.5) had been previously tested. This was
suggested to reduce the risk of unexpected higher-grade toxicities.

As the first stage of the three-stage softmax approach included the smallest and largest
allowed doses in the dosing space, the dose escalation/de-escalation rules would have no effect.

2.7.5. Pseudo-Data
Such continual modelling approaches can be implemented when insufficient data are

available. Calibration with a small amount of data can be unstable; hence, pseudo-data
were used to stabilise the calibration, as suggested in [15]. We used minimally informative
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pseudo-data, which was quickly outweighed by real data and was ignored in the calibration
step prior to final dose selection. Full details can be found in Supplementary S6.

2.7.6. Comparison between Approaches/Trial Designs
As in objective 1, percentage simple regret, inaccuracy, absolute inaccuracy, average

regret, and percentage average regret were calculated. We used the Copeland method
to identify a quantitative ranking of these approaches for their simple regret, absolute
inaccuracy, and average regret outcomes [45,46], see Supplementary S7. Sum of ranks and
mean of Copeland metrics across simple regret, absolute inaccuracy, and average regret
were also obtained.

3. Results

3.1. Objective 1: When the Method of Trial Dose Selection Is Fixed, How Dose-Optimisation
Approaches Are Affected by the Assumed Statistical Efficacy Model and Trial Size

A clear relationship between trial size and percentage simple regret (PSR) was ob-
served (Figure 7), with a reduction in PSR as trial size increased, indicating that a more
optimal dose was selected when trial size was larger. This was true regardless of whether a
saturating, peaking, or weighted efficacy model was used and suggests an increased trial
size improved final dose selection. However, the PSR aggregated across all scenarios was
lower for the peaking and weighted approaches than for the approaches with saturating
efficacy models (Figure 7), suggesting that using either a peaking or weighted model in-
creased the average utility of the final selected dose. For almost all scenarios and trial sizes,
it was better to assume a peaking curve than a saturating curve to minimise PSR, with a
few exceptions, see Supplementary S8.

 
Figure 7. Percentage simple regret (PSR) for all scenarios by assumed efficacy model and trial size.
Trial dose selection method was full uniform exploration. A lower PSR denotes a more optimal final
dose. Individual points represent PSR for a single simulated clinical trial using one dose-optimisation
approach for one of the 14 scenarios. The middle line of each boxplot is the median value; the
box marks the 25th and 75th percentiles, and the whiskers mark the 5th and 95th percentiles of
the data. Black lines represent the 95% confidence interval for the median of each distribution [47].
The majority of these distributions of PSR were different to a statistically significant extent at the
p = 0.05 threshold according to the Kolmogorov–Smirnov test due to the large number of simulations
conducted (100 per approach/scenario pairing). For further details on statistical significance see
Supplementary S12.
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Similarly, the accuracy of the predicted utility at the predicted optimal dose increased
with increasing trial size (decreased inaccuracy) (Figure 8). An ‘optimistic bias’ was
observed (positive inaccuracy) (Figure 8a), with predicted utility typically higher than
the true utility for the given dose, as is often expected in optimisation problems [48,49]
(Supplementary S9). There was no difference in inaccuracy between efficacy models for
any trial size.

  
(a) (b) 

Figure 8. Inaccuracy (a) and absolute inaccuracy (b) for all scenarios by assumed efficacy model
and trial size. Trial dose-selection method was full uniform exploration. The closer the inaccu-
racy/absolute accuracy was to 0, the more accurate the prediction of utility was at the predicted
optimal dose. Individual points represent inaccuracy/absolute inaccuracy for a single simulated
clinical trial using that dose-optimisation approach for one of the 14 scenarios. The middle line of each
boxplot is the median value; the box marks the 25th and 75th percentiles, and the whiskers mark the
5th and 95th percentiles of the data. Black lines represent the 95% confidence interval for the median
of each distribution [47]. The majority of these distributions of absolute inaccuracy were different to
a statistically significant extent at the p = 0.05 threshold according to the Kolmogorov–Smirnov test
due to the large number of simulations conducted (100 per approach/scenario pairing). For further
details on statistical significance, see Supplementary S12.

There was no difference in median percentage average regret between efficacy model
and trial size (Figure 9). This was to be expected, as all used the same method of trial
dose selection of full uniform exploration with no continual modelling to allow later trial
participants to benefit from early trial data.

All plots for PSR, inaccuracy, and percentage average regret for each scenario are
shown in Supplementary S10 and S11. Analysis of the distributions of PSR, absolute
inaccuracy, and PAR for statistical significance are given in the Supplementary S12.
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Figure 9. Percentage average regret for all scenarios by assumed efficacy model and trial size. Trial
dose-selection method was full uniform exploration. Individual points represent percentage average
regret for a single simulated clinical trial using that dose-optimisation approach for one of the
14 scenarios. The middle line of each boxplot is the median value; the box marks the 25th and 75th
percentiles, and the whiskers mark the 5th and 95th percentiles of the data. Black lines represent the
95% confidence interval for the median of each distribution [47]. The majority of these distributions
of PAR were not different to a statistically significant extent at the p = 0.05 threshold according to the
Kolmogorov–Smirnov test. For further details on statistical significance, see Supplementary S12.

3.2. Objective 2: When Trial Size Is Fixed, How Dose-Optimisation Approaches Are Affected by the
Assumed Statistical Efficacy Model and Method of Trial Dose Selection
3.2.1. Qualitative Analysis

With a trial of size 30, we found that using the peaking or weighted efficacy model
still typically led to more optimal dose selection when compared to the saturating model
(as shown by decreased PSR) (Figure 10). Neither the full uniform exploration modelling
approaches nor the continual modelling approaches consistently showed a reduced PSR
relative to one another. For some scenarios (saturating 5, Supplementary S13) we found that
PSR was reduced by using continual modelling approaches. For others (peaking 1, peaking
efficacy curve assumed, Supplementary S13), we found that the full uniform exploration
approach appeared to best reduce PSR. This may suggest that the benefits of high levels of
exploration or continual modelling for reducing PSR depend on the scenario. In general,
the fully continual balanced exploration modelling approaches and the three-stage softmax
approach appeared to lead to a slight reduction in PSR across the 14 scenarios relative
to the standard fully continual modelling approach, suggesting that exploration may be
important in consistent dose optimisation.

With a trial size of 30, there was minimal difference in inaccuracy and absolute in-
accuracy across the approaches (Figure 11). This may suggest that the accuracy of utility
predictions at the model predicted optimal vaccine dose was not dramatically improved by
using a continual modelling method of dose selection. There was still an optimistic bias, al-
though this was slightly reduced in the three-stage approaches relative to the standard fully
continual, balanced exploration fully continual, and full uniform exploration approaches.
Again, this was minimal relative to the differences that were observed when changing trial
size in objective 1.
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Figure 10. Percentage simple regret (PSR) for all scenarios by assumed efficacy model and trial
dose-selection method. Trial size was 30. Individual points represent PSR for a single simulated
clinical trial using that dose-optimisation approach for one of the 14 scenarios. The middle line of
each boxplot is the median value; the box marks the 25th and 75th percentiles, and the whiskers mark
the 5th and 95th percentiles of the data. A lower PSR denotes a more optimal final dose. Black lines
represent the 95% confidence interval for the median of each distribution [47]. The distributions of
PSR for the approaches that assumed a saturating model were different to the distributions of the
approaches that assumed a peaking or weighted efficacy mode to a statistically significant extent at
the p = 0.05 threshold according to the Kolmogorov–Smirnov test. For further details on statistical
significance, see Supplementary S12.

With a trial size of 30, the results suggest that fully continual modelling (both standard
and balanced) and three-stage approaches identify optimal dose with a greater net benefit
to trial participants than the retrospective full uniform exploration approaches (as shown by
decreased average regret) (Figure 12). The balanced exploration variant of the fully contin-
ual modelling dose-selection method appeared to have a marginally increased percentage
average regret compared to approaches with standard fully continual modelling dose
selection, but average regret was still significantly reduced relative to approaches using
the three-stage softmax or full uniform exploration methods of trial dose selection. The
three-stage softmax approaches showed a reduced average regret relative to full uniform
exploration but a greater average regret relative to the fully continual approaches. These
findings were the same regardless of the assumed efficacy model.

Similar plots for each individual scenario are shown in Supplementary S10 and S13.
Analysis of the distributions of PSR, absolute inaccuracy, and PAR for statistical significance
are given in the Supplementarys S12.
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(a) (b) 

Figure 11. Inaccuracy (a) and absolute inaccuracy (b) for all scenarios by assumed efficacy model
and trial dose-selection method. Trial size was 30. Individual points represent inaccuracy/absolute
inaccuracy for a single simulated clinical trial using that dose-optimisation approach for one of
the 14 scenarios. The middle line of each boxplot is the median value; the box marks the 25th
and 75th percentiles, and the whiskers mark the 5th and 95th percentiles of the data. The closer
inaccuracy/absolute accuracy is to 0, the more accurate the prediction of utility is at the predicted
optimal dose. Black lines represent the 95% confidence interval for the median of each distribution [47].
The majority of these distributions of absolute inaccuracy were not different to a statistically significant
extent at the p = 0.05 threshold according to the Kolmogorov–Smirnov test. For further details on
statistical significance, see Supplementary S12.

Figure 12. Percentage average regret for all scenarios by assumed efficacy model and trial dose-
selection method. Trial size was 30. Individual points represent percentage average regret for a single
simulated clinical trial using that dose-optimisation approach for one of the 14 scenarios. The middle
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line of each boxplot is the median value; the box marks the 25th and 75th percentiles, and the whiskers
mark the 5th and 95th percentiles of the data. A lower percentage average regret denotes better
outcomes for trial participants. Black lines represent the 95% confidence interval for the median of
each distribution [47]. The majority of these distributions of PAR were not different to a statistically
significant extent at the p = 0.05 threshold according to the Kolmogorov–Smirnov test. For further
details on statistical significance, see Supplementary S12.

3.2.2. Quantitative Ranking
For minimising PSR, the approach assuming a weighted efficacy curve and using fully

continual modelling with balanced exploration was most consistent across the scenarios that
we tested (Table 3). The fully continual modelling with balanced exploration approaches
outranked the standard fully continual modelling approaches for each efficacy model. The
three-stage softmax approaches also performed well, along with the approach with full
uniform exploration with an assumed peaking efficacy curve. This may suggest that when
assuming a peaking curve shape, exploration improves final dose selection.

For minimising average regret, the standard fully continual modelling approach
assuming a peaking efficacy curve was most consistent across the scenarios that we tested.
The shape of the model’s efficacy curve was less important than the method of trial dose
selection for minimising average regret, with the order from worst to best being full uniform
exploration, three stage softmax, balanced fully continual modelling, and standard fully
continual modelling. This may suggest that for small trial sizes (30), the standard fully
continual modelling approach is most ethical, as the average regret was lowest. Therefore,
the reduction in simple regret observed when including exploration may come at the cost
of increased average regret for such small trial sizes.

For minimising absolute inaccuracy, the three-stage softmax approach assuming a
peaking efficacy curve was most consistent across these scenarios, suggesting that dosing
trial participants both near the predicted optimal and further away from the predicted
optimal may reduce inaccuracy. The full uniform exploration approaches ranked lowest.

The dose-optimisation approach with an assumed weighted efficacy curve and fully
continual modelling with balanced exploration had the best sum of ranks, which suggests
that this approach should be chosen if simple regret, inaccuracy, and average regret are all
equally valued. Copeland tables for each scenario are given in Supplementary S14.

Table 3. Copeland scores and rankings for all approaches with a trial size of 30 across all scenarios.
Ordering is by aggregate rank. Aggregate rank was calculated as the sum of ranks for simple regret,
absolute inaccuracy, and average regret. Aggregate score was the mean of scores for simple regret,
inaccuracy, and average regret.

Aggregate of Simple Regret,

Absolute Inaccuracy, and

Average Regret

Simple Regret
Absolute

Inaccuracy
Average Regret

Approach Rank Score Rank Score Rank Score Rank Score

Weighted, Fully Continual, Balanced 8 0.570 1 0.564 3 0.522 4 0.625
Peaking, Fully Continual, Standard 12 0.572 7 0.498 4 0.517 1 0.701

Peaking, Softmax Three Stage 12 0.536 4 0.552 1 1 0.556 7 0.500
Peaking, Fully Continual, Balanced 14 0.557 3 0.552 1 6 0.510 5 0.610

Weighted, Fully Continual, Standard 15 0.565 8 0.485 5 0.514 2 0.698
Weighted, Softmax Three Stage 15 0.528 5 0.541 2 0.549 8 0.493

Saturating, Fully Continual, Standard 20 0.543 10 0.447 7 0.492 3 0.691
Peaking, Full uniform exploration 24 0.414 2 0.563 10 0.480 12 0.201

Saturating, Fully Continual, Balanced 24 0.519 9 0.463 9 0.486 6 0.609
Saturating, Softmax Three Stage 28 0.465 11 0.442 8 0.489 9 0.465

Weighted, Full uniform exploration 28 0.400 6 0.516 11 0.480 11 0.203
Saturating, Full uniform exploration 34 0.330 12 0.378 12 0.406 10 0.205

1 Scores are rounded to three decimal places, but ranks were calculated before rounding.
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4. Discussion

In this work, we used simulation studies to evaluate mathematical-modelling-based
approaches to optimising vaccine dose, maximising efficacy while minimising toxicity.
We found that doses selected using these methods were improved with increased trial
size, particularly for studies with at least 30 trial participants. Using a peaking model or
a weighted model averaging approach for modelling dose efficacy was generally most
effective for determining optimal dose. Identification of optimal dose was minimally
affected by the method of trial dose selection. However, using modelling at interim
timepoints to select trial doses led to trial participants receiving more optimal doses. Dosing
only at the predicted optimal dose during a clinical trial may lead to less optimal dose
selection relative to dosing around the predicted optimal. This work suggests modelling
can be used effectively for vaccine dose finding, accelerating effective vaccine development
and saving lives.

There were a number of strengths in our work. We included ordinal toxicity, which is
highly relevant in vaccines due to their general safety profiles and potential for prophylactic
use. Whereas we have previously seen vaccine dose optimisation applied using real-world
data [3,24], simulation studies allow for an increased understanding of the potentials and
pitfalls of dose-finding methodologies because the “truth” is known. By explicitly defining
scenarios, we were able to accurately test metrics such as PSR and inaccuracy for these
dose-optimisation approaches. Additionally, the scenarios we chose explored a wide range
of curve shapes so that a multitude of potential real-life dosing scenarios could be reflected.

We chose to consider optimisation over a large number of potential doses, whereas
previous dose-optimisation simulation studies have typically focussed on choosing between
a small number of dosing levels [50]. Using a small number of doses may not be appropriate
if none of the selected doses achieves optimal vaccine utility. Additionally, we chose to
use ‘simple regret’-based metrics rather than ‘percentage best arm identification’, which
considers an approach to have been successful in optimising dose in a simulated clinical
trial if and only if the true optimal dose was predicted to be optimal [51]. Using ‘simple
regret’ as a metric is more appropriate for vaccine dose-optimisation, as multiple closely
spaced arms may have similar utility. Selecting a dose with approximately equal clinical
value to that of the true optimal dose would be considered to be an improvement to
selecting an inferior dose under simple regret, but both would be considered as failures in
terms of optimising dose under the percentage best arm identification metric.

Additionally, we discussed the concept of ‘exploration’, which is rarely considered
in dose-optimisation work but is instrumental to the wider class of ‘multi-armed bandit
problems’, which dose-optimisation can be considered to be part of [52]. The analysis of
full uniform exploration and weighted modelling approaches was also novel in this setting.
Finally, we also evaluated the concept of accuracy and inaccuracy in dose-optimisation
modelling approaches, which is typically not well researched. This seems relevant, given
the overestimation bias observed across all of these approaches to dose optimisation, which
could lead to overestimations in the potential of vaccine utility and incorrectly guide policy.

There were weaknesses with both this work and the dose-optimisation approaches
evaluated in general. It is likely that the 14 scenarios we chose may not represent all possible
real-life dose–efficacy, dose–toxicity, and dose–utility curves. However, the 14 scenarios we
used were qualitatively different and sufficient to cover plausible prior belief for any specific
vaccine. When designing dose-finding trials for a future vaccine, it may be reasonable
to consider only the findings for scenarios that are most similar to the clinician’s prior
beliefs about a given vaccine’s likely dose–efficacy/dose–toxicity curves. Additionally, we
performed only 100 clinical trial simulations for each approach/scenario pairing. This is in
excess of the minimum of 10 that has been suggested [53], and we believe a larger number
of simulated trials would not have impacted the results. Although not a weakness of the
work, the observed overestimation bias appears to be a weakness of these optimisation
approaches, as it decreases with increased trial size. We note that an overestimation bias
is expected in both model-based [48,49] and traditional comparative dose-selection [54]
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methodologies (Supplementary S9). Methods to remedy this have been suggested but were
not addressed in this work [49,55].

Our work is consistent with previous modelling findings. These studies also showed
that continual modelling approaches increased the average quality of clinical trial drug
dosing (e.g., decreased average regret) [12]. It has previously been shown that for similar
optimisation problems, exploration is key to maximising utility, but the level of exploration
varies based on scenario and sample size [56]. This is consistent with our finding that for a
sample size of 30, whether approaches without exploration could outperform explorative
approaches depended on the scenario. Specifically, in previous work on optimisation of
drug dose (using a small number of potential dosing levels, Bayesian methodologies, and
only an assumed saturating efficacy curve), it was found that including exploration was
beneficial for drug dose optimisation [57]. We also found, with regards to efficacy curves,
that the peaking latent quadratic curve often outperformed the saturating sigmoid curve in
cases where the true scenario curve was sigmoid saturating. Although we might expect
that using the model that best describes true dose–response dynamics would be preferable
for optimisation purposes, previous studies suggested that in some cases, models that do
not well approximate the true dynamics can be preferable for optimisation purposes [58].

There were limitations to this work and the approaches discussed. We assumed that
a binary measure for vaccine efficacy is known; however, for many diseases, a surrogate
(binary or otherwise) of protection is not known. We also excluded many complicating
factors that have been discussed in previous continual modelling literature. For example
correlation in the probabilities of efficacy and toxicity [59], multiple toxicity subtypes (e.g.,
pain and nausea) [60], stopping rules [13], and placebo doses [61] were not considered.
Given that modelling-based vaccine dose optimisation is a large topic that is still in the
proof-of-concept stage, these were omitted to simplify the work. Additionally, we did not
address cost and time requirements for trials. The time taken by continual modelling ap-
proaches in a vaccine clinical trial setting may not be justified by the resulting improvement
in outcome for trial participants, which reflected by a decrease in average regret. We also
did not compare these approaches to model-free approaches, such as 3 + 3 design [62,63], as
such approaches are inherently designed to choose between a small number of doses and
therefore have similar problems associated with selecting from a small number of doses
that we discussed above.

We also did not include a fifth or sixth toxicity grade, which would typically represent
a serious adverse event resulting in hospitalisation or death, respectively. As these events
are likely to be rare in most vaccine trials [1] and would typically require the trial to be
stopped, we excluded these gradings. Finally, we did not consider potential confounders
(for example, age or sex) that may occur in practical dose-ranging trials. This would have
further increased the complexity of this work.

There is much future work to be done on this topic. Additional scenarios should be
tested to investigate any further shortcomings of these approaches. Only one simple utility
function was considered in this work. This could be made more complex by including
dose–cost relationships or modelling dose–response curves for multiple different efficacy or
toxicity responses [11,60,64]. Creating a meaningful utility function is non-trivial [65,66] and
is key to effective optimisation. Previous work has shown that both Bayesian methodologies
and the frequentist methodologies discussed in this work perform similarly for some
continual modelling approaches [67], but this should be further tested and validated.
Optimising the degree of exploration that should occur could potentially decrease simple
regret and average regret, but the optimal amount of exploration almost certainly depends
on the scenario and trial size [56]. Additionally, using mechanistic models for dose efficacy
could be beneficial if there is a good understanding of the immunodynamics relating to the
vaccine [3,4,68]. However, this would likely introduce more complexity to the modelling
process and to the utility function.

Although simulation demonstrates that these dose-optimisation approaches could
be used when designing trials to optimise vaccine dose, these approaches clearly need
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to be tested in a real-world setting to evaluate their practical implementation. Although
the continual modelling approaches reduced average regret (improved trial participant
outcomes) relative to the retrospective approaches, there is clearly a trade-off regarding
whether this is worth the increased time requirements (which dramatically increase when
using fully continual approaches) or additional complexity (particularly in approaches
that use softmax selection). Hence, when using modelling for vaccine dose optimisation,
there appears to be a balance between improved trial participant experience and the cost
of increased time to clinical use. Whether this is ethically justified is a matter for further
discussion. There may also be discussion of whether the potential for greater information
efficiency from modelling may reduce trial size relative to standard dose-finding trial design
and justify the increased time requirements. Furthermore, there should be consideration
of how to approach confounding variables. Clinical trial design randomisation typically
aims to ensure that populations in different dosing groups are homogenous [69]. The
approaches discussed here assume that individuals are independent of each other; therefore,
randomised sampling from a homogenous population should still be used to minimise
risk of confounding variables (for example, avoiding correlation between dose and age of
trial participants). Additionally, choosing optimal dose for prime-boost paradigm vaccines
may require more complicated mathematical modelling methods, as efficacy and toxicity
outcomes may be dependent on both prime and boost dose [70].

In drug development, mathematical modelling methodologies have led to improved
drug efficacy and toxicity profiles, as well as a reduction in the cost of clinical trials. Despite
the limitations and open questions discussed above, the application of mathematical
modelling methodologies in vaccine pharmacological and biotechnology industries could
allow for more quantitative and informed decision making.

5. Conclusions

Choosing the optimal vaccine dose is a complicated endeavour. Through this work,
we evaluated model-based dose-optimisation approaches, along with trial design, to utilise
these methodologies. Model-based dose-optimisation approaches may be effective for
making vaccine dose decisions, which may increase efficacy and decrease toxicity, both
during clinical trials and upon vaccine implementation. We hope that this work leads to
future research and practical application of modelling methods in selecting vaccine doses.
This may accelerate effective vaccine development and save lives.
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Supplementary material for paper 4 
These supplementary are adapted from those that were included with the published 

version of this paper, which can be found online [194]. 

Supplementary 1. Models 
Saturating - Sigmoid 

The following model is a classical dose-response model for modelling dose-efficacy 

in drugs. 

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑛𝑔(𝐷𝑜𝑠𝑒) =  
1

1 + 𝑒 ×( ) 

This may be recognisable as the model for logistic regression. This has an efficacy 

of 0 as dose tends to negative infinity, and an efficacy of 1 as dose tends to positive 

infinity. In this work we made the adjustment of multiplying this by a parameter 

‘maximum’ that is between 0 and 1. This was because for a given vaccine candidate 

assuming that efficacy can become 100% for sufficiently large doses seemed 

unreasonable. It seemed possible that an otherwise immunogenic vaccine may not 

be immunogenic in some individuals regardless of dose, for example due to 

variations in major histocompatibility complexes [1].  

Peaking - Latent Quadratic 

The latent quadratic model has been commonly used for the purposes of modelling 

non-monotonically increasing dose response. It is similar to the saturating model, 

other than it includes quadratic terms to allow qualitative dose-response to vary 

between small and large doses. By differentiation it can be shown that the maxima 

point within the parameter bounds used is at: 

𝑑𝑜𝑠𝑒 =  −
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡1

2 × 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡2
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Weighted 

Please see Supplementary weighted model averaging. 

Probit 

An excellent description of the probit model for ordinal toxicities can be found in [2]. 

In short, we consider the probability of observing toxicity less than grade j given dose 

𝑃(𝑌 = 𝑗|𝑑𝑜𝑠𝑒) by: 

𝑃(𝑌 = 0|𝑑𝑜𝑠𝑒) = 𝑃(𝑌 < 1|𝑑𝑜𝑠𝑒) − 𝑃(𝑌 < 0|𝑑𝑜𝑠𝑒) = 𝑃(𝑌 < 1|𝑑𝑜𝑠𝑒) − 0 

𝑃(𝑌 = 1|𝑑𝑜𝑠𝑒) = 𝑃(𝑌 < 2|𝑑𝑜𝑠𝑒) − 𝑃(𝑌 < 1|𝑑𝑜𝑠𝑒) 

𝑃(𝑌 = 2|𝑑𝑜𝑠𝑒) = 𝑃(𝑌 < 3|𝑑𝑜𝑠𝑒) − 𝑃(𝑌 < 2|𝑑𝑜𝑠𝑒) 

𝑃(𝑌 = 3|𝑑𝑜𝑠𝑒) = 𝑃(𝑌 < 4|𝑑𝑜𝑠𝑒) − 𝑃(𝑌 < 3|𝑑𝑜𝑠𝑒) = 1 − 𝑃(𝑌 < 3|𝑑𝑜𝑠𝑒) 

𝑃(𝑌 < 0|𝑑𝑜𝑠𝑒) and 𝑃(𝑌 < 4|𝑑𝑜𝑠𝑒) are respectively 0 and 1 (0 and 3 are assumed to 

be the lowest and highest adverse event gradings possible). Otherwise 

𝑃(𝑌 < 𝑗|𝑑𝑜𝑠𝑒) is given by𝜑(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 × 𝑑𝑜𝑠𝑒), where 𝜑() is the 

cumulative density function with  𝜎 = 1. Hence at 𝑑𝑜𝑠𝑒 =  ,  𝑃(𝑌 < 𝑗|𝑑𝑜𝑠𝑒) =

0.5 

Parameters and bounding 

Within the calibration of these models, certain bounds were used to aim the 

calibration and for biological plausibility.   
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Parameter Bounds Notes 

Saturating - Sigmoid 

gradient 0 to 6 It seems biologically unlikely that a vaccine dose-efficacy curve is 
discontinuous or that a relatively small change in dose could be responsible 
for a massive change in vaccine efficacy. Therefore, the gradient was 
bounded to prevent an overly steep curve. The maximum gradient of 6 would 
mean that a single log increase in dose (only 1/10th of the dosing space) 
could be responsible for 90% of the change in vaccine efficacy.  
None of the scenarios had a gradient steeper than this, so if it is believed that 
1/10th of the dosing space could be responsible for >90% of the change in 
vaccine efficacy a higher value should be used. 
A lower bound of 0 prevents efficacy from being decreasing w.r.t. increasing 
dose, which is one of the assumptions of saturating dose-response. 

midpoint 0 to 
infinity 

This ensures that the model cannot predict that efficacy is saturating below 
the lowest dose in the dosing space. This assumption was true for all 
scenarios but could be relaxed if it is believed that efficacy may have already 
begun saturating at the lowest dose in the dosing space.  

maximum 0 to 1 Having a greater than 1 or less than 0 probability of efficacy is biologically and 
probabilistically impossible. 

Peaking - Latent Quadratic 

base -infinity 
to infinity 

Unbounded to allow other parameters to well define the model.  

gradient1 0 to 6 See notes for the gradient parameter of the saturation sigmoid model. Both 
used the same bounds to ensure fairness in comparison. 

gradient2 -infinity 
to 0 

Bounding to be less than zero is to ensure that an increasing dose will 
eventually lead to a decreasing efficacy, an assumption of the peaking model. 

Toxicity Probit 

gradient 0 to 6 See notes for the gradient parameter of the saturation sigmoid model.  

threshold1 -infinity 
to infinity 

Unbounded to allow high or low levels of this toxicity grade at either the lowest 
or highest doses in the dosing space. 

threshold2 -infinity 
to infinity 

As above. 

threshold3 -infinity 
to infinity 

As above. 

Table S1.1. Parameter bounds for dose-response models. 
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Supplementary 2. Weighted model averaging 
Model averaging can be a useful method for inference when the current model form 

is uncertain. We use the method of model weighting via the Akaike Information 

Criterion (AIC) model averaging [3]. We outline this here.  

Suppose that we have two competing models M1 and M2. After gathering data and 

calibrating models we have respective likelihoods L1 and L2 for the two models. Then 

AIC1 and AIC2 can be calculated as 

𝐴𝐼𝐶 =  −2 ln(𝐿 ) + 2𝑘  

Where k1 is the number of parameters for model i. Let AICbest be the minimum of 

AIC1 and AIC2. and ∇i = AICi - AICbest for each model. 

The Akaike weights W1 and W2 can be calculated as  

𝑊 =
𝑒( ∇ )

𝑒( ∇ ) + 𝑒( ∇ ) 

Finally, the predictions of the weighted model at some input value x are hence given 

by 

𝑀 (𝑑𝑜𝑠𝑒) = 𝑊1𝑀1(𝑑𝑜𝑠𝑒) + 𝑊 𝑀 (𝑑𝑜𝑠𝑒) 

Where M1(dose) and M2(dose) are respective predictions for M1 and M2 at dose. 

 
Supplementary 3. Pareto Optimality 

This section has been adapted and lengthened, see appendix A.B. 

Supplementary 4. Scenarios 
We aimed for the scenarios to be qualitatively different in both shape and optimal dose.   
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Scenario Saturating 1 

Qualitatively this scenario had a saturating efficacy curve and a high optimal dose, 

with a relatively steep utility curve. 

 
Parameter Value 

Efficacy gradient 1.000 

midpoint 6.000 

maximum 0.900 

Toxicity gradient 1.000 

threshold1 3.000 

threshold2 9.000 

threshold3 10.500 

Utility Weights WeightEfficacy 0.133 

Table S.4.1.Saturating 1. Parameters for the scenario Saturating 1 

   

Figure.S.4.1. Saturating 1. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario 
Saturating 1 
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Scenario Peaking 3 

Qualitatively this scenario had a peaking efficacy curve and a low optimal dose, with 

a relatively steep utility curve. 

 
Parameter Value 

Efficacy base -6.000 

gradient1 5.000 

gradient2 -0.750 

Toxicity gradient 0.500 

threshold1 1.000 

threshold2 3.000 

threshold3 5.000 

Utility Weights WeightEfficacy 0.133 

Table.S.4.8.Peaking 3. Parameters for the scenario Peaking 3 

   

Figure.S.4.8.Peaking 3. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario 
Peaking 3 
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Scenario Other 2 

Other 2 represents a vaccine for which dose-efficacy is fundamentally saturating but 

follows a different and more complicated biphasic parametric form to the sigmoid 

saturating model assumed elsewhere in this paper. The efficacy model is given as  

𝐵𝑖𝑝ℎ𝑎𝑠𝑖𝑐(𝑑𝑜𝑠𝑒) =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 × 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

1 + 𝑒 1×( 1 ) +
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 × (1 − 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

1 + 𝑒 ×( )  

 
Parameter Value 

Efficacy gradient1 0.500 

gradient2 3.000 

midpoint1 4.000 

midpoint2 6.000 

maximum 0.900 

fraction 0.500 

Toxicity gradient 0.500 

threshold1 1.000 

threshold2 3.000 

threshold3 5.000 

Utility Weights WeightEfficacy 0.133 

Table.S.4.12.Other 2. Parameters for the scenario Other 2 

 

   

Figure.S.4.12.Other 2. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario Other 
2 
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Supplementary 5. SoftMax 

Method 

SoftMax selection is a method of action selection used commonly in both multi-

armed bandit problems and reinforcement learning. We provide a description of 

action/dose selection under this method. Let A1, A2, …., An be the n possible actions 

available to be taken, each with respective predicted utility U1, U2,..., Un. Then an 

action Ai is selected to test (dose selected to trial) with probability 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑜𝑛 𝐴 =  
𝑒 × 

∑ 𝑒 ×
 1

 

where inverse_temperature is a hyperparameter which controls the degree of 

exploration. An increased inverse temperature leads to actions with lower predicted 

utility having lower probability of selection. For inverse_temperature = 0, which is the 

lowest possible inverse_temperature, all actions are selected with equal probability 

(1/n). As inverse_temperature tends to infinity, this selection method tends to only 

select the action(s) with the maximum predicted utility. A random number generator 

is used to select an action with these probabilities.  

inverse_temperature values 

For the balanced fully continuous trial dose selection method we used 

inverse_temperature = 69. This was chosen such that a utility difference of 0.01 

would have a doubled probability of selection. This is shown 

2𝑒 × =  𝑒 ×( 0.01)  

=  𝑒 ×( )  𝑒 ×(0.01)  

2 = 𝑒 ×(0.01)  

ln(2) = 0.69 = 0.01 × 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

69 = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

For the three stage SoftMax dose selection method we used inverse_temperature = 

(58.9,294) for selecting the (2nd, 3rd) stage of doses. This was chosen such that for 
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utility difference of (0.05, 0.01) would lead to the dose that was predicted better 

being selected 95% of the time. This is shown in the 0.05 case by 

 
95𝑒 × =  5𝑒 ×( 0.0 )  

=  5𝑒 ×( )  𝑒 ×(0.0 )  

19 = 𝑒 ×(0.0 )  

ln(19) = 2.94 = 0.05 × 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

58.9 = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

And similarly for 0.01. 

These may not have been optimal values, but optimal values are likely to vary 

depending on the scenario.  

Supplementary 6. Pseudodata 
Pseudodata or anchor points are used to stabilise and inform models for which little 

real data are available. In short, we pretend that there exist data which does not 

actually exist but have these data points being less important than real data, and 

further downweight or ignore these data as more data are gathered. We aim to use 

minimally informative pseudodata. For all approaches pseudodata are fully ignored 

for final dose selection. 

Efficacy Models 

For efficacy modelling, pseudo data were of the form in table S.Pseudodata.1. Thus, 

there were 300 pseudo individuals divided evenly over 3 doses.  

For the standard and balanced fully continual approaches the weight of a 

pseudodata-point was 0.01 of regular datapoint. Thus, the effective sample size of 

the pseudodata was 3 (=300x0.01), which is quickly minimal relative to the amount of 

real data. 

For the 3 stage SoftMax approaches the weights of a pseudodata-point were 0.01 

and 0.001 for the second and third trial dose selections respectively. Thus, the 
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effective sample size of the pseudodata were 3 and 0.3. Thus, for the third dose 

selection the pseudodata represented only 1.47% (=0.3/ (20+0.3)) of the data.  

Dose Non-efficacy response Efficacy Response 

1 90 10 

5 50 50 

9 10 90 

Table S.6.1. Efficacy pseudodata 

Toxicity Model 

For toxicity modelling, pseudo data were of the form in table S/Pseudodata.2. Thus, 

there were 200 pseudo individuals divided evenly over 2 doses.  

Again, for the standard and balanced fully continual approaches the weight of a 

pseudo data point was 0.01 of regular datapoint. Thus, the effective sample size of 

the pseudodata was 2, which is quickly minimal relative to the amount of real data. 

For the 3 stage SoftMax approaches the weights of a pseudo datapoint were 0.01 

and 0.001 at the second and third trial dose selections respectively. Thus, the 

effective sample size of the pseudodata were 2 and 0.2. Thus, for the third dose 

selection the pseudodata represented only 0.99% (=0.2/20.2) of the data.  

Dose Grade 0 Response Grade 1 Response Grade 2 Response Grade 3 Response 

1 45 35 10 10 

9 2 3 5 90 

Table S.6.2. Toxicity pseudodata 

 

Supplementary 7. Copeland 

Copeland’s method is a method of ranking that effectively asks the question “how 

often would we have preferred to have used this option over a different option”. The 

process is to compare the metrics of each simulation, and see which approach did 

‘best’.  
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In a comparison between the ith simulation for approach A and and the jth simulation 

for approach B: 

If Ai was better that Bi: A scores +1, B scores +0  

If Ai was worse that Bi: A scores +0, B scores +1 

If Ai and Bi were the same: Both score +0.5 

In any case the count of A comparisons (nA) and count of B comparisons (nB) also 

increase by 1. 

Comparisons are conducted for all i and j between all approaches, then divided by 

the count of comparisons for that approach  

It is well discussed, but here we show a concrete example for a tiny dataset. Recall 

that a lower PSR is preferable. 

 
Approach 
A 

Approach 
B 

Approach 
C 

Respective PSR from the first and second simulation 
of each approach. 

5 9 7 

6 1 5 

Table S.7.1. Toy scenario 1 Data 

 

The first simulation of approach A got a PSR of 5. 

The first simulation of approach B got a PSR of 9. As this is greater (and therefore 

less preferable) than the PSR for that simulation of approach A, score A increases 

by 1 and score B says the same.  

The second simulation of approach B got a PSR of 1. As this is lower (and therefore 

preferable) than the PSR for that simulation of approach A, score B increases by 1 

and score A says the same.  



 
199 
 

The first simulation of approach C got a PSR of 7. As this is greater (and therefore 

less preferable) than the PSR for that simulation of approach A, score A increases 

by 1 and score C says the same.  

The second simulation of approach C got a PSR of 5. As this is equal to the PSR for 

that simulation of approach A, score A and score C increase by 0.5. 

Thus after making comparisons for simulation 1 of approach A we have score A = 

2.5 and nA = 4. 

The second simulation of approach A got a PSR of 6. Repeating the steps leads to 

score A increasing to 4.5(=2.5+2) and nA=8(=4+4). Thus, the total Copeland score is 

0.5625(=4.5/8). 

This can be repeated for all 3 approaches, and approaches ranked by their 

Copeland Score to give the following table. 

 
Approach A Approach B Approach C 

Copeland Score 0.5625 0.5 0.4375 

Copeland Rank 1 2 3 

Table S.7.2. Toy scenario 1 Copeland Table 

 

Suppose that there was a second scenario that these approaches were tested on, 

with data as below. 

 
Approach 
A 

Approach 
B 

Approach 
C 

Respective simple regret from the first and second 
simulation of each approach. 

8 3 6 

10 5 4 

Table S.7.3. Toy scenario 2 Data 
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This could give the table below, representing the Copelands scores and ranking for 

that scenario. 

 
Approach A Approach B Approach C 

Copeland Score 0 0.875 0.625 

Copeland Rank 3 1 2 

Table S.7.4. Toy scenario 2 Copeland Table 

We could combine these by summing the scores and comparisons for both 

scenarios. So, for example, in scenario 1 we had scoreA = 4.5 and nA = 8. In scenario 

2 we had scoreA = 0 and nA= 8. Therefore, we have a total scoreA = 4.5 and nA = 16 

for a total Copeland score of 0.2815. Repeating this gives aggregate Copeland 

metrics in the below table. 

 
Approach A Approach B Approach C 

Copeland Score 0.28125 0.6875 0.53125 

Copeland Rank 3 1 2 

Table S.7.5. Aggregate Copeland table for both toy scenarios. 

 

Note that this can be read as approach B ‘winning’ 68.75% of comparisons across 

both scenarios. From this we could say that Approach B seems to be most effective 

for minimising PSR across both of these scenarios. 

Supplementary 8. Exceptions 

These exceptions were (n=60,100, scenario = Saturating 3), and  (n=60,100, 

scenario = Other 2) [supplementary Objective 1 plots Saturating 3, Other 2]. For all 

other scenarios, the peaking latent-quadratic performed similarly or better than the 

sigmoid saturating curve. We suggest that, for the Saturating 3 scenario, the peaking 

curve was unable to approximate well the efficacy curve saturating at a low dose and 

remaining high across the rest of the dosing-space. We suggest that, for the Other 2 

scenario, the steady increase in efficacy with a large jump in efficacy near the middle 
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could have been the feature of the scenario that inhibited the peaking latent-

quadratic model. 

Supplementary 9. Optimistic Bias 
In this work we found that predicted utility of the dose that was predicted optimal was 

often higher than the true utility at that dose. This was shown by the inaccuracy 

metric typically being greater than zero and is referred to as an ‘optimistic bias’. This 

was true for all of the dose-optimisation approaches, please consider the problems 

of ‘regression to the mean’ and the ‘Stein Paradox’ for examples of why this should 

be expected even in direct comparison approaches to dose optimisation. The 

amount of optimism was decreased by increasing trial size. This ‘optimistic bias’ is 

clearly undesirable. However, we believe that this is neither an issue with the models 

or calibration, nor unique to modelling-based optimisation. In this supplementary 

section we show that  

x Similar issues are observed in binomial direct comparison dose-optimisation 

approaches. 

x Similar issues are observed in continuous direct comparison dose-

optimisation approaches. 

x Similar issues are observed in a heavily simplified modelling setting. 

x Similar issues are observed in a simple physical modelling setting. 

We also note that similar problems have previously been highlighted both in over 

modelling-based optimisation problems, and in the continuous self-optimisation 

problems referred to as reinforcement learning. Methods for solving these problems 

involve either double-q learning [4] or using only half the data for optimisation and 

half for prediction, neither of which seem entirely reasonable given the small amount 

of data and parametric model forms involved in vaccine dose-optimisation.  

Direct comparison: Binomial 

Consider testing k vaccine doses and attempting to choose that which maximises a 

binary measure of vaccine efficacy. For each of the k doses, n individuals receive 
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that dose and a binary efficacy outcome is recorded depending on the true 

probability of efficacy for that dose, p̄ =(p1, p2,..., pk). 

These are used to estimate the probability of efficacy for each dose, ep1, ep2, …, 

epk. Predicted optimal dose is then di such that epi>= epj for all j in 1 to k, breaking 

ties at random. This is the basic direct comparison approach. 

After conducting this procedure, one of 3 things can happen. 

pi < epi (overestimation) 

pi = epi i (accurate estimation) 

pi i> epi (under estimation) 

We show that typically the first (pi<epi) can be most common, which is to say that 

optimistic bias is observed when simulated. As an explicit example, consider k = 2, p̄ 

= (0.5,0.5), n = 10. A reasonable example efficacy observation for these doses 

respectively given these probabilities could be (6/10, 4/10). The dose with 6/10 

efficacies would be predicted to be most likely to be optimal, and the best estimate of 

efficacy probability would be 0.6, an overestimation. Hence, whilst these 

observations were unbiased, the estimate for the optimal dose was optimistically 

biased. 

See below tables for different simulation observations. Note that this bias is made 

worse by increasing the number of possible doses, and by the query doses having 

more similar true probabilities 
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k p̄ n Overestimation Accurate Estimation Underestimation 

2 (0.5, 0.5) 10 61999 24774 14027 

2 (0.5, 0.5) 100 70910 8017 21073 

2 (0.6, 0.7) 10 59076 25649 15275 

2 (0.6, 0.7) 100 53007 8579 38414 

2 (0.1, 0.9) 10 34975 38748 26277 

2 (0.1, 0.9) 100 45254 13238 41508 

3 (0.5, 0.5, 0.5) 10 75665 18956 5379 

3 (0.5, 0.5, 0.5) 100 75665 18956 5379 

3 (0.5,0.6, 0.7) 20 65322 17433 17245 

3 (0.1, 0.1, 0.5) 10 40845 24764 34391 

3 (0.0, 0.0, 0.5) 10 37552 24683 37765 

Table S9.1. Overestimation/Underestimation results from 100,000 simulated clinical trials. 

 

This can also be considered a similar phenomenon to that of the multiple comparison 

problem. 

Direct comparison: Continuous 

Consider testing k vaccine doses and attempting to choose that which maximises a 

continuous, normally distributed measure of vaccine efficacy. For each of the k 

doses individuals receive that dose and the continuous efficacy outcome is recorded 

from the true probability density function of the efficacy response. This is defined by 

normal distributions with respective means and standards deviations, m = (m1, m2, 

..., mk) and s = (s1, s2, ..., sk). 

These are used to estimate the mean value of the true efficacy variable for each 

dose, em1, em2, …, emk. Predicted optimal dose is then di such that emi >=epm for all 

j in 1 to k, breaking ties at random. This is the basic direct comparison approach. 

After conducting this procedure, one of 3 things can happen. 
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x mi < emi (overestimation) 

x mi = emi i (accurate estimation)- effectively impossible unless censored to a 

number of significant places. 

x mi i> emi (under estimation) 

Again, we see that the first is most likely. This is because we have for each dose di 

𝑒𝑚 = 𝑚 + 𝑒𝑟𝑟𝑜𝑟  

𝑒𝑟𝑟𝑜𝑟 ~𝑁(0, 𝑒𝑟𝑟𝑜𝑟𝑠𝑐𝑎𝑙𝑒) 

Hence for the selection process (maximising emi) we are not only maximising mi, but 

also 𝑒𝑟𝑟𝑜𝑟 , hence we are more likely to select doses which are overestimated.  

See below tables for different observations. Note again that this bias is made worse 

by these doses having more similar true probabilities. We only show k=2 examples 

here, but again increasing k would exacerbate the issue. 

k m s n Overestimation Underestimation 

2 (10,10) (2,2) 10 75113 24887 

2 (10,10) (2,2) 100 75126 24874 

2 (10,9) (2,2) 10 61422 38578 

2 (10,9) (2,2) 100 50177 49823 

2 (10,10) (4,4) 10 75113 24887 

2 (10,10) (4,4) 100 75126 24874 

2 (10,9) (4,4) 10 70636 29364 

2 (10,9) (4,4) 100 53819 46181 

2 (50,20) (2,2) 10 49919 50081 

2 (50,20) (2,2) 100 50152 49848 

Table S9.2 Overestimation/Underestimation results from 100,000 simulated clinical trials.  
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Simplified modelling 

Please see appendix A.D.3.  
. 
Physical Modelling 

Please see appendix A.D.3.  
 
Supplementary 10. Plotted Clinicals Trial Results 
Each of the below plots show the true utility curves and predicted optimal/dose response for 

100 simulations of each approach for each scenario. Approaches used a saturating 

(left), peaking(middle), or weighted (right) efficacy curve. From top to bottom, trial 

size is 10, 30, 60, 100, 30, 30, 30. Method of trial dose selection from top to bottom 

in uniform, uniform, uniform, uniform, SoftMax 3 stage, Standard fully continual, and 

balanced fully continual. Red points show the model predicted optimal dose and 

utility prediction for that dose for a single clinical trial. Ideally these points should be 

near the peak of the true dose utility curve  

I only show the figures for three scenarios here for demonstration, the other figures 

are included in the appendix of this thesis [A.D.3.] 
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Scenario Saturating 1 
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Figure S.10.1. Clinical trials by dose optimisation approach for scenario Saturating 1. 

Scenario Peaking 3 
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Figure S.10.8. Clinical trials by dose optimisation approach for scenario Peaking 3. 

Scenario Other 2 
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Figure S10.12 Clinical trials by dose optimisation approach for scenario Other 2. 

Supplementary 11. Objective 1 Plots 

The below plots show metrics from simulations for dose-optimisation approaches in 

objective 1 for each scenario. For each figure, the shown metrics are simple regret 

(top left), percentage simple regret (top right), inaccuracy (middle left), absolute 

inaccuracy (middle right), average regret (bottom left), and percentage average 

regret (bottom right). 

 

I only show the figures for Scenario S1 here for demonstration, the other figures are 

included in the appendix of this thesis [A.D.3.] 
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Scenario Saturating 1 

  

  

  

Figure S.11.1 Metrics by dose-optimisation approach for objective 1 for scenario Saturating 1. 
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Supplementary 12. Statistical Analysis 
Here we provide a statistical analysis of the data presented in the main body and 

supplementary sections of this work. We provide analysis in two ways. 

1. The Kolmogorov–Smirnov Test is used to determine whether there is 

evidence to support two samples being drawn from the same distribution or 

from different distributions [5].  

2. The One-sided Mann-Whitney U Test is used to evaluate whether values in 

one sample tend to be larger/smaller than another [6].  

For each test we present a heatmap of p-values, with each cell in the heat map 

containing the p-value for that test for the comparison between the sample metrics 

for the dose-optimisation approach in the respective row/column. Cells in the table 

with a light pink hue represent the test statistic for that comparison would be 

significant under the threshold p<0.05, cells with a red hue represent the test statistic 

for that comparison would be significant under the threshold p<0.05 with Bonferroni 

multiple comparison correction [7]. This threshold was p<0.00076 = 0.05/66 (66 = 

12C2 numbers of unique pairings of 12 approaches in each objective). 

We believe that the qualitative analysis and Copeland metrics presented in the body 

of the work and Supplementary sections 10-13 are more relevant for showing 

practical differences between the dose-optimisation approaches than the statistical 

analysis presented in this section. These analyses are only presented for interest. 

S12.1. Objective 1 Total Analysis 

Here we show the p-values for objective 1 for the metrics of PSR, Absolute 

Inaccuracy, and PAR. These are the metrics for the combined data of all scenarios. 

This is the data in figures 7, 8b and 9 respectively.  

For interpretation, the Kolmogorov–Smirnov heatmaps are symmetric, with 

significance representing evidence that the true distribution for the approach-

scenario test metrics of PSR, Absolute Inaccuracy, and PAR differ between the two 

dose-optimisation approaches across all scenarios. The One-sided Mann-Whitney U 
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test heatmaps are not symmetric, with significance for the cell in row A and column B 

representing ‘statistically significant’ evidence that approach A was preferable to 

approach B with regards to that metric (e.g., lower PSR, lower Absolute Inaccuracy, 

Lower PAR).   
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Figure S.12.1. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values for 
objective 1 across all scenarios. These are for the metrics of PSR (top), Absolute Inaccuracy 
(middle) and PAR (bottom). Cells with a light pink hue represent the test statistic for that comparison 
would be significant under the threshold p<0.05, cells with a red hue represent the test statistic for 
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that comparison would be significant under the threshold p<0.05 with Bonferroni multiple comparison 
correction.  

 
S12.2. Objective 1 Scenario Specific  

Please see appendix A.D.3. 

 
S12.3. Objective 2 Total Analysis 

Here we show the p-values for objective 2 for the metrics of PSR, Absolute 

Inaccuracy, and PAR. These are the metrics for the combined data of all scenarios. 

This is the data in figures 10, 11b and 12 respectively.  

For interpretation, the Kolmogorov–Smirnov heatmaps are symmetric, with 

significance representing evidence that the true distribution for the approach-

scenario test metrics of PSR, Absolute Inaccuracy, and PAR differ between the two 

dose-optimisation approaches across all scenarios. The One-sided Mann-Whitney U 

test heatmaps are not symmetric, with significance for the cell in row A and column B 

representing ‘statistically significant’ evidence that approach A was preferable to 

approach B with regards to that metric (e.g., lower PSR, lower Absolute Inaccuracy, 

Lower PAR).   
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Figure S.12.3. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values for 
objective 2 across all scenarios. These are for the metrics of PSR (top), Absolute Inaccuracy 
(middle) and PAR (bottom). Cells with a light pink hue represent the test statistic for that comparison 
would be significant under the threshold p<0.05, cells with a red hue represent the test statistic for 
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that comparison would be significant under the threshold p<0.05 with Bonferroni multiple comparison 
correction.  

 
S12.4. Objective 2 Scenario Specific  

Please see appendix A.D.3. 

Supplementary 13. Objective 2 Plots 
The below plots show metrics from simulations for dose-optimisation approaches in 

objective 2 for each scenario. For each figure, the shown metrics are simple regret 

(top left), percentage simple regret (top right), inaccuracy (middle left), absolute 

inaccuracy (middle right), average regret (bottom left), and percentage average 

regret (bottom right). 

I only show the figures for Scenario S1 here for demonstration, the other figures are 

included in the appendix of this thesis [A.D.3.]  
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Scenario Saturating 1 

  

  

  

Figure S13.1. Metrics by dose-optimisation approach for objective 2 for scenario S1. 
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Supplementary 14. Copeland Tables 

The below tables show Copeland metrics as in 3.2.2 of the paper, by scenario. 

I only show the table for Scenario S1 here for demonstration, the other figures are 

included in the appendix of this thesis [A.D.3] 

Scenario Saturating 1 

 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 11 0.113 12 0.33 12 0.426 

Peaking Uniform, 30 10 0.128 10 0.457 1 0.605 

Weighted Uniform, 30 12 0.107 11 0.419 6 0.498 

Peaking, SoftMax 3 Stage 7 0.523 2 0.57 4 0.559 

Saturating, SoftMax 3 Stage 8 0.491 5 0.539 7 0.486 

Weighted, SoftMax 3 Stage 9 0.482 3 0.558 3 0.562 

Saturating CRM, Fully Continual, Standard 3 0.768 4 0.549 10 0.431 

Peaking CRM, Fully Continual, Standard 1 0.81 9 0.462 9 0.453 

Weighted CRM, Fully Continual, Standard 2 0.772 6 0.528 11 0.43 

Saturating CRM, Fully Continual, Balanced 4 0.617 8 0.492 8 0.464 

Peaking CRM, Fully Continual, Balanced 5 0.602 1 0.582 2 0.566 

Weighted CRM, Fully Continual, Balanced 6 0.587 7 0.514 5 0.518 

Table S.14.1. Copeland metrics for scenario Saturating 1. 
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Chapter 6: Evaluation of a novel non-
parametric modelling approach to 
optimisation of vaccine dose: Paper 5 
Chapter 6 Introduction  

For chapter 6, I designed a novel vaccine dose-optimisation approach which I called 

the ‘Correlated Beta’ dose optimisation approach. This used a non-parametric model 

to describe vaccine dose-efficacy and dose-response in an adaptive trial design 

setting. I conducted a second simulation study to evaluate how well it locates optimal 

vaccine dose and maximises benefit to trial participants. This chapter addresses 

objective 5 of this thesis.  

In chapters 3 through 5 of this thesis, I have discussed that it may not be reasonable 

to assume a specific curve shape for vaccine dose-efficacy. Similarly, there is not, at 

present, a well validated model for dose-efficacy for prime/boost administration 

vaccines. Whilst in chapter 5, I discussed the potential use of weighted model 

averaging, the field of model-based drug development has previously suggested that 

models which do not assume a specific parametric form for dose-efficacy should be 

considered when does-efficacy relationships cannot be assumed a-priori. These are 

sometimes called ‘non-parametric’ or ‘curve-free’ models. Whilst these have so far 

only been investigated for single-administration drug dose optimisation, I 

hypothesised that these may also be effective for modelling prime/boost vaccine 

dose-response.  

The investigations of Takahashi on the non-parametric ‘Latent Gaussian Process’ 

model for dose optimisation showed that it was comparable to dose-optimisation 

approaches that used parametric models [75]. However, Goetschalckx et al. 

suggested that ‘Continuous Correlated Beta Process’ (CCBP) models may be 

simpler, more computationally efficient, and more interpretable than Latent Gaussian 

Process models [195]. CCBP models have also been shown to be effective for 

modelling the probability of binary outcomes in multi-dimensional spaces, suggesting 

that CCBP models could be used for modelling prime/boost vaccine dose-efficacy. It 



 
222 
 

was also suggested that CCBP models should be investigated in the context of 

solving multi-armed bandit problems, suggesting that these models might be 

effective for model based adaptive trial design/continual modelling. 

I hypothesised that the CCBP model could be effectively used to model binary 

outcome vaccine dose-response relationships, both for single-administration and 

multiple-administration vaccines. I hypothesised that a ‘Correlated Beta’ dose-

optimisation approach combining this CCBP model with the Thompson Sampling 

algorithm as a method of trial dose selection would be an effective approach for 

selecting optimal vaccine dose which could be used without requiring the assumption 

of specific dose-response curve shapes. I hypothesised that this would be true 

regardless of whether optimal dose was defined by the maximally efficacious dose or 

by a utility function of efficacy and toxicity probabilities. In this paper I investigated 

these hypotheses, evaluating the correlated beta dose-optimisation approach 

against other dose-optimisation approaches that used a parametric model for dose-

efficacy or dose-toxicity. I also decided to evaluate dose-optimisation approaches 

which did not use mathematical modelling, as these represent more common 

approaches for dose-optimisation of vaccines.  
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Paper 5 Title: The Correlated Beta Dose Optimisation 
Approach: Optimal vaccine dose selection using 
mathematical modelling and adaptive trial design 
Authors 

John Benest, Sophie Rhodes, Thomas G. Evans, and Richard G. White 

Abstract:  

Mathematical modelling methods and adaptive trial design are likely to be effective 

for optimising vaccine dose but are not yet commonly used. This may be due to 

uncertainty with regards to the correct choice of parametric model for dose-efficacy 

or dose-toxicity. Non-parametric models have previously been suggested to be 

potentially useful in this situation. We propose a novel approach for locating optimal 

vaccine dose based on the non-parametric Continuous Correlated Beta Process 

model and adaptive trial design. We call this the ‘Correlated Beta’ or ‘CoBe’ dose 

optimisation approach. We evaluated the CoBe dose optimisation approach 

compared to other vaccine dose optimisation approaches using a simulation study. 

Despite using simpler assumptions than other modelling-based methods, we found 

that the CoBe dose optimisation approach was able to effectively locate the 

maximum efficacy dose for both single and prime/boost administration vaccines. The 

CoBe dose optimisation approach was also effective in finding a dose that 

maximises vaccine efficacy and minimises vaccine-related toxicity. Further, we found 

that these modelling methods can benefit from the inclusion of expert knowledge, 

which has been difficult for previous parametric modelling methods. This work further 

shows that using mathematical modelling and adaptive trial design is likely to be 

beneficial to locating optimal vaccine dose, ensuring maximum vaccine benefit and 

disease burden reduction, ultimately saving lives 
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1. Introduction 

Vaccines are an effective tool in global disease burden reduction. The amount of 

vaccine given to an individual (the ‘dose’) is a key decision in vaccine development 

to ensure an effective vaccine campaign. Dose can affect the efficacy, toxicity and 

cost associated with vaccine rollout [1–3]. However, selecting optimal dose (‘dose 

optimisation’) is non-trivial [4–6]. Vaccine dose-ranging trials are typically small 

(<100 individuals) [7–10], limiting the amount of data that can be used for dose 

decision making. In addition, vaccine dose-ranging clinical trials need to be 

conducted such that not only are useful data gathered, but also such that the 

interests and safety of the trial participants are respected [11]. 

In order to select optimal vaccine dose within the constraints of small trial sizes and 

ethical trial design, mathematical modelling and adaptive clinical trial design have 

been suggested. Previous work into mathematical modelling has shown promise for 

accelerating and improving dose decision making in vaccine development [2,12,13]. 

Whilst making dosing decisions based on modelling is common in drug development, 

these methodologies are not yet utilised to the same extent within vaccine 

development [12,14,15]. Further, adaptive trial design has also been suggested to be 

effective for the purpose of selecting optimal doses [16–18]. Here modelling or 

statistical analysis is conducted at interim time points to maximise the proportion of 

trial participants that receive near optimal doses. Adaptive design may lead to more 

optimal dose selection and more ethical clinical trials. 

Vaccine dose-response mathematical models are systems of equations that are 

used to describe the relationship between vaccine dose and vaccine response. This 

requires making assumptions regarding which models can accurately describe 

vaccine dose-response. Previous work has shown that for some vaccines an 

increase in dose leads to increased efficacy responses, but that for other vaccines 

there is a maximum efficacy dose after which an increased dose leads to decreased 

vaccine efficacy [13,19,20].This means that there may be uncertainty in the correct 

models to use. Selecting optimal vaccine dose using models which are 

‘misspecified’, meaning they are not appropriate for describing the dose-response 
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relationship for the purposes of selecting optimal dose, could lead to suboptimal 

vaccine dosing, decreasing efficacy or increasing toxicity [21–23]. 

We have previously discussed the use of model averaging to account for this 

uncertainty [21]. Alternatively, others have suggested that non-parametric models 

can be effective for locating optimal dose in the case of model uncertainty [24–

26].Whilst the assumption of parametric models is that vaccine dose-response 

follows some pre-specified equation/shape, non-parametric models do not assume a 

predefined equation/shape. 

One type of non-parametric model is the Continuous Correlated Beta Process 

(CCBP) model [27]. This is a form of non-parametric mathematical model that has 

previously been discussed for automated stroke rehabilitation and modelling of 

genetic ancestry [28,29]. CCBP models have the properties of being simple to 

implement, interpret and update based on available data, and do not require the 

assumption of a specific dose-response shape. The modelling assumption is instead 

that “similar” doses will cause “similar” responses. We hypothesised that the 

application of CCBP models in an adaptive trial design setting may be an effective 

approach for conducting clinical trials to select optimal vaccine dose. We call this 

Correlated Beta (CoBe) dose optimisation.  

We evaluated this novel dose-optimisation approach in potential application to four 

potential open topics in mathematical modelling for optimal vaccine dose selection. 

Firstly, selection of a maximally efficacious vaccine dose given uncertainty in dose-

efficacy curve shape. Secondly, how to locate the maximally efficacious doses for 

prime-boost paradigm vaccines. Thirdly, optimal vaccine dose selection that includes 

multiple objectives, such as both maximising efficacy and minimising toxicity. 

Fourthly, how can expert knowledge be incorporated into vaccine dose modelling. 

In this work we aimed to use simulation of dose-finding clinical trials to assess the 

use of the ‘Correlated Beta dose optimisation approach’ in selecting optimal vaccine 

dose. To answer the questions posed above, we investigated the CoBe dose 

optimisation approach relative to three other dose optimisation approaches (DOAs). 
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x A ‘Parametric’ DOA that used parametric modelling and adaptive trial design 
x An ‘Adaptive Naive’ DOA that used adaptive trial design but not modelling. 
x A ‘Uniform Naive’ DOA that used neither adaptive trial design nor modelling.  

To perform this analysis, we simulated a large number of clinical trials for a large 

number of qualitatively different ‘scenarios’, each representing different ‘true’ dose-

efficacy or dose-efficacy and dose-toxicity relationships. We considered not only the 

quality of the final selected dose but also the benefit to clinical trial participants for all 

four DOAs for clinical trials with between 6-300 total trial participants.  

Specifically, to address to above questions, our objectives were to: 

1. Evaluate the Correlated Beta Dose Optimisation Approach for optimising 
vaccine efficacy for a single dose administration. 

2. Evaluate the Correlated Beta Dose Optimisation Approach for optimising 
vaccine efficacy for a prime-dose/boost-dose administration. 

3. Evaluate the Correlated Beta Dose Optimisation Approach for optimising 
vaccine utility, maximising efficacy, and minimising toxicity. 

We also include a fourth objective which considered only the CoBe DOA 

4. Evaluate the use of expert knowledge informed Continuous Correlated Beta 
Process priors for vaccine dose-optimisation. 
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2. Materials and Methods 

In very high-level summary, we used a simulation study methodology [30–33] to 

evaluate the novel Correlated Beta (CoBe) dose optimisation approach with regards 

to several open topics in vaccine dose optimisation and provide a comparative 

evaluation relative to other potential dose-optimisation approaches that could be 

used to select optimal vaccine dose. This work is summarised in figure 1. 

Figure 1. A visual depiction of the process of conducting simulation studies used in this work 
to evaluate the Correlated Beta (CoBe) and other potential approaches of vaccine dose 
optimisation (red). These were tested by simulating clinical trials (purple) based on ‘scenarios’ 
(blue). Repeated simulation of clinical trials was conducted for different dose-optimisation 
approach/scenario pairs, and metrics related to how effectively optimal dose was located were 
calculated. These were tabulated and compared to assess these approaches. These analyses were 
used with considerations of several open topics in vaccine dose-optimisation (green). 

This methods section is split into four sections. In section 1, we defined the concept 

of ‘optimal vaccine dose’ and of ‘dose optimisation approaches’ (DOAs). In section 2, 

we defined and described the Correlated Beta (CoBe) DOA that was the focus of this 

work, along with the three other DOAs that were investigated in this work in 

comparison to the CoBe DOA. In section 3, we describe the simulation study 

methodology that was used to evaluate and compare these DOAs. Section 3 also 

contains description of the metrics used to evaluate the DOAs with regards to their 

potential effectiveness for optimiation of vaccine dose and benefit to trial participants, 

and details of the simulation study that would be required to replicate this work. 
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Finally, in section 4 we describe how we investigated the four objectives of this work 

using the concepts and terminology developed in the previous three sections. 

2.1. Section 1. Definition of the concepts of ‘optimal vaccine dose’ and ‘dose-optimisation 

approaches’ 

2.1.1. Definition of ‘optimal vaccine dose’ 

In this work optimal dose was defined as the dose that maximises some utility 

function 𝑈(𝑝 , 𝑝 ) where 𝑝  and 𝑝  are binary efficacy and toxicity probabilities 

that are dependent on vaccine dose. 

 Throughout this work we will consider only two utility functions, one that aims to 

maximise efficacy (‘Maximum Efficacy’) versus dose and literature informed utility 

function that balances maximising efficacy and minimising toxicity (‘Utility Contour’, 

as used in [34,35]) versus dose. Formally these are 

Maximum Efficacy: 

𝑈 𝑝 , 𝑝 =  𝑝 , (1) 

 

Utility Contour: 

 

𝑈 𝑝 , 𝑝 =  1 −
1 − 𝑝

1 − 𝑎𝑛𝑐ℎ𝑜𝑟
−

𝑝
𝑎𝑛𝑐ℎ𝑜𝑟

1

, (2) 

Where 𝑎𝑛𝑐ℎ𝑜𝑟 , 𝑎𝑛𝑐ℎ𝑜𝑟  and 𝑟ℎ𝑜 are parameters defined by clinicians to weight 

the relative importance of efficacy to toxicity (see S1 and [35] for more detail). 

Optimal dose was constricted to the dosing domain. 

 



 
231 
 

2.1.1.1. Dosing domain 

The possible doses that can be selected for testing or predicted as optimal was 

called the ‘dosing domain’. Dosing domains are generally continuous in nature, 

though are often discretized to a finite number of possible doses for the purpose of 

optimisation and due to potential practical limitations [36]. We will only consider 

discretized dosing domains in this work.  

Previous work has investigated mathematical modelling for the selection of optimal 

dose with regards to a single-administration vaccine [2,13,21]. In this work we would 

also like to consider optimising dose ‘prime/boost’ paradigm vaccines, which are 

vaccines that are administered as two or more doses at separate time points [37,38]. 

Here, doses in the dosing domain are possible combinations of possible doses for 

each prime or boost administration. 

2.1.2. Definition of a ‘dose-optimisation approach’ 

A dose-optimisation approach (DOA) is the combination of methods used to design 

clinical trials/choose the doses that trial participants will receive, along with the 

methods used to select ‘optimal’ dose based on the resulting data. We focus here on 

‘continual modelling’ DOAs, where modelling is conducted at interim stages of the 

trial and used to guide selection of the next trial doses. 

For this work, a DOA consists of 

x A model for vaccine dose-efficacy and/or dose-toxicity. 

x A method of trial dose selection: How doses are chosen during the trial. 

x A method of final dose selection: How to choose the dose that would be 

continued forward to further research or clinical use.  

x A choice of how to discretize the dosing domain: Whether there was a small 

or large number of doses that could be tested, further detail in 2.3.3.1. This 

was previously discussed by [36,39]. 



 
232 
 

2.2. Section 2. Definition of the Correlated Beta (CoBe) dose-optimisation approach and three 

other dose-optimisation approaches that were investigated in this work 

2.2.1. Model for Vaccine dose-efficacy and/or toxicity: Continuous Correlated Beta Processes 

The CoBe DOA uses Continuous Correlated Beta Process (CCBP) models [27] to 

model vaccine dose-efficacy/toxicity. These are not only simple to implement but can 

be extended to prime/boost dose-response problems (Objective 2) or extended to 

include expert prior predictions (Objective 4). In this section we discuss the intuition 

and implementation of Continuous Correlated Beta Processes (CCBP).  

In contrast to parametric models, which assume some curve shape can describe 

vaccine dose-efficacy or dose-toxicity, the CCBP models defined here do not 

assume a specific shape, and instead make a simpler assumption; ‘similar doses 

yield similar responses’. CCBP have been described previously in detail in the 

context of modelling for automatic stroke rehabilitation [27–29]. The two main 

elements of a CCBP model are Beta distributions and correlation kernel functions. 

 
2.2.1.1. Beta distributions 

Beta distributions describe a probability distribution of probabilities for binary 

outcomes [40]. Suppose that we would like to know the probability of some response 

(efficacy or toxicity in this work) being observed for a vaccine administered at a pre-

chosen dose. We call this probability 𝑝 , and we have no prior expectation for 

what the true value of 𝑝  is. Suppose that after a trial of 1 individual we have 

observed 1 responder (and hence 0 non-responders). The maximum likelihood 

estimate of 𝑝  given by these data would be 𝑝 = 1.0. However, 

𝑝 = 0.9 would also intuitively be a reasonable guess and 𝑝 = 0.1 would 

be much less probable [figure 2]. Beta distributions allow for a formalised description 

of the probability of a certain probability of response given the observed data. 
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Figure 2. Probability density of probabilities of response after observing one responder and 
zero non-responders with no prior knowledge regarding probability of response. The higher the 
probability density is for a given probability of response, the more likely that it is the true probability of 
response given the data. The above is formally a Beta(2,1) distribution. 

A beta distribution is defined by two parameters, 𝛼 and 𝛽 . We write 

𝑝 , ~𝐵𝑒𝑡𝑎(𝛼 , , 𝛽 , ), (3) 

to say that the probability of observing response 𝑟 for some dose 𝑑  based on the 

first 𝑛 data points can can be described by a beta distribution with parameters 

𝛼 , and 𝛽 , . Increasing 𝛼 ,  shifts the beta distribution towards higher 𝑝 ,  and 

increasing 𝛽 ,  shifts the beta distribution towards lower 𝑝 , . Increasing either of 

these parameters reduces the confidence intervals of the probability distribution. See 

figure 3 for a visualisation of this. In this work, response 𝑟 can be efficacy or toxicity. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 3. Probability density for beta distributions 𝑩𝒆𝒕𝒂(𝜶, 𝜷) with differing values of 𝜶 and 𝜷. 
The vertical blue line represents the median probability of response, and the dashed vertical lines 
represent the 95% confidence interval. If using an uninformative prior (a), these represent the 
probability density after observing: (a) 0 responders and 0 non-responders, (b) 0 responders and 1 
non-responders, (c) 0 responders and 5 non-responders, (d) 1 responders and 0 non-responders, (e) 
1 responder and 1 non-responder, (f)  1 responder and 5 non-responders, (g) 5 responders and 0 
non-responders, (h) 5 responders and 1 non-responder and (i) 5 responders and 5 non-responders. 

2.2.1.1.1 Updating Beta Distributions 

As we aim to run multiple trials over time, we can use the data gathered to update 

our beta distributions to give us a better idea of optimal dose. Algorithm 1 shows the 

update rule for updating the α and 𝛽 parameters of beta distributions after observing 

data. 
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Note that this update rule means our understanding of the probability of some 

response for a given dose is only improved when we test at exactly that dose. 

Therefore, these are uncorrelated beta distributions. 

Algorithm 1. Update rule for uncorrelated Beta distributions 
This rule is for updating the beta distribution for the probability of 

observing response 𝑟 for some dose 𝑑  based on the (𝑛 + 1)𝑡ℎ 

data point. Let this (𝑛 + 1)𝑡ℎ data point had dose 𝑑 . 

BEGIN ALGORITHM 

If 𝑑 = 𝑑  

If response 𝑟 was observed for individual 𝑛 + 1 

Set 𝛼 ,
1 =  𝛼 , + 1 

Set 𝛽 ,
1 =  𝛽 ,  

Else (response 𝑟 was not observed for individual 𝑛 + 1) 

Set 𝛼 ,
1 =  𝛼 ,  

Set 𝛽 ,
1 =  𝛽 , + 1 

Else (𝑑 ≠ 𝑑 ) 

Set 𝛼 ,
1 =  𝛼 ,  

Set 𝛽 ,
1 =  𝛽 ,  

END ALGORITHM 

 
2.2.1.1.2. Priors and uninformative priors 

Initial values of α and 𝛽 must be chosen. Typically, if there is no prior knowledge for 

which response probabilities are most reasonable, it is best to use an uninformative 

prior. For this, the initial values of α and 𝛽 for each dose 𝑑  for response 𝑟 are set to 

1 [28]. That is 

𝛼 ,
0 = 1 (4) 

𝛽 ,
0 = 1 (5) 
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This is typically a reasonable choice, as prior to data being collected this leads to 

equal probability for each possible value of 𝑝 ,
0  [figure 2 a]. If there if is prior 

understanding about the probability of response 𝑟 for dose 𝑑  alternative values of 

𝛼 ,
0 and 𝛽 ,

0  can be used. A method for choosing these is discussed in 2.2.1.4. and 

the implications of this in conducted dose-finding trials investigated in objective 4. 

2.2.1.2. Kernel Functions 

Above we noted that uncorrelated beta distributions do not allow for information 

about response probabilities from one dose to inform understanding of response 

probability at any other dose. The CCBP model allows information about response 

probability for one dose to inform understanding of response probability for ‘similar’ 

doses. We describe what it means for doses to be ‘similar’ using a similarity function, 

𝐾 𝑑 , 𝑑 , traditionally called a ‘kernel’ function. This is a function that takes two 

doses as input and returns a number between 0 and 1 that represents how similar 

those doses are. 

In the context of vaccine dose optimisation, a kernel function 𝐾 𝑑 , 𝑑  follows these 

rules for all doses 𝑑  and 𝑑  in the dosing domain: 

0 ≤ 𝐾 𝑑 , 𝑑 ≤ 1 (6) 

𝐾 𝑑 , 𝑑 = 1 if and only if the doses are completely similar (7) 

𝐾 𝑑 , 𝑑 = 0 if and only if the doses are completely dissimilar (8) 

𝐾 𝑑 , 𝑑 = 𝐾 𝑑 , 𝑑 , so similarity is symmetrical (9) 

𝐾(𝑑 , 𝑑 ) =  𝐾 𝑑 , 𝑑 = 1, so a dose must be completely self-similar (10) 
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We can then use kernels to inform beta distributions for multiple ‘similar’ doses 

based on data gathered for a specific dose. Using a kernel function makes these 

beta processes ‘correlated beta processes’.  

The beta distribution update rule described in algorithm 1 is then changed to that 

showed in Algorithm 2. 

 
Algorithm 2. (Continuous) Correlated Beta Process Update 

Rule 

This rule is for updating the beta distribution for the probability of 

observing response 𝑟 for some dose 𝑑  based on the (𝑛 + 1)𝑡ℎ 

data point. Let this (𝑛 + 1)𝑡ℎ data point have been at dose 𝑑 . 

 

BEGIN ALGORITHM 

Calculate 𝐾 𝑑 , 𝑑  

If response 𝑟 was observed for individual 𝑛 + 1 

Set 𝛼 ,
1 =  𝛼 , +  𝐾 𝑑 , 𝑑  

Set 𝛽 ,
1 =  𝛽 ,  

Else (response 𝑟 was not observed for individual 𝑛 + 1) 

Set 𝛼 ,
1 =  𝛼 ,  

Set 𝛽 ,
1 =  𝛽 , +  𝐾 𝑑 , 𝑑  

END ALGORITHM 
 

An example of this update process is now given. Say doses, 𝑑1 and 𝑑 , have efficacy 

probabilities initially described by a flat prior, that is; 

𝑝1,
0 ~𝐵𝑒𝑡𝑎 𝛼1,

0 , 𝛽1,
0 =  𝐵𝑒𝑡𝑎(1,1), (11) 

𝑝 ,
0 ~𝐵𝑒𝑡𝑎 𝛼 ,

0 , 𝛽 ,
0 =  𝐵𝑒𝑡𝑎(1,1), (12) 
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Say dose 𝑑1 is tested and a positive efficacy response observed. If 𝑑1 and 𝑑  are 

50% similar (efficacy kernel 𝐾(𝑑1, 𝑑 )= 𝐾(𝑑 , 𝑑1) = 0.5), then  

𝑝1,
1 ~𝐵𝑒𝑡𝑎 𝛼1,

0 +  𝐾(𝑑1, 𝑑1), 𝛽1,
0 =  𝐵𝑒𝑡𝑎(1 + 1, 1) =  𝐵𝑒𝑡𝑎(2, 1), (13) 

𝑝 ,
1 ~𝐵𝑒𝑡𝑎 𝛼 ,

0 + 𝐾(𝑑1, 𝑑 ), 𝛽 ,
0 =  𝐵𝑒𝑡𝑎(1 + 0.5, 1)

=  𝐵𝑒𝑡𝑎(1.5, 1), 
(14) 

 

In this work, we chose to use the squared exponential kernel suggested in [27,29] 

defined as 

𝐾 𝑑 , 𝑑 = 𝑒
( )

 (15) 

 

where l is a length hyperparameter that can be chosen to adjust the range for which 

doses are considered similar (examples in Figure 4). For small l, the data only 

influences model prediction near the tested dose [figure 4]. For larger l, the data 

influences model prediction at a greater distance. In this work length parameter l=0.2 

for modelling single-administration vaccine dose-response.  
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(a) (b) (c) 
Figure 4. An example of three different CCBP models with squared exponential kernels for 
different length hyperparameters, using the flat prior for all doses, and 6 observed responses at 
dose = 0.7 (5 responders, 1 non-responder, as per figure 1h). Length parameters are (a) 0.02, (b) 0.1 
and (c) 0.2. The solid line is the median predicted probability, and the dashed lines show the 95% 
confidence interval. 

This choice of kernel is means similarity is defined continuously for any two doses in 

the dosing domain, making these beta processes continuous correlated beta 

processes (CCBPs). 

2.2.1.3. Modelling prime/boost dose response 

Extending Continuous Correlated Beta Process (CCBP) models to modelling 

prime/boost dose response requires only a change to the kernel function. Since a 

squared exponential kernel was chosen, this change is intuitive. For doses 𝑑  and 𝑑 , 

where dose 𝑑  has prime dose 𝑑 1 and boost dose 𝑑  the 2-dose kernel function 

would be  

𝐾 𝑑 , 𝑑 = 𝑒
( ) ( )

 (16) 

Similarly, for modelling prime/boost/second-boost dose response the 3-dose kernel 

function would be 

 

𝐾 𝑑 , 𝑑 = 𝑒
  

( )
 
( )

 
(17) 
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This pattern can be generalised to considering to considering H doses  

𝐾 𝑑 , 𝑑 = 𝑒
∑  

 (18) 

In this work the length parameters 𝑙 = 0.2 was used for modelling single-

administration dose-response, 𝑙1 = 𝑙 = 0.25were used for modelling prime/boost 

dose-response, and length parameters 𝑙1 = 𝑙 = 𝑙 = 0.4 were used for modelling 

prime/boost/second-boost dose-response [S2]. Length parameters do not need to be 

equal but were equal here for simplicity. 

 
2.2.1.4. Utilising expert knowledge to inform Continuous Correlated Beta Process model 

priors 

It is possible that including expert knowledge into the modelling process may 

improve optimality of the final selected dose, leading to more effective early trial 

doses. Methods for including expert knowledge to inform the modelling process for 

parametric models have been previously discussed [41,42] but are non-trivial. Expert 

knowledge is integrated into the CCBP model by choosing different initial values for 

𝛼 ,
0 and 𝛽 ,

0  which we call the expert informed prior. For each dose 𝑑  and response 

𝑟, an expert informed prior can be defined using the expert’s prediction of the most 

likely probability of response for that dose, 𝑝 , , and level of confidence in that 

probability, 𝑐 , ≥ 0. These values could be based on previous knowledge of the 

vaccine or a similar product. 𝑐 , can be considered as the number of individuals 

worth of data that is required before the data influences the model prediction more 

than the expert knowledge. Incorporating expert priors in an initial Beta distribution 

for dose 𝑑  for response 𝑟 is done by setting 

𝛼 ,
0 = 𝑝 , × 𝑐 , + 1, (19) 
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𝛽 ,
0 = (1 − 𝑝 , ) × 𝑐 , + 1 (20) 

Then the mode of the relevant Beta distribution for each 𝑑  will be 𝑝 ,  [43]. 

2.2.2. Method of trial dose selection 

The method for trial dose selection in the CoBe DOA is Thompson sampling. 

Thompson Sampling involves choosing clinical trial doses proportionally to the 

probability that they are optimal, given the available data and model. This is 

described in detail in [44–47], but the principle is to sample from Beta distributions 

for each dose, and then select the optimal dose based on the value of the utility 

function for each sample.  

As a continuation of our earlier example, doses 𝑑1 and 𝑑 , had efficacy probabilities 

described respectively as 

𝑝1,
1 ~𝐵𝑒𝑡𝑎(2, 1), (21) 

𝑝 ,
1 ~𝐵𝑒𝑡𝑎(1.5, 1), (22) 

and we are using the maximum efficacy utility function. We can randomly sample 

efficacy probabilities �̂�1,  and �̂� ,  from these Beta distributions using statistical 

software. Then the values of the utility function for 𝑑1 and 𝑑  based on these 

samples are  𝑈1 = �̂�1,  and 𝑈 = �̂� ,   If 𝑈1  > 𝑈  then 𝑑1 is selected as the next 

dose to test, otherwise we select 𝑑 . This process of sampling and selecting can be 

repeated to select as many trial doses as required for each sampling cohort (6 

individuals per sampling cohort was used in this work). 

 
2.2.3. Method of final dose selection 

The method of final dose selection is to select the dose with maximum utility as given 

by the median probability prediction of response for each dose. For each dose 𝑑 , 

the median probability of efficacy �̅� , and �̅� ,  are calculated. Then a dose 𝑑  is 
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predicted as optimal if 𝑈 �̅� , , �̅� , ≥ 𝑈 �̅� , , �̅� ,  for all doses dj, with ties 

broken randomly. 

2.2.4. Discretisation 

Due to the continuous nature of the CCBP model, the CoBe dose optimisation 

approach can be applied when choosing between a potentially large number of 

doses, therefore the dosing domain can be discretised to include many doses. 

 
2.2.5. Full Correlated Beta (CoBe) dose optimisation approach and an example trial 

The complete CoBe dose optimisation approach is shown in Algorithm 3, and three 

time-points of an example simulated clinical trial is depicted in figure 5. 

 
Algorithm 3. Correlated Beta (CoBe) Dose Optimisation Algorithm 

BEGIN ALGORITHM 

1. Initialisation:  

a. Choose in collaboration with clinicians and experts 

i. Total trial participants available, N  

ii. Sampling cohort size, c (=6 in this work) 

iii. Determine whether a single-administration, prime/boost, or prime/boost/second-boost 

paradigm is being used. 

iv. Determine all potential doses, 𝑑 , in the discretized dosing domain, see [Discretization]). 

v. Choose length parameter(s) for the efficacy similarity kernel (𝑙 = 0.2, 𝑙1 = 𝑙 = 0.25,  𝑙1 = 𝑙 =

𝑙 = 0.4 in this work) 

vi. Choose length parameter(s) for the toxicity similarity kernel (the same as for efficacy in this 

work) 

vii. Query experts to determine any potential priors. 

2. Initialization of Beta distributions - in silico 

a. Initialise description of efficacy probability distribution for each dose 𝑑  as 𝑝 ,
0 ~𝐵𝑒𝑡𝑎(𝛼 ,

0 , 𝛽 ,
0 ) 

b. Initialise description of toxicity probability distribution for each dose 𝑑  as 𝑝 ,
0 ~𝐵𝑒𝑡𝑎(𝛼 ,

0 , 𝛽 ,
0 ) 

3. Thompson sampling for dose selection - in silico 

a. For each dose 𝑑 , sample �̂�1,  and �̂� ,  from the relevant Beta distributions.  
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b. Select for trialing dose 𝑑  such that 𝑈  > 𝑈  for all doses 𝑑 , where 𝑈 𝑝 , , 𝑝 ,   is the utility 

function to be maximised. 

4. Repeat step 3 until sampling cohort is full (c repeats total) 

5. Trialing and data collection – practical 

a. Conduct a trial of c individuals respectively at the c doses chosen in steps 3 and 4. This was 

simulated in this work but would be practical lab work in real life application. 

b. Record c data points consisting of {dose given, whether efficacy was observed, whether toxicity 

was observed} 

6. Model Updating - in silico 

a. Update 𝛼 , , 𝛽 , , 𝛼 , , 𝛽 ,  to 𝛼 , , 𝛽 , , 𝛼 , , 𝛽 ,  using: 

i. Update𝛼 , , 𝛽 , , 𝛼 , , 𝛽 ,  to 𝛼 ,
1, 𝛽 ,

1, 𝛼 ,
1, 𝛽 ,

1 using Algorithm 2 with a data 

point gathered in step 5. 

ii. Repeat for all other data points gathered in step 5 (order does not matter) 

7. Prediction of optimal dose – in silico 

a. For each dose di, calculate the median response probabilities �̅� , and �̅� ,   

b. The predicted optimal dose is 𝑑  such that 𝑈 �̅� , , �̅� , ≥ 𝑈 �̅� , , �̅� ,  where 𝑈 𝑝 , , 𝑝 ,   

is the utility function to be maximised. 

8. Repeat steps 3-7 until all N trial participants have been utilised. 

END ALGORITHM 
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(a) (b) 

 
(c) 

Figure 5. Three timepoints of an example dose-finding study using the CoBe DOA for selection 
of optimal dose (sampling cohort size c = 1) with the ‘Efficacy Maximisation’ utility function. At 
each time point, the dotted black line represents the true underlying dose-efficacy curve, and the 
black crosses represent observed data by that time point. The light blue lines represent the median 
and 95%CI for the predictions of the CCBP model, the blue dots represent efficacy prediction samples 
for each dose, the red dot represents the maximum of such samples which corresponds to the dose 
that would be selected to be tested next. At selection of individual 1 (a) efficacy samples varied 
uniformly between 0 and 1. After the first individual received a high dose and efficacy was not 
observed, (b) the median, 95%CI and samples for similar doses were lower when selecting the dose 
for individual 2. After the 30th individual (c), most samples had been selected near the true optimal 
and the model approximated the true curve (particularly near the predicted optimal dose). 

2.2.6. Other dose-optimisation approaches 

We consider multiple other dose-optimisation approaches other than the CoBe 

Dosing approach. These were the ‘Parametric’, ‘Adaptive Naive’, and ‘Uniform Naive’ 

DOAs. 
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2.2.6.1. Parametric dose-optimisation approach 

The ‘Parametric’ DOA uses parametric models to describe dose-efficacy and dose-

toxicity, as described in [21,35]. Specifically, we used the latent quadratic model 

[35,48] for modelling dose-efficacy for single-administration dose-optimisation 

problems. This is given by  

𝑝 (𝑑 ) = 𝑙𝑎𝑡𝑒𝑛𝑡𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐(𝑑 ) = 𝑙𝑜𝑔𝑖𝑡(𝑎 + 𝑏𝑑 − 𝑐𝑑 ), (23) 

With 

𝑙𝑜𝑔𝑖𝑡(𝑧) =
1

1 + 𝑒
, (24) 

And parameters 𝑎, 𝑏, 𝑐. 

We extended this model for prime/boost and prime/boost/second-boost dose-

optimisation problems, respectively as 

𝑝 (𝑑 ) = 𝑙𝑎𝑡𝑒𝑛𝑡𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 (𝑑 )

= 𝑙𝑜𝑔𝑖𝑡(𝑎 + 𝑏1𝑑 1 − 𝑐1𝑑 1 + 𝑏 𝑑 − 𝑐 𝑑 1), 
(25) 

𝑝 (𝑑 ) = 𝑙𝑎𝑡𝑒𝑛𝑡𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 (𝑑 )

= 𝑙𝑜𝑔𝑖𝑡(𝑎 + 𝑏1𝑑 1 − 𝑐1𝑑 1 + 𝑏 𝑑 − 𝑐 𝑑 1 + 𝑏 𝑑

− 𝑐 𝑑 ), 
(26) 

With parameters 𝑎, 𝑏1, 𝑐1, 𝑏 , 𝑐 , 𝑏  , 𝑐  and dose 𝑑  having prime dose 𝑑 1, boost dose 

𝑑 , and potential second-boost dose 𝑑 . This is similar to the approach used in [49] 

but extended to allow for non-monotonicity in the dose-efficacy relationships.  

We used the latent linear model [35,50] for modelling dose-toxicity for single-

administration dose-optimisation problems. This is given by  
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𝑝 (𝑑 ) = 𝑙𝑎𝑡𝑒𝑛𝑡𝑙𝑖𝑛𝑒𝑎𝑟(𝑑 ) = 𝑙𝑜𝑔𝑖𝑡(𝑎 + 𝑏𝑑 ), (27) 

with parameters 𝑎, 𝑏 

We similarly extended this model for prime/boost dose-optimisation problems, 

respectively as 

𝑝 (𝑑 ) = 𝑙𝑎𝑡𝑒𝑛𝑡𝑙𝑖𝑛𝑒𝑎𝑟 (𝑑 ) = 𝑙𝑜𝑔𝑖𝑡(𝑎 + 𝑏1𝑑 1 + 𝑏 𝑑 ), (28) 

With parameters 𝑎, 𝑏1, 𝑏 ,   

These models can be calibrated to the available dose-response data by determining 

the maximum likelihood estimate of the parameters given the available data. 

Pseudo-data were used to aid stability of the model calibration, as described in [[30], 

S3] These calibrated models were then used to predict dose-utility. The method of 

trial dose selection for each cohort was the SoftMax selection method described in 

[S4, [21,51,52]]. The method of final dose selection was to choose the dose with the 

maximum utility according to the predictions of the calibrated model. Due to being a 

modelling method, for this DOA the discretized dosing domain could include a large 

number of potential doses. 

 
2.2.6.2. Adaptive Naive dose-optimisation approach 

The ‘Adaptive Naive’ DOA has been well discussed in the past for conducting trials 

comparing treatments and doses [45,46]. Like the CoBe DOA, the probability of 

efficacy/toxicity for each potential dose is described by a beta distribution, the 

method of trial dose selection is Thompson sampling, and the method of final dose 

selection is the maximised median prediction. Unlike the CoBe DOA, however, this 

DOA does not make use of a similarity kernel or other modelling methods, so 

prediction of efficacy/toxicity for any given dose is determined by only considering 

previous data for that specific dose. Hence this DOA is ‘adaptive’, but the predictions 

of efficacy/toxicity for any given dose are ‘naive’. Due to this lack of modelling, this 

DOA discretizes the dosing domain to only a small number of doses. 
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2.2.6.3. Uniform Naive dose-optimisation approach 

The ‘Uniform Naive’ DOA is perhaps the most common DOA used for selecting 

optimal vaccine dose, though it is typically not named as such. This is the same as 

the Adaptive Naive DOA, except that the method of trial dose selection is to divide all 

clinical trial participants evenly amongst the discretized dosing domain. Commonly 

all sampling cohorts would be conducted at the same time given that there is no 

adaptive design. There is no adaptive design or modelling, so this DOA is ‘uniform’ in 

its method of trial dose selection and ‘naive’ in its predictions of efficacy/toxicity for 

each dose. Again, like the Adaptive Naive DOA, this DOA discretizes the dosing 

domain to only a small number of doses. 

2.3. Section 3. Definition of the simulation study methodology and details of the 

implementation of this methodology 

2.3.1. Definition of a simulation study 

When conducting real life dose-finding studies we have the capacity to generate data 

through practical experiments. Trial individuals can be given vaccine doses, 

immunological/toxicity data responses recorded, and then these data can be used to 

make decisions regarding continued trial dose according to the DOA that is being 

used. In simulation studies we mimic this process, simulating clinical trial data 

generation according to ‘true’ vaccine dose-efficacy/dose-toxicity curves that we 

have defined and are hence known. We can define various different ‘true’ underlying 

dose-response curves to define different ‘scenarios’, which in turn allow the 

theoretical capacity of effective dose optimisation to be evaluated. 

2.3.2. Definition of a scenario 

In this work, a scenario consisted of: 

x A dosing domain: Whether these scenarios consider a single dose or 

combinations of doses, and the range for which possible doses that could be 

tested or predicted as optimal, as described above. For simplicity, we 

considered that doses of vaccine (whether single administration or prime 

dose, or a boost dose) to have been scaled to be between 0 and 1, as 
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described in [[53–55], S5]. Thus, a zero dose does not necessarily correspond 

to no vaccine being given, but instead corresponds to the smallest dose that 

clinicians/developers may be willing to consider. This scaling was purely for 

convenience.  

x A utility function: To weigh the relative benefit of efficacy, toxicity, or any other 

dose related outcome a utility function is needed. For this work we use either 

the ‘maximum efficacy’ or ‘utility contour’ utility functions defined in 2.1.1. 

x Efficacy probabilities for all possible doses: For each dose in the dosing 

domain, there was some true probability of efficacy for each dose that was 

defined for the scenario. 

x Toxicity probabilities for all possible doses: If our aim is to minimise toxicity as 

well as to maximise efficacy, as in the ‘utility contour’ utility function, there was 

some true probability of toxicity for each dose in the dosing domain that was 

defined for the scenario. 

For details of scenario creation see S6. 

2.3.3. Simulation study parameters 

2.3.3.1. Discretisation 

Specifically in this work,  

x For all scenarios involving single-administration paradigm vaccine dose-

response, for the CoBe and Parametric DOAs we discretized the dosing 

domain to 101 doses (0.00, 0.01, 0.02, ..., 0.99, 1.00) and for the Adaptive 

Naive and Uniform Naive DOAs we discretised the dosing domain to 6 doses 

(0.0, 0.2, 0.4, 0.6, 0.8, 1.0).  

x For all scenarios involving prime/boost paradigm vaccine dose response, for 

the CoBe and Parametric DOAs we discretized the dosing domain to 411 

doses (a 21-by-21 grid of (0.00, 0.05, ..., 0.95, 1.00)) and for the Adaptive 

Naive and Uniform Naive DOAs we discretised the dosing domain to 9 doses 

(a 3-by-3 grid of (0.0, 0.5, 1.0).  

x For the scenario involving prime/boost/second-boost paradigm vaccine dose 

response, for the CoBe and Parametric DOAs we discretized the dosing 
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domain to 1331 doses (an 11-by-11-by-11 grid of (0.00, 0.10, ..., 0.90, 1.00)) 

and for the Adaptive Naive and Uniform Naive DOAs we discretised the 

dosing domain to 27 doses (a 3-by-3-by-3 grid of (0.0, 0.5, 1.0).  

 
2.3.3.2. Trial size/sampling cohort size 

As the number of individuals available for conducting a dose-ranging trial may vary in 

real life, we assessed the performance of the DOAs for trial sizes from 6 to 300 

individuals. These are sizes reasonable given typical phase I/early phase II vaccine 

trial sizes [9].  

Additionally, as we consider adaptive DOAs, we had to specify the size of the 

sampling cohort. This was the number of individuals that were tested in each round 

of modelling/trialling (CoBe Dose Optimisation Approach Algorithm box steps 4, 5). 

The CoBe, Parametric, and Adaptive Naive DOAs used a sampling cohort size of six 

in this work for all scenarios. The Uniform Naive DOA used a sampling cohort size 

equal to the number of doses in the discretised dosing domain (either 6, 9 or 27). 

 
2.3.4. Metrics to evaluate dose-optimisation approaches 

We used two metrics to evaluate the DOAs described in this work; one was related 

to optimal dose selection and one related to ethical trial design. Either of these may 

be considered to be important considerations for conducting vaccine dose-ranging 

trials. 

x True efficacy/utility of predicted optimal dose: After each cycle of 

trial/modelling (each sampling cohort), each DOA can recommend a dose that 

is predicted optimal given the current data. As this was a simulation study, we 

were aware of the true efficacy/utility at that selected dose. This true 

efficacy/utility of the selected doses was averaged across trial simulations to 

assess the ability of a dose finding approach to locate optimal dose.  

x Cumulative sum of efficacy/utility: Each individual in a trial may have an 

efficacious response and may experience vaccine-related toxicity. The 

cumulative number of efficacious responses (or cumulative utility if both 
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efficacy and toxicity are being optimised for) was averaged across simulations 

to assess the ability of a dose finding approach to maximise trial 

efficacy/utility.  

The formula for ‘cumulative sum of efficacy’ after the first n individuals was  

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(𝑛) = 𝑐𝑜𝑢𝑛𝑡 (𝑛) (29) 

and the formula for ‘cumulative sum of utility’ after the first n individuals was  

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑛) = 𝑛 × 𝑈(
𝑐𝑜𝑢𝑛𝑡 (𝑛)

𝑛
,
𝑐𝑜𝑢𝑛𝑡 (𝑛)

𝑛
) (30) 

With 𝑈() being the utility contour function defined in section 1 and 𝑐𝑜𝑢𝑛𝑡 (𝑛) 

/𝑐𝑜𝑢𝑛𝑡 (𝑛)being the number of individuals that had experienced efficacy/toxicity 

in the first n individuals. 

 
2.3.5. Implementation 

Each scenario/approach pairing was simulated 100 times. The mean for both 

evaluation metrics for these 100 simulated clinical trials was calculated.  

The simulation study was conducted in Python, using SciPy for statistical inference, 

for implementation of Beta distributions, and for calibration of the parametric models 

for the Parametric DOA [56].  

 
2.4. Section 4. Description of the use of the concepts defined above in evaluating the 

Correlated Beta dose-optimisation approach in the context of our objectives 

2.4.1. Objective 1. Evaluate the Correlated Beta Dose Optimisation Approach for optimising 

vaccine efficacy for a single dose administration. 

In this objective we aimed to evaluate the vaccine dose-optimisation ability of the 

CoBe DOA when compared to other DOAs when choosing a single administration 
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dose that maximises efficacy. Using the definition of scenarios above, we consider 

scenarios with: 

x Dosing domain: Single-administration 

x Utility function: Maximise Efficacy 

x Efficacy curve: Is defined for each scenario 

x Toxicity curve: Not defined/not of interest 

Seven scenarios were used to explore this objective (Figure 6). These scenarios 

reflect cases for which vaccine dose efficacy may be  

1. gently saturating [Figure 6a] 

2. sharply saturating [Figure 6b] 

3. gently peaking [Figure 6c] 

4. sharply peaking [Figure 6d] 

5. decreasing [Figure 6e] 

6. undulating [Figure 6f] 

7. flattened peaking [Figure 6g] 
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(a) (b) (c) 

   
(d) (e) (f) 

 

 

 

 (g)  
Figure 6. Dose-efficacy plots for the seven objective 1 scenarios. These were (a) scenario 1, (b) 
scenario 2, (c) scenario 3, (d) scenario 4, (e) scenario 5, (f) scenario 6, and (g) scenario 7 . Purple 
represents areas of higher efficacy. The blue line represents the probability of efficacious response for 
each dose. 

For each scenario, we simulated 100 clinical trials conducted under each of the four 

DOAs (100x7x4 simulated trials total). Cohorts were of size 6, and we simulated 50 

cohorts for each clinical trial (300 total individuals per simulated trial). For each 

clinical trial, after each cohort an optimal dose was predicted and used to calculate 

‘true efficacy at predicted optimal dose’. 

The cumulative number of efficacious responses that had occurred up to and 

including that cohort in the simulated trials was also calculated as the ‘cumulative 
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sum of efficacy’. The mean value of these two metrics after each cohort across the 

hundred simulations were then calculated for each scenario for each DOA. A 95% 

confidence interval for the true mean values of these metrics were also calculated. 

These were plotted to qualitatively show the expected ‘true efficacy at the predicted 

optimal’ and ‘cumulative sum of efficacy’ for each scenario for clinical trials 

conducted using each DOA after each cohort. This allowed comparison between the 

DOAs, and also a comparison to the theoretical true optimal that a DOA could 

achieve. 

2.4.2. Objective 2: Evaluate the Correlated Beta Dose Optimisation Approach for optimising 

vaccine efficacy for a prime-dose/boost-dose administration. 

In this objective we aim to assess the dose-optimisation ability of the CoBe dose-

optimisation approach compared to other dose-optimisation approaches when 

choosing doses for a multiple administration vaccine that maximises efficacy. In this 

objective, we use scenarios where: 

x Dosing domain: Prime/boost (scenarios 1-5) or prime/boost/second-boost 

(scenarios 6, 7) 

x Utility function: Maximise Efficacy  

x Efficacy curve: Is defined for each scenario 

x Toxicity curve: Not defined/not of interest 

Seven scenarios were used to explore this objective (Figure 5). The prime/boost 

scenarios reflect cases for which vaccine dose efficacy may be  

1. Peaking with respect to both doses and where the combination of both 

vaccine doses increases their efficacy [figure 7a] 

2. Saturating with regards to both doses but where the combination of both 

vaccine doses decreases their efficacy [figure 7b] 

3. Saturating with respect to both doses and where the combination of both 

vaccine doses increases their efficacy [figure 7c] 
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4. Saturating with respect to both doses and where the combination of both 

vaccines increases their efficacy, but maximally dosing both vaccines causes 

decreased efficacy. [figure 7d] 

5. Saturating with respect to both doses and where the combination of both 

vaccines increases their efficacy, but where one of the doses is significantly 

more important to maximising efficacy. [figure 7e] 

Scenarios 6 and 7 are prime/boost/second-boost. These scenarios: 

6. Represents a case where there is a maximally efficacious dose for each, and 

any increase/decrease in any of these doses decreases efficacy regardless of 

the other doses. Thus, the optimal dose for each of the prime/boost/second-

boost was independent of what other doses were selected [figure 7f] 

7. Represent a case where a maximal dose of any two of the three doses 

produces a highly efficacious response, but a maximal dose of all three does 

not produce a highly efficacious response [figure 7g]. 

1.  
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(a) (b) (c) 

   
(d) (e) (f) 

 

 

 

 (g)  
Figure 7. Dose efficacy plots for the seven objective 2 scenarios. These were (a) scenario 1, (b) 
scenario 2, (c) scenario 3, (d) scenario 4, (e) scenario 5, (f) scenario 6, and (g) scenario 7 . Purple 
represents areas of higher efficacy. Note the z-axis for (g) is inverted to better show the 3-dimensional 
dose-efficacy relationship. 

For each scenario, we simulated 100 clinical trials conducted under each of the four 

DOAs (100x7x4 simulated trials total). For the CoBe, Parametric and Adaptive Naive 

DOAs, cohorts were of size 6, and we simulated 50 cohorts for each clinical trial (300 

total individuals per simulated trial). For scenarios 1-5, the Uniform Naive DOA used 

cohorts of size 9, and we simulated 33 cohorts for each clinical trial (297 total 

individuals per simulated trial). For scenarios 6 and 7, the Uniform Naive DOA used 

cohorts of size 27, and we simulated 11 cohorts for each clinical trial (297 total 

individuals per simulated trial).  
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For each clinical trial, after each cohort an optimal dose was predicted and used to 

calculate ‘true efficacy at predicted optimal dose’. The cumulative number of 

efficacious responses that had occurred up to and including that cohort in the 

simulated trials was also calculated as the ‘cumulative sum of efficacy’. The mean 

value of these two metrics after each cohort across the hundred simulations were 

then calculated for each scenario for each DOA. A 95% confidence interval for the 

true mean values of these metrics were also calculated. These were plotted to 

qualitatively show the expected ‘true efficacy at the predicted optimal’ and 

‘cumulative sum of efficacy’ for each scenario for clinical trials conducted using each 

DOA after each cohort. This allowed comparison between the DOAs, and also a 

comparison to the theoretical true optimal that a DOA could achieve. 

 

2.4.3. Objective 3. Evaluate the Correlated Beta Dose Optimisation Approach for optimising 

vaccine utility, maximising efficacy, and minimising toxicity. 

In this objective we aim to assess the dose-optimisation ability of the CoBe dose-

optimisation approach compared to dose-optimisation approaches when choosing 

doses for single or multiple administration vaccines for which an optimal balance of 

efficacy and toxicity must be achieved. In this objective we use scenarios where: 

x Dosing domain: Single-administration (scenarios 1-4) or prime/boost 

administration (scenarios 5-6) 

x Utility function: Utility Contour 

x Efficacy curve: Is defined for each scenario 

x Toxicity curve: Is defined for each scenario 

Six scenarios were used in this objective (Figure 8). The single-administration 

scenarios reflect cases for which vaccines 

1. have gradually increasing efficacy and toxicity with dose [figure 8 a, b, c] 

2. have sharply peaking efficacy and gradually increasing toxicity with dose 

[figure 8 d, e, f] 
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3. have gradually increasing efficacy and sharply increasing toxicity with dose 

[figure 8 g, h, i] 

4. have sharply peaking efficacy and sharply increasing toxicity with dose [figure 

8 j, k, l] 

The prime/boost administration scenarios reflect cases for which vaccines: 

5.  have efficacy as per objective 2, scenario 3, and toxicity increasing for high 

doses of either vaccine [figure 8 m, n, o] 

6. have efficacy as per objective 2, scenario 2, and toxicity increasing for high 

doses of either vaccine [figure 8 p, q, r] 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 
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(j) (k) (l) 

   
(m) (n) (o) 

   
(p) (q) (r) 

Figure 8. Dose efficacy/toxicity/utility plots for the six objective 3 scenarios. These were (a-c) 
scenario 1, (d-f) scenario 2, (g-i) scenario 3, (j-l) scenario 4, (m-o) scenario 5, and (p-r) scenario 6. 
Left/middle/right plots were respectively for efficacy/toxicity/utility. (a-l) The blue line represents the 
probability of efficacious/toxic response and utility for each dose. (m-o) Purple represents areas of 
higher efficacy/toxicity/utility.  

For each scenario, we simulated 100 clinical trials conducted under each of the four 

DOAs (100x6x4 simulated trials total). For the CoBe, Parametric and Adaptive Naive 

DOAs, cohorts were of size 6, and we simulated 50 cohorts for each clinical trial (300 

total individuals per simulated trial). This was also true for the Uniform Naive DOA for 

scenarios 1-4. For scenarios 5 and 6, the Uniform Naive DOA used cohorts of size 9, 

and we simulated 33 cohorts for each clinical trial (297 total individuals per simulated 

trial). 
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For each clinical trial, after each cohort an optimal dose was predicted and used to 

calculate ‘true utility at predicted optimal dose’. The cumulative utility up to and 

including that cohort in the simulated trials was also calculated as the ‘cumulative 

sum of utility’. The mean value of these two metrics after each cohort across the 

hundred simulations were then calculated for each scenario for each DOA. A 95% 

confidence interval for the true mean values of these metrics were also calculated. 

These were plotted to qualitatively show the expected ‘true utility at the predicted 

optimal’ and ‘cumulative sum of utility’ for each scenario for clinical trials conducted 

using each DOA after each cohort. This allowed comparison between the DOAs, and 

also a comparison to the theoretical true optimal that a DOA could achieve. 

2.4.4. Objective 4. Evaluate the use of expert knowledge informed Continuous Correlated 

Beta Process priors for vaccine dose-optimisation 

In this objective we aim to assess the dose-optimisation ability of the CoBe dose-

optimisation approach when including either accurate or inaccurate expert 

information priors, and to what extent such priors improve or are detrimental to CoBe 

DOA performance. 

We compared the CoBe DOA with 5 different ‘priors’  

x Very strong, correct 

x Strong, correct 

x No prior 

x Strong, incorrect 

x Very strong, incorrect 

These priors were implemented as defined in 2.2.1.4. The ‘No prior’ approach had  

𝑝 ,
0 ~𝐵𝑒𝑡𝑎 𝛼 ,

0 , 𝛽1 ,
0 =  𝐵𝑒𝑡𝑎(1,1) for all doses and is the CoBe DOA used in the 

previous objectives. The ‘Very strong, correct’ and ‘Strong, correct’ priors assume 

the expert knowledge is entirely correct top the ‘true’ vaccine dose response, with 

suggested probability 𝑝 ,  equal to the true probability of efficacy/toxicity for all doses 

𝑑  (so if the true probability of efficacy for some dose was 0.2, the ‘expert’ would 

predict an efficacy of 0.2). The ‘Very strong, incorrect’ and ‘Strong, incorrect’ priors 
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represent the expert being largely incorrect, with suggested probability 𝑝 ,  equal to 

one minus the true probability of efficacy/toxicity for all doses (so if the true 

probability of efficacy for some dose was 0.2, the ‘expert’ would predict an efficacy of 

0.8). The ‘Strong, correct’ and ‘Strong, incorrect’ priors used 𝑐 = 3, which was 

deemed appropriate based on previous results in parametric dose-optimisation 

[57,58] and the ‘Very strong, correct’ and ‘Very strong, incorrect’ priors used 𝑐 =

20 for all doses which represented having extreme confidence in the expert prior. 

In this objective we use scenarios from the above 3 objectives (Figure 9). In this 

objective we use scenarios where: 

x Dosing domain: Single-administration (scenarios 1, 2), prime/boost 

administration (scenarios 3,4, 7), or prime/boost/second-boost administration 

(scenarios 5,6) 

x Utility function: Maximise Efficacy (Scenarios 1-6), Utility Contour (Scenario 7) 

x Efficacy curve: Is defined for each scenario 

x Toxicity curve: Is defined for only scenario 7 

Specifically, these are: 

1. Objective 1, Scenario 1 [Figure 9a] 

2. Objective 1, Scenario 4 [Figure 9b] 

3. Objective 2, Scenario 1 [Figure 9c] 

4. Objective 2, Scenario 2 [Figure 9d] 

5. Objective 2, Scenario 6 [Figure 9e] 

6. Objective 2, Scenario 7 [Figure 9f] 

7. Objective 3, Scenario 6 [Figure 9 g, h, i] 
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(a) (b) (c) 

   
(d) (e) (f) 

  
 

(g) (h) (i) 
Figure 9. Dose efficacy and efficacy/toxicity/utility plots for the seven objective 4 scenarios. 
Dose-efficacy plots were (a) scenario 1, (b) scenario 2, (c) scenario 3, (d) scenario 4, (e) scenario 5, 
(f) scenario 6. For (g-i) scenario 7, these were respectively for efficacy/toxicity/utility. (a, b) The blue 
line represents the probability of efficacious/toxic response and utility for each dose. (c-i) Purple 
represents areas of higher efficacy/toxicity/utility. 

For each scenario, we simulated 100 clinical trials conducted under each of the four 

DOAs (100x7x4 simulated trials total). Cohorts were of size 6, and we simulated 50 

cohorts for each clinical trial (300 total individuals per simulated trial).  

For each clinical trial, after each cohort an optimal dose was predicted and used to 

calculate ‘true efficacy at predicted optimal’ for scenarios 1-6 and ‘true utility at 

predicted optimal dose’ for scenario 7. The cumulative efficacy utility up to and 
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including that cohort in the simulated trials was also calculated as the ‘cumulative 

sum of efficacy’ for scenarios 1-6, similarly the ‘cumulative sum of utility’ was 

calculated for scenario 7. The mean value of these metrics after each cohort across 

the hundred simulations were then calculated for each scenario for each DOA. A 

95% confidence interval for the true mean values of these metrics were also 

calculated. These were plotted to qualitatively show the expected ‘true efficacy/utility 

at the predicted optimal’ and ‘cumulative sum of efficacy/utility’ for each scenario for 

clinical trials conducted using each DOA after each cohort. This allowed comparison 

between the DOAs, and a comparison to the theoretical true optimal that a DOA 

could achieve.
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3. Results 

3.1. Objective 1. Evaluate the Correlated Beta Dose Optimisation Approach for optimising 

vaccine efficacy for a single dose administration. 

3.1.1. True efficacy at predicted optimal dose 

The DOA (dose-optimisation approach) that best maximised ‘true efficacy at 

predicted optimal dose’ (from here called ‘true efficacy’) for a given scenario and trial 

size was considered to be the ‘best’ DOA for the aim of selecting an optimal dose for 

that scenario. The left-hand side of figure 10 shows the change in mean true efficacy 

with increasing numbers of trial participants for each of the four DOAs for each 

scenario, averaged across 100 simulated clinical trials. For each of these plots the 

upper and lower brown lines respectively show the maximal and minimal efficacy 

possible for that scenario. A mean true efficacy for a DOA being closer to the upper 

brown line relative to a second DOA indicates the first DOA being on average better 

at selecting a highly efficacious dose. Equivalently, a mean true efficacy being closer 

to the lower brown line would represent a DOA being of average worse at selecting a 

highly efficacious dose.  

For all scenarios, the CoBe (Correlated Beta) DOA had similar or greater mean true 

efficacy relative to the other DOAs for all trial sizes [figure 10, LHS]. The mean true 

efficacy curve typically plateaued with between 30 and 90 trial participants. Scenario 

7 was an exception, which may be due to the flat nature of the scenario’s dose-

efficacy curve, which may have necessitated more data in order to discern a 

statistical difference in dose-efficacy for different doses (note the scale of the y-

axis).  

The CoBe DOA had a lower/worse mean true efficacy than the Parametric DOA for 

scenarios 1 and 2 for low numbers of trial participants. This may have been because 

the parametric model for the Parametric DOA was able to easily approximate the 

scenario 1 and 2 dose response curves with minimal data and correctly identify that 

the largest dose was maximally efficacious. However, the CoBe DOA had a greater 

mean true efficacy than the Parametric DOA for scenarios 4 and 6 for most trial 

sizes. 
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The CoBe DOA had similar mean true efficacy to the Adaptive Naive DOA for most 

scenarios. However, for scenarios 3 and 6 the Adaptive Naive DOA plateaued at a 

lower true efficacy. For scenarios where one of the potential doses in the discretised 

dosing domain of the Adaptive Naive DOA was near optimal (1,2,4,5, and 7), the 

Adaptive DOA had similar mean true efficacy to the CoBe DOA. However, when 

none of these potential doses were near optimal, the Adaptive Naive DOA had a 

lower/worse mean true efficacy than the CoBe DOA. For example, for scenarios 3 

and 6, none of the six doses in the discretised dosing domain were truly optimal for 

those scenarios. 

The uniform naive approach had a lower/worse mean true efficacy compared to the 

other approaches, particularly when the number of trial participants was small. The 

only exception was that the mean true efficacy for the Uniform Naive DOA was 

greater than that of the Parametric DOA for scenario 6. The mean true efficacy of the 

Uniform Naive DOA was typically equalled or surpassed by that of the Adaptive 

Naive DOA for all scenarios and numbers of trial participants. 

3.1.2. Cumulative sum of efficacy 

Cumulative sum of efficacy measures a DOA’s capacity to maximise the benefit to 

trial participants. After a certain number of trial participants, a DOA with a higher 

cumulative efficacy would be considered ‘more ethical’ than a DOA with a lower 

cumulative efficacy, as it would reflect those trial participants having received on 

average more efficacious dosing. The right-hand side of figure 10 shows the change 

in mean cumulative sum of efficacy with increasing numbers of trial participants for 

each of the four DOAs for each scenario, averaged across 100 simulated clinical 

trials. For each of these plots the upper and lower brown lines respectively show the 

theoretical maximal and minimal mean cumulative efficacy possible for that scenario. 

A mean true efficacy for a DOA being closer to the upper brown line relative to a 

second DOA reflects that the trial participants for simulated clinical trials using the 

first DOA on average received more efficacious doses. If the relationship between 

number of trial participants and mean cumulative sum of efficacy for a DOA becomes 

parallel to the upper brown line after some number of trial participants, then that 

represents that the DOA gave a near optimal dose to all trial participants after that 
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point. No DOA could exceed this upper brown line, as this upper brown line reflects a 

DOA for which every trial participant receives the dose that is truly most efficacious. 

The relationship between the number of trial participants and cumulative sum of 

efficacy for DOAs that used adaptive trial design (CoBe, Parametric, Adaptive Naive 

DOAs) was non-linear [ figure 10, RHS]. For small numbers of trial participants the 

gradient of this curve was less steep than the line for the theoretical maximal (upper 

brown line, figure 10 RHS). When the number of trial participants was small, there 

was little data available to guide the adaptive design of these DOAs and so trial 

doses were more likely to be suboptimal. As the number of trial participants 

increased, more data was available to inform selection of trial doses that were likely 

to be efficacious, increasing the steepness of the curve.  

The CoBe DOA typically had a similar or greater cumulative sum of efficacy relative 

to the other DOAs for all scenarios [figure 10, RHS]. In many scenarios the mean 

cumulative efficacy was only slightly below the theoretical maximum for that scenario 

for the number of trial participants. Given that this upper bound is only achievable by 

dosing all trial participants at the true optimal dose for that scenario (which is likely 

not known a-priori in a dose-finding trial), for these scenarios the CoBe DOA was 

found to be highly ethical. The Uniform Naive DOA had a lower/worse cumulative 

sum of efficacy than the other DOAs for all scenarios, especially at large trial size. 

This was likely because this DOA did not use any adaptive design, which is what 

allowed other DOAs to choose more promising doses for their later trial participants. 
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Figure 10. Mean true efficacy at the predicted optimal dose (left) and mean cumulative sum of 
efficacy (right) against trial size for all seven objective 1 scenarios (top to bottom). These are 
the mean values and 95%CI values across 100 simulations. For the true efficacy plots (left), the 
brown lines show the minimum and maximum possible efficacy that could be achieved in that 
scenario. For the cumulative efficacy plots (right) the brown lines represent the maximum and 
minimum cumulative efficacy sum that could be expected for that scenario. For example, if the true 
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maximum efficacy for a scenario was 90%, no DOA could locate a dose with a true efficacy >90%, 
and no DOA could achieve a mean cumulative efficacy > 270 (=90% x 300) after testing 300 trial 
participants. A mean true efficacy/mean cumulative sum of efficacy curve being closer to the upper 
brown line reflects that DOA being the more effective for locating a maximally efficacious 
dose/maximising benefit to trial participants. 

3.2. Objective 2. Evaluate the Correlated Beta Dose Optimisation Approach for optimising 

vaccine efficacy for a prime-dose/boost-dose administration. 

3.2.1. True efficacy at predicted optimal dose 

The DOA that best maximised true efficacy for a given scenario and trial size was 

considered to be the ‘best’ DOA for the aim of selecting an optimal dose for that 

scenario. The left-hand side of figure 11 shows the change in mean true efficacy with 

increasing numbers of trial participants for each of the four DOAs for each scenario, 

averaged across 100 simulated clinical trials. For each of these plots the upper and 

lower brown lines respectively show the maximal and minimal efficacy possible for 

that scenario. A mean true efficacy for a DOA being closer to the upper brown line 

relative to a second DOA indicates the first DOA being on average better at selecting 

a highly efficacious dose. Equivalently, a mean true efficacy being closer to the lower 

brown line would represent a DOA being of average worse at selecting a highly 

efficacious dose. 

For all scenarios, the CoBe (Correlated Beta) DOA had similar or greater mean true 

efficacy relative to the other DOAs for all trial sizes [figure 11, LHS]. The mean true 

efficacy curve typically plateaued with between 60 and 90 trial participants. 

The CoBe DOA had a lower/worse mean true efficacy than the Parametric DOA for 

scenarios 3 and 5 for small numbers of trial participants but had a higher mean true 

efficacy than the Parametric DOA for scenarios 2 and 7.  

The CoBe DOA had a higher mean true efficacy than the Adaptive Naive DOA for 

scenarios 4 and 6 and for a small numbers of trial participants for scenario 7 and a 

large number of trial participants for scenario 1. Otherwise mean true efficacy was 

similar for these two DOAs. 
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Again, the Uniform Naive DOA had a lower/worse mean true efficacy than all other 

approaches for all scenarios, with the only exception being the Parametric DOA 

which had a lower mean true efficacy for scenarios 2 and 7. 

3.2.2. Cumulative sum of efficacy 

Cumulative sum of efficacy measures a DOA’s capacity to maximise the benefit to 

trial participants. After a certain number of trial participants, a DOA with a higher 

cumulative efficacy would be considered ‘more ethical’ than a DOA with a lower 

cumulative efficacy, as it would reflect those trial participants having received on 

average more efficacious dosing. The right-hand side of figure 11 shows the change 

in mean cumulative sum of efficacy with increasing numbers of trial participants for 

each of the four DOAs for each scenario, averaged across 100 simulated clinical 

trials. For each of these plots the upper and lower brown lines respectively show the 

theoretical maximal and minimal mean cumulative efficacy possible for that scenario. 

A mean true efficacy for a DOA being closer to the upper brown line relative to a 

second DOA reflects that the trial participants for simulated clinical trials using the 

first DOA on average received more efficacious doses. If the relationship between 

number of trial participants and mean cumulative sum of efficacy for a DOA becomes 

parallel to the upper brown line after some number of trial participants, then that 

represents that the DOA gave a near optimal dose to all trial participants after that 

point. No DOA could exceed this upper brown line, as this upper brown line reflects a 

DOA for which every trial participant receives the dose that is truly most efficacious. 

The same non-linearity in the relationship between number of trial participants and 

cumulative sum of efficacy for DOAs that used adaptive trial design (CoBe, 

Parametric, Adaptive Naive DOAs) that was observed in objective 1 was also 

observed in objective 2 [Figure 11, RHS]. 

The CoBe DOA typically had a similar or greater cumulative sum of efficacy relative 

to the other DOAs for all scenarios [figure 11, RHS]. The exception was for scenario 

6, for which the Parametric DOA had a greater cumulative sum of efficacy, however 

the CoBe DOA had a greater cumulative sum of efficacy for scenarios 2 and 7. The 

Adaptive Naive DOA had a greater cumulative sum of efficacy than the CoBe DOA 
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for scenarios 2 and 6, however the CoBe DOA had a greater cumulative sum of 

efficacy for scenarios 4 and 7. The Uniform Naive DOA had a lower/worse 

cumulative sum of efficacy than the other DOAs for all scenarios, especially at large 

trial size. 
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Figure 11. Mean true efficacy at the predicted optimal dose (left) and mean cumulative sum of 
efficacy (right) against trial size for all seven objective 2 scenarios (top to bottom). These are 
the mean values and 95%CI values across 100 simulations. For the true efficacy plots (left), the 
brown lines show the minimum and maximum possible efficacy that could be achieved in that 
scenario. For the cumulative efficacy plots (right) the brown lines represent the maximum and 
minimum cumulative efficacy sum that could be expected for that scenario. 

3.3. Evaluate the Correlated Beta Dose Optimisation Approach for optimising vaccine utility, 

maximising efficacy, and minimising toxicity. 

3.3.1. True utility at predicted optimal dose 

The DOA that best maximised ‘true utility at predicted optimal dose’ (from here called 

‘true utility’) for a given scenario and trial size was considered to be the ‘best’ DOA 

for the aim of selecting an optimal dose for that scenario. Utility was defined by the 

‘utility contour’ function that increased with an increased probability of efficacy and 

increased with a decreased probability of toxicity. The left-hand side of figure 12 

shows the change in mean true utility with increasing numbers of trial participants for 

each of the four DOAs for each scenario, averaged across 100 simulated clinical 

trials. For each of these plots the upper and lower brown lines respectively show the 

maximal and minimal utility possible for that scenario. A mean true utility for a DOA 

being closer to the upper brown line relative to a second DOA indicates the first DOA 

being on average better at selecting a high utility dose. Equivalently, a mean true 

efficacy being closer to the lower brown line would represent a DOA being on 

average worse at selecting a high utility dose.  
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For all scenarios, the CoBe (Correlated Beta) DOA had similar or greater mean true 

utility relative to the other DOAs for all trial sizes [figure 10, LHS]. The mean true 

utility curve typically plateaued with between 30 and 60 trial participants for the 

single dose administration scenarios (1-4), and between 60 and 90 trial participants 

for the prime/boost administration (5 and 6). 

The CoBe DOA had similar mean true utility to the Parametric DOA for scenarios 1-

4, however for scenarios 5 and 6 the CoBe DOA had a greater mean true utility 

relative to the Parametric DOA. The CoBe DOA had a greater mean true utility than 

either of the Adaptive Naive or Uniform Naive DOAs for all scenarios. 

3.3.2. Cumulative sum of utility 

Cumulative sum of utility measures a DOA’s capacity to maximise the benefit to trial 

participants. After a certain number of trial participants, a DOA with a higher 

cumulative utility would be considered ‘more ethical’ than a DOA with a lower 

cumulative utility, as it would reflect those trial participants having received on 

average more efficacious/less toxic dosing. The right-hand side of figure 12 shows 

the change in mean cumulative utility with increasing numbers of trial participants for 

each of the four DOAs for each scenario, averaged across 100 simulated clinical 

trials. For each of these plots the upper and lower brown lines respectively show the 

theoretical maximal and minimal mean cumulative utility possible for that scenario. A 

mean true utility for a DOA being closer to the upper brown line relative to a second 

DOA reflects that the trial participants for simulated clinical trials using the first DOA 

on average received more efficacious/less toxic doses. If the relationship between 

number of trial participants and mean cumulative sum of utility for a DOA becomes 

parallel to the upper brown line after some number of trial participants, then that 

represents that the DOA gave a near optimal dose to all trial participants after that 

point. No DOA could exceed this upper brown line, as this upper brown line reflects a 

DOA for which every trial participant receives the dose that is truly optimal in regard 

to maximising efficacy whilst minimising toxicity according to the utility function. 

The same non-linearity in the relationship between number of trial participants and 

cumulative utility for DOAs that used adaptive trial design (CoBe, Parametric, 
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Adaptive Naive DOAs) that was observed in objectives 1 and 2 was also observed in 

objective 3 [figure 11, RHS]. The CoBe DOA had a similar mean cumulative utility to 

the Parametric DOA for scenarios 1, 5 and 6, however the Parametric DOA had a 

greater mean cumulative utility for scenarios 2,3 and 4. The CoBe DOA had a similar 

or greater mean cumulative utility to the Adaptive Naive DOA for all scenarios other 

than scenario 2. The Uniform Naive DOA had a lower/worse cumulative utility than 

the other DOAs for all scenarios, especially at large trial size. 
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Figure 12. Mean true utility at the predicted optimal dose (left) and mean cumulative sum of 
utility (right) against trial size for all six objective 3 scenarios (top to bottom). These are the 
mean values and 95%CI values across 100 simulations. For the true utility at the predicted optimal 
dose plots (left), the brown lines show the minimum and maximum possible utility that could be 
achieved in that scenario. For the cumulative efficacy plots (right) the brown lines represent the 
maximum and minimum cumulative utility sum that could be expected for that scenario. 

3.4. Objective 4. Evaluate the use of expert knowledge informed Continuous Correlated Beta 

Process priors for vaccine dose-optimisation 

In this objective we assessed how the CoBe DOA that was discussed in objectives 

1-3 would be impacted by the inclusion of expert priors as discussed in section 

2.2.1.4. The black line in figure 13 (‘No Prior’) reflects the CoBe DOA as it was used 

in the previous objectives. 

3.4.1. True efficacy/utility at predicted optimal dose 

The DOA that best maximised ‘true efficacy at predicted optimal dose’ or ‘true utility 

at predicted optimal dose’ (from here called ‘true efficacy/utility’) for a given scenario 

and trial size was considered to be the ‘best’ DOA for the aim of selecting an optimal 

dose for that scenario. The left-hand side of figure 13 shows the change in mean 

true efficacy/utility with increasing numbers of trial participants for each of the four 

DOAs for each scenario, averaged across 100 simulated clinical trials. For each of 

these plots the upper and lower brown lines respectively show the maximal and 

minimal efficacy/utility possible for that scenario. A mean true efficacy/utility for a 

DOA being closer to the upper brown line relative to a second DOA indicates the first 

DOA being on average better at selecting a high efficacy/utility dose. Equivalently, a 
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mean true efficacy/utility being closer to the lower brown line would represent a DOA 

being on average worse at selecting a high efficacy/utility dose.  

The CoBe DOAs that used ‘Strong, Correct’ and ‘Very Strong, Correct’ CCBP 

(continuous correlated beta process) priors had greater mean true efficacy/utility 

than the ‘No Prior’ CoBe DOA for all scenarios. The CoBe DOAs that used ‘Strong, 

Incorrect’ and ‘Very Strong, Incorrect’ CCBP priors had lower/worse mean true 

efficacy/utility than the ‘No Prior’ CoBe DOA for all scenarios. For all scenarios other 

than scenario 1, the CoBe DOA with the ‘Very Strong, Incorrect’ prior failed to predict 

a near optimal dose, even for large numbers of trial participants. 

For the ‘Very Strong, Correct’ and ‘Strong, Correct’ CCBP prior DOAs, the mean true 

efficacy/utility decreased with the number of trial participants for early cohorts. This 

was expected as the expert prior is correct, therefore the initial predicted optimal 

dose is truly optimal and true efficacy/utility could not increase relative to this. 

3.1.2. Cumulative sum of efficacy/utility 

Cumulative sum of efficacy/utility measures a DOA’s capacity to maximise the 

benefit to trial participants. After a certain number of trial participants, a DOA with a 

higher cumulative efficacy/utility would be considered ‘more ethical’ than a DOA with 

a lower cumulative efficacy/utility The right-hand side of figure 13 shows the change 

in mean cumulative utility with increasing numbers of trial participants for the CoBe 

DOAs with each of the five types of CCBP prior for each scenario, averaged across 

100 simulated clinical trials. For each of these plots the upper and lower brown lines 

respectively show the theoretical maximal and minimal mean cumulative 

efficacy/utility possible for that scenario. A mean true efficacy/utility for a DOA being 

closer to the upper brown line relative to a second DOA reflects that the trial 

participants for simulated clinical trials using the first DOA on average received more 

efficacious or more efficacious/less toxic doses. No DOA could exceed this upper 

brown line, as this upper brown line reflects a DOA for which every trial participant 

receives the dose that is truly optimal. 

The CoBe DOAs with ‘Very Strong, Correct’ and ‘Strong, Correct’ CCBP priors had 

greater cumulative efficacy/utility for all scenarios relative to the ‘No Prior’ CoBe 
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DOA [figure 13, RHS]. The CoBe DOAs with ‘Very Strong, Incorrect’ and ‘Strong, 

Incorrect’ CCBP priors had worse cumulative efficacy/utility for all scenarios relative 

to the ‘No Prior’ CoBe DOA. 
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Figure 13. Mean true efficacy at the predicted optimal dose (S1-6, left), mean cumulative sum 
of efficacy (S1-6 6, right), mean true utility at the predicted optimal dose (S7, left), and mean 
cumulative sum of utility (S7, right) against trial size for all seven objective 4 scenarios (top to 
bottom). These are the mean values and 95%CI values across 100 simulations. For the true 
efficacy/utility at the predicted optimal dose plots (left), the brown lines show the minimum and 
maximum possible efficacy/utility that could be achieved in that scenario. For the cumulative 
efficacy/utility plots (right) the brown lines represent the maximum and minimum cumulative 
efficacy/utility sum that could be expected for that scenario.  
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4. Discussion 

In this work we used simulation studies to evaluate the Correlated Beta (CoBe) dose 

optimisation approach (DOA), a novel mathematical-modelling methodology for 

selecting optimal vaccine dose that makes use of the non-parametric Continuous 

Correlated Beta Process (CCBP) model. We found that the CoBe DOA is effective 

and ethical for finding a vaccine dose which maximises efficacy and minimises 

toxicity for both single-administration and prime/boost administration regimens. The 

CoBe DOA typically had similar or preferable capacity to select optimal vaccine dose 

with maximal benefit to trial participants when compared to other DOAs. Additionally, 

this DOA can be further improved if there is correct and informative prior expert 

knowledge regarding vaccine dose-efficacy curves. This work suggests that 

mathematical modelling and adaptive trial design can lead to better vaccine dosing 

strategies. Further to this, non-parametric models and specifically the non-parametric 

CCBP model might be particularly useful if an appropriate parametric model is 

unknown. This may allow for more practical application of modelling in vaccine dose 

selection, accelerating vaccine development and saving lives. 

This work is novel within the field of mathematical modelling-based vaccine dose 

selection, and the CCBP has also not previously been investigated for its potential to 

aid in optimising vaccine dose. The context in which we evaluated the methods was 

broad, as we conducted simulation studies that included single and prime/boost-

administration vaccine dose-optimisation, both efficacy maximisation and toxicity 

minimisation, and the impact of incorporating expert opinion and knowledge into the 

modelling process.  

The CoBe DOA has several strengths relative to the other DOAs discussed in this 

work. The CCBP models that were used to predict vaccine dose-response make 

simpler assumptions and are simpler to implement and interpret compared to other 

parametric/non-parametric mathematical models. Further, CCBP models can be 

extended to modelling prime/boost dose-response with only minor alterations and 

can be modified to benefit from expert knowledge with similar ease. The simplicity of 

the CCBP model did not hinder its ability to predict optimal vaccine dose in this 

simulation study, with CoBe DOA appearing equivalent or better at predicting optimal 
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dose relative to other common dose-optimisation approaches. As the CCBP model 

did not rely on any biologically-based assumptions, it could likely be generalised for 

the purposes of optimising vaccine dose, time between doses, adjuvant dose, or 

many other parameters related to vaccine administration that could impact vaccine 

efficacy and utility.  

Beyond introducing and evaluating this new DOA, this work has several other 

strengths.  

Firstly, we evaluated multiple other DOAs as part of this analysis, which highlights 

the potential strengths or weaknesses of these DOAs relative to each other. This 

analysis was conducted over many simulated scenarios, which showed that for 

different ‘true’ dose-efficacy/dose-toxicity relationships the performance of DOAs can 

vary. This work is also novel in highlighting that the potential efficacy/utility of a 

vaccine may be limited if dose is selected using a DOA that only considers a small 

number of potential doses, such as the Adaptive Naive and Uniform Naive DOAs. 

For example, for many scenarios (objective 1 scenario 3, objective 2 scenarios 1,4, 

and 6, and all objective 3 scenarios), the Adaptive Naive and Uniform Naive DOAs 

failed to find the true optimal dose as none of the small doses that were considered 

by these DOAs were optimal for those scenarios.  

Finally, this work showed further evidence that using mathematical modelling and/or 

adaptive design may be both more effective for selecting optimal vaccine dose and 

more ethical than the ‘Uniform Naive’ DOA, which is equivalent to the standard 

approach in vaccine dose ranging trials.  

There were weaknesses with both this work and the CoBe DOA that we proposed.  

Firstly, this work and its findings are based on simulated clinical trial data, not 

empirical data. If none of the scenarios are accurate approximations to the true 

dose-efficacy of a vaccine, then the findings and recommendations of this work may 

not be relevant. We accounted for this weakness by investigating many qualitatively 

different scenarios. 
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Secondly, we included only binary measures of efficacy/toxicity. In practice, there 

may be non-binary outcomes of interest, for example CD4+ T Cell percentage or 

antibody titres. The CCBP model used for the CoBe DOA can only be used for 

binary responses, and further work would be needed to investigate similar DOAs for 

non-binary responses. Vaccine dose-optimisation based on non-binary responses 

would require more complicated utility functions and models, but this was beyond the 

scope of this work.  

Thirdly we ignored some features that are commonly used in adaptive trial design 

and may be practically desirable. For example, stopping rules, which are criteria that 

allow for dose-finding trials to end early if there is sufficient evidence to suggest that 

one dose is optimal [59]. Additionally, we ignored escalation/de-escalation criteria, 

which are criteria that limit trial doses to a sub-range of the dosing domain until there 

is sufficient evidence to support escalating to larger and potentially more toxic doses 

[30,60]. Both of these trial design features would have added complexity to the 

implementation of the DOAs. Given that all evaluated DOAs did not include these 

features, we believe that our results were not biased by this weakness. Further work 

may need to be conducted to evaluate the effects of including stopping rules or 

escalation/de-escalation criteria. Similarly, to reduce the scope and complexity of this 

work, we also only compared the CoBe DOA against three other DOAs. Further work 

could conduct a comparison with other DOAs, for example rule-based designs [61], 

or the EffTox [34,35] or Bayesian Optimal Design algorithm [24]. 

We only investigated one parametric model each for single-administration dose-

efficacy, single-administration dose-toxicity, prime/boost administration dose-

efficacy, prime/boost administration dose-toxicity, and prime/boost/second-boost 

dose-efficacy. It is possible that the results for the parametric DOA for some 

scenarios would have been different if we had chosen different parametric models. 

For example, for scenario 6 of objective 1, the parametric DOA had a low mean true 

efficacy relative to the other DOAs after 300 trial participants. It is possible that this 

was due to that parametric model being misspecified for that scenario, and that a 

parametric DOA which used a parametric model of undulating dose-response would 

have been more effective in that scenario. Whilst this may have impacted our results, 

it also highlights why we believe non-parametric models may have potential for use 
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in vaccine dose-optimisation, as these may have reduced risk of choosing a model 

that may negatively impact selection of optimal vaccine dose compared to 

parametric models. 

To reduce complexity, we did not evaluate in the main body of this work the effects 

of changes in cohort size, type of CCPB kernel, the CCBP kernel length 

hyperparameter values, the ‘temperature’ used for the SoftMax selection for the 

Parametric DOA, and the number of doses used for the Uniform Naive and Adaptive 

Naive DOAs. We do however provide an evaluation of the effects of changing in the 

supplementary materials [S7]. Additionally, whilst we showed that it is likely that 

mathematical modelling and adaptive trial design may lead to selection of more 

optimal vaccine doses and improve benefit to trial participants, these methods may 

increase the complexity and duration of conducting vaccine dose-ranging trials. 

Vaccine developers may need to consider whether this complexity is justified by the 

potential benefits of more ethical trials and improved clinical vaccine doses.  

Comparing our work to previous findings, other DOAs that used non-parametric 

models were found to be as effective as using parametric modelling based DOAs for 

the selection of optimal dose [24,25], which is consistent with our findings. The use 

of mathematical modelling methods and adaptive design has previously been found 

to lead to more ethical clinical trials [17,62]. This is consistent with our finding that 

the Uniform Naive DOA, which represents a non-modelling approach, had the lowest 

cumulative sums of efficacy/utility across most scenarios. This work aligns well with 

other work in the field of Immunostimulation/Immunodynamic (IS/ID) modelling, 

which has proposed increased adoption of mathematical modelling for the purposes 

of optimal vaccine dosing. 

There are several future possible areas for research. Firstly, while this work shows a 

theoretical validation of the CoBe DOA, clearly empirical validation of these methods 

is required. Secondly, further development and extension of the CoBe DOA would be 

beneficial to allow for uptake of these methodologies into clinical use. A quantitative 

method for selecting length hyperparameters for the CCBP model would be 

beneficial, and is discussed in [28,29]. Whilst inclusion of expert knowledge into 

CCBP models was evaluated in objective 4, a validated method of extrapolating from 
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animal vaccine dose-efficacy/dose-toxicity data to inform priors for these models 

would be highly beneficial considering that preclinical data are often used in the 

design of human dose-ranging trials. This may be important given the findings of 

objective 4, as for all scenarios the incorrect priors were detrimental to both selection 

of optimal dose and maximising benefit to trial participants. Further, the evaluation of 

CoBe DOA using more complicated utility functions of multiple 

immunological/toxicological responses is needed and may be more informative. 

Developing computational software such as an R or Python package may also be 

beneficial for allowing practical application of the CoBe DOA.  

There is also potential for future research into other non-parametric models for the 

purpose of vaccine dose optimisation. Extensions of the CCBP or other non-

parametric models should be investigated for modelling continuous or ordinal dose-

response data. Additionally, we considered a homogenous trial population in this 

work. Developing methods of accounting for heterogeneity in the clinical trial 

population, either through trial participant randomisation or through augments to the 

models, could be important to ensuring maximal vaccine benefit. 

5. Conclusions 

Selection of optimal vaccine dose is an important but complicated endeavour. In this 

work we evaluated a novel approach for selecting optimal vaccine dose using the 

non-parametric CCBP model and adaptive trial design. Using mathematical models 

and/or adaptive design may lead to more effective and ethical vaccine dose-finding 

clinical trials, even if the shape of the dose-efficacy curve is unknown. These 

methods may also maximise benefit to vaccine clinical trial participants. This is the 

first novel investigation of modelling-based vaccine dose-optimisation approaches 

when compared to non-modelling vaccine dose-optimisation approaches. If 

developed further and implemented into vaccine clinical trials, mathematical 

modelling could accelerate vaccine development and save lives. 
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Supplementary material for paper 5 
S1 EffTox Utility Function 
The ‘utility contour’ utility function was used in the main body of the work to represent 

an example utility function that could be used to quantitatively define the trade-off 

between efficacy and toxicity. This utility function was first described by Thall and 

Cook in 2004[1]. This was further described by Brock in 2017 [2].  

 

With parameters . Clinicians are queried for the smallest value for 

the vaccine’s efficacy probability such that, if the probability of toxicity for that vaccine was 

zero, the vaccine would see clinical use. This efficacy probability value is . 

Clinicians are queried for the maximum value for the vaccine’s toxicity probability such 

that,  if the probability of efficacy for that vaccine was one, the vaccine would see clinical 

use. This toxicity probability value is . Clinicians are then asked to suggest an 

efficacy probability and a toxicity probability   with  and 

, where a vaccine with these efficacy and toxicity probabilities would also 

only be on the threshold of clinical viability.  

These questions define three points in the efficacy-toxicity outcome space, 

 

These three points then can be used to define the neutral-utility curve. That is to say, 

. 

 is guaranteed for all values of , so we solve 

numerically  

 to calculate . 

 

https://www.codecogs.com/eqnedit.php?latex=U(p_%7Beff%7D,%20p_%7Btox%7D)%20=%201%20-%20((%5Cfrac%7B1-p_%7Beff%7D%7D%7B1-anchor_%7Beff%7D%7D)%5E%7Brho%7D-(%5Cfrac%7B1-p_%7Btox%7D%7D%7B1-anchor_%7Btox%7D%7D)%5E%7Brho%7D)%5E%7B%5Cfrac%7B1%7D%7Brho%7D%7D%20%230
https://www.codecogs.com/eqnedit.php?latex=anchor_%7Beff%7D,%20anchor_%7Btox%7D,%20rho%230
https://www.codecogs.com/eqnedit.php?latex=anchor_%7Beff%7D%230
https://www.codecogs.com/eqnedit.php?latex=anchor_%7Btox%7D%230
https://www.codecogs.com/eqnedit.php?latex=p_%7Beff%7D%5E*,%20p_%7Btox%7D%5E*%230
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=anchor_%7Beff%7D%3Cp_%7Beff%7D%5E*%3C1%230
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=0%3Cp_%7Btox%7D%5E*anchor_%7Btox%7D%230
https://www.codecogs.com/eqnedit.php?latex=(anchor_%7Beff%7D,%200),(1,anchor_%7Btox%7D),%20(p_%7Beff%7D%5E*,%20p_%7Btox%7D%5E*)%230
https://www.codecogs.com/eqnedit.php?latex=U(anchor_%7Beff%7D,%200)=%20U(1,anchor_%7Btox%7D)=%20U(p_%7Beff%7D%5E*,%20p_%7Btox%7D%5E*)%20=0%230
https://www.codecogs.com/eqnedit.php?latex=U(anchor_%7Beff%7D,%200)=%20U(1,anchor_%7Btox%7D)%20=0%230
https://www.codecogs.com/eqnedit.php?latex=rho%230
https://www.codecogs.com/eqnedit.php?latex=U(p_%7Beff%7D%5E*,%20p_%7Btox%7D%5E*)%20=%201%20-%20((%5Cfrac%7B1-p_%7Beff%7D%5E*%7D%7B1-anchor_%7Beff%7D%7D)%5E%7Brho%7D-(%5Cfrac%7Bp_%7Btox%7D%5E*%7D%7Banchor_%7Btox%7D%7D)%5E%7Brho%7D)%5E%7B%5Cfrac%7B1%7D%7Brho%7D%7D%20=0%20%230
https://www.codecogs.com/eqnedit.php?latex=rho%230
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In this work we used  parameters from [2]. These were  

, based on the points 

. Whilst these were not elicited from clinicians in a vaccine 

context, we choose to use these as they had been previously used in a clinical 

setting. Figure S1 shows the utility contour that arises from these parameters.

 

Figure S1. Utility contour used in this work. The thin black line shows the neutral utility curve. The 
orange dots show the three points used to define the neutral utility curve and function; (0.4, 0),(1,0.7), 
(0.5, 0.4). 

S2 Length hyperparameters  

In values were chosen using a geometric argument and validated empirically. See 

S7.1.2. For details.  

S3 Pseudo-data 

Pseudo-data or ‘anchor points’ were  used to stabilise and inform models for which 

little real data are available. In short, we pretended in all Parametric DOAs that there 

https://www.codecogs.com/eqnedit.php?latex=anchor_%7Beff%7D,%20anchor_%7Btox%7D,%20rho%230
https://www.codecogs.com/eqnedit.php?latex=anchor_%7Beff%7D%20=%200.4,%20anchor_%7Btox%7D=0.7,%20rho%20=2.07%230
https://www.codecogs.com/eqnedit.php?latex=(0.4,%200),(1,0.7),%20(0.5,%200.4)%230
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existed data which did not actually exist, but also down weighted these data during 

model calibration such that these data points were less important than real data.  

S3.1. Efficacy Models 

For single administration efficacy modelling, pseudo-data were of the form in table 

S.3.1.1. Thus, there were 30 pseudo individuals divided evenly over 3 doses. The 

weight of these datapoints was 0.05. Thus, the effective sample size of the 

pseudodata was 1.5 (=30x0.05), which was quickly minimal relative to the amount of 

real data. For example, after the first cohort the model would only be 20% influenced 

by these pseudo-data (1.5/(1.5+6) = 0.2) and hence 80% influenced by the ‘real’ 

(simulated) data. 

Dose Non-efficacy response Efficacy Response 

0.1 9 1 

0.5 5 5 

0.9 1 9 

Table S.3.1.1. Efficacy pseudodata for single administration  

For prime-boost administration efficacy modelling, pseudo-data were of the form in 

table S.3.1.2. Thus, there were 50 pseudo individuals divided evenly over 5 doses. 

The weight of these datapoints was 0.03. Thus, the effective sample size of the 

pseudodata was 1.5 (=50 x 0.03), which is quickly minimal relative to the amount of 

real data. 

Dose Non-efficacy response Efficacy Response 

0,0 9 1 

0,1 5 5 

1,0 5 5 

1,1 1 9 

0.5, 0.5 5 5 

Table S.3.1.2. Efficacy pseudodata for prime/boost administration  
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For prime-boost administration efficacy modelling, pseudo-data were of the form in 

table S.3.1.3. Thus, there were 80 pseudo individuals divided evenly over 8 doses. 

The weight of these data points was 0.01875. Thus, the effective sample size of the 

pseudodata was 1.5 (=80x0.01875), which is quickly minimal relative to the amount 

of real data. 

Dose Non-efficacy response Efficacy Response 

0,0,0 1 9 

0,0,1 5 5 

0,1,0 5 5 

0,1,1 5 5 

1,0,0 5 5 

1,0,1 5 5 

1,1,0 5 5 

1,1,1 9 1 

Table S.3.1.3. Efficacy pseudodata for prime/boost administration  

S3.2 Toxicity Model 

For single administration toxicity modelling, pseudo-data were of the form in table 

S.3.2.1. Thus, there were 30 pseudo individuals divided evenly over 3 doses. The 

weight of these datapoints was 0.05. Thus, the effective sample size of the 

pseudodata was 1.5 (=30x0.05), which was quickly minimal relative to the amount of 

real data. 

Dose Non-toxic response Toxic Response 

0.1 9 1 

0.5 5 5 

0.9 1 9 

Table S.3.2.1. Toxicity pseudodata for single administration  
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For prime-boost administration toxicity modelling, pseudo-data were of the form in 

table S.3.2.2. Thus, there were 50 pseudo individuals divided evenly over 5 doses. 

The weight of these datapoints was 0.03. Thus, the effective sample size of the 

pseudodata was 1.5 (=50x0.03), which was quickly minimal relative to the amount of 

real data. 

Dose Non-efficacy response Efficacy Response 

0,0 9 1 

0,1 5 5 

1,0 5 5 

1,1 1 9 

0.5, 0.5 5 5 

Table S.3.2.2. Toxicity pseudodata for prime/boost administration  

S4 SoftMax Selection Method 

In this section of the supplementary we describe the SoftMax selection method of 

trial dose selection. We previously discussed this in [3] but replicate this description 

here. 

Method 

SoftMax selection is a method of action selection used commonly in both multi-

armed bandit problems and reinforcement learning. We provide a description of 

action/dose selection under this method. Let A1, A2, …., An be the n possible actions 

available to be taken, each with respective predicted utility U1, U2, ..., Un. Then an 

action Ai is selected to evaluate (dose selected to trial) with probability 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑜𝑛 𝐴 =  
𝑒 × 

∑ 𝑒 ×
 1

 

where inverse_temperature is a hyperparameter which controls the degree of 

exploration. An increased inverse temperature leads to actions with lower predicted 

utility having lower probability of selection. For inverse_temperature = 0, which is the 
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lowest possible inverse_temperature, all actions are selected with equal probability 

(1/n). As inverse_temperature tends to infinity, this selection method tends to only 

select the action(s) with the maximum predicted utility. A random number generator 

is used to select an action with these probabilities.  

inverse_temperature values 

For the Parametric DOA, we used inverse_temperature = 6.9. This was chosen such 

that a predicted difference in utility of 0.1 would have a doubled probability of 

selection. This is shown 

2𝑒 × =  𝑒 ×( 0.1)  

=  𝑒 ×( )  𝑒 ×(0.1)  

2 = 𝑒 ×(0.1)  

ln(2) = 0.69 = 0.1 × 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

6.9 = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

This may not have been optimal values, but optimal values are likely to vary 

depending on the scenario. This is further discussed in S7.4. 

S5 Rescaled Dosing Domains 

It may be reasonable to transform the ‘raw’ value of doses before modelling. This 

can help with stabilising computation [4]. These rescalings or transformations are of 

the form 

 

Where  is the transformed dose value that will be used for modelling and again 

 is the ‘raw’ dose value. In particular, using a log10 transform is common in 

drugs and in vaccines and would be given by 

 

In this work I assume that all prime/boost/second-boost doses had been transformed 

using a transform such that 

https://www.codecogs.com/eqnedit.php?latex=x_i%20=%20transform(dose_i)%230
https://www.codecogs.com/eqnedit.php?latex=x_i%230
https://www.codecogs.com/eqnedit.php?latex=dose_i%230
https://www.codecogs.com/eqnedit.php?latex=x_i%20=%20transform(dose_i)%20=%20log_%7B10%7D(dose_i)%230
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Where  and  were respectively the smallest dose that could be given 

for the prime/boost/second-boost doses.  

Two example transforms that would have this property would be the MinMax and 

Log10 MinMax transforms. 

Minmax: 

  

Log10 Minmax: 

 

If dosemin=0, then a small constant may be added to ensure that the transform is well 

defined. One possibility is to choose this constant to be equal to the smallest positive 

(>0) dose in the dosing dimension. 

 

An alternative is to choose c = 1 - dosemin and have 

 

Both would distort the data, but this may be justified by improved modelling stability. 

S6 Scenario Creation 

Simulation studies require researchers to define scenarios that are used to evaluate 

the approaches that the simulation study aims to investigate. In previous simulation 

https://www.codecogs.com/eqnedit.php?latex=0%20=%20transform(dose_%7Bmin%7D)%230
https://www.codecogs.com/eqnedit.php?latex=1%20=%20transform(dose_%7Bmax%7D)%230
https://www.codecogs.com/eqnedit.php?latex=dose_%7Bmin%7D%230
https://www.codecogs.com/eqnedit.php?latex=dose_%7Bmax%7D%230
https://www.codecogs.com/eqnedit.php?latex=x_i%20=%20transform(dose_i)%20=%20%5Cfrac%7Bdose_i-dose_%7Bmin%7D%7D%7Bdose_%7Bmax%7D-dose_%7Bmin%7D%7D%230
https://www.codecogs.com/eqnedit.php?latex=x_i%20=%20transform(dose_i)%20=%20%5Cfrac%7Blog_%7B10%7D(dose_i)-log_%7B10%7D(dose_%7Bmin%7D)%7D%7Blog_%7B10%7D(dose_%7Bmax%7D)-log_%7B10%7D(dose_%7Bmin%7D)%7D%230
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=x_i%20=%20transform(dose_i)%20=%20%5Cfrac%7Blog_%7B10%7D(dose_i%20+dose_%7Bleastnonzero%7D)-log_%7B10%7D(dose_%7Bmin%7D+dose_%7Bleastnonzero%7D)%7D%7Blog_%7B10%7D(dose_%7Bmax%7D+dose_%7Bleastnonzero%7D)-log_%7B10%7D(dose_%7Bmin%7D+dose_%7Bleastnonzero%7D)%7D%230
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=x_i%20=%20transform(dose_i)%20=%20%5Cfrac%7Blog_%7B10%7D(dose_i%20+c)-log_%7B10%7D(dose_%7Bmin%7D+c)%7D%7Blog_%7B10%7D(dose_%7Bmax%7D+c)-log_%7B10%7D(dose_%7Bmin%7D+c)%7D%230
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studies, which evaluated dose optimisation between only a small number of dosing 

groups, the efficacy probabilities and toxicity probabilities for each dosing group have 

been chosen by hand to create scenarios with specific qualitative features (e.g., 

peaking dose-efficacy curves). Little detail is typically given to how these are chosen, 

as with only a small number of dosing groups it is easy for readers to visualise.  

In this work, scenarios could have 101, 441, or 1331 potential doses that needed to 

have defined efficacy and/or toxicity probabilities for single, prime/boost, and 

prime/boost/second-boost scenarios respectively. These were too many doses to 

choose by hand, so we had to use an algorithmic approach to setting true 

efficacy/toxicity probabilities for the doses in each scenario. We considered using 

parametric models or kernel-based algorithms to generate these probabilities, 

however we decided that using either parametric model or kernel based algorithms 

could bias our results. We choose to use a K-nearest neighbours style algorithm that 

involved iterative averaging, which produced smooth and continuous dose-response 

curves if the number of iterations was large enough,  

This algorithm for took the following inputs: 

x The prime doses that should be used in the iterative process 

x Potentially the boost doses that should be used in the iterative process 

x Potentially the second-boost doses that should be used in the iterative 

process 

x Anchor Doses: Doses that we would like to set to a specific value in the 

scenario 

x Anchor Probabilities: The Specific probabilities for the anchor doses. 

x K, the number of neighbours for each dose that will be averaged. This 

increases the ‘smoothness’ of the resulting curve. 

x The number of iterations of the algorithm to use.  

For the algorithm, all doses (potential combinations of any prime and boost doses) 

were found. For each of these combinations, we set an initial probability of response 

of 0.5. Then the following iterative process was used: 
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For doses which were specified as anchor doses, set the probability of response 

equal to the respective anchor probability for that dose. 

Set the probability of response for each dose equal to the mean value of its K-

nearest neighbours, which was defined by Euclidean distance and included itself.  

Repeat steps 1 and 2 as many times as specified. 

By conducting a large number of iterations, the probability of response for each dose 

would be approximately the average of its surrounding doses, and there would be 

smooth dose-response curves between anchor points. Where we generated 

probabilities for doses that were outside of the [0,1] bounded dosing domain, these 

doses and respective probabilities were then excluded.  

Rather than giving the probabilities for each dose for each scenario in tabular format, 

which we do not believe would be easy to parse, for each scenario we give the input 

parameters used to generate the dose-response curve. We hope that this show how 

we created scenarios with certain qualitative behaviours. 

I only show the value for Objective 1 Scenario1 here for demonstration, the others 

are included in the appendix of this thesis [A.D.4] 

Objective 1, Scenario 1 Efficacy 

Inputs Values 

Prime doses [-1.00, -0.99, …, 1.99, 2.00] 

Anchor doses [-0.5], [1.5] 

Anchor probabilities [0.05], [0.95] 

K 21 

Iterations 11 
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S7. Additional DOA Hyperparameters 

S7.1. CoBe DOA: CCBP Kernel Type and Length Hyperparameters 

The CoBe DOA uses a CCBP model of dose response, which relies on a kernel 

function to describe similarity between doses. In this work, we used the Squared 

Exponential kernel, as this was the kernel used by the original authors of the CCBP 

model. However, more recent work has suggested that other kernel functions should 

be considered, for example the ‘SBC’ kernel described by Rolland et al [5]. This was 

shown to outperform the squared exponential kernel for large amounts of data 

(>1000 data points). We chose to consider the squared exponential kernel due to 

considering typically <300 data points, but it was possible that the SBC kernel may 

have been superior. Additionally, both of these kernels require a length hyper 

parameter l to be specified. In the main body of the work, we used l = 0.2 for our 

squared exponential kernel, but again it is possible that this may have biased our 

results. We originally choose l = 0.2 as that would mean K(di, di+0.15)0.5, which 

seemed reasonable. We did not conduct a systematic optimisation of l prior to 

conducting the simulation studies, as this may have biased our findings in favour of 

the CoBe DOA. Additionally, we believed that it would be likely that the ‘optimal’ 

value for l would depend on the scenario.  

We did however investigate of the effect that changing the kernel function or value of 

the length hyperparameter may have had after the main investigation was 

concluded. This was done by following the same methodology and scenarios as 

objective 1 of the main body of this work, but where all DOAs investigated were 

CoBe DOAs with one of two different kernel functions, each with 4 different potential 

length hyperparameters. We also investigated the ‘uncorrelated’ kernel described in 

the main body of the text. Results are shown in Figure S2.  
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Figure S7.1. Mean true efficacy at the predicted optimal dose (left) and mean cumulative sum 
of efficacy (right) against trial size for all seven objective S7.1 scenarios (top to bottom). These 
are the mean values and 95%CI values across 100 simulations. For the true efficacy plots (left), the 
brown lines show the minimum and maximum possible efficacy that could be achieved in that 
scenario. For the cumulative efficacy plots (right) the brown lines represent the maximum and 
minimum cumulative efficacy sum that could be expected for that scenario. 

These results suggest that using the SBC kernel rather than the squared exponential 

kernel would not have improved either metric for these scenarios. Additionally, using 

l=0.2 for the squared exponential appears to have been reasonable. l=0.5 performed 

well for some scenarios but was inconsistent and performed poorly for scenarios 3,4 

and 7. As expected, the optimal value for l therefore depends on the true underlying 
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dose-response curve. That said, the CoBe DOA using the squared exponential 

kernel was often effective in each scenario with multiple different length 

hyperparameters. This may suggest that effective optimisation using the CoBe DOA 

does not require precision in the choice of length hyperparameter. 

S7.2. CoBe DOA: CCBP Kernel Length Hyperparameters for Prime/Boost and 

Prime/Boost/Second-Boost administration  

In this work the length parameters l=0.2 was used for modelling single-administration 

dose-response, l1=l2=0.25 were used for modelling prime/boost dose-response, and 

length parameters l1=l2=l3=0.4 were used for modelling prime/boost/second-boost 

dose-response. We discussed the choice of l=0.2 above. Here we discuss why the 

values of the length hyperparameters for prime/boost and modelling 

prime/boost/second-boost were chosen. We note that these were not chosen based 

on systematic optimisation (to avoid advantaging the CoBe DOA relative to the other 

DOAs), but rather on geometrical principles. 

Consider a 1-D dosing domain normalised such that the maximum dose is 1 and the 

minimum is 0. If a point is selected in the centre (0.5), then a 1-d sphere with radius 

= l = 0.2 around that point would have 40% of the dosing domain inside.  

Consider a 2-D dosing domain normalised such that the maximum dose is 1 and the 

minimum is 0 for both dimensions. Let l1=l2. If the central point is selected in the 

centre ([0.5, 0.5]), then a 2-d sphere with radius l1 around that point would have 

100𝜋𝑙1% of the dosing domain inside. For l1=0.2, this would be 12.5%, so less of the 

dosing domain would be influenced per data point. Hence, we believed that it would 

be likely that we should choose l1=l2>0.2. 

The choice of l1 such that 40% is inside is approximately .36. Hence choosing 

l1=l2=0.36 would approximately correspond to the same percentage of the dosing 

domain being in some sense ‘strongly’ influenced by a given data point in the centre 

of the dosing domain. However, using such a large value of l1 might limit 

optimisation of the prime or boost dose individually. We therefore choose to use 

some value between 0.2 and 0.36, so we choose 0.25. 



 
302 
 

A similar argument was used to choose l1=l2=l3=0.4. Consider a 3-D dosing domain 

normalised such that the maximum dose is 1 and the minimum is 0 for both 

dimensions. If the central point is selected in the centre ([0.5, 0.5, 0.5]), then a 3-d 

sphere with radius l1 around that point would have 100 𝑙1% of the dosing domain 

inside. Hence the choice of l1 such that 40% is inside would be 0.66. Again, we 

choose to choose a value between 0.2 and 0.66 as a compromise between 

optimising within the 3-D dosing domain and being able to optimise along each 

dimension individually.   

We investigated of the effect that this may have on selection of maximum efficacy 

dose and benefit to trial participants. This was done by following the same 

methodology as objective 2 of the main body of this work, however I only 

investigated scenarios 1 and 6. Scenario 1 was used to investigate the choice of 

l1=l2=0.25 and scenario 6 was used to investigate the choice of l1=l2=l3=0.4. All DOAs 

investigated were CoBe DOAs but with varying length hyper parameters. I show 

these results in Figure S3.  
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Figure S7.2. Mean true efficacy at the predicted optimal dose (left) and mean cumulative sum 
of efficacy (right) against trial size for all seven objective S7.2 scenarios (top to bottom). These 
are the mean values and 95%CI values across 100 simulations. For the true efficacy plots (left), the 
brown lines show the minimum and maximum possible efficacy that could be achieved in that 
scenario. For the cumulative efficacy plots (right) the brown lines represent the maximum and 
minimum cumulative efficacy sum that could be expected for that scenario. 

These results suggest our choice of length hyperparameters were reasonable, 

though our initial concerns based on our geometric interpretation that l1=l2=0.2 or 

l1=l2=l3=0.2 would be too small may not have been correct. l1=l2=0.2 and l1=l2=l3=0.2 

both performed well in this investigation, though this may not have been the case for 

other scenarios. It also suggests that the performance of the CoBe DOA may not be 

that sensitive to the choice of length hyperparameter. 

S7.3. CoBe DOA: Cohort Size 

For the CoBe DOA, and indeed all adaptive trial designs, clinicians must choose how 

to divide their total trial population into trial cohorts. In this work the N total trial 

participants were divided into C cohorts of cohort size b, with b = N/C. In the main 

body of the text the CoBe DOA used N = 300, C = 50, b = 6. There is clearly a trade-

off to be made in terms of the size of b. As b decreases, C increases, meaning that a 
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larger number of cohorts would be required before the trial can be concluded. As b 

increases however, the DOA becomes less adaptive, with b = N (C=1) being not 

adaptive at all. Decreasing b increases the time taken to conduct a trial, increasing b 

may reduce the benefits of adaptive design that we have discussed in this work 

(increased benefit to trial participants and improved capacity to select optimal dose). 

We investigated of the effect that this may have on selection of maximum efficacy 

dose and benefit to trial participants. This was done by following the same 

methodology and scenarios as objective 1 of the main body of this work, but where 

all DOAs investigated were CoBe DOAs with six different values for b. Results are 

shown in figure S4 
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Figure S7.3. Mean true efficacy at the predicted optimal dose (left) and mean cumulative sum 
of efficacy (right) against trial size for all seven objective S7.3 scenarios (top to bottom). These 
are the mean values and 95%CI values across 100 simulations. For the true efficacy plots (left), the 
brown lines show the minimum and maximum possible efficacy that could be achieved in that 
scenario. For the cumulative efficacy plots (right) the brown lines represent the maximum and 
minimum cumulative efficacy sum that could be expected for that scenario.  

The results of this investigation were as expected. Using fewer, larger cohorts led to 

a reduction in cumulative sum of efficacy, though the gradient of the cumulative sum 

of efficacy for all DOAs was typically equal for each of the DOAs after their first 

complete cohort. For some scenarios we observed that there was also a reduction in 

mean true utility at the predicted optimal. For example, for scenario 4 after 60 trial 

participants, the CoBe DOAs with b = 3, 6, 15, and 30 all outperformed the CoBe 

DOA that had conducted 1 cohort of b = 60. From a qualitative inspection, the CoBe 

should use at least three cohorts (C>2, b<N/2) to maximise vaccine efficacy, and 

that a large number of cohorts should be used to maximise benefit to trial 

participants. This may however vary by scenario. The trade-off between this and 

reducing the time requirements of vaccine clinical trials would require consideration 

with vaccine developers, but we hope that this section has shown that our results 

were unlikely to be biased by our choice of b=6. 

S7.4. Parametric DOA: SoftMax temperature hyperparameter 

The Parametric DOA used a SoftMax selection function as the method of trial 

selection, which we have previously shown to be effective for addressing potential 

concerns relating to the exploration/exploitation trade-off [3]. As discussed, this 

selection method depends on an ‘inverse-temperature’ hyperparameter t, which in 

the main body of this work we set as inverse_temperature t = 6.9. Increasing the 
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value of inverse-temperature would make the parametric DOA more exploitative. 

Decreasing the value of inverse-temperature would make the parametric DOA more 

explorative.  

We investigated the effect that this may have on selection of maximum efficacy dose 

and benefit to trial participants. This was done by following the same methodology 

and scenarios as objective 1 of the main body of this work, but where all DOAs 

investigated were parametric DOAs with five different inverse-temperature hyper 

parameters. Results are shown in Figure S5.  
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Figure S7.4. Mean true efficacy at the predicted optimal dose (left) and mean cumulative sum 
of efficacy (right) against trial size for all seven objective S7.4 scenarios (top to bottom). These 
are the mean values and 95%CI values across 100 simulations. For the true efficacy plots (left), the 



 
309 
 

brown lines show the minimum and maximum possible efficacy that could be achieved in that 
scenario. For the cumulative efficacy plots (right) the brown lines represent the maximum and 
minimum cumulative efficacy sum that could be expected for that scenario.  

As expected, for different scenarios the ‘optimal’ value for inverse temperature 

varied. For example, t = 690 was best able to locate a maximally efficacious dose for 

scenario 6 but was worst for scenario 7. For t = 0.069 and t = 0.69, the mean 

cumulative sum of efficacy was typically far lower for all numbers of trial participants 

compared to when larger values of t were used. We believe that the results for t=6.9 

show that it was typically optimal or near optimal for all scenarios other than scenario 

6. Given this finding, we believe that this choice of t was reasonable in the main body 

of work, and that the effectiveness of the parametric DOA was not underestimated 

due to our choice of t=6.9. This supplementary section agrees with previous finding 

that parametric modelling-based adaptive design should not typically use a highly 

exploitative method of trial dose selection.  

S7.5. Uniform Naive DOA: Number of Doses 

For the uniform naive DOA, we had the number of dosing groups that would be 

investigated by the DOA, b. We choose b = 6 for single dose administration, b = 9 for 

prime/boost administration and b=27 for prime/boost/second-boost administration. 

Investigating only a small number of dosing groups could limit vaccine efficacy/utility, 

as if none of the b doses are optimal then the true optimal dose could not be 

selected. On the other hand, if b is too large then there is a reduction in the number 

of individuals available per dosing group. For example, if 30 dosing groups were 

investigated with a total number of trial participants N = 120, then only 4 individuals 

would be tested per group, which may not be sufficient to determine which dose is 

optimal.  

We investigated of the effect that changing b might have on selection of maximum 

efficacy dose and benefit to trial participants. This was done by following the same 

methodology and scenarios as objective 1 of the main body of this work, but where 

all DOAs investigated were CoBe DOAs with six different values for b. The doses 

investigated for each value of b are given in table S1, with doses being as evenly 

distributed across the dosing domain as possible. Results are shown in figure S6.  
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Number of dosing groups 
(b) 

Doses investigated 

1 0.5 

2 0.33, 0.66 

3 0.0, 0.5, 1.0 

4 0.0, 0.33, 0.66, 1.0 

5 0.0, 0.25, 0.5, 0.75, 1.0 

6 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 

10 0.0, 0.11, 0.22, 0.33, 0.44, 0.55, 0.66, 0.77, 0.88, 

1.0 

Table S7.5. Doses investigated depending on b. 
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Figure S7.5. Mean true efficacy at the predicted optimal dose (left) and mean cumulative sum 
of efficacy (right) against trial size for all seven objective S7.5 scenarios (top to bottom). These 
are the mean values and 95%CI values across 100 simulations. For the true efficacy plots (left), the 
brown lines show the minimum and maximum possible efficacy that could be achieved in that 
scenario. For the cumulative efficacy plots (right) the brown lines represent the maximum and 
minimum cumulative efficacy sum that could be expected for that scenario.  

The results of this investigation were clearly biased in a way that could not easily be 

controlled for. How well the Uniform Naive DOA performed for locating maximum 

efficacy dose depended on the scenario. For example, the Uniform Naive DOA with 

b=1 ‘locates’ the optimal dose immediately for scenario 3, as the only dose 

investigated is 0.5 and this is indeed the true optimal dose. b = 3 also locates the 

optimal dose very well for this scenario, whereas b = 2 performs very poorly and 

neither 0.33 nor 0.66 are near the true optimal dose. This is not a reflection that 

using two dosing groups is in general worse than using one dosing group or three 

dosing groups, but a reflection that the performance of the uniform naive DOA is 

dependent on how optimal the doses it investigates are. This sensitivity is particularly 

true for small b. We choose b=6 as that is the number of dosing groups that was 

used in [6], and because investigation of at least 5 or 6 dosing groups was 

suggested by [7].  

There was trivial difference in cumulative sum of efficacy, as none of these DOAs 

used adaptive design.  

S7.6. Adaptive Naive DOA: Number of Doses 

This section is exactly the same as discussed for the Uniform Naive DOA, except 

using the Adaptive Naive DOA. Results are shown in figure S7.  
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Figure S7.6. Mean true efficacy at the predicted optimal dose (left) and mean cumulative sum 
of efficacy (right) against trial size for all seven objective S7.6 scenarios (top to bottom). These 
are the mean values and 95%CI values across 100 simulations. For the true efficacy plots (left), the 
brown lines show the minimum and maximum possible efficacy that could be achieved in that 
scenario. For the cumulative efficacy plots (right) the brown lines represent the maximum and 
minimum cumulative efficacy sum that could be expected for that scenario.  

Findings were similar to those for the Uniform Naive DOA, with the performance of 

each DOA being dependent largely on whether any of the doses that were 

investigated were indeed optimal. There was a difference between the DOAs with 

regards to cumulative sum of efficacy, however again this was dependent on the 

scenario. For example, b=1 and b=3 had large cumulative sums of efficacy for 
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scenario 3, with the Uniform Naive DOA that had b=1 giving the optimal dose of 0.5 

to all individuals. We would argue that this does not reflect consistent capacity for 

dose optimisation and ethical trial design, especially given the inferior performance 

of this DOA for all environments where the one investigated dose was not optimal. 

b=6 was more consistent across different scenarios, justifying our choice.  

Data Availability Statement: Data and code for this work are available through 

https://github.com/ISIDLSHTM/CoBeDOA_Data and 

https://github.com/ISIDLSHTM/CoBeDOA 
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Chapter 7. Discussion & Conclusion  
The current methods of selecting vaccine dose often rely on empirical comparison of 

dose-immunogenicity and dose-toxicity data. This is in contrast to the modelling-

based methodologies used in selecting optimal drug doses, which have become 

prevalent due to their capacity to increase drug effectiveness and safety whilst 

reducing the size of clinical trial required to locate optimal dose. The field of 

Immunostimulation/Immunodynamic (IS/ID)/ mathematical modelling aims to use 

mathematical modelling of vaccine dose-response data to select optimal vaccine 

dose. Modelling for the purpose of selecting dose is already common in model-based 

drug development. Prior IS/ID modelling has found that the vaccine dose-efficacy 

relationship may be peaking rather than saturating, which suggests that model-

based drug development methodologies which assume a saturating dose-efficacy 

may not be reasonable and could be selecting sub-optimal doses than may be 

detrimental to efficacy. Additionally, prior work has primarily only considered optimal 

dose as that which maximises vaccine immunogenicity/efficacy.  

In this thesis I have expanded the field of IS/ID modelling for vaccine dose 

optimisation. This was done by; gathering adenoviral vector vaccine dose-response 

data through a systematic literature review, investigating the prevalence of predicted 

peaking versus saturating dose-response for this adenoviral vector vaccine dose-

response data, extending IS/ID vaccine dose optimisation as a multi-factor 

optimisation problem, evaluating the potential impact of correctly or incorrectly 

assuming a peaking/saturating dose-efficacy response, evaluating the impact of 

adaptive trial design on optimal dose selection using IS/ID methodologies, and 

evaluating the novel non-parametric modelling based ‘Correlated Beta’ dose 

optimisation approach  with emphasis on multi-dimensional vaccine dose-

optimisation. I have then discussed and given implications regarding the future 

application of IS/ID modelling in vaccine dose-ranging trial design and vaccine dose 

selection.  

Each of the publications included within this thesis outline the associated strengths, 

weaknesses, and implications of those chapters. Here I outline the overall strengths, 
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weaknesses, and implications of these works in the context of this thesis, along with 

the future work needed to further develop the fields of mathematical and IS/ID 

modelling. 

Summary of findings  
I aimed to gather vaccine dose-immunological response data through systematic 

review and give a descriptive analysis of these data (chapter 2/paper 1). I hence 

aimed to establish the prevalence of predicted peaking versus predicted saturating 

dose response curves for a specific vaccine class (adenoviral vector vaccines) 

(chapter 3/paper 2). I then aimed to use mathematical modelling of dose-efficacy, 

dose-toxicity, and dose-cost using phase 1 clinical trial data to extend IS/ID into multi-

objective dose optimisation (chapter 4/paper 3). This involved proposing three utility 

functions that included these three models and predicting optimal dose as defined by 

these utility functions for the Ad5-nCoV vaccine. 

I then aimed to use simulation study methodologies to conduct a theoretical analysis 

of mathematical modelling for vaccine dose optimisation. I first investigated the 

impact of correctly or incorrectly assuming a peaking/saturating dose-efficacy curve 

shape, along with the potential inclusion of mathematical model informed adaptive 

trial design, on selection of ‘optimal’ dose and ethical trial design (chapter 5/paper 4). 

I then aimed to evaluate whether the use of the non-parametric CCBP model for 

modelling vaccine dose-response, which did not require the assumption of an 

underlying dose-response curve shape, could be beneficial in locating optimal 

vaccine dose (chapter 6/paper 5). 

My findings were as follows. I extracted data from 35 studies and found that 94% of 

these studies investigated less than 6 different doses (chapter 2/paper 1). These 

data were best described as peaking for 22% of the data, best described as 

saturating for 4.7% of these data, and there was no significant evidence for 73.3% of 

the data (chapter 3/paper 2). I found that the model predicted optimal vaccine dose 

for the Ad5-nCoV vaccine was between 1.1-1.5 x 1011 viral particles, depending on the 

utility function used to define ‘optimal’ (chapter 4/paper 3). 
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I showed that assuming a peaking dose-efficacy curve was typically preferable to 

assuming a saturating dose-efficacy curve for the purposes of selecting optimal dose 

as defined by a utility function maximising efficacy and minimising toxicity. Weighted 

model averaging also was effective for selecting optimal vaccine dose (chapter 

5/paper 4). I found that combining the non-parametric CCBP model with a Thompson 

Sampling method of adaptive trial design was an effective approach for optimising 

vaccine dose and was consistently better than approaches that used neither 

mathematical modelling nor adaptive design (chapter 6/paper 5). Mathematical 

modelling based adaptive trial design also led to more beneficial vaccine response 

for simulated clinical trial participants. 

Strengths 
I here describe the strengths of each paper within the context of the aims of this 

thesis, then describe the overall strengths of this thesis. 

Strengths of chapter 2/paper 1 

In chapter 2, I collected data from published adenoviral dose-immunogenicity 

studies. I listed the studies that were available in the literature by host species, 

number of dosing groups, adenovirus serotype and response type, and also showed 

the frequency distribution of doses which had previously been trialled in human and 

murine studies. This data and collation of studies relevant to the investigation of 

adenoviral dose-immunogenicity enabled the work in chapter 3, and I believe is of 

potential use for future vaccine dose-response modellers. Additionally, this work 

highlighted a potential issue for vaccine dose-response modelling. 94% of studies 

investigated five or fewer dosing groups, whereas previous work has highlighted that 

modelling is benefitted by considering a larger number of dosing groups [196]. This 

previous work found that using more than five dosing groups was beneficial when 

using modelling-based dose selection. Whilst that work investigated MTD 

identification with model informed adaptive design, I believe that in combination with 

the findings of paper 1 it is reasonable to expect that IS/ID modelling of adenoviral 
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vector vaccines may be limited by the small number of dosing groups typically 

investigated.  

 

Strengths of chapter 3/paper 2 

In chapter 3, I found evidence to support the hypothesis that some adenoviral 

vaccine dose-immunogenicity may be better described by a peaking curve than a 

saturating curve. Whilst for many of the data there was no evidence to support either 

curve shape, and hence true prevalence of peaking curve shape relative to 

saturating curve shape could not be determined, I believe that this supports the 

findings of previous IS/ID studies that vaccine dose-immunogenicity (and hence 

dose-efficacy) should not be assumed to always be best described as saturating.  

As noted above, it was not surprising that curve shape could not be identified for the 

majority of data given the typically small number of dosing groups. Chen and Lui 

conducted a simulation study which was published after paper 2, showing that true 

curve shape could not consistently be accurately determined with only 4 small (n<10) 

dosing groups if conducting model selection when using ΔAIC>0 as the model 

selection criteria [138]. Again, the findings of paper 2 highlight that present 

adenoviral dose-ranging trials may not be designed in a way that allows for 

identification of dose-response curve shape. Using a larger number of smaller dosing 

groups may improve mathematical modelling for vaccine dose selection. 

Strengths of chapter 4/paper 3 

In chapter 4, I considered multiple potential utility functions that could be used to 

define optimal vaccine dose, including efficacy, toxicity, and cost in these utility 

functions. Whilst the dose-cost model and the integration of cost into the utility 

function were both simple, this represented an advance in complexity and scope 

beyond previous IS/ID studies. Additionally, this work highlighted that different doses 

could be considered optimal depending on which utility function was used to define 

optimality. Whilst this previous statement is trivial [96], I believe it does provide an 
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implication that the concept of an ‘optimal’ dose is dependent on the utility function, 

and thus utility functions must be defined to enable ‘dose-optimisation’.  

Within the scope of conducting IS/ID modelling, this work used clinical trial data, herd 

immunity thresholds from epidemiological studies, and estimates of costs from 

industry reports. This highlighted the capacity for IS/ID modelling to include data and 

findings from a variety of sources in order to aid in development of models and utility 

functions. This then presents the capacity for IS/ID modelling to be considerate of 

the context that the vaccine will be used when predicting ‘optimal’ dose. In particular, 

this work did not require discussion with the clinicians and developers that conducted 

the dose-ranging trial I gathered data from. This suggests that, whilst I have 

suggested that designing clinical trials to include a larger number of dosing groups 

would improve modelling, IS/ID methods to determine optimal dose can be used 

even when modellers are not involved in the design of the dose ranging trials.  

In the supplementary materials, I conducted a sensitivity analysis of the parameters 

on optimal dose for each of the utility functions. This was beneficial in showing which 

of the model parameters would most change the predicted optimal dose if the 

parameter were misspecified. For example, S2.2.1 showed that the ‘costless’ utility 

function was insensitive to changes in the ‘max’ parameter of the dose-

seroconversion model. This could imply that, for this utility function, minimisation of 

the variance of the ‘max’ parameter could be ignored if future dosing-ranging studies 

were conducted for this vaccine using d-optimal [appendix A.E.] design, allowing 

more efficient trial dose selection to better identify the parameters that would affect 

which dose was predicted optimal. 

Strengths of chapter 5/paper 4 

In chapter 5, I conducted a simulation study to investigate the effects of trial size, 

assumed efficacy model, and method of trial dose selection on the capacity of 

modelling to predict optimal vaccine dose, maximise benefit to trial participants, and 

improve accuracy of model predictions of vaccine utility. This represented the first 

IS/ID simulation study to investigate the theoretical capacity of IS/ID modelling 
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methods in locating maximum utility dose. The inclusion of ordinal toxicity modelling 

had also not previously been considered in IS/ID modelling.  

Here I showed that trial size was a significant factor in how effective modelling 

methods may be in determining optimal vaccine dose. Increasing trial size can 

improve dose selection, but there were decreasing benefits beyond certain trial sizes 

(60 trial participants). The ‘uniform’ method of trial dose selection was also shown to 

be potentially as effective for locating maximum utility dose as a continual 

reassessment modelling method of trial dose selection method, which had previously 

been shown to be effective in locating both maximum tolerated dose [160] and 

maximum utility dose [197]. The ‘uniform’ method of trial dose selection can be 

considered as the most extreme version of using a ‘large number of small dosing 

groups’, further implying that such methods of trial dose selection seem beneficial for 

improving the effectiveness of modelling-based approaches of vaccine dose 

selection.  

Finally, the findings of this work suggest that assuming a saturating dose-efficacy 

curve may be less useful than assuming a peaking dose-efficacy curve if it is 

possible that the dose-efficacy curve is truly peaking. It also suggests that IS/ID 

modellers, vaccine developers or clinicians should consider weighted model 

averaging. The effectiveness of model averaging was not unexpected given previous 

findings in dose-response modelling of drugs and toxins [138,143,198,199]. 

However, this work highlighted the potential for model-averaging in vaccines IS/ID 

and mathematical modelling, where I and others have shown there is potential for 

model uncertainty.  

Strengths of chapter 6/paper 5 

In chapter 6, I described the application of CCBP models in vaccine dose-response 

modelling and introduced the CoBe dose optimisation approach for designing and 

conducting vaccine dose-finding clinical trials. I then compared this to three other 

representative dose optimisation approaches. This included comparison with model-

based and model-free dose optimisation approaches. The comparison dose-

optimisation approaches also reflected both adaptive and non-adaptive trial design. 
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This represented a development in the modelling of dose-response for prime/boost 

and prime/boost/second-boost paradigm vaccines beyond what had previously been 

investigated in IS/ID modelling. Additionally, whilst this work described modelling of 

prime/boost and prime/boost/second-boost vaccines, I believe that it also shows that 

the CoBe dose optimisation approach could be applied for optimising time between 

prime/boost doses as well as antigen/adjuvant doses.  

The overall strengths of the thesis are as follows. 

Showed that the assumption of a saturating dose-immunogenicity/dose-efficacy curve shape 

may not be reasonable or necessary in order to identify optimal vaccine dose 

My work highlights that, at least for single-administration replication-deficient 

adenoviral vector vaccines, the assumption of a saturating dose-immunogenicity and 

dose-efficacy curve is not justified. Further, dose-efficacy does not have to be 

assumed to be saturating in order for statistical IS/ID modelling of vaccine to be used 

effectively. For IS/ID modelling of vaccines in general, there are likely to be more 

effective dose-response models than the sigmoid saturating model that is common in 

modelling drug dose-response, using for example peaking models, weighted model 

averaging, or non-parametric modelling.  

The modelling-based meta-analysis in paper 2 of the adenoviral vector vaccine 

dose-immunogenicity data collected in paper 1 showed that there was evidence to 

support 22.0% of the available adenoviral vector vaccine dose-immunogenicity data 

being best described by a peaking dose-response curve. This showed that, at least 

for adenoviral vector vaccines, dose-response should not be assumed to be 

saturating and supports previous findings of Handel et al. and Rhodes et al. that 

vaccine dose-immunogenicity may be peaking. In paper 4 I found that modelling 

dose-efficacy using a peaking latent-quadratic model may be more effective than 

assuming a saturating model. The dose-optimisation approaches that assumed a 

saturating dose-efficacy curve performed poorly relative to those that assumed a 

peaking efficacy curve when the true dose-efficacy was peaking. However, the dose-

optimisation approaches that assumed a peaking dose-efficacy curve often 

performed comparatively well relative to those that assumed a saturating efficacy 
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curve when the true dose-efficacy was saturating. Thus, I believe that it is not 

reasonable to assume that all vaccine dose-immunogenicity is saturating, and that 

assuming a peaking dose-efficacy curve is a more reasonable ‘default’ assumption 

for vaccine IS/ID modelling for clinical trials that investigated a large number of 

dosing groups or use a continual-modelling based trial design. 

I also presented other methods for modelling vaccine dose-efficacy that do not 

require the assumption of a saturating dose-response curve. Beyond assuming that 

dose-efficacy is peaking, weighted model averaging of feasible models of vaccine 

dose response allows modellers to account for model uncertainty. In addition, 

weighted model averaging seemed effective for both the retrospective modelling of 

data from a large number of dosing groups (paper 4 objective 1) or for conducting 

vaccine clinical trials in an adaptive design setting similar to the continual 

reassessment method (paper 4 objective 2). The CCBP model, which only assumes 

that the true vaccine dose-response curve-shape is smooth and continuous, was 

also shown to be effective for locating optimal vaccine dose in the adaptive design 

setting (paper 5) relative to other dose-optimisation approaches. This follows on from 

previous work that showed that flexible non-parametric models can be as effective 

for locating optimal drug dose as parametric models [75,76], even when those 

parametric models are reasonable approximations of true dose-response. Thus, I 

believe that this thesis shows that it is likely not reasonable to assume that the 

maximum efficacy dose is always the largest dose (paper 2), and that for binary 

outcome measures of efficacy assuming a saturating dose-efficacy curve is not 

needed nor preferable to using a model that can capture peaking behaviour (papers 

4 and 5). 

Modelling and adaptive design are likely to be effective for selecting optimal vaccine dose, 

and may be preferable to dose-optimisation approaches that do not use modelling/adaptive 

design 

This work further demonstrates the theoretical potential for IS/ID and mathematical 

modelling to improve vaccine dosing. In paper 3 I showed that mathematical 

modelling could be used on real world data to predict optimal dose as defined by a 

number of different utility functions, though I could not validate these findings. In 
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papers 4 and 5 I showed that mathematical modelling could be used to predict 

optimal dose and, whilst these did not use real data, I was able to compare the true 

utilities of model predicted optimal doses against the true utilities of the true optimal 

doses for the simulation study scenarios. I believe that these findings in papers 4 

and 5 suggest that mathematical modelling is likely to be effective as a method of 

optimising vaccine dose, as hypothesised given the prevalence of mathematical 

modelling in drug dose selection. Whilst similar statistical models of drug dose-

response have already been validated as effectives tools for dose-selection in 

model-based drug development, with papers 4 and 5 I showed that they may be 

repurposed to be effective for vaccine-specific dose optimisation problems. For 

example, dose-optimisation when concurrently considering a peaking dose-efficacy 

curve and ordinal toxicity gradings (chapter 5/ paper 4), and dose-optimisation when 

maximising a utility function of efficacy/toxicity for prime/boost paradigm vaccines 

(chapter 6/paper 5, objectives 3 and 4). 

I also showed how mathematical modelling could be used, not only as a 

retrospective method of predicted optimal vaccine dose from clinical trial data, but 

also to guide vaccine dose-ranging clinical trial design. Previous work in model-

based drug development has suggested that the use of mathematical modelling in 

dose selection can result in accelerated clinical trials with smaller sample sizes 

[156,200,201]. It was also to potentially increase benefit to participants in drug trials 

where a saturating dose-efficacy can be assumed [202], and our findings support 

that improving expected benefit to trial participants is also possible when a saturating 

dose-efficacy cannot be assumed (papers 4 and 5). This could lead to more ethical 

vaccine clinical trials. This may be more important in vaccine development than for 

the selection of dose for some drugs, for example the oncological drugs that CRM 

was developed for. This is because, as noted in chapter 1, individuals that are 

enrolled in dose-ranging trials for prophylactic vaccines are typically healthy unlike 

trials in oncological drugs. I also noted in chapter 1 that public perception of vaccine 

safety and efficacy may influence vaccine uptake, and so it may be possible that 

maximising benefit to trial participants may improve vaccine uptake. These factors 

combine to suggest that maximising benefit to vaccine dose-ranging trial participants 

is important, and this thesis I believe supports the hypothesis that mathematical 
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modelling-informed adaptive trial design can improve expected benefit to trial 

participants. 

In paper 5 I also compared two modelling-informed adaptive trial design vaccine 

dose-optimisation approaches to two dose-optimisation approaches that did not use 

modelling. The ‘uniform naive’ dose-optimisation approach, which used neither 

modelling nor adaptive design, was typically less effective at locating optimal vaccine 

dose and less beneficial to trial participants than the dose-optimisation approaches 

that used modelling and/or adaptive design. The ‘adaptive naive’ dose-optimisation 

approach better maximised benefit to trial participants than the ‘uniform naive’ dose-

optimisation approach. However, this dose-optimisation approach considered only a 

small number of potential trial doses, which may be suboptimal when attempting to 

select optimal vaccine dose. Where none of the small number of doses were near 

optimal, neither the ‘uniform naive’ nor ‘adaptive naive’ dose-optimisation 

approaches were able to maximise vaccine utility. This might suggest that one of the 

benefits of modelling may be that it allows for selection between larger numbers of 

potential doses than non-modelling-based approaches.  

This finding agrees with the findings of Diniz et al. [196], which suggested that a 

large number of dosing groups should be considered in model-based dose-ranging 

trials. My findings appear to contradict the works of Chen and Lui[138], which found 

that modelling-based identification of the maximally efficacious dose was improved 

by considering only 4 dosing groups of 30 individuals relative to considering 6 dosing 

groups of 20 individuals. However, in that work at least one of the dosing groups was 

at the true maximally efficacious dose for both the 4 groups and 6 group dose-

optimisation approaches, therefore I do not believe that there is a contradiction 

between our works. I discuss further the effects of changing the number of dosing 

groups for the ‘uniform naive’ dose-optimisation approach in Appendix A.F. 

Taken as a whole, this work highlights a number of reasons that mathematical 

modelling is likely to be effective for the purposes of selecting optimal vaccine dose 

and guiding vaccine clinical trial design. The mathematical models and methods that 

I discussed in this work were comparatively simple relative to the mechanistic 

“Quantitative Systems Pharmacology” type models that had previously been 
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discussed in IS/ID modelling and have seen success for drug dose optimisation. If 

simple IS/ID modelling is able to be effectively used to select optimal vaccine dose, 

then there may be increased potential for practical application of IS/ID modelling. 

Specifically, I believe this work highlights that conducting dose-finding studies based 

on direct comparison of only a small number of dose ranging groups without 

modelling or adaptive design are likely to be less useful than vaccine dose-

optimisation that uses mathematical IS/ID modelling and/or adaptive design. 

These findings have particular relevance given the vaccination response to the 

COVID-19 pandemic, with the government of the United States of America having to 

implement ‘operation warp speed’ in order to allow for rapid vaccine development 

relative to the traditional development pathway [203]. In response to this 

computational and mathematical modelling have been suggested as alternatives that 

may have better enabled safe and effective dosing in the accelerated timeframe of 

pandemic vaccine development [191]. 

Consideration of vaccine dose-optimisation as a potentially multi-objective optimisation 

problem, and discussion of multiple utility functions 

Previous IS/ID work has predominantly focused on modelling and maximisation of 

immunogenicity, though the importance of safety and dose-sparing have been 

highlighted [23,49]. Handel et al. [49] considered defining optimal dose through a 

simple utility function that aimed to maximise antibody level whilst minimising 

morbidity, however this thesis represents the first piece of work in the IS/ID field to 

emphasise vaccine-dose selection as a multi-objective optimisation problem. 

Throughout the chapters of this thesis, I have used six different utility functions: the 

herd immunity threshold in paper 3, the costless utility function in paper 3, the costed 

utility function in paper 3, the weighted efficacy/ordinal toxicity utility function in paper 

4, maximum efficacy in paper 5, and the utility contour utility function in paper 5. 

These show a breadth of potential ways that ‘optimal dose’ can be defined. For 

further description of potential utility functions see Appendix A.C.  

By conducting simulation studies in papers 4 and 5 I showed that IS/ID modelling 

can be used when considering vaccine dose-optimisation as a multi-objective 
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optimisation problem. This extends the work of Handel et al. [49] , which did not 

conduct simulation studies to address whether the dose that maximised their 

presented utility function was likely to truly be optimal. The simulation studies 

conducted here show that with sufficient data modelling may be effective for 

prediction of vaccine dose that maximises a multi-objective utility function. 

The consideration of vaccine dose optimisation as a multi-objective optimisation 

problem however also identified that multi-objective dose optimisation using IS/ID 

modelling may be non-trivial. In paper 5, objective 3, I investigated a continual 

modelling-based dose optimisation approach based on parametric models of dose-

efficacy and dose-toxicity for prime/boost administration. For objective 3 scenario 5, 

the doses predicted to have maximal utility by this parametric modelling approach 

were typically sub-optimal. I had initially believed that both the efficacy and toxicity 

models were appropriate models of dose-efficacy and dose-toxicity, particularly as 

the same dose-efficacy model was shown to be able to locate the maximally 

efficacious dose in objective 2 for that same dose-efficacy curve. This might suggest 

that we should not assume that models that are appropriate in single-objective 

optimisation will also be effective for determining optimal dose as defined by a multi-

objective utility function. Again, this highlights the importance of conducting 

simulation studies. 

Highlighted potential pitfalls in IS/ID modelling and vaccine dose optimisation 

In this thesis I discovered, investigated, and highlighted some potential pitfalls that I 

believe have implications for the future development of the field of IS/ID modelling 

and for optimal vaccine dose selection. Specifically, these were the potential need to 

consider the exploration/exploitation trade-off, the potential for ‘optimistic biases’, 

and the potential that vaccine dose-ranging trials may not presently provide sufficient 

data to consistently determine dose-response curve shape. 

The concept of an ‘exploration/exploitation’ trade-off within the context of ‘multi-

armed bandit’ problems has been well discussed. ‘Exploitation’ in the context of 

adaptive-design vaccine dose-ranging trials would mean that only doses that are 

predicted to be optimal are investigated, whereas ‘exploration’ involves investigating 
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doses that are predicted to be sub-optimal. Being too ‘exploitative’ could prevent 

optimal doses from being found [204]. This may be because, if only the dose that is 

predicted optimal is tested, and the model is accurate regarding its predictions of 

efficacy and toxicity for that dose, then new trial data would be unlikely to change 

which dose the model predicts as optimal, even if that predicted optimal dose is in-

fact sub-optimal.  

This trade-off is typically discussed in the context of discrete doses [150,205,206] 

(‘arms’ in the parlance of that literature) without modelling, but in paper 4 I showed 

that including exploration in model-informed adaptive design dose-optimisation 

approaches may improve mathematical modelling informed vaccine dose selection. I 

found through further simulation that exploration became even more important as the 

number of trial participants increased [appendix A.G.]. I have highlighted that 

conducting mathematical model-based dose-ranging trials without considering this 

trade-off, as in the style of traditional continual reassessment modelling, may not be 

beneficial to selecting optimal vaccine dose. 

I highlighted the potential for model predictions of vaccine utility to be ‘optimistically 

biased’, where the prediction of utility at the predicted optimal dose is more likely to 

be an overestimation than an underestimation compared to the true utility at that 

dose. Whilst the potential for models to overestimate utility at predicted maxima is 

not novel [207–209], it has not been discussed in the context of IS/ID modelling or 

model-based drug development to my knowledge. This represents a pitfall in present 

IS/ID modelling. This is also a potential pitfall in vaccine dose-optimisation 

approaches that do not use modelling, as discussed in the supplementary of paper 

4, and direct comparison-based dose-optimisation approaches may also be 

vulnerable to optimistic bias. A further discussion of this is included in Appendix 

A.F.2. This pitfall and the one above would not have been noticed if I had not 

conducted simulation studies, again highlighting that theoretical analysis of IS/ID 

methodologies through simulation studies is important to the development of the 

field. 

The final pitfall of IS/ID modelling this thesis suggests is that data from vaccine dose-

ranging trials may not be presently sufficient to determine dose-
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immunogenicity/dose-efficacy curve shape. Whilst I was able to predict optimal 

vaccine dose using published data in chapter 4, having sufficient data to identify the 

dose-response relationship and validate any modelling assumptions regarding dose-

response curve shape may be important to increasing trust in model predictions. 

IS/ID practitioners should be aware that curve shape may not be possible to 

determine using data from vaccine dose-ranging trials as these are presently 

designed and must be prepared to account for this uncertainty. 

Weaknesses & Challenges 
Weaknesses of chapter 2/paper 1 

In chapter 2, I only collected data on adenoviral vector vaccines, and additionally this 

data only consisted of immunological response data to a single administration of 

vaccine. Whilst this was the data that would be required to answer the questions 

posed in chapter 3, it did mean that analysis could not be done for other classes of 

vaccines. Secondly, it also meant that I could only investigate modelling prime-boost 

dose-immunogenicity through the simulation studies in chapter 6 and without real 

world data. Thirdly, I did not collect data on the prevalence of adverse events by 

dosing groups. This was again as the main of my work in chapter 2 involved the 

dose-response curve shape of immunogenicity responses. Collecting toxicity data 

may have been beneficial to informing safe adenoviral vector vaccine dose ranging 

trials.  

Weaknesses of chapter 3/paper 2 

In chapter 3, I only included a single representative model for each of the peaking 

and saturating curves. The results may have been different if I had chosen different 

models, but the two chosen models were reasonable given that they were models 

that had previously been used for IS/ID modelling [50]. We also did not include 

models that represented simpler or more complicated dose-response dynamics. An 

exponential model [210] may have been a good description for some of the data 

despite being a simpler model but may not be biologically justifiable to extrapolate 

from. Biphasic and triphasic dose-response models have been suggested [211] but 

use 6 or 9 model parameters respectively, so for most of the available dose-ranging 
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studies I would not have been able to be used to calibrate these models. 

Additionally, my interest was in the prevalence of vaccine dose-response data that 

was best described as peaking or saturating, not on finding the best possible model 

for each of the dose-response datasets. Therefore, I considered it reasonable to only 

include representatives of these two behaviours  

A further weakness was the method of calibration that was used. The parameters for 

the representative models were found by minimising the root mean squared error for 

each of the dose-response datasets. Technically such calibration would only be 

statistically valid if the data for each of the dosing groups could be assumed to be 

distributed around the true response value for that dose with homoscedastic, 

uncorrelated error with expectation zero (normally distributed with mean zero for 

example) [212]. Such assumption may not be valid for immunologic data [213]. 

Despite this, mean squared error and root mean squared error are commonly used 

for dose-response model fitting and model selection purposes [135], and I do not 

believe that using a different metric would have impacted the results. Further to this, 

I used AIC as the metric to determine which model best described data. I considered 

using the ‘corrected AIC’ or BIC metrics, but this would have not changed the results 

as both the peaking and saturating models had three parameters, so the 

regularisation term for both models can be ignored. 

Whilst I do not believe that it was due to my implementation, the greatest weakness 

of this chapter was that curve shape could not be determined to be best described 

as peaking or saturating for 73.3% of the data. I believe that this was due to the 

dose-response data often having too few dosing groups to determine the curve 

shape, or not investigating sufficiently large doses to observe saturating or peaking 

behaviour. For these vaccines, the optimal dose may have been limited by toxicity, 

cost, or practical implementation reasons, but that still meant that curve shape could 

not be determined, which limited statistical capacity to determine the prevalence of 

adenoviral vector vaccine dose-response data being truly peaking or saturating.  

Finally, one of the challenges of implementing this work was considering whether I 

should use a pooling approach. It is suggested that for meta-analyses which aim to 

determine curve shape, a pooling approach can be used [137,214]. This involves 



 
331 
 

hierarchical modelling to estimate model parameters that fit all of the available data 

from different datasets. Whilst these pooling techniques are potentially useful tools in 

determination of dose-response shape, it requires the assumption that the underlying 

dose-response curve shape (up to reparameterisation) is the same for all data [215]. 

From discussion with my supervisors and consideration of Handel et al. [49] it 

seemed more reasonable that for some vaccines dose-response is peaking and for 

others it is saturating. Therefore, this assumption did not seem reasonable. 

Alternatively, I could have assumed that all data that had the same host-species, 

response type, adenoviral vector species, and route of administration would have the 

same dose response curve shape, and then pooled data based on those factors. 

This would have prevented the analysis in objective 2, which assessed whether that 

assumption was reasonable.  

Weaknesses of chapter 4/paper 3 

In chapter 4, there were weaknesses that could not be addressed with the available 

data. Firstly, I did not account for covariates that may have influenced dose 

response, such as weight, age, or gender. Instead, I assumed that dose was the only 

factor that impacted the probability of seroconversion or grade 1 / 3 adverse event 

occurrence between the dosing groups. Given that there was some heterogeneity in 

age between the three dosing groups, this may not have been a reasonable 

assumption. I also decided to derive parameters for the dose-cost model from 

literature rather than through querying the vaccine developers. I collaborated with an 

economist (Matthew Quaife) to ensure that my cost model was reasonable and 

conducted a sensitivity analysis to investigate the potential effects of the cost model 

parameters being poorly estimated. I also assumed that the probabilities of 

individuals experiencing seroconversion and toxicity were mutually independent, 

rather than using a copula method to derive a joint probability from marginals [216]. 

Again, this would have required a more detailed dataset than was publicly available.  

To counteract these weaknesses, I considered contacting the vaccine developers to 

inquire after a more detailed dataset. I decided against this as I did not want to have 

any potential to be biased in my findings through contact with the developers. The 

main purpose of this work was to demonstrate the potential for mathematical 
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modelling in multi-objective vaccine dose optimisation, and for showing that ‘optimal 

dose’ was dependent on the utility function used to define vaccine utility. This work 

was not used to actually choose a clinical dose for this vaccine, and therefore my 

simplified modelling was appropriate to my aims. 

The final two challenges I faced in this chapter were on validation and scope. I was 

unable to validate whether the doses that I predicted to be optimal were actually 

optimal. This would either have required further extensive dose-ranging trials or 

perfect knowledge of the true underlying dose response curves. The first was not 

possible as the developers did not investigate neutralising antibody titres in later 

dose-response trials and this PhD did not have scope to conduct such a trial. The 

latter was not possible practically, and is only possible in simulation studies, so this 

weakness of this paper was accounted for in papers 4 and 5. With regards to scope, 

I only included three simple utility functions. Including a greater quantity and 

complexity of utility functions could have been interesting, but I decided that 

explaining a smaller number of simple utility functions thoroughly would be more 

demonstrative of the potential benefits and use of IS/ID and mathematical modelling 

in vaccine dose selection.  

Weaknesses of chapter 5/paper 4 

In chapter 5, there were simplifications made which may have impacted ecological 

validity of the findings. I did not include stopping rules in the continual modelling-

based approaches, which are often used in continual modelling [217]. I did not 

believe that including these would have improved this work, as doing so would have 

increased the complexity of the work and meant that ‘trial size’ was not well defined. 

I also did not include any dose-optimisation approaches that did not use 

mathematical modelling, or that modelled dose response using data from a small 

number of dosing groups (as done in chapter 4). Model-free dose-optimisation 

approaches were investigated in chapter 6. Modelling based on data from only a 

small number of dosing groups would have required making assumptions on how 

close to the true-optimal dose that these dosing groups should be, and accounting 

for or investigating these assumptions would have greatly increased the complexity 

of this work.  
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Other weaknesses and challenges of this work relate to it being a simulation study. 

The absence of real data meant that there was no way to show that these findings 

are true for actual vaccine dose-optimisation. Simulation studies are only useful if the 

scenarios they investigate are representative of real-world vaccine dose-response. 

To account for this, I used many scenarios with qualitatively different dose-efficacy, 

dose-toxicity, and dose-utility curves.  

Whilst using a large number of scenarios was beneficial, it did present a challenge in 

the presentation of findings. Presenting plots of simple regret, inaccuracy, and 

average regret for each of the objectives and scenarios would have increased the 

size of the published paper and potentially led to confusion in parsing of the results. 

The alternative was to present a summary of these metrics across all scenarios, 

which I did, and I believe improved the clarity of the findings. Technically this is only 

valid if all real-world vaccines can be described accurately by one of the 14 

scenarios with each scenario being equally probable. This was unlikely to be true. 

However, as the findings of the effects of trial size/assumed efficacy model/method 

of dose selection for the summary plot were similar to those that observed for most 

of the scenarios I do not believe that this impacted the results. Additionally, I 

included the results for each scenario in the supplementary and advised readers to 

consider these.  

Despite the weaknesses of simulation studies, the benefits of simulation studies are 

that they allow for validation of whether the model predicted optimal doses are 

indeed optimal. I therefore believe that the combinations of chapter 4 and 5 together 

represent both theoretical and practical validation of mathematical IS/ID modelling 

for vaccine dose-optimisation.  

Weaknesses of chapter 6/paper 5 

Chapter 6 had the same weaknesses as chapter 5 with regards to being a simulation 

study. It also shares the same weakness of not including stopping rules for the same 

reasons. The other weakness of this work that was not mentioned in the body of the 

work is that CCBP model and the CoBe dose-optimisation approach are not 

presently available as part of any common statistical software. However, 
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investigation and theoretical validation of this model and approach was sensible prior 

to development of software or tools. 

Additionally, a challenge in this work was in choosing the parametric models of dose-

efficacy and dose-toxicity for the objectives discussing prime/boost and 

prime/boost/second-boost paradigm vaccine dose optimisation. I could not find any 

models of such that had been well validated. I therefore choose to use a model that 

was similar to that which I had found effective for single-administration vaccine dose 

optimisation in chapter 5. It is possible that other better models may exist, but the 

optimal parametric model would likely depend on the scenario, and I believe that the 

models used were reasonable.            

      

There were some overall limitations and challenges to this thesis as a whole.  

Quantitative allometric scaling and population covariates were not accounted for 

Previous work has highlighted that a topic of interest in IS/ID modelling is in 

developing methods of allometric scaling, allowing prediction of human 

efficacy/toxicity for given vaccine doses based on preclinical animal studies [23,51]. 

A weakness of this thesis was that I did not further develop allometric scaling tools 

for IS/ID modelling. Further, the finding of paper 2 that dose-immunogenicity curve 

shape may depend on the species being vaccinated may prevent or limit vaccine 

allometric scaling between species. For example, if mouse dose-immunogenicity 

was peaking and human dose-immunogenicity was saturating for some vaccine, 

allometric scaling factors of model parameters may not be possible. Despite this, 

there is still a practical need to predict clinical immunogenicity/efficacy from 

preclinical data which this work has failed to address. Given the weaknesses of 

paper 2, namely that dose-response curve shape could only be determined for 

26.7% percentage of dose-response data and that I only investigated adenovirus 

vectored vaccines, further investigation into the effect of host on dose-response 

curve shape is needed. Also, whilst the results of that paper were deemed 

statistically significant, the small number of datasets for which dose-response curve 
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shape could be determined may mean that more data are required to improve 

confidence in these findings.  

Allometric scaling of dose-toxicity curves may also be reasonable if we make the 

common assumption that vaccine dose-toxicity is likely to be saturating for all 

species. This was a topic that was unexplored in this work despite it being likely to 

be feasible, and therefore represents a weakness of this work.  

A similar idea to allometric scaling between species is to include population 

covariates within the statistical analysis and modelling. This allows for prediction of 

dose-immunogenicity/efficacy/toxicity in an untested/minimally tested population 

based on data from a well-tested population, and also allows for individualised 

dosing. Example covariates are age and gender, which have been shown to affect 

vaccine efficacy [218], or the haplotype of a vaccinee’s major histocompatibility 

complexes [219]. None of our models were built to allow for response to depend on 

covariates and assumed that dose was the only predictive variable. I note that in my 

experience much of the dose-response modelling and continual reassessment 

modelling literature also does not include covariate analysis, so this is not unique to 

my work. Additionally, other than for paediatric populations, vaccines are typically not 

dosed differently for different populations based on these covariates [220]. I believe 

that further work into including covariates into dose-response models may be 

reasonable, and the absence of such represents a weakness of this work. However, 

unless there is the potential for clinical vaccine dose to vary depending on the 

covariates of vaccinated populations/individuals, the benefit of such modelling may 

be reduced relative to the benefits of covariate modelling in model-based drug 

dosing for individuals-based dosing.  

Only binary efficacy outcomes were considered, and predictive immunogenicity-efficacy 

modelling was not investigated 

Two further weaknesses of this work involve the concept of vaccine efficacy and how 

I defined this. In the background of this work, I discussed the concept of correlates 

and surrogates of protection, and the issues involved with these that mean that 

accurate binary measures of efficacy may not be available. The first weakness then 
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was that I assumed that vaccine efficacy in dose-ranging trials was binary and 

measurable. Secondly, I did not discuss or contribute to the development of models 

that may aid in predicting vaccine efficacy from immunogenicity data through these 

chapters. 

With regards to the first weakness, in chapters 2 and 3 I considered modelling of 

dose-immunogenicity. For chapters 4, 5 and 6 I assumed that vaccine efficacy was 

an outcome that was binary (individuals were protected or not protected) and 

measurable. In chapters 5 and 6, I showed that modelling can be effectively used to 

maximise the probability of a dose-dependent binary efficacy outcome and minimise 

probability of dose-dependent ordinal/binary toxicity. For vaccines where such a 

measure is not available these methods would not be applicable. 

Further, the use of binary thresholds of protection have previously been criticised 

[221], as it is unlikely that there is some true immunological threshold where a 

response in excess of this threshold offers 100% protection against disease and 

immunogenicity below this offers 0% protection. Instead it has been suggested that 

any increase in response offers some increasing level of protection [36]. Therefore, 

as IS/ID modelling develops it may be preferable to combine dose-immunogenicity 

and immunogenicity-efficacy models rather than modelling dose-efficacy as was 

done in chapters 4, 5 and 6.  

This leads to the second of these weaknesses, that I did not contribute to developing 

immunogenicity-efficacy models despite their potential relevance in the long-term 

goals of IS/ID modelling. Whilst I did not do this, this is an active area of research. 

Khoubury et al. found that vaccine efficacy against severe COVID-19 disease could 

be predicted based on neutralising antibodies titre using mathematical modelling 

[38]. This work required a meta-analysis of many phase 2 and 3 immunogenicity and 

efficacy data from seven COVID-19 vaccines. Such data may not always be 

available, with far more research on COVID-19 being conducted that should be 

expected for most diseases [222].  

Therefore, whilst these represent weaknesses in the work and potential limitations in 

the present field of IS/ID, I believe that assuming that binary efficacy outcomes were 
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available was reasonable. This was partially because binary thresholds of protection 

such as seroconversion are commonly used to choose optimal vaccine dose in 

practise. This was also given the novelty of the field: it appeared relevant to 

investigate simplistic models and definitions of efficacy/utility that could be more 

generally applied in practical vaccine dose selection.  

Time-response dynamics were not considered 

I did not use any models within this work that could be used to describe the 

dynamics of immunogenicity with respect to time. Models can be used to describe 

how immune response increases, peaks, and then decays following vaccination. In 

combination with immunogenicity models these temporal models can be used to 

predict the decline of vaccine efficacy over time [223]. This could be important for 

deciding optimal dose, and therefore there exist a benefit to investigating and using 

models that can describe longitudinal dose-response. Previous IS/ID models of 

vaccine dose-immunogenicity described by Rhodes et al. and Handel et al. have 

been used to describe the increase and then decline of cellular and humoral immune 

response [49,50]. Time-response dynamics were also considered by Kumbhari et al. 

and used to suggest optimal interval between vaccine doses[130].  

Whilst this represents a weakness of the modelling methods I discussed in my 

chapters; I believe that the modelling I described was reasonable. Firstly, these 

mechanistic models that can describe longitudinal dose response may be more 

complicated, may require more data, and require that immunogenicity data be 

available at multiple time points. Secondly, the primary aim of IS/ID modelling is in 

aiding selection of optimal vaccine dose. The benefit of longitudinal dose-response 

modelling may not be relevant unless the utility functions used to define optimal dose 

either depend on immunogenicity at multiple time points or on model-predicted 

immunogenicity at time point(s) for which immunogenicity was not measured. For 

example, the utility function in Handel et al. uses the area-under-curve of the vaccine 

time-morbidity curve as part of their proposed utility function [49]. This again 

represents a weakness of this work that may be more relevant as the field of IS/ID 

develops. 
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Exclusion of placebo doses in the simulation studies 

A weakness of the chapters that provided a simulation study of clinical trial design 

and dose-optimisation approaches (5 and 6) was that I did not discuss the inclusion 

of a placebo group in vaccine dose ranging trials. Placebo arms are commonly used 

in vaccine trials and may be particularly useful for determining whether adverse 

events are vaccine related [20]. These can also be used to provide evidence that the 

vaccine does cause immunogenicity/efficacy.  

I decided against including placebo arms in my simulation studies as it added 

additional complexity without providing meaningful extensions of the field. For CRM-

style dose optimisation, previous work has already investigated how modelling-

based dose-optimisation can be used when there is a placebo group [224]. One 

suggested method is to conduct a CRM style dose-optimisation approach using half 

of the trial participants and to assign the other half to the placebo arm. Inclusion of a 

placebo arm for the adaptive naive dose-optimisation approach in paper 5 could be 

done by simply including another arm for each of the scenarios to represent the 

placebo dosing-group. 

Whilst I believe that not discussing the inclusion of placebo dosing groups was 

reasonable, there is some potential for future investigation. Inclusion of a placebo 

dosing group could be beneficial to implementing stopping rules. Investigating the 

inclusion of placebo groups may be needed if the ethical and regulatory bodies 

require placebo arms in dose-ranging trials, though I note that recently the European 

Medicines Agency described the inclusion of a control group a choice not a 

requirement, and the Food and Drug Administration noted that there are both 

advantages and disadvantages to including placebo arms in a dose-ranging trial 

[225,226].  

Implications  
Each chapter has specific implications for the development of the field of IS/ID 

modelling and vaccine dose optimisation.  
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In paper 1 and 2, I showed that there is evidence to suggest dose-immunogenicity 

for some adenoviral vector vaccines may be best described by a peaking dose-

response curve. This furthers the evidence that future mathematical-modelling and 

vaccine dose-response optimisation should not assume that increasing dose will 

increase vaccine efficacy. If vaccine dose-efficacy curve shape is incorrectly 

assumed to be saturating this could lead to vaccine dose being selected with 

decreased efficacy and/or increased adverse event risk. This implies that vaccine 

development which assumes a saturating dose-efficacy relationship may limit the 

benefit of the vaccine to public health. Additionally, I found evidence to suggest that 

the dose-immunogenicity curve shape may be dependent on the host species being 

vaccinated, which may imply that future attempts to develop allometric scaling 

methodologies for translating dose between species may be limited. 

In paper 3, I showed that mathematical modelling can be applied to select a vaccine 

dose that is optimal when considering vaccine dose selection as a multi-objective 

optimisation problem. The doses that I predicted were optimal were dependent on 

the utility function that was used. This implies that doses may or may not be 

considered ‘optimal’ depending on the utility function chosen. Therefore, where 

vaccine doses are selected using vaccine dose-finding trials with no specified utility 

function, ‘optimality’ of these vaccine doses is not well defined.  

In paper 4, I predicted through simulation studies that model-informed adaptive trial 

designs may improve the expected benefit to trial participants for vaccine dose-

ranging trials, as later trials participants in adaptive design clinical trials are likely to 

receive doses that are predicted to be effective given the data from early trials 

participants. Therefore, vaccine developers should consider these dose-optimisation 

approaches. I also found that model predictions may overestimate the utility of the 

predicted optimal dose (‘optimistic bias’), which could lead to suboptimal vaccine 

policy and practical vaccine benefit being less than predicted. I also found that 

weighted average models of dose-efficacy may be beneficial for the selection of 

optimal vaccine dose, which may reduce the potential for model misspecification to 

cause predictions of sub-optimal vaccine dosing. The final implication was that 

‘exploitative’/’greedy’ selection of trial doses in adaptive design (where only the 

predicted optimal dose after each cohort is investigated in the next cohort) may 
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prevent optimal vaccine dose from being found, as this selection method may 

provide insufficient data to properly estimate the entire dose-response curve. 

Therefore, consideration of the exploration/exploitation trade-off through testing 

doses that are predicted to be suboptimal may improve IS/ID mathematical 

modelling-based dose-optimisation. The recommendations of this work for the field 

of IS/ID modelling are that weighted model averaging should be considered when 

modelling dose efficacy, vaccine dose-ranging trials that use adaptive design must 

balance exploration and exploitation, and that vaccine developers should be cautious 

when reporting model-based predictions of the utility of the predicted optimal dose. 

In paper 5, I found through simulation that the CoBe dose-optimisation approach, 

which combined the Continuously Correlated Beta Process model with Thompson 

sampling, was an effective and ethical approach to conducting vaccine dose-finding 

studies for the scenarios that I evaluated it on. This was particularly true for prime-

boost vaccine dose selection which aimed to maximise a utility function of efficacy 

and toxicity. This implies that the CoBe dose-optimisation approach may be an 

effective approach for selecting optimal vaccine dose that reduces the number of 

individuals required to locate optimal vaccine dose and may therefore reduce cost of 

clinical trials. It also furthers evidence that non-parametric models are useful for 

selecting optimal dose when dose-efficacy curve shape is unknown. 

Overall implications of the work below 

The overall findings of this work suggest that whilst it may not be reasonable to 

assume that vaccine dose-efficacy curve shape is always best described as 

saturating, as is possible for model-based drug development, IS/ID mathematical 

modelling has the potential to be a useful tool in ensuring that vaccines are dosed to 

provide maximal benefit.  

Relative to the mechanistic models highlighted in previous IS/ID modelling research, 

the models and methodologies described in this thesis were simple. The parametric 

and non-parametric models used in chapters 4-6 required fewer assumptions 

regarding underlying immunodynamics than these previous mechanistic models and 

could be used to model the dose-response curve for any binary outcome response. 

Whilst mechanistic modelling of dose-immunogenicity has shown potential for the 
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purposes of vaccine dose optimisation, this thesis implies that even simple models of 

dose-response can be used to successfully optimise vaccine dose. Use of a simpler 

model reduces uncertainty in predictive ability and generalisability of the model, 

which is sometimes the case for more complex models, and improves accessibility. 

This thesis suggests that there are modelling based possibilities for vaccine dose 

selection that may not have been previously available or validated. The simulation 

studies in this work showed that mathematical modelling can still be effective when 

dose-efficacy is non-saturating, which validates the use of IS/ID modelling and 

implies that vaccine doses can be selected with more quantitative justification. This 

implication is important, as model-based dose selection is already considered 

preferable in drugs. This work also implies that vaccine clinical trials could be 

conducted more efficiently and ethically using modelling and adaptive design, which 

may reduce trial size and improve willingness for participants to enrol and reduce 

loss to follow-up. 

Clinical and vaccine development implications of the overall thesis 

I believe that combined findings of papers 2 and 4 imply that the assumption of a 

saturating dose-efficacy curve may neither be justified by historical data nor 

beneficial to optimal dose selection when compared to assuming a peaking dose-

efficacy curve or using a weighted average of peaking and saturating models. Non-

parametric models of dose-efficacy and dose-toxicity such as the CCBP model 

should also be considered. My findings agree with previous works that have shown 

that non-parametric models are able to locate optimal drug dose with similar capacity 

to parametric models which assume a dose-response curve shape. This implies that 

vaccine developers may not need to assume that a specific curve shape will best 

describe the true vaccine dose-efficacy curve in order to effectively use 

mathematical modelling. These findings also imply that clinical trial designs which 

assume a saturating dose-efficacy curve, such as the 3+3 or other maximum-

tolerated dose designs commonly used in drug development, may not be appropriate 

or effective for locating optimal vaccine dose.  
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In papers 4 and 5 I found that incorporating adaptive trial design in simulated vaccine 

dose-finding trials, with or without mathematical modelling, led to increased benefit to 

trial participants. This implies that vaccine dose-ranging trials which do not use these 

methods may not be as ethical with regards to maximising benefit to trial 

participants.  

A finding of chapter 6/paper 5 was that considering only a small number of doses 

within a dose-finding trial may limit vaccine utility, in agreement with Diniz et al [196]. 

This may imply that methodologies of vaccine dose-finding that involve a small 

number of doses may reduce vaccine benefit. In combinations with the findings of 

chapter 2/paper 1, which showed that typically less than six dosing groups were 

used in adenoviral dose-ranging trials, this implies that adenoviral vector vaccines 

may be sub-optimally dosed. 

This work has also implied that, given that vaccine dose-optimisation should 

potentially be viewed as a multi-objective optimisation problem, it is important to 

consider how ‘optimal’ dose is defined. This work also implies that selection of the 

utility function used to define ‘optimal’ dose a-priori of dose-ranging trials being 

conducted is important. This follows from my finding that adaptive trial design leads 

to more ethical clinical trials and reduces the number of trial participants required to 

locate optimal dose, and the knowledge that these adaptive trial designs (both 

SoftMax selection and Thompson sampling) require a-priori definition of a utility 

function.  

 

Future research and IS/ID implications of the overall thesis 

This work had two major implications regarding future research and IS/ID modelling. 

Firstly, the findings of chapter 5 showed that mathematical modelling based adaptive 

design which only conducts trials using the predicted optimal dose are likely to be 

sub-optimal for the purposes of optimising vaccine dose. This may imply that clinical 

trials conducted using such a method of trial dose selection may have had a reduced 

probability to locate the true optimal dose. I recommend that the 
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exploration/exploitation trade-off be considered for all adaptive design vaccine 

clinical trials. 

Secondly, the finding that ‘overestimation bias’ is possible when predicting optimal 

vaccine dose using mathematical modelling. This implies that policy decisions made 

using predictions of utility for the predicted optimal dose may be sub-optimal. This 

finding may also be the case when vaccine dose is selected without using 

mathematical modelling. This implication is therefore also relevant to vaccine 

developers and statisticians conducting direct-comparison vaccine dose-ranging 

studies.  

Social Implications of the overall thesis 

In chapter 6/paper 5 I showed that dose-optimisation approaches which used no 

adaptive design or modelling, and instead choose ‘optimal dose’ via direct 

comparison of a small number of dosing groups, required a larger number of 

individuals to locate optimal vaccine dose. These dose-optimisation approaches that 

used no adaptive design or modelling were also less beneficial to the simulated trial 

participants relative to dose-optimisation approaches which did use adaptive trial 

design. 3+3 designs or other such dose-optimisation approaches that assume that 

efficacy increases with dose may not be justified either due to the findings of paper 

2. These findings imply, given that such dose-optimisation approaches are 

commonly used for conducting vaccine dose-ranging trials, that many modern 

vaccines may be sub-optimally dosed. 

I note that the statement ‘vaccines may be sub-optimally dosed’ may be difficult to 

prove or refute for vaccines where researchers or vaccine developers did not define 

a quantitative utility function. In these cases, it is possible that a utility function could 

be retro-actively chosen to justify or criticise the choice of dose. 

This work implies that a combination of considering only a small number of doses, 

not using modelling, not using adaptive trial design, assuming a saturating dose-

efficacy curve, and not defining a quantitative utility function could lead to suboptimal 

vaccine doses and decrease the potential societal benefits that vaccines could 

provide. Conducting vaccine dose-finding trials using better methods could lead to 
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better vaccine dosing, which could improve the societal benefits of vaccines and 

save lives. 

 Future work  
Validation of theoretical methods 

The most important piece of future work is validating the predictions made in my 

work. I showed in both paper 4 and 5 that parametric models may not need 

completely accurate descriptions of the true dose-response in order to enable 

effective dose-optimisation. Despite this, vaccine developers and regulatory bodies 

need to be confident that the predictions of these models can be trusted before these 

models can be used in practice.  

Bonate [227] makes the distinction that dose-response models should be both 

‘validated’ and ‘credible’. ‘Validated’ models are those for which the model’s 

predictions of past and future data are dependable. ‘Credible’ models are those 

which are accepted by users or decision makers. Validation and credibility are not 

necessarily the same; a model can be validated without being credible or credible 

without being validated. However, validation tends to improve credibility, as does 

model interpretability. I hope that in providing simulation studies of these models and 

primarily using simple statistical models I have improved the credibility of IS/ID 

modelling, and that with validation these models become credible for practical use. A 

validation study could aid in this goal.  

A simple trial validation study of these models could be to gather data from a 

published dose-ranging trial with at least three dosing groups and calibrate a dose-

response model to this data using the techniques discussed in this work. This model 

would then be used to predict response for a dose that was not used in the original 

dose-ranging trial, then a clinical trial conducted of this ‘validation’ dose using 

equivalent populations and data-collection methods as the original published trial. A 

hypothesis testing approach could then be used to evaluate whether the models’ 

predictions matched the empirical results. The validation dose should be chosen to 

be between the largest and smallest doses that were evaluated in the original dose-

ranging trial (as statistical models are primarily useful for interpolation rather than 
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extrapolation). Additionally, given the findings to an ‘optimistic bias’ in chapter 5, the 

validation dose should not be at the predicted optimal dose.  

If funding were available, then a specific validation study could be conducted to 

investigate this, following the same steps as described above except replacing the 

previously published data with data from a dose-ranging trial specifically conducted 

for this purpose. In this case, for a single-administration vaccine, I would propose 

that the initial dose-ranging trial preferentially investigate a large number of small 

dosing groups rather than a small number of large dosing groups. This data could 

then be used for modelling, and prediction/validation conducted as above.  

Alternatively, if it were not possible to conduct further clinical trials, a similar 

validation study could also be done using only published data. This could be 

conducted by calibrating models to data from all but one dosing group of a published 

dose-ranging trial and predicting the responses for the excluded dosing group. 

However, this may be less trusted, as an unscrupulous researcher could bias such a 

study by choosing data that is very ‘predictable’, or by leveraging their knowledge of 

the validation data when building the model to improve the apparent predictive 

validity.  

I note in this recommendation of future work that similar validation of mechanistic 

modelling should also be conducted to further the field of IS/ID modelling, and that 

for these models a validation of extrapolated predictions may also be reasonable to 

investigate. I also note that, according to Bonate, models ‘cannot be 100% 

validated’, therefore validation may be a question of how accurate a model must be 

to be acceptable to modellers and developers [227].  

Practical application of mathematical modelling in vaccine dose optimisation 

Once these modelling techniques are both validated and credible, the next step in 

furthering the field of IS/ID and mathematical modelling for vaccine dose optimisation 

would be practical application of these methods for the purposes of informing real-

world vaccine dosing and dose-ranging clinical trials. The 17DD yellow-fever vaccine 

was found to have been initially overdosed, wasting vaccine supply in a limited 

vaccine setting. It has also been suggested that the clinical doses for the MRNA-
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1273 and BNT162b COVID-19 vaccines may be in excess of the optimal doses, with 

a decreased dose potentially allowing for increased global benefit [228,229]. Thus, 

there is already discussion on whether the present empirical methods of dose 

selection are leading to optimal vaccine dosing [191]. 

In this work I investigated the theoretical application of mathematical modelling 

methodologies in optimisation vaccine dose, but whether these methods outperform 

current methodologies still requires validation. This would require vaccine developers 

to believe that there is potential benefit to using such methods, along with approval 

from regulatory bodies. I note that model-based drug development has been shown 

to be practically effective in choosing optimal drug dose, and so there is evidence to 

suggest that modelling is theoretically effective. I do however believe that the 

terminal goal of the development of the field of IS/ID modelling is improving vaccine 

dosing and saving lives. Thus, theoretical work is only beneficial if it enables or 

inspires practical use of these tools, or if it highlights pitfalls that could lead to 

suboptimal dosing or policy decisions (such as ‘optimistic bias’). 

These mathematical modelling methods and dose-optimisation approaches are likely 

to be of interest to vaccine developers/pharmaceutical companies and regulatory 

bodies, and it is likely that these can feasibly be incorporated into and improve the 

current vaccine development pathway. 

These findings and methods are likely to be of interest to vaccine 

developers/pharmaceutical companies. If modelling can lead to more efficacious and 

less toxic vaccines, then there may be increased vaccine uptake. If similar efficacy 

can be achieved with smaller doses, then the cost of vaccine manufacture may be 

reduced. If optimal dose can be located using a smaller number of trial participants, 

this could reduce the cost of clinical trials in vaccine development. Further, it is 

possible that these methods could reduce the number of vaccine candidates that fail 
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to proceed past early phase clinical trials9, reducing the cost of vaccine 

development. All of these factors could make vaccine development more 

profitable/less expensive.  

Regulators have an interest in ensuring that marketed vaccines are maximally safe 

and effective. Regulators and ethics board also have an interest in ensuring that 

clinical trials are conducted ethically in a way that minimises harm or maximises 

benefit to trial participants. For disease control during a pandemic, regulators may 

desire accelerated vaccine trials and dose selection whilst ensuring that the above 

two interests (safe and effective vaccines, ethical trials) are maintained. Based on 

this thesis and on previous findings I believe that regulators therefore would have an 

interest in conducting future vaccine development using IS/ID mathematical 

modelling and adaptive trial design.  

If these models and methods had been available to and accepted by developers and 

regulators during the COVID-19 pandemic, vaccine development could have been 

further accelerated, fewer vaccine candidates may have been needed, and there 

might be improved vaccine dosing and reduced cost of development. Given the 

simplicity of the statistical models discussed in this thesis relative to mechanistic 

modelling, I believe that the complexity of future work incorporating these models 

into vaccine development would be reduced. Given that such models have 

historically been used and recommended for use in phase I/II drug trials, I believe 

that these are the trial phases that developers and modellers should first look to 

practically apply these methods in.  

These methods could also be used pre-clinically to determine optimal vaccine dose 

in animals, which may be useful if allometric scaling methods can be further 

developed. Additionally, initial practical application of these models and dose-
 

9 Consider, for example, chapter 6/paper 5, objective 3, scenario 4. None of the six doses investigated using the 
‘Uniform Naive’ dose-optimisation approach (representing a traditional method of selecting vaccine doses) had a 
utility greater than zero. Therefore, this DOA could not locate a dose with a utility greater than zero. The dose-
optimisation approaches that used modelling on average located a dose with utility greater than zero with fewer 
than 30 trial participants. If utility greater than zero was a go/no-go criterion for a vaccine with these dose-efficacy 
and dose-toxicity curves, then modelling could be the difference between a marketable and failed vaccine 
candidate. 
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optimisation approaches in preclinical trials may be reasonable for improving the 

credibility of these methods for later application in human clinical trials. I also believe 

that these methods could be practically applied for smaller phase IV trials for 

vaccines that have already been marketed. In this way mathematical modelling could 

be used to improve dosing of vaccines that are known to be safe and effective. As 

these vaccines are already known to be safe, regulators may be less hesitant about 

applying these methods.  

The additional importance in practical application of these tools is that it may 

highlight areas where the field of IS/ID modelling needs additional further work. 

Conducting clinical trials using these methodologies may present issues of 

practicality, for example how to incorporate adaptive trial design with potential 

blinding or double-blinding requirements. Only through interaction and discussion 

between modellers and vaccine developers can tools be developed that are 

practical, ethical, and effective.  

Model extensions  

In addition to these methods seeing further practical development, there are a 

number of areas of future work regarding improvements and extensions to IS/ID 

models.  

Including population covariates 

As noted, a weakness of this thesis was in not discussing the inclusion of covariates 

into the dose-response modelling process. In model-based drug development, 

inclusion of the covariates of age, weight, or disease progression/severity are may 

be used [177] and have previously been used for IS/ID modelling to account for 

within population variation [51]. These can be incorporated in several ways. 

Hierarchical and mixed effects modelling have been suggested as useful for 

incorporating covariates into both mechanistic and statistical models [230,231]. 

Wijesinha and Piantadosi [232] suggested a parametric method for statistical models 

that involved estimating separate model parameters, one each for data from female 

and male trial participants. They also suggested a semi-parametric approach, where 

covariates can increase response probability in either a dose-dependent or dose-



 
349 
 

independent method. All of these methods were highlighted as greatly increasing the 

number of parameters that must be estimated from the data, meaning a greater trial 

size might be needed to estimate parameters of the dose response curve. The 

CCBP model has also been extended to include contextual factors [233] and 

investigating whether this could allow for covariates to be adjusted for in the CoBe 

DOA would be an interesting area of future work. 

Developing parametric models for prime/boost administration vaccines 

In paper 5 I investigated the use of vaccine dose-optimisation approaches that made 

use of parametric models. The findings of that paper showed that such methods are 

theoretically effective for maximising efficacy or utility for single-administration 

paradigm vaccines. Maximising efficacy dose for prime/boost paradigm vaccines 

was also typically reasonable, however the parametric dose-optimisation approach 

performed poorly for selecting a prime/boost paradigm dose that maximised the 

utility function of efficacy and toxicity (paper 5, objective 3, scenario 5 and 6). 

The findings of that paper showed that the non-parametric CoBe dose optimisation 

approach was likely to be effective in that setting. However, given that parametric 

models are more common than non-parametric models for the purposes of drug 

dose optimisation, it might be useful to investigate other potential parametric dose-

efficacy and dose-toxicity models in that setting. Simulation studies could be used to 

determine whether mechanistic compartmental or agent-based models may be 

effective. Alternatively, statistical models other than the simple models included in 

paper 5 should be considered. 

Whilst I discuss prime/boost dose optimisation in paper 5, the multi-dimensional 

dosing scenarios in objectives 2, 3 and 4 for that paper could also be considered to 

represent antigen/adjuvant dose optimisation. I believe that the findings or paper 5 

suggest that it may be beneficial to conduct further simulation studies to investigate 

IS/ID modelling when locating the optimal doses of single-administration antigen-

adjuvant paradigm vaccine. Modelling has been suggested as potentially useful for 

finding optimal antigen-adjuvant dose [234], but not applied or investigated 

practically to my knowledge. I believe that CCBP models and the CoBe dose-
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optimisation approach would be likely to be effective for locating such a dose, given 

the findings of paper 5. Parametric models of antigen/adjuvant dose-response could 

be investigated as well. 

Developing models for optimising time between doses 

In the background I highlighted that magnitude of vaccine administered (‘dose’) is not 

the only decision that is faced by vaccine developers and that can be decided using 

dosing running trials. The prime-boost interval may also affect vaccine efficacy and 

toxicity. Studies have found that changing this interval can affect immunogenicity 

[235]. Findings for two COVID-19 vaccines found no effect from the prime-boost 

interval on toxicity [236], but I do not consider this to be conclusive evidence for all 

vaccines. There is future work in developing models that may allow for the optimal 

prime-boost interval to be determined. Agent-based modelling of the immune system 

has been used previously to describe how optimal prime-boost interval could be 

determined [237]. However, this was a simulation study and thus suffers from the 

same weaknesses I have previously noted. They also only described optimising the 

prime-boost interval, with prime and boost doses fixed. Thus, future work would be 

required before modelling can be used to concurrently optimise prime dose, boost 

dose and prime-boost interval.  

Again, I believe that the findings of paper 5 could be generalised to suggest that the 

CoBe dose-optimisation approach may be effective here, as no parametric form for 

the relationship between interval-response would need to be assumed. Further 

simulation studies using scenarios which are specifically believed to reflect the 

interval-response relationship that may be expected for real life vaccines could be 

conducted to validate this. 

Investigating parametric dose-response modelling that uses Bayesian inference 

Previously in model-based drug decision making and literature regarding the 

continual reassessment method, both frequentist and Bayesian methodologies have 

been used and there is no strong guidance to suggest either is more preferable 

[200,238]. 
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Frequentist modelling typically implies that no prior is placed over the model 

parameters, and that point estimates (such as the maximum likelihood estimate or 

least squares estimate) are calculated for model parameters and model predictions. 

Using point estimates is sometimes called ‘likelihood-based’ inference [239]. 

Bayesian modelling typically implies that there are priors placed over model 

parameters and that posterior distribution will be determined for model parameters 

and predictions. Determining these posterior distributions is sometimes called 

‘Bayesian’ inference [160].  

With the exception of the CCBP models in paper 5, all modelling in this work was 

conducted using ‘likelihood-based’ inference. Whilst I believe that I showed that such 

models could be effective for optimising vaccine dose, there may be merit in 

exploring Bayesian inference. 

Bayesian inference for estimation of posteriors for model parameters and predictions 

could enable the use of techniques that have previously been described in the 

literature. Some clinical trials conducted in the CRM style have used these posteriors 

to define their stopping rules [217]. With regards to my work, Bayesian inference of 

model parameters in papers 4 may have allowed for a Thompson Sampling method 

of incorporating exploration into the trial dose selection rather than the SoftMax 

selection method described. This would have also been possible for the parametric 

dose-optimisation approach in paper 5. Whilst I showed in paper 4 that the SoftMax 

method of trial dose selection was effective, Thompson Sampling may be more 

parsimonious and intrinsically balance exploration and exploitation.  

I therefore believe that it would be worth conducting simulation studies to compare 

the effectiveness of Bayesian inference to that of likelihood-based inference for 

conducting clinical trials to determine optimal vaccine dose. However, likelihood-

based inference is still likely to be effective in practise, and one of the pioneers of 

Bayesian-modelling for dose-ranging trials Peter Thall suggested that Bayesian 

modelling has had limited use in practise despite a strong theoretical grounding, so 

such future research may be of less importance than the other topics mentioned 

here [107,240]. 
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Investigation into alternative methods of trial dose selection and ‘optimal design’ trial designs  

In paper 4 I showed that it may be important to include exploration in dose-ranging 

vaccine trials that used modelling and adaptive design. I investigated this further and 

found that this became even more important as trial size increased, see [appendix 

A.G.]. Within that paper and in paper 5 I used SoftMax selection, and whilst this 

appeared to improve dose selection over the fully continual standard method, it was 

a simple heuristic for incorporating exploration. The uniform dose selection method 

also appeared to be reasonably effective but led to high average regret.  

As noted above, Bayesian inference may allow for the use of Thompson Sampling 

based methods of trial dose selection. Augmentations of the Thompson Sampling 

method, such as the acceleratedTS or TS-UCB algorithms, could be investigated 

[241,242]. There may be other methods of trial dose selection and trial dose 

selection that could warrant investigation, in particular D-optimal design. 

If parametric models of dose-response are known, then D-optimal designs can be 

used [161,162,243]. Here, the method of trial dose selection is to distribute trial 

doses in a way that maximises the ‘expected information gain’ about model 

parameters. This can allow for ‘efficient’ use of trial participants and hence smaller 

clinical trials. D-optimal design has also been extended to ‘penalised D-optimal 

design’, which can balance the efficiency of the trial with the benefit to trial 

participants, theoretically leading to more ethical trial design [244]. D-optimal design 

can be used both prospectively to design a clinical trial or used to guide adaptive trial 

design [163]. 

Whilst D-optimal design has been suggested to be effective for optimising drug dose, 

it is a significantly more complicated methodology than any of those described in the 

papers contained in this work and has limited use in practical dose-finding [245]. 

Additionally, it is only feasible if a parametric model or models are known a-priori, 

including parameterisation, and if clinicians and modellers are confident that these 

models are accurate to the truth. Such assumptions may not be valid for all vaccine 

development, as discussed throughout this work. Regardless, such methods warrant 
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investigation. A brief description of D-optimal design and its application to one of the 

scenarios in paper 4 is given in Appendix A.E. 

Further development of mechanistic models and immunogenicity-efficacy models 

In this work, I chose to use statistical modelling methodologies to describe vaccine 

dose-response and to predict optimal vaccine dose. Whilst I believe that this was 

appropriate due to their simplicity and being comparatively more applicable to 

general vaccine development than mechanistic models of specific immunogenicity 

response, I also believe there is merit to additional research into mechanistic dose-

immunogenicity models. As described, these have already been discussed and 

appear to have been effective where they have been used.  

Additionally, for some immune responses there may not be a consensus on the 

underlying biology and hence the correct mechanistic dose-immunogenicity models. 

The works of Moore et al. [67] and Mayer et al. [69] propose a combined three 

different models of T cell proliferation. Moore in particular highlights that the antigen 

dependent model for T cell proliferation that was previously accepted may not well 

describe observed T cell response to a yellow fever vaccine. Kumbhari et al.’s 

proposed models [82,130] of murine CD8+ to an adjuvanted melanoma peptide 

vaccine [246] were again qualitatively different to the three described above. More 

works similar to that of Rhodes et al. [50] and Moore et al. [67], where multiple 

models are compared, would be beneficial to developing the field. Papers performing 

predictive validation of mechanistic dose-immunogenicity models would also be 

beneficial for demonstrating that such modelling may be effective for the purposes of 

dose-optimisation. However, these models are data dependent and the kind of data 

needed to parameterise a ‘useful’ mechanistic model is not regularly generated by 

traditional vaccine clinical trials. 

Relatedly, I believe again that immunogenicity-efficacy model development would 

also benefit IS/ID modelling, where such work is feasible, and that this is needed to 

maximise the potential of mechanistic dose-immunogenicity models for selecting 

optimal vaccine dose. 
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Developing software and practical frameworks to enable accessibility of IS/ID modelling 

methods 

IS/ID modelling and mathematical modelling for optimal vaccine dose selection 

appears theoretically promising based on the findings of this thesis and previous 

research. Use of these methodologies in practice would require the collaboration of 

vaccine developers with modellers, which may require an additional expense beyond 

what is typically required. Additionally, the models and methods previously 

investigated in drugs which require the assumption that efficacy increases with dose 

may not be justified, and so statistical analysis and trial design may have to be 

bespoke. This may be expensive, and vaccine developers may not be confident that 

the potential benefits of modelling justify these additional costs, complexities, and 

deviations from the standards of vaccine trial design.  

I therefore believe that an important piece of future work would be developing and 

validating statistical software that encompasses all elements of IS/ID modelling. This 

would be for the purpose of vaccine dose-response modelling and conducting 

vaccine dose finding studies. This software would aim to allow developers to both 

trust the modelling more through validation and to reduce the expense of including 

such methods. Ideally, such a piece of software would therefore be available under 

an open-source licence, simple to use an intuitive graphical user interface, and 

flexible enough to incorporate models for various paradigms of vaccine 

administration. Uptake of such software would also require promotion of the software 

and methods through publications and conferences to maximise the proportion of 

vaccine developers that would be aware that these tools were available.  

There are some examples of similar software that has been developed for MBDD. 

Software such as the Monolix, NONMEM, and Phoenix suite of tools are examples of 

such software for model-based drug development that provide simple graphical 

interfaces [247–249]. These however are not open-source. The ‘trialr’ and ‘crm’ R 

packages are open-source but require some familiarity with the R language to 

use[250,251]. 
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Additionally, in paper 5 I highlighted that CCBPs model and CoBe dose-optimisation 

approach may be effective for locating optimal vaccine dose. Neither of these are 

available as part of an available piece of statistical software that is designed for 

practical use. Until a piece of software is designed that would allow for practical 

implementation of this model and dose-optimisation approach, use of these may be 

limited. 

Further, there is also the need for practical frameworks to be developed to enable 

the use of these methodologies in practical vaccine dose selection. Model-based 

drug development is well validated, and organisations like the European Medicines 

Agency (EMA) have guidance for how pharmacokinetic/pharmacodynamic studies 

should be conducted [252]. However, the EMA guidelines for clinical evaluation of 

new vaccine discusses mathematical modelling only in the context of predicting the 

need for potential boosters after the primary series and provides no explicit guidance 

for the use of mathematical modelling in dose selection [253]. This may increase 

hesitancy to use these methods.  

Development of clinically relevant utility functions 

I argue in this work that vaccine dose optimisation should be considered as a 

multiple-objective optimisation problem, and that vaccine developers must specify 

quantitative utility functions in order for the ‘optimal’ dose to be meaningfully defined. 

Frameworks for developing utility functions that reflect clinician’s belief about the 

relative importance of vaccine related immunogenicity, toxicity or other objectives 

would likely be beneficial.  

Additionally, in this work I mainly discussed ‘a-priori’ multi-objective optimisation, 

where a utility function is chosen prior to data collection/independently of the 

observed data and modelling predictions. Multi-objective optimisation literature 

outside of dose selection has discussed ‘a-posteriori’ multi-objective optimisation 

[96]. Vaccine multi-objective dose optimisation using this method would not define a 

utility function prior to experimentation (or ever), after data collection and modelling 

key stakeholders would be told which doses are on the Pareto front along with the 

predictions of efficacy/toxicity/etc. for these doses, and then stakeholders would 
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state their preference between the doses based on these predictions. As these ‘a-

posteriori’ methods do not define a utility function prior to experimentation, the 

continual modelling or adaptive design methodologies that I have suggested to be 

useful in ensuring ethical clinical trials could not be used.  

Alternatively, ‘interactive’ multi-objective optimisation has also been discussed. 

Vaccine multi-objective dose optimisation using these methods would follow an 

adaptive trial design where the utility function is specified ‘a-priori’ but may be altered 

at interim stages of a trial. This allows for adaptive trial design whilst also allowing for 

changes in the utility function if clinicians believe that it no longer reflects their 

preferences. Such methodologies are typically complex to implement. Branke et al. 

[101] suggested a method of ‘interactive’ multi-objective optimisation, under which 

key stakeholders would be asked their order of preference between the doses based 

on current model prediction at interim time points. An ordinal regression model is 

calibrated using this preference data, and then the ordinal regression model is used 

as the utility function for choosing the doses to investigate in the next cohort. Such a 

method would likely complicate the clinical trial, and also means that the utility 

function is less explainable.  

The ‘a-priori’ approach to multi-objective optimisation is typically the most supported 

by classical multi-objective optimisation literature. ‘A-posteriori’ methods may be 

vulnerable to retrofitting of utility functions to justify the selection of a specific dose, 

are less well researched, and may not allow for adaptive design [96]. ‘Interactive’ 

methods are more complicated but may be beneficial for ensuring that utility 

functions are clinically meaningful. I therefore believe that IS/ID modelling would be 

most benefited by ‘a-priori’ consideration of multi-objective optimisation, and that 

future work in developing this is needed. Development of ‘interactive’ methods of 

adaptive trial design may also warrant future investigation.  

It would also be beneficial for any software that is designed to enable vaccine dose 

optimisation should include a variety of utility functions. Additionally, it would be 

preferable that such software should be able to guide developers towards selecting a 

clinically relevant utility function [Appendix A.C.]. I have created a simple Python 

project that does this for the flexible ‘weighted overall desirability’ utility function and 
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discussed by [244,254]  though this does not presently have a graphical user 

interface and requires some familiarity with the Python programming language to use 

[255]. 

I believe that defining a utility function, particularly a-priori of conducting dose 

ranging trials, is beneficial, and that future work is needed in developing clinically 

relevant utility functions. This is because it allows continual-modelling/adaptive trial 

design to be conducted in such a way as to find the dose and shows quantitative 

consideration of the potential effect that vaccine dose may have. 

Accounting for overestimation of utility  

Within chapter 5 I found that the model predicted utility at the predicted optimal dose 

may be ‘optimistically biased’, meaning that this predicted utility was typically higher 

than the true utility of that dose. Prior to conducting this study I had assumed, if the 

models used were appropriate, that the prediction of utility around the predicted 

optimal dose would be normally distributed around the true value for utility at that 

dose. However, these findings were consistent with other modelling studies [207–

209]. Further, as stated in that chapter, I do not believe that this effect is limited only 

to modelling based methods of optimisation and believe that it is also prevalent in 

direct comparison dose-optimisation approaches [Supplementary paper 4]. Clearly if 

estimates of vaccine efficacy and utility are biased by the process of selecting the 

predicted optimal dose, then these estimates should be used cautiously if being used 

to make policy decisions. In particular, epidemiological models have used and may 

continue to use clinical trial data to predict the societal benefit of a vaccination 

programme. If the estimates of vaccine utility are overestimated, then this could lead 

to incorrect estimations and sub-optimal disease prevention.  

Future work therefore needs to be done to ensure that vaccine efficacy and utility 

estimates are not biased. This needs to be investigated for both modelling and non-

modelling-based methods of vaccine dose optimisation. For non-modelling-based 

dose selection, if there are more than two dosing groups and the outcomes of 

interest are either binomially distributed or normally distributed with homoscedastic 

variance, then a Stein-Type estimator could be used [256]. However, a PubMed 
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search for [vaccin* AND Stein AND dos*] on the 13th of June 2022 yielded no 

results, implying that such methods may not be commonly used in vaccine dose-

ranging trials. 

For modelling-based dose selection, data could be split in two, half used to calibrate 

the model used to predict the optimal dose and half used to calibrate the model used 

to predict the utility at that dose [209]. This halving method means that less data are 

available to choose dose, which may not be desirable given the typically small size 

of vaccine dose ranging trials. Alternatively, cross-validation or parameter 

perturbation-based approaches have been suggested [208]. Cross validation 

resulted in an underestimation bias. The parameter perturbation method was shown 

to be unbiased and accurate in a simulation study, but the variances of these 

estimates were large and so estimates were less precise. Therefore, if it is desirable 

that vaccine dose-ranging trials provide accurate and precise estimates of vaccine 

efficacy/utility, then future work is required. 

Conclusion  
This thesis has expanded the field of IS/ID modelling for the optimisation of vaccine 

dose. I expanded this field to discuss vaccine dose optimisation as a multi-objective 

optimisation problem and showed that the assumption of a saturating dose-efficacy 

curve shape is not needed for mathematical modelling methods to be effective in 

predicting optimal vaccine dose. I developed and highlighted methods for model-

based adaptive clinical trial design which are novel in vaccine development, and, 

drawing on experience in drug development, are practically applicable. I also showed 

the potential for conducting more efficient, effective, and ethical vaccine dose-finding 

trials which is an essential consideration in a cost-heavy, high-pressure field of 

research. Further, I showed that model-averaging and non-parametric modelling 

methods could be used to locate optimal vaccine dose even if the true dose-efficacy 

curve shape is not known a-priori. The Correlated Beta dose optimisation approach 

that I developed is an innovative and simple approach for vaccine dose optimisation. 

This leverages the benefits of non-parametric modelling and adaptive design to 

optimise vaccine dose finding, and I believe has the potential for broad application 

for both single-administration and prime-boost administration. I believe that future 
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investigation and practical implementation of mathematical modelling is warranted 

and has the potential to not only improve vaccine dose selection but also allow for 

more ethical trial design. Mathematical IS/ID modelling may become an increasingly 

relevant tool in ensuring safe and effective vaccination campaigns. 
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Appendices 
Appendix A: Statistical Dose-Response Functions 
Given that I suggest that modelling may be beneficial for the purposes of selecting 

optimal vaccine dose, I include in this appendix a list of some example statistical 

models for dose-response that could be applied in vaccines. Any of these could be 

used as a statistical model for dose-efficacy of dose-toxicity relationships, though it 

may be preferable to use an increasing or saturating model for dose-toxicity. Note 

that again it may be reasonable to use a weighted average of the models described 

below, as described in chapter 5. Note also that this does not represent an 

exhaustive list, as there have been a large number of proposed dose-response 

functions [1,2]. 

Throughout this appendix I use  as the outcome observed for response y for 

individual  receiving dose .  

The below include only statistical models. Mechanistic models for dose-

immunological response may be beneficial as discussed in the main body of this 

thesis, but these likely depend on vaccine platform and immune response of interest. 

The below are also primarily models of single administration dose-response. 

I preface these dose-response models with a brief description of what is meant by 

‘dose’ and ‘response’. 

A.A.1. Dose and Dose Transformation 

It may be reasonable to transform the ‘raw’ value of doses before modelling. This 

can help with stabilising computation [3]. I list here some common dose 

transformations. These are of the form 

 

https://www.codecogs.com/eqnedit.php?latex=y_%7Bi,j%7D%230
https://www.codecogs.com/eqnedit.php?latex=j%230
https://www.codecogs.com/eqnedit.php?latex=dose_i%230
https://www.codecogs.com/eqnedit.php?latex=x_i%20=%20transform(dose_i)%230
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Where  is the transformed dose value that will be used for modelling and again 

 is the ‘raw’ dose value. In particular, using a log10 transform is common in 

drugs and in vaccines [4,5] 

Untransformed: 

 

Log10: 

 

Minmax 

 

Log10 Minmax 

 

Where  and  are respectively the smallest and largest possible dose 

that could be given. 

For chapters 2-4 the Log10 transform was used. Chapters 5 and 6 could be 

considered to be using any transform due to the nature of being simulation studies. 

However, specifically chapter 5 discussed a Log10 transform, and chapter 6 

assumed that either the Minmax or Log10 Minmax transforms were used. 

There is also the so called ‘codified’ transformation that can be used for discrete 

dosing domains [6]. This transform was not used in this work but is included due to 

its prevalence in the Continual Reassessment Method literature. For the D potential 

discretised raw doses the codified transform is given by. 

Codified: 

https://www.codecogs.com/eqnedit.php?latex=x_i%230
https://www.codecogs.com/eqnedit.php?latex=dose_i%230
https://www.codecogs.com/eqnedit.php?latex=x_i%20=%20transform(dose_i)%20=%20dose_i%230
https://www.codecogs.com/eqnedit.php?latex=x_i%20=%20transform(dose_i)%20=%20log_%7B10%7D(dose_i)%230
https://www.codecogs.com/eqnedit.php?latex=x_i%20=%20transform(dose_i)%20=%20%5Cfrac%7Bdose_i-dose_%7Bmin%7D%7D%7Bdose_%7Bmax%7D-dose_%7Bmin%7D%7D%230
https://www.codecogs.com/eqnedit.php?latex=x_i%20=%20transform(dose_i)%20=%20%5Cfrac%7Blog_%7B10%7D(dose_i)-log_%7B10%7D(dose_%7Bmin%7D)%7D%7Blog_%7B10%7D(dose_%7Bmax%7D)-log_%7B10%7D(dose_%7Bmin%7D)%7D%230
https://www.codecogs.com/eqnedit.php?latex=dose_%7Bmin%7D%230
https://www.codecogs.com/eqnedit.php?latex=dose_%7Bmax%7D%230
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In Figure A.A.1.1. I show the effect of these transformations using an example 

discretized dosing domain of 7 discretised potential doses: 100, 1000, 10000, 

100000, 1000000, 5000000, 10000000. The units are unimportant but could for 

example be Viral Particles.  

  

  

https://www.codecogs.com/eqnedit.php?latex=x_i%20=%20log_%7B10%7D(dose_i)%20-%5Csum_%7Bd=1%7D%5E%7BD%7D%20%5Cfrac%7Blog_%7B10%7D(dose_d)%7D%7BD%7D%230
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Figure A.A.1.1 Visualisation of dose transformations. 

 

A.A.2. Response 

In this work I considered data for which response was either discrete binary/ordinal 

or could be considered to be approximated for any given dose by a normal 

distribution. Further modelling techniques are available for other response 

distributions, for example if data are Poisson distributed [7], but will not be discussed 

here. 

Binary/Ordinal outcomes 

Here let there be K potential discrete and exclusive outcomes, and assume that the 

observations  are generated by  

 

With the model  defining the probability of observing the Kth discrete outcome. 

Note that for all  it must be true that 

 

 

For calibration of model parameters, typically the parameters are chosen that 

maximise the likelihood over the J individual data points 

https://www.codecogs.com/eqnedit.php?latex=y_%7Bi,j%7D%230
https://www.codecogs.com/eqnedit.php?latex=P(y_%7Bi,j%7D=k)=f_k(x_i)%230
https://www.codecogs.com/eqnedit.php?latex=f_k()%230
https://www.codecogs.com/eqnedit.php?latex=x_i%230
https://www.codecogs.com/eqnedit.php?latex=0%20%5Cleq%20f_k(x_i)%20%5Cleq%201%230
https://www.codecogs.com/eqnedit.php?latex=%20%5Csum_%7Bk=1%7D%5E%7BK%7D%20f_k(x_i)%20=%201%230
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Where  is the Kronecker delta function which equals 1 if  and 

otherwise equals 0.  

Normally Continuous Outcomes 

Here assume that the observations  are generated by l 

 

 

With dose-response model . For calibration of model parameters,  can often be 

ignored by choosing to minimise the sum of square error over the J individual data 

points  

 

This is not appropriate if heteroscedasticity is expected, but homoscedasticity is 

often assumed [8,9].  

A.A.3. Dose-Response Models 

Here I list a non-exhaustive subset of dose-response models. For each model I give 

a brief description of the model and its potential use, the formula  that defines it, 

and a visualisation of the model under three different parameterisations.  

Note that many of these models use so-called ‘link’ functions to map a latent function 

into another range. These link functions do not have parameters that need to be 

estimated. These link functions are given here for brevity in the rest of this section. 

The logit-1(or sometimes simply ‘logit’) link function maps from  onto  

and is given by [10]  

https://www.codecogs.com/eqnedit.php?latex=Likelihood%20=%20%5Cprod_%7BJ=1%7D%5E%7BJ%7D%20%5Csum_%7Bk=1%7D%5E%7BK%7D%20P(y_%7Bi,j%7D=k)%20%5Cdelta(y_%7Bi,j%7D=k)%230
https://www.codecogs.com/eqnedit.php?latex=%5Cdelta(y_%7Bi,j%7D=k)%230
https://www.codecogs.com/eqnedit.php?latex=y_%7Bi,j%7D=k%230
https://www.codecogs.com/eqnedit.php?latex=y_%7Bi,j%7D%230
https://www.codecogs.com/eqnedit.php?latex=y_%7Bi,j%7D%20=%20f(x_i)+%5Cepsilon_%7Bi,j%7D%230
https://www.codecogs.com/eqnedit.php?latex=%5Cepsilon_%7Bi,j%7D%20%5Coverset%7B%5Cmathrm%7Biid%7D%7D%7B%5Csim%7D%20N(0,%5Csigma%5E2)%230
https://www.codecogs.com/eqnedit.php?latex=f()%230
https://www.codecogs.com/eqnedit.php?latex=%5Csigma%230
https://www.codecogs.com/eqnedit.php?latex=SSE=%20%20%5Csum_%7Bj=1%7D%5E%7BJ%7D%20(y_%7Bi,j%7D%20-%20f(x_i))%5E2%230
https://www.codecogs.com/eqnedit.php?latex=f(x_i)%230
https://www.codecogs.com/eqnedit.php?latex=(-%5Cinfty,%5Cinfty)%230
https://www.codecogs.com/eqnedit.php?latex=(0,1)%230
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The SoftPlus link function [11] maps from  onto  and is given by 

 

Figure A.A.3.1 visualises these link functions. 

 

  

Figure A.A.3.1. Visualisation of two link functions.  

For the below models,  are model parameters and  is the mathematical 

constant. For each model, a visualisation of 3 different parameterisations of that 

dose-response model is given.  

  

https://www.codecogs.com/eqnedit.php?latex=logit%5E%7B-1%7D(z)%20=%20%5Cfrac%7Be%5E%7Bz%7D%7D%7B1+e%5E%7Bz%7D%7D%230
https://www.codecogs.com/eqnedit.php?latex=(-%5Cinfty,%5Cinfty)%230
https://www.codecogs.com/eqnedit.php?latex=(0,%5Cinfty)%230
https://www.codecogs.com/eqnedit.php?latex=softplus(z)%20=%20log(1+e%5Ez)%230
https://www.codecogs.com/eqnedit.php?latex=a,b,c,d%230
https://www.codecogs.com/eqnedit.php?latex=e%230
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Four- parameter Sigmoid Saturating  

The four-parameter sigmoid saturating model is a flexible model for describing 

saturating dose-response models[12–14]. This has the form  

 

with 

 

With .  

 

 

Figure A.A.3.2 Visualisation of the Four Parameter Sigmoid Saturating Model  

https://www.codecogs.com/eqnedit.php?latex=f(x_i)%20=%20d%20+(c-d)%20logit%5E%7B-1%7D(z)%230
https://www.codecogs.com/eqnedit.php?latex=z=a+bx_i%230
https://www.codecogs.com/eqnedit.php?latex=c%3Ed%20%5Cgeq%200%230
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Three-parameter Sigmoid Saturating  

The three-parameter sigmoid saturating model is equivalent to the four-parameter 

sigmoid saturating model with . This is reasonable if it can be assumed that 

 

And is the saturating model assumed throughout this work. This model has the form  

 

with 

 

 

Figure A.A.3.3. Visualisation of the Three-Parameter Sigmoid Saturating Model  

https://www.codecogs.com/eqnedit.php?latex=d%20=%200%230
https://www.codecogs.com/eqnedit.php?latex=%5Clim_%7Bx_i%20%5Cto%20-%5Cinfty%7D%20f(x_i)%20=%200%230
https://www.codecogs.com/eqnedit.php?latex=f(x_i)%20=%20c%20*%20logit%5E%7B-1%7D(z)%230
https://www.codecogs.com/eqnedit.php?latex=z=a+bx_i%230
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Two-Parameter Sigmoid Saturating/Logistic Regression  

The two-parameter sigmoid saturating model is equivalent to the three-parameter 

sigmoid saturating model with . This is reasonable if it can be assumed that 

 

This assumption may not be reasonable for modelling dose-efficacy for vaccines, as 

it is possible that some individuals may be non-responders regardless of dose. This 

is also equivalent to logistic regression if being used to model the probability of a 

binary outcome. This model has the form  

 

with 

 

 

Figure A.A.3.4. Visualisation of the Two Parameter Sigmoid Saturating Model 

https://www.codecogs.com/eqnedit.php?latex=c%20=%200%230
https://www.codecogs.com/eqnedit.php?latex=%5Clim_%7Bx_i%20%5Cto%20%5Cinfty%7D%20f(x_i)%20=%201%230
https://www.codecogs.com/eqnedit.php?latex=f(x_i)%20=%20logit%5E%7B-1%7D(z)%230
https://www.codecogs.com/eqnedit.php?latex=z=a+bx_i%230
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Linear 

This may be a reasonable model for describing dose-response where the response 

can be assumed to increase linearly with dose and the range of the response 

variable is  [1]. 

This model has the form  

 

With  implying that response is increasing with dose. 

 

Figure A.A.3.5. Visualisation of the Linear Model  

https://www.codecogs.com/eqnedit.php?latex=%5B-%5Cinfty,%20%5Cinfty%5D%230
https://www.codecogs.com/eqnedit.php?latex=f(x_i)%20=%20a%20+%20b*x_i%230
https://www.codecogs.com/eqnedit.php?latex=a%3E0%230
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Hill 

This model is another example of a potential saturating curve and is sometimes 

called the ‘Hill-Langmuir’ model. This has been commonly used in drug dose-

response modelling [15,16]. This model should only be used if all transformed doses 

 are greater than 0. This model has the form  

 

with all parameters greater than 0.  

 

Figure A.A.3.6. Visualisation of the Hill Model  

https://www.codecogs.com/eqnedit.php?latex=x_i%230
https://www.codecogs.com/eqnedit.php?latex=f(x_i)%20=%20%5Cfrac%7Ba%20*%20x_i%5Eb%7D%7Bc+x_i%5Eb%7D%230
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Linear Saturating 

This model is another example of a potential saturating curve, however this one is 

not sigmoidal as it has no turning point in its derivative [16]. This is also known as 

the Michaelis-Menten dose response model. This can also be considered as the Hill-

Langmuir model with . This model should only be used if all transformed doses 

 are greater than 0. This model has the form  

 

with all parameters greater than 0. 

 

 

Figure A.A.3.7. Visualisation of the Linear Saturating Model 

  

https://www.codecogs.com/eqnedit.php?latex=b=1%230
https://www.codecogs.com/eqnedit.php?latex=x_i%230
https://www.codecogs.com/eqnedit.php?latex=f(x_i)%20=%20%5Cfrac%7Ba%20*%20x_i%7D%7Bc+x_i%7D%230
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Quadratic  

This may be a reasonable model for describing peaking dose-response where the 

range of the response variable is  [1]. For modelling binary outcome 

probabilities or immunological responses where only, positive responses are 

plausible the latent quadratic or SoftPlus quadratic dose-response models should be 

used. This model has the form  

 

For the model to be limited to describing a peaking dose response the parameters 

should be bounded to . 

 

 

Figure A.A.3.8. Visualisation of the Quadratic Model 

  

https://www.codecogs.com/eqnedit.php?latex=%5B-%5Cinfty,%20%5Cinfty%5D%230
https://www.codecogs.com/eqnedit.php?latex=f(x_i)%20=%20a%20+%20b*x_i+c*x_i%5E2%230
https://www.codecogs.com/eqnedit.php?latex=b%3E0,%20c%3C0%230
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Exponential 

This may be a reasonable model for describing dose response where the dose-

domain is limited to doses that are too small for any saturating or peaking effects to 

be observed [1]. This model has the form  

 

With . 

It is possible to set  if it is believed 

 

 

 

Figure A.A.3.9.Visualisation of the Exponential Model 

  

https://www.codecogs.com/eqnedit.php?latex=f(x_i)%20=%20d+c*e%5E%7Bb*x_i-1%7D%230
https://www.codecogs.com/eqnedit.php?latex=b%3E0,%20c%3E0,%20d%20%5Cgeq%200%230
https://www.codecogs.com/eqnedit.php?latex=d=0%230
https://www.codecogs.com/eqnedit.php?latex=%5Clim_%7Bx_i%20%5Cto%20-%5Cinfty%7D%20f(x_i)%20=%200%230
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Power 

This may be a reasonable model for describing dose response where the dose-

domain is limited to doses that are too small for any saturating or peaking effects to 

be observed[1]. This model should only be used if all transformed doses  are 

greater than or equal to 0. This model has the form  

 

With . 

It is possible to set  if it is believed 

 

 

Figure A.A.3.10.Visualisation of the Power Model 

  

https://www.codecogs.com/eqnedit.php?latex=x_i%230
https://www.codecogs.com/eqnedit.php?latex=f(x_i)%20=%20d+c*x_i%5Ea%230
https://www.codecogs.com/eqnedit.php?latex=a%3E0,%20c%3E0,%20d%20%5Cgeq%200%230
https://www.codecogs.com/eqnedit.php?latex=d=0%230
https://www.codecogs.com/eqnedit.php?latex=%5Clim_%7Bx_i%20%5Cto%20-%5Cinfty%7D%20f(x_i)%20=%200%230
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Gamma PDF 

This is the model that was used to represent a peaking dose-response curve in 

chapter 2. This has been used historically in [4]. Up to reparameterisation, this model 

has the form  

 

With all parameters greater than 0. 

 

 

Figure A.A.3.11.Visualisation of the Gamma PDF Model 

  

https://www.codecogs.com/eqnedit.php?latex=f(x_i)%20=%20c*x%5E%7Ba-1%7D*e%5E%7B-b*x%7D%230
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Latent Quadratic 

This may be a reasonable model for describing peaking dose-response where the 

range of the response variable is . For modelling binary outcome probabilities 

this is reasonable, and thus this model was used in chapters 5 and 6 to model dose-

efficacy. This model has the form  

 

with 

 

For the model to be limited to describing a peaking dose response the parameters 

should be bounded to . 

 

Figure A.A.3.12.Visualisation of the Latent Quadratic Model 

  

https://www.codecogs.com/eqnedit.php?latex=%5B0,%201%5D%230
https://www.codecogs.com/eqnedit.php?latex=f(x_i)%20=%20logit%5E%7B-1%7D(z)%230
https://www.codecogs.com/eqnedit.php?latex=z%20=%20a%20+%20b*x_i+c*x_i%5E2%230
https://www.codecogs.com/eqnedit.php?latex=b%3E0,%20c%3C0%230
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Latent Linear SoftPlus 

This may be a reasonable model for describing dose-response where the response 

can be assumed to increase linearly with dose but cannot take a non-positive value. 

For modelling immunological responses where only positive responses are plausible 

this is reasonable. I am not aware of any dose-response modelling studies where 

this model has been used but seems intuitively reasonable. This model has the form  

 

with 

 

With  implying that response is increasing with dose. 

 

 

Figure A.A.3.13.Visualisation of the Latent Linear SoftPlus Model 

  

https://www.codecogs.com/eqnedit.php?latex=f(x_i)%20=%20softplus(z)%230
https://www.codecogs.com/eqnedit.php?latex=z%20=%20a%20+%20b*x_i%230
https://www.codecogs.com/eqnedit.php?latex=a%3E0%230
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Latent Quadratic SoftPlus 

This may be a reasonable model for describing peaking dose-response where the 

range of the response variable is . For modelling immunological responses 

where only positive responses are plausible this is reasonable. I am not aware of any 

dose-response modelling studies where this model has been used but seems 

intuitively reasonable. This model has the form  

 

with 

 

or the model to be limited to describing a peaking dose response the parameters 

should be bounded to  

 

 

Figure A.A.3.14.Visualisation of the Latent Quadratic SoftPlus Model 

 

https://www.codecogs.com/eqnedit.php?latex=(0,%20%5Cinfty%5D%230
https://www.codecogs.com/eqnedit.php?latex=f(x_i)%20=%20softplus(z)%230
https://www.codecogs.com/eqnedit.php?latex=z%20=%20a%20+%20b*x_i+c*x_i%5E2%230
https://www.codecogs.com/eqnedit.php?latex=b%3E0,%20c%3C0%230
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Piecewise linear 

Piecewise linear models can be used to describe dose-response through linear 

interpolation between so-called ‘knots’ [17]. 

This model has the form: 

 

Where  are respectively the   (transformed) dose and response values for 

the z knots.  

 

Figure A.A.3.15. Visualisation of the Piecewise Linear Model. The coloured points show the 
knots for their respective parameter values 

Note that often the  parameters are chosen a-priori to reduce the number of 

parameters and hence reduce the risk of overfitting to limited data.  

Artificial Neural Network 

Artificial neural networks have become highly relevant mathematical models for 

prediction for many areas of science over the last decade. The implementation and 

architecture of such models can vary [18]. They are so called ’universal function 

https://www.codecogs.com/eqnedit.php?latex=%20f(x_i)=%20%5Cbegin%7Bcases%7D%20%5Cbeta_1%20&%5Ctext%7Bfor%20%7D%20x_i%20%3C%20%5Calpha_1,%5C%5C%5C%5C%20%5Cbeta_j%20+(%5Cfrac%7B%5Cbeta_%7Bj+1%7D-%5Cbeta_j%7D%7B%5Calpha_%7Bj+1%7D-%5Calpha_j%7D)(x_i-%5Calpha_j)%20&%5Ctext%7Bfor%20%7D%20%5Calpha_j%20%5Cleq%20x_i%3C%20%5Calpha_%7Bj+1%7D%20,%5C%5C%5C%5C%20%5Cbeta_z%20%20&%5Ctext%7Bfor%20%7D%20%5Calpha_z%20%5Cleq%20x_i%20%5Cend%7Bcases%7D%20%230
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_j,%20%5Cbeta_j%230
https://www.codecogs.com/eqnedit.php?latex=jth%230
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%230
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approximators’, meaning that with sufficient data and sufficient computation they can 

approximate any function, which could include dose-response curves. These models 

typically have a large number of parameters, which given the small number of dosing 

groups typically investigated in vaccine dose ranging could lead to issues related to 

overfitting. 

Despite this issue, such models have previously been suggested for modelling the 

dose-response relationship between dose of food-borne pathogens and probability of 

infection [19]. They found that these could outperform other statistical dose-response 

models for a collection of four test datasets. Additionally, recent research by 

Nakkiran et al. into the ‘double descent’ hypothesis might imply large neural network 

models do not show the loss of predictive validity that overfitting is typically 

associated with. These methods have been more recently suggested again with 

particular interest in incorporating individual covariates into dose-response 

predictions [20]. 

CCBP 

This is the non-parametric model used in chapter 6. See chapter 6 for details. 

Gaussian Process and Product of Beta Prior 

These are non-parametric models like the CCBP model discussed in chapter 6. 

Given the complexity of these models, they will not be detailed here. Please see [21] 

for details. 

Isotonic and Double Isotonic Regression 

This is another form of non-parametric modelling, where isotonic regression is 

potentially useful when it can be assumed that the relationship between dose and 

response is strictly increasing but also not able to be effectively approximated by 

established parametric models. Intuitively, for the D discretised and transformed 

doses , the model predicts the mean response that has previously been 

observed at that dose. If any model predictions between adjacent doses would 

violate monotonicity, then the predictions of the model are replaced by a weighted 

https://www.codecogs.com/eqnedit.php?latex=x_1,...,x_D%230
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average of the model predictions that violate monotonicity. If there are no data for a 

dose, then typically linear interpolation is used.  

Double isotonic regression is similar but specifies a specific ‘peak’ dose  for which 

dose-response is assumed to be increasing below and decreasing beyond. 

Therefore, this makes the assumption of a peaking dose-response curve, but does 

not use a specific parametric form. Rather than specifying only one dose as this 

threshold, D double isotonic regression models would be calibrated to the data, with 

each of the D potential dose having exactly one model for which it is the peak dose. 

Whichever of these D models best describes the observed data is used to predict 

optimal dose.  

Figure A.A.3.16 shows an example of a double-isotonic regression model being used 

to describe simulated dose-response data. A more detailed description and 

discussion of the application of double isotonic regression in conducting dose-finding 

trials is given by Zang, Lee, and Yuang [22], and where this form of modelling was 

shown to be comparable or better than a parametric modelling strategy for many of 

the scenarios in their simulation study. 

 

 

https://www.codecogs.com/eqnedit.php?latex=x_j%230
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Figure A.A.3.16.Visualisation of the double-isotonic regression model being used to describe a 
simulated set of dose-response data (simulated true dose-response curve in black). 

Probit and Proportional Odds 

These models are used for describing ordinal outcome variables. Given the 

complexity of these models, they will not be detailed here. Please see [23] for 

details. The probit model was used in chapter 5 to model ordinal toxicity. 
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Power Skeleton  

The ‘power skeleton’ dose-response model is distinct from the other models 

discussed in that it is entirely dependent on expert predictions [24]. This model can 

only be used for a discrete dosing domain, and can only be used for predicting 

probabilities of events. Rather than using a dose-transformation as described above, 

for each discrete dose  an expert prediction  of the probability of response for 

that dose must be elicited. This is called the ‘skeleton’, and there has been previous 

discussion of how best to choose this skeleton. 

The model then has the form 

 

With  as the only parameter, that can take any real number value.  implies that 

the expert predictions were correct for all doses,  implies the expert 

underestimated the probability of response for all doses and   implies the expert 

overestimated the probability of response for all doses. This model is commonly 

used for dose-toxicity studies which use the continual reassessment method. 

 

Figure A.A.3.17. Visualisation of the power skeleton model. 

 

https://www.codecogs.com/eqnedit.php?latex=dose_j%230
https://www.codecogs.com/eqnedit.php?latex=p_j%230
https://www.codecogs.com/eqnedit.php?latex=P(response%7Cdose_j)%20=%20%7Bp_j%7D%5E%7Bexp(a)%7D%230
https://www.codecogs.com/eqnedit.php?latex=a%230
https://www.codecogs.com/eqnedit.php?latex=a=0%230
https://www.codecogs.com/eqnedit.php?latex=a%3C0%230
https://www.codecogs.com/eqnedit.php?latex=a%3E0%230
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Appendix B: Pareto Optimality 
In this work I have discussed the concept of multi-objective optimisation problems in 

vaccine dose-optimisation, and largely propose the use of utility functions to define 

‘optimal dose’. This was beneficial for chapters 5 and 6, for which I was interested in 

how well mathematical modelling-based dose-optimisation approaches can locate 

optimal dose. However, when discussing utility functions and multi-objective 

optimisation it is important to understand the concept of Pareto optimality as this 

underpins all theory regarding multi-objective optimisation problems[25–27]. 

A.B.1. Dominated Solutions and the Pareto Fronts 

Optimisation problems (OPs) exist as a class of problem that involves choosing a 

‘best’ option over some space of possibilities. These problems can be written as 

optimise w. r. t x ∈ 𝐷 

f(x) 

Where D is the decision space of possible options, x is a possible option in this 

space, and f() is the function that I wish to optimise, sometimes called the objective 

function. ‘Optimise’ typically means maximise or minimise. There is typically no 

distinction between maximising and minimising, as any optimistion problem written 

as 

maximise w. r. t x ∈ 𝐷 

f(x) 

Can equally be considered as 

minimise w. r. t x ∈ 𝐷 

g(𝑥) =  −f(x) 
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An example vaccine dose-optimisation problem could be  

maximise w. r. t dose ∈ 𝐷 

efficacy(dose) 

There are many OPs where there is not a single optimisation function that must be 

considered, but multiple. Suppose that I have two OPs. 

maximise w. r. t  x ∈ 𝐷 

𝑓1(𝑥) 

maximise w. r. t  x ∈ 𝐷 

𝑓 (𝑥) 

It is possible that I would like to choose some  x \𝑖𝑛 𝐷 to optimise both OPs. In this 

section I discuss such OPs, which are referred to as multi-factoral optimisation 

problems (MOPs). 

We may consider the writing the above MOP as 

maximise w. r. t  x ∈ 𝐷 

𝑓1(𝑥), 𝑓  (𝑥) 

Which is to say that I would like to choose some x ∈  𝐷 that both maximises 𝑓1(𝑥) 

and 𝑓 (𝑥). This is not a well-defined MOP unless there exists such an x ∈ 𝐷 that 

does so. 

 

To highlight this problem, consider table A.B.1.1. Clearly x1 is optimal compared to 

x2, as 𝑓1(𝑥1) < 𝑓1(𝑥 ) and 𝑓 (𝑥1) < 𝑓 (𝑥 ). 
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x 𝑓1(𝑥) 𝑓 (𝑥 ) 

𝑥1 50 30 

𝑥  70 40 

Table A.B.1.1. First example of Pareto optimality  

 

x 𝑓1(𝑥) 𝑓 (𝑥 ) 

𝑥1 60 50 

𝑥  80 20 

Table A.B.1.2. Second example of Pareto optimality  

 

Now instead consider table A.B.1.2. Here x1 nor x2 neither can be considered truly 

‘optimal’ relative to the other, as x1 better maximises 𝑓 (𝑥).and x2 better maximises  

𝑓1(𝑥). Hence there is no clear ‘optimal’, and I can only consider ‘Pareto optimality’ 

and ‘domination’. 

We say that ‘ xi dominates  xj’ to mean that, for all objectives,  xi is at least as good 

as  xj, and that there is at least one objective for which xi is preferable to xj. xi is 

‘Pareto optimal’ for a MOP if it is not dominated by any other x ∈  𝐷. So, in table 

A.B.1.1, only x2 is Pareto optimal. In table A.B.1.2, both x1 and x2 are Pareto optimal. 

In table A.B.1.3, x1 is dominated by x2 and x3, x2 is not dominated by any other  ∈  𝐷, 

x3 is not dominated by any other  𝑥 ∈ 𝐷, and x4 is dominated by all other  ∈  𝐷. Hence 

here only x2 and x3 are Pareto optimal. 
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x 𝑓1( ) 𝑓 ( ) 

𝑥1 60 50 

𝑥  60 60 

𝑥  70 55 

𝑥  20 10 

Table A.B.1.3. Third example of Pareto optimality  

The set of points that are Pareto optimal is called the Pareto front. The main purpose 

of considering the Pareto front is that only solutions within this set can be called 

optimal, and that any solution within this set could be considered optimal depending 

on the utility function [28]. This will be relevant for the question of maximising 

efficacy and minimising toxicity.  

A.B.2. Pareto optimality in multi-objective optimisation for single administration vaccines 

Pareto optimality is important when considering single dose optimisation and informs 

why a utility function is needed. Considering figure A.B.2.1, I see that when dose-

efficacy and dose-toxicity are saturating, all doses are Pareto optimal, and so 

defining optimal dose as the dose which maximises efficacy and minimises toxicity is 

not sufficient to choose a dose as ‘optimal’ using these dose-response curves. When 

dose-efficacy is peaking, all doses greater than the dose which maximises efficacy 

are dominated by the dose that maximises efficacy, and hence all below this point 

are Pareto optimal [figure A.B.2.2].  
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Figure A.B.2.2. Example peaking dose-efficacy (left), dose-toxicity(middle), and 

resultant efficacy-toxicity (right) plots. For the efficacy-toxicity plot, Pareto optimal 

doses are in orange and non-Pareto optimal doses are in blue (here all doses less 

than that which maximises efficacy are Pareto optimal). 

 
A.B.3. Pareto optimality in multi-objective optimisation for prime-boost vaccines 

I here provide an example Pareto front for a prime-boost administration vaccine. I 

assume that dose-efficacy has been modelled using the 2 dimensional variant of the 

latent quadratic model as described in chapter 6, and after calibration the model 

parameters have been estimated as a, b1, b2, c1, c2 = -1, 5, 4, 7, 4. Similarly, assume 

that dose-toxicity has been modelled using the 2 dimensional variant of the latent 

linear model as described in chapter 6, and after calibration the model parameters 

have been estimated as a, b1, b2, = -2, 1, 3. Thus the results predicted dose-efficacy 

and dose-toxicity contours are as shown in Figure A.B.3.1.  
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FigureA.B.3.1. Example peaking dose-efficacy (left) and dose-toxicity(right) contours. Yellow 
regions represent increased probability. 

 

The Pareto front can be calculated and is shown in figure A.B.3.2. For any dose not 

on the Pareto front (red line) a dose can be chosen that is either more efficacious 

with equal/lower toxicity or less toxic with equal/greater efficacy. For example, a non-

Pareto optimal dose of (dose 1, dose 2) = (0.0, 0.6) would have 85% efficacy and 

45% toxicity. (dose 1, dose 2) = (0.45, 0.45) would have the same toxicity (=45%), 

but 95% efficacy. Thus, assuming that there are no other objectives other than 

efficacy and toxicity, no decision maker could rationally select a dose of (0.0, 0.6) as 

‘optimal’ regardless of how they weighted efficacy and toxicity.  

Note that, as expected, the dose that is ‘optimal’ as defined by the utility contour 

utility function defined in paper 5 indeed does lie on the Pareto front [figure 

A.B.3.2.c].  
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(a) (b) 

 
(c) 

Figure A.B.3.2. Example peaking dose-efficacy (a) and dose-toxicity(b) contours. The dose-
utility contour (c) is shown for the case where utility is defined by the utility contour utility function used 
in chapter 6. Yellow regions represent increased probability/utility. The red line shows the Pareto 
front, and the red dots show: the dose that minimises toxicity irrespective of efficacy, the dose that 
maximises efficacy irrespective of toxicity, and the dose that maximises the utility contour utility 
function used in chapter 6.  

 

The doses and resulting Pareto front can also be plotted on an efficacy/toxicity curve 

[Figure A.B.3.3]. This may better show what is meant by the Pareto optimal front. 

Note that the majority of doses are not on the Pareto optimal front, in contrast to the 

observations in the single-administration case. A utility function is still needed to 

meaningfully define ‘optimal’ dose.  
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Figure A.B.3.3. Example efficacy-toxicity plots and Pareto front for the example in AB.3. The 
gold point is the theoretical utopia point, with 100% efficacy and 0% toxicity.  

 
A.B.4. Utility functions in relation to the Pareto front. 

Throughout this work I argue for the use of utility functions to define ‘optimal dose’ in 

MOPs, and here discuss the relationship of these to the Pareto front. For the 

efficacy-toxicity and efficacy-toxicity-cost utility functions in paper 3, the scalar 

aggregation utility function used in paper 4 and the utility contour utility functions 

used in paper 5, any the solution (‘dose’) that maximises the utility function will lie on 

the Pareto front according to model predictions.  

First note that these utility functions satisfy: 

for all i ∈ [1, 𝑛], 𝑓 ≺ 𝑓∗ ⟺ 𝑈(𝑓1, … , 𝑓 , … , 𝑓 )  ≺ 𝑈(𝑓1, … , 𝑓∗, … , 𝑓 ) 

Where ≺means ‘is less preferable’, so 𝑓 ≺ 𝑓∗ means that 𝑓 is less preferable that 𝑓∗ 

for objective i. I here prove that for utility functions satisfying this statement, a 

solution that uniquely maximises the utility function of model predictions will be a 

solution on the Pareto front according to the model predictions.  
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For a proof by contradiction assume that x is the solution that uniquely amongst the 

set of doses D maximises U satisfying the above statement but does not lie on the 

Pareto front of elements of D according to model predictions. This implies that there 

exists a solution y ∈  𝐷 s. t. 

𝑓 (𝑥) ≼ 𝑓 (𝑦)𝑓𝑜𝑟𝑎𝑙𝑙 𝑖 ∈ [1, 𝑛] 

And 

𝑓 (𝑥)  ≺  𝑓 (𝑦)𝑓𝑜𝑟𝑎𝑙𝑙 𝑖 ∈ [1, 𝑛] 

Then, as 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ [1, 𝑛], 𝑓 ≺ 𝑓∗  ⟺ 𝑈(𝑓 , … , 𝑓 , … , 𝑓 ) ≺  𝑈(𝑓 , … , 𝑓∗, … , 𝑓 )  

We have that 

U(f1(x),…,fl(x),…,fn(x)) ≺ U(fi(𝑦),…,fl(𝑦),…,fn(𝑦)) 

And so x does not uniquely maximise U amongst set D, a contradiction.  

Thus all ‘optimal doses’ that were calculated within the chapters of this work must be 

Pareto optimal according to model predictions and data. Note that this does not 

guarantee that such doses were Pareto optimal for the ‘true’ efficacy and toxicity 

probabilities. Where predicted efficacy/toxicity are not accurate, the predicted optimal 

dose might not lie on the true Pareto front.  
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Appendix C: Utility Functions  
Throughout this work I have suggested multiple ‘utility functions’ that could be used 

to choose optimal vaccine dose. These allow for a quantitative definition of a dose 

being ‘optimal’, particularly in the multi-objective optimisation setting. Given that one 

of the key recommendations based on chapter 4 is that a utility function should be 

chosen a-priori of a clinical trial, it seems relevant to provide some examples of 

potential utility functions.  

A.C.1. Threshold Functions 

A threshold utility function involves setting threshold bounds on each response or 

value of interest. These bounds should define whether a certain response or value of 

interest is acceptable. If all of the responses or values of interest are within their 

specific bounds for some dose, then that dose would be considered ‘acceptable’. 

Formally this is given by 

 
Where for each response/value of interest  of the  responses/values of interest, 

 is the model predicted probability of that response occurring for some dose 

or model predicted value at some dose,  is the 1xR vector of lower 

bounds for the R responses, and   is the 1xR vector of upper bounds 

for the R responses.  is the Kronecker delta function which equals 1 if 

 and otherwise equals 0.  

For each response, statistical modelling or analysis is used to either predict a 

maximum likelihood estimate of or posterior distribution description of each response 

for each dose.  

If a maximum likelihood estimate is used, then any dose for which the maximum 

likelihood estimate would be considered ‘acceptable’ is also considered acceptable., 

see figure A.C.1.1. An optimal dose is then chosen from this set of acceptable 

doses, usually by choosing either the smallest or largest such dose for the 

acceptable set, or by choosing the dose within the acceptable set that maximises 

https://www.codecogs.com/eqnedit.php?latex=Utility(dose,%5Cbar%7B%5Ctheta%7D_l,%5Cbar%7B%5Ctheta%7D_u)%20=%5Cprod_%7Br=1%7D%5E%7BR%7D%20%5Cdelta%20%5B%5Ctheta_u%5Er%3C%5Cpi%5Er(dose)%3C%5Ctheta_u%5Er%5D%20%230
https://www.codecogs.com/eqnedit.php?latex=r%230
https://www.codecogs.com/eqnedit.php?latex=R%230
https://www.codecogs.com/eqnedit.php?latex=%5Cpi%5Er(dose)%230
https://www.codecogs.com/eqnedit.php?latex=%5Cbar%7B%5Ctheta%7D_l%20=%20(%5Ctheta_l%5E1,...%5Ctheta_l%5ER)%230
https://www.codecogs.com/eqnedit.php?latex=%5Cbar%7B%5Ctheta%7D_u%20=%20(%5Ctheta_u%5E1,...%5Ctheta_u%5ER)%230
https://www.codecogs.com/eqnedit.php?latex=%5Cdelta(a%3Cb%3Cc)%230
https://www.codecogs.com/eqnedit.php?latex=a%3Cb%3Cc%230
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some secondary utility function (for example maximising some probability of 

efficacy). See [23] for an example of this.  

 

Figure A.C.1.1. Acceptable set for P(e)>0.5 and P(t)<0.3.  

If a posterior distribution of model parameters is used rather than calculating the 

maximum likelihood or maximum a-posteriori estimates or parameters; then instead 

a Bayesian decision protocol [29,30] can be used. The probability that a dose is 

‘acceptable’ can be found by sampling from the posterior distributions. The optimal 

dose is then defined either as  

x the dose which is predicted to have the maximum posterior probability of 

being acceptable. 

x The dose which maximises some other function of the response/values of 

interest whilst having the posterior probability of being acceptable that is 

greater than some threshold. 

See [31] for a further description. 

Note that one theoretical pitfall with using threshold utility functions is that there may 

be discontinuity in the dose-utility function [figure A.C.1.2]. This is where a relatively 

small change in dose leads to a large change in utility. This also means that a tiny 
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change in model parameters could lead to the same dose being predicted as optimal 

or unacceptable. It is possible that discontinuity in the dose-utility function or model 

predicted utility for certain doses being sensitive to small parameter value changes 

may not be practically relevant for dose optimisation, but I note this here for 

consideration. Further, sampling from a posterior distribution of model parameters 

may be reasonable to reduce this parameter sensitivity.  

 
Figure A.C.1.2. A small change in parameter values can lead to a large change in utility for a 
dose when using a threshold utility function. Red dots show utility for the same dose for two 
models of toxicity with small parameter differences. One is nearly optimal, one has the worst possible 
utility.  

A.C.2. Scaled Threshold Functions 

Takahashi and Suzuki recommend a utility function for determining optimal dose for 

biologic agents [21]. This function uses thresholds similar to the above functions but 

penalises doses for being outside of these bounds rather than deeming them as 

entirely unacceptable. The utility function is given by 

 

Where ,  are the relative importance of ensuring toxicity and efficacy are within 

the bounds, ,  are the model predicted probabilities of efficacy and 

toxicity for some dose,  is the threshold for maximum acceptable probability of 

toxicity and  is the threshold for minimum acceptable probability of efficacy. 

https://www.codecogs.com/eqnedit.php?latex=Utility(dose,%5Ctheta%5ET,%5Ctheta%5EE)%20=%20w_t%20%5Cdelta%20%5B%5Cpi%5ET(dose)%3E%5Ctheta%5ET%5D(%5Cpi%5ET(dose)-%5Ctheta%5ET)%5E2%20+%20%5C%5C%5C%5C%20w_E%20%5Cdelta%20%5B%5Cpi%5EE(dose)%3C%5Ctheta%5EE%5D(%5Cpi%5EE(dose)-%5Ctheta%5EE)%5E2%20%230
https://www.codecogs.com/eqnedit.php?latex=w_t%230
https://www.codecogs.com/eqnedit.php?latex=w_e%230
https://www.codecogs.com/eqnedit.php?latex=%5Cpi%5ET(dose)%230
https://www.codecogs.com/eqnedit.php?latex=%5Cpi%5EE(dose)%230
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta%5ET%230
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta%5EE%230
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Note that for Takahashi and Suzuki’s utility function a lower value of   

means that a dose is more optimal. The best possible value for  is 0. 

The authors of this function estimate the posterior probabilities  and   

and choose as the optimal dose is the dose that minimises the expected value of 

. 

This utility function does not have these issues with discontinuity in the dose-utility 

functions that are observed with normal threshold functions but does mean that it 

does not improve utility for a dose to have increased efficacy above the threshold 

value or decreased toxicity below the threshold value.  

A.C.3. Scalar aggregation utility functions 

In chapter 5 I discussed a simple, interpretable utility function that is calculated as 

the weighted sum of the probabilities of binary response outcomes being observed. 

This was an example of a ‘scalar aggregation’ utility function [32]. The formula for 

this utility function is  

 

Where  is the probability of observing response  for a given dose and  is 

the relative importance of the response .  implies that response  is considered 

to be beneficial, and  implies that response  is considered to be detrimental. 

Therefore, for this utility function an increased value of  means that a 

dose is more optimal.  

There are two main benefits to this type of utility function. Firstly, the dose that 

maximises this utility function is guaranteed to be on the Pareto optimal front [32]. 

Secondly, the values of  are interpretable. If  , then this is 

easily interpreted as saying that one efficacy response would be required to 

counterbalance two individuals experiencing vaccine related toxicity. Likewise, if f 

, then this is easily interpreted as saying that I 

should  consider observing some binary cellular immune response outcome to be 

https://www.codecogs.com/eqnedit.php?latex=Utility(dose)%230
https://www.codecogs.com/eqnedit.php?latex=Utility(dose)%230
https://www.codecogs.com/eqnedit.php?latex=%5Cpi%5ET(dose)%230
https://www.codecogs.com/eqnedit.php?latex=%5Cpi%5EE(dose)%230
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Utility(dose,%5Ctheta%5ET%20+0.%091,%5Ctheta%5EE-0.1)%230
https://www.codecogs.com/eqnedit.php?latex=Utility(dose)%20=%20%20%5Csum_%7Bi=1%7D%5E%7Bk%7D%20w_i%20*%20%5Cpi%5Ei(dose)%230
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cpi%5Ei(dose)%230
https://www.codecogs.com/eqnedit.php?latex=i%230
https://www.codecogs.com/eqnedit.php?latex=w_i%230
https://www.codecogs.com/eqnedit.php?latex=i%230
https://www.codecogs.com/eqnedit.php?latex=w_i%3E0%230
https://www.codecogs.com/eqnedit.php?latex=i%230
https://www.codecogs.com/eqnedit.php?latex=w_i%3C0%230
https://www.codecogs.com/eqnedit.php?latex=i%230
https://www.codecogs.com/eqnedit.php?latex=Utility(dose)%230
https://www.codecogs.com/eqnedit.php?latex=w_i%230
https://www.codecogs.com/eqnedit.php?latex=w_%7Befficacy%7D%20=%20-%202%20*w_%7Btoxicity%7D%230
https://www.codecogs.com/eqnedit.php?latex=w_%7Bcellular%5C_efficacy%7D%20=%203%20*w_%7Bhumoural%5C_efficacy%7D%230
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three times more important that observing some binary humoral immune response 

for a given vaccine. This interpretability could be beneficial, as it may mean that 

vaccine developers can trust that maximising this utility is important. 

A.C.4. Desirability functions 

Desirability functions have been used in various bodies of literature as utility 

functions [33–35]. These allow for any number of potential response outcomes to be 

weighed against each other in a way that is interpretable. Another useful aspect of 

these desirability functions is that they are usable regardless of whether response 

outcomes are probabilities of binary responses or continuous outcome measures. 

These are detailed here [35] but are explained in the vaccine dosing context below.  

A desirability function di(ri) transforms all possible values for response ri into the 

range [0,1] where di(ri)=0 denotes that value of ri is not at all desirable and di(ri) =1 

denotes that ri is maximally desirable. Each  is for the purpose of this work is a 

function of dose. Three common functions are used for desirability.  

The ‘bigger-is-better’ desirability function, which aims to maximise response ri: 

 

The ‘smaller-is-better’ desirability function, which aims to minimise response ri: 

 

 

And the ‘target’ desirability function, which aims to have ri close to some target value 

ci: 

https://www.codecogs.com/eqnedit.php?latex=r_i%230
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=d_i(r_i)%20=%20%5Cleft.%20%5Cbegin%7Bcases%7D%200,%20&%20%5Ctext%7Bfor%20%7D%20r_i%20%5Cleq%20r_%7Bi,min%7D%20%5C%5C%5C%5C%20(%5Cfrac%7Br_i%20-%20%20r_%7Bi,min%7D%20%7D%7B%20r_%7Bi,max%7D%20-%20r_%7Bi,min%7D%20%7D)%5E%7Bm_i%7D,%20&%20%5Ctext%7Bfor%20%7D%20r_%7Bi,min%7D%20%20%5Cleq%20r_i%20%20%5Cleq%20r_%7Bi,max%7D,%200%20%5Cleq%20m_i%20%5C%5C%5C%5C%201,%20&%20%5Ctext%7Bfor%20%7D%20r_%7Bi,max%7D%20%20%5Cleq%20r_i%20%5Cend%7Bcases%7D%230
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=d_i(r_i)%20=%20%5Cleft.%20%5Cbegin%7Bcases%7D%201,%20&%20%5Ctext%7Bfor%20%7D%20r_i%20%5Cleq%20r_%7Bi,min%7D%20%5C%5C%5C%5C%20(%5Cfrac%7Br_i%20-%20%20r_%7Bi,max%7D%20%7D%7B%20r_%7Bi,min%7D%20-%20r_%7Bi,max%7D%20%7D)%5E%7Bm_i%7D,%20&%20%5Ctext%7Bfor%20%7D%20r_%7Bi,min%7D%20%20%5Cleq%20r_i%20%5Cleq%20c_i,%200%20%5Cleq%20m_i%20%5C%5C%5C%5C%200,%20&%20%5Ctext%7Bfor%20%7D%20r_%7Bi,max%7D%20%20%5Cleq%20r_i%20%5Cend%7Bcases%7D%230
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In all these functions  and  are ‘specification limits’ which represent the 

values for which desirability is not altered by  decreasing below or increasing above 

respectively.  and  determine the steepness of the desirability curve, see figure 

A.C.4.1.1 

 

  
(a) (b) 

 
(c) 

Figure A.C.4.1.1 Visualisation of common desirability functions for three different 
parameterisations. 

 

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=d_i(r_i)%20=%20%5Cleft.%20%5Cbegin%7Bcases%7D%200,%20&%20%5Ctext%7Bfor%20%7D%20r_i%20%5Cleq%20r_%7Bi,min%7D,r_%7Bi,max%7D%20%20%5Cleq%20r_i%20%20%5C%5C%5C%5C%20(%5Cfrac%7Br_i%20-%20%20r_%7Bi,min%7D%20%7D%7B%20c_i%20-%20r_%7Bi,min%7D%20%7D)%5E%7Bm_i%7D,%20&%20%5Ctext%7Bfor%20%7D%20r_%7Bi,min%7D%20%20%5Cleq%20r_i%20%20%5Cleq%20c_i,%200%20%5Cleq%20m_i%20%5C%5C%5C%5C%20(%5Cfrac%7Br_i%20-%20%20r_%7Bi,max%7D%20%7D%7B%20c_i%20-%20r_%7Bi,max%7D%20%7D)%5E%7Bt_i%7D,%20&%20%5Ctext%7Bfor%20%7D%20c_i%20%5Cleq%20r_i%20%5Cleq%20r_%7Bi,max%7D%20,%200%20%5Cleq%20t_i%20%20%5Cend%7Bcases%7D%230
https://www.codecogs.com/eqnedit.php?latex=r_%7Bi,min%7D%230
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=r_%7Bi,max%7D%230
https://www.codecogs.com/eqnedit.php?latex=r_i%230
https://www.codecogs.com/eqnedit.php?latex=m_i%230
https://www.codecogs.com/eqnedit.php?latex=t_i%230
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An example use case for the ‘bigger-is-better’ function may be maximising efficacy or 

some immunogenicity response. An example use case for the ‘smaller-is-better’ 

function would be minimising toxicity. An example for using the ‘target’ desirability 

function could relate the practicalities of administering a specific dose, where 

accurate measurements become impossible below a specific dose, and above a 

specific dose the volume of vaccine cannot be given all at once. 

For the ‘bigger-is-better’ and ‘smaller-is-better’ desirability functions values for  can 

be respectively calculated as  

 

And 

 

Where  is between  and  and is the response that would be deemed 

50% desirable.  

These response specific desirability functions can then be combined to form “overall 

desirability functions”. These can be unweighted or weighted. 

A.C.4.1. Unweighted Overall Desirability 

Harrington suggested the first overall desirability function in 1965. This is given by 

the geometric means of the k response specific desirability functions, as below 

 

Where each  is the specific desirability of the  response elicited by that dose, 

. Note that this means that if for any of the  responses the desirability 

, then the overall utility/desirability of that dose 

  .  

https://www.codecogs.com/eqnedit.php?latex=m_i%230
https://www.codecogs.com/eqnedit.php?latex=m_i=log(%5Cfrac%7Br_%7B50%7D%20-%20%20r_%7Bi,min%7D%20%7D%7B%20r_%7Bi,max%7D%20-%20r_%7Bi,min%7D%20%7D)%20%5Cdiv%20log(0.5)%230
https://www.codecogs.com/eqnedit.php?latex=m_i=log(%5Cfrac%7Br_%7B50%7D%20-%20%20r_%7Bi,max%7D%20%7D%7B%20r_%7Bi,min%7D%20-%20r_%7Bi,max%7D%20%7D)%20%5Cdiv%20log(0.5)%230
https://www.codecogs.com/eqnedit.php?latex=r_%7B50%7D%230
https://www.codecogs.com/eqnedit.php?latex=r_%7Bi,min%7D%230
https://www.codecogs.com/eqnedit.php?latex=r_%7Bi,max%7D%230
https://www.codecogs.com/eqnedit.php?latex=Utility(Dose)%20=D(dose)%20=%20(d_1*d_2*%5Cldots*d_k)%20%5E%20%7B%5Cfrac%7B1%7D%7Bk%7D%7D%230
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=d_i%230
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=ith%230
https://www.codecogs.com/eqnedit.php?latex=d_i(r_i(dose))%230
https://www.codecogs.com/eqnedit.php?latex=i%230
https://www.codecogs.com/eqnedit.php?latex=d_i(r_i(dose))%20=%200%230
https://www.codecogs.com/eqnedit.php?latex=Utility(Dose)%20=D(dose)%20=%200%230
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A.C.4.2. Weighted Overall Desirability 

The above overall desirability function is reasonable if all K responses are deemed 

equally of importance. However, in some cases this may not be the case. For 

example, it is possible in vaccine dose-finding trials that both maximising cellular and 

humoral response is deemed important. However, it may be that humoral response 

is deemed a better correlate of protection than cellular response. In this case, it 

would be preferable for the desirability function to reflect this.  

For this purpose, the ‘weighted overall desirability’ function can be used. 

 

Each of the K response specific desirability’s are raised to the power of some , 

with an increase in the value of  reflecting an increase in the importance of the  

response relative to the other responses.  

A further discussion on the application of weighted overall desirability as a utility 

function in medicine is given by [36]. This also discusses how values for  can be 

chosen and gives an alternative method of combining the desirability for different 

responses which is more similar to the utility function used in chapter 5.  

I note that the ‘utility contour’ utility function used in chapter 6 could be considered 

an example of a ‘weighed overall desirability’ utility function. 

A.C.4.3. An example of using utility and overall desirability functions 

Here I give a narrative example of how overall desirability functions as a utility 

function for optimal vaccine dose selection. Everything presented in this section is 

meant as demonstrative and does not use real data nor reflect any discussions had 

with clinicians. 

Imagine that a vaccine developer would like to find the optimal dose for a novel 

single-administration vaccine. The developer determines that there are three binary 

response outcomes that are of interest. Two of these,  and   are 

binary immunological responses that the developer would like to maximise the 

https://www.codecogs.com/eqnedit.php?latex=Utility(Dose)%20=D(dose)%20=%20(d_1%5E%7Bw_1%7D*d_2%5E%7Bw_2%7D*%5Cldots*d_k%5E%7Bw_k%7D)%20%5E%20%7B%5Cfrac%7B1%7D%7B%5Csum%7Bw_k%7D%7D%7D%230
https://www.codecogs.com/eqnedit.php?latex=w_i%20%3E%200%230
https://www.codecogs.com/eqnedit.php?latex=w_i%230
https://www.codecogs.com/eqnedit.php?latex=ith%230
https://www.codecogs.com/eqnedit.php?latex=w_i%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_1%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_2%230
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probability of. The third, , is a binary toxicological outcome, say occurrence of 

a grade 3 adverse event, that the developer would like to minimise the probability of. 

Through discussion with regulators and key stake holders, the developer is able to 

determine that for approval of their vaccine the following must be true: 

x The probability of observing  must be greater than 50% 

x The probability of observing  must be greater than 40% 

x The probability of observing   must be less than 30% 

Therefore  

. 

Further discussion shows that the key stakeholders would prefer the probability of 

observing   to be less than 10%, but that reducing this probability below 10% 

is no more preferable than reducing it to 10%. With regards to the probabilities of 

 and , any increase in probability of efficacy is desirable. 

Therefore .  

In order to calculate , key stakeholders are asked to 

propose a value for each response that would be 50% desirable. The key 

stakeholders decide that  

would be reasonable. Therefore, these values can be calculated as above to be 

. 

Based on this discussion, the following response specific desirability functions are 

decided upon. 

x  should use the ‘bigger-is-better’ desirability function with 

 
x  should use the ‘bigger-is-better’ desirability function with  

 

https://www.codecogs.com/eqnedit.php?latex=toxicity%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_1%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_2%230
https://www.codecogs.com/eqnedit.php?latex=toxicity%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_%7B1,min%7D%20=%200.5%20(50%25),%20efficacy_%7B2,min%7D%20=%200.4%20(40%25),%20toxicity_%7Bmax%7D%20=%200.3%20(50%25)%230
https://www.codecogs.com/eqnedit.php?latex=toxicity%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_1%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_2%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_%7B1,max%7D%20=%20efficacy_%7B2,max%7D%20=%201.0%20(100%25),%20toxicity_%7Bmin%7D%20=%200.1%20(10%25)%230
https://www.codecogs.com/eqnedit.php?latex=m_%7Befficacy_1%7D,m_%7Befficacy_2%7D,%20m_%7Btoxicity%7D%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_%7B1,50%7D%20=%200.75,%20efficacy_%7B2,50%7D%20=0.6,%20toxicity_%7B50%7D%20=0.15%230
https://www.codecogs.com/eqnedit.php?latex=m_%7Befficacy_1%7D%20=%201.00,%20m_%7Befficacy_2%7D%20=%200.63,%20m_%7Btoxicity%7D%20=%202.41%230
https://www.codecogs.com/eqnedit.php?latex=d_%7Befficacy_1%7D%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_%7B1,min%7D%20=%200.5%20(50%25),%20efficacy_%7B1,max%7D%20=%201.0%20(100%25),%20m%20=%201.00%20%230
https://www.codecogs.com/eqnedit.php?latex=d_%7Befficacy_2%7D%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_%7B2,min%7D%20=%200.4%20(40%25),%20efficacy_%7B2,max%7D%20=%201.0%20(100%25),%20m%20=%200.63%20%230
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x  should use the ‘smaller-is-better’ desirability function with  

 

The probability-desirability curves are shown in Figure A.C.4.3. 

 

 
Figure A.C.4.3.1 Probability-Desirability curves for the three responses of interest in the 
narrative example. The black dotted lines are used to show the 50% desirable values for each 
response at  with the thick black 
line at desirability = 50% 

 

Through further discussion, the key stakeholders decide to use the unweighted 

overall desirability function to combine these desirability functions and to define the 

utility function used to determine the overall ‘optimal’ dose. One stakeholder believes 

that minimising  and maximising  is more important than maximising 

, and would also like to know which dose would have been selected for a 

weighted overall desirability function with . 

https://www.codecogs.com/eqnedit.php?latex=d_%7Btoxicity%7D%230
https://www.codecogs.com/eqnedit.php?latex=toxicity_%7Bmin%7D%20=%200.1%20(10%25),%20toxicity_%7Bmax%7D%20=%200.3%20(30%25),%20m%20=%202.41%20%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_%7B1,50%7D%20=%200.75,%20efficacy_%7B2,50%7D%20=0.6,%20toxicity_%7B50%7D%20=0.15%230
https://www.codecogs.com/eqnedit.php?latex=toxicity%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_1%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_2%230
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=w_%7Befficacy_1%7D%20=%204,%20w_%7Befficacy_2%7D%20=%201,%20w_%7Btoxicity%7D%20=%202%230
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The dosing domain is decided upon (here I use the range [0,1] as discussed in 

chapter 6), and a clinical trial is then conducted. Data are gathered and models for 

dose- , dose-  and dose-  are found using maximum-

likelihood estimates of the parameters. The dose-response curves and resulting 

response specific dose-desirability curves are shown in figure A.C.4.3.2. 

  
(a) (b) 

 
Figure A.C.4.3.2 Predicted dose-response and resulting dose-desirability curves for the three 
responses of interest in the narrative example. Black lines represent model-predicted dose 
response. Coloured lines present model-predicted dose-desirability. Saturating functions of dose 
response for all three responses were used here for simplicity, but these techniques generalise to any 
dose-response function. 

 

These response specific dose-desirability curves are then combined to find the 

overall dose-desirability. The dose-desirability curves for both the unweighted overall 

desirability and weighted desirability are shown in figure A.C.4.3.3 

 

https://www.codecogs.com/eqnedit.php?latex=efficacy_1%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_2%230
https://www.codecogs.com/eqnedit.php?latex=toxicity%230
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Figure A.C.4.3.3. Overall dose-desirability for the narrative example using an unweighted (left) 
and weighted (right) overall dose desirability function.  

The dose that should then be predicted as optimal using the unweighted overall 

desirability as the utility function would be 0.63. This would have model-predicted 

response probabilities 68.6%, 70.9%, and 13.6% with response specific desirabilities 

of 0.66, 0.62, and 0.53 for  respectively. 

If the weighted overall desirability function with 

 had been used as the utility function for 

selecting dose, the dose that would be predicted to be optimal would be 0.66. This 

would have model-predicted response probabilities 72.3%, 72.7%, and 15.4% with 

response specific desirabilities of 0.72, 0.73 and 0.48 for 

  respectively. This change in the utility function would 

have suggested choosing a slightly larger dose relative to the unweighted overall 

desirability function in this case. 

We could also consider this example from the perspective of Pareto Optimality, as 

discussed in Appendix B. Rather than considering specific utility functions, 

generating Pareto front plots using the model predictions can be useful to show the 

trade-off between maximising the probability of the two efficacy outcomes and 

minimising the probability of the toxicity outcome. These are shown in figure 

A.C.4.3.4. Note that due to the saturating dose-efficacy and dose-toxicity curves all 

doses lie on the Pareto optimal front, as noted in Appendix B.  

 

https://www.codecogs.com/eqnedit.php?latex=eficacy_1,%20efficacy_2,%20toxicity%230
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=w_%7Befficacy_1%7D%20=%204,%20w_%7Befficacy_2%7D%20=%201,%20w_%7Btoxicity%7D%20=%202%230
https://www.codecogs.com/eqnedit.php?latex=efficacy_1,%20efficacy_2,%20toxicity%230
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Figure A.C.4.3.4. Pareto fronts for the example. The full Pareto front is shown (top-left) across all 
three outcome dimensions, with the other plots showing the three 2 dimensional projections of this 
front. The Pareto front is in blue. The black dot shows the ‘utopia point’ which is the most optimal 
point in the outcome space (100% probability of both efficacy outcomes, 0% probability of toxicity 
outcome), which may not be and in this example indeed is not possible to achieve with any of the 
possible doses. The red and green dots represent the doses that would be predicted optimal using 
the unweighted and weighted overall desirability functions discussed above. 
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Appendix D: Additional supplementary documents 
A.D.1: Additional Supplementary documents for paper 2 

Supplementary Figures 

Response Type: Antibody 

Vector Species: B 

Host Species: Mouse 

Route of Administration: IM 

Paper 1269:  

Day 56 

 
Paper 1492:  

Day 14 

 
Host Species: Human 

Route of Administration: IM 

Paper 441:  

Day 28 

 
Paper 467:  

Day 60 
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Paper 633 

Day 28 

 
Vector Species: C 

Host Species: Rabbit 

Route of Administration: IM 

Paper 744:  

Day 28 

 
Host Species: Mouse 

Route of Administration: IM 

Paper 461:  

Day 7 

 
Day 14 
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Paper 574:  

Day 7 

 
Day 21 

 
Day 35 

 
Day 49 

 
Day 63 

 
Day 77 
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Day 91 

 
Day 119 

 
Day 147 

 
Day 161 

 
Paper 1492:  

Day 14 

 
Paper 2531:  
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Day 10 Ad-gD 

 
Day 10 Ad-gD-E1A 

 
Route of Administration: SQ 

Paper 936:  

Day 35 - Wildtype 

 
Day 35 - Codon Optimized 

 
Host Species: Human 

Route of Administration: IM 

Paper 140 

Day 28 

 
Paper 249:  

Day 14 
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Day 28 

 
Day 180 

 
Host Species: Monkey 

Route of Administration: IM 

Paper 1877: 

Day 28 

 
Day 56 

 
Day 84 
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Day 112 

 
Day 140 

 
Host Species: Rat 

Route of Administration: IM 

Paper 2531:  

Day 10 Ad-gD 

 
Day 10 Ad-gD-E1A 

 
Vector Species: D 

Host Species: Mouse 

Route of Administration: IM 

Paper 578:  
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Day 28 - Ad26 Zaire 

 
 

Day 28 - Ad26 Angola 

 
Day 28 - Ad26 S/G 

 
Day 28 - Ad26 Ravn 

 
Day 28 - Ad26 I.C 

 
Host Species: Human 

Route of Administration: IM 

Paper 594: 

Day 14 
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Vector Species: E 

Host Species: Mouse 

Route of Administration: IM 

Paper 1539:  

Day 14 - Anti PA 

 
Day 28 - Anti PA 

 
Day 42 - Anti PA 

 
 

Day 14 - Anti LT 

 
Day 28 - Anti LT 
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Day 42 - Anti LT 

 
Paper 2919:  

Day 20 

 
 

Host Species: Human 

Route of Administration: IM 

Paper 417: 

Day 14 

 
Day 21 

 
Response Type: T cell 

Vector Species: B 

Host Species: Mouse 
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Route of Administration: IM 

Paper 578:  

Day 28 - Ad35 Zaire 

 

 
 

 

Day 28 - Ad35 Angola 

 
Day 28 - Ad35 S/G 

 
Day 28 - Ad35 Ravn 

 
Day 28 - Ad35 I.C 

 
Paper 1269:  

Day 56 
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Host Species: Human 

Route of Administration: IM 

Paper 441:  

Day 28 

 
 

Paper 633:   

Day 14 

 
Day 28 

 
Vector Species: C 

Host Species: Mouse 

Route of Administration: IM 

Paper 2916:  

Day 25 - Wildtype pp65 
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Day 25 - Modified pp65 

 
Day 25 - Wildtype Ad-IE1 

 
Day 25 - Modified Ad-IE1 

 
Day 25 - Wildtype Ad-IE2 

 
Day 25 - Modified Ad-IE1 

 
Host Species: Monkey 

Route of Administration: IM 

Paper 1474:  

Day 8 - Ad5 



 
434 
 

 
Day 24 - Ad5 

 
Day 8 - Ad6 

 
Day 24 - Ad6 

 
Paper 1877:  

Day 28 

 
Day 168 
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Vector Species: D 

Host Species: Mouse 

Route of Administration: IM 

Paper 578:  

Day 28 - Ad26 Zaire 

 
 

Day 28 - Ad26 Angola 

 
 

Day 28 - Ad26 S/G 

 
Day 28 - Ad26 Ravn 

 
Day 28 - Ad26 I.C 
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Paper 924  

Day 14 

 
Host Species: Human 

Route of Administration: IM 

Paper 594:  

Day 14 

 
Vector Species: E 

Host Species: Mouse 

Route of Administration: IM 

Paper 305:  

Day 21 

 
Host Species: Human 

Route of Administration: IM 

Paper 417:  

Day 14 
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Day 21 

 
Paper 686: 

Day 14 

 
Day 21 

 
Day 90 

 
Response Type: CD4 

Vector Species: B 

Host Species: Mouse 

Route of Administration: IM 

Paper 1201:  

Day 14 
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Host Species: Human 

Route of Administration: IM 

Paper 309:  

Day 28 - Ag85A/b 

 
Day 28 - Tb10.4 

 
Vector Species: C 

Host Species: Monkey 

Route of Administration: IM 

Paper 1474:  

Day 8 - Ad5 

 
Day 8 - Ad6 
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Vector Species: D 

Host Species: Mouse 

Route of Administration: IM 

Paper 924  

Day 14 

 
 

Response Type: CD8 

Vector Species: B 

Host Species: Mouse 

Route of Administration: IM 

Paper 1201: Stage Antigen 1 

Day 14 

 
Paper 1269:  

Day 56 

 
Paper 1492:  



 
440 
 

Day 14 

 
Route of Administration: SQ 

Paper 555:  

rAd35 

Day 14 - Tetramer Staining 

 
Day 21 - Tetramer Staining 

 
Day 28 - Tetramer Staining 

 
Day 35 - Tetramer Staining 

 
Day  70 - Tetramer Staining 



 
441 
 

 
Day 23 - Cytokine Staining 

 
Day 70 -Cytokine Staining 

 
Host Species: Human 

Route of Administration: IM 

Paper 309:  

Day 28 - Ag85A/b 

 
Day 28 - Tb.104 

 
Vector Species: C 

Host Species: Mouse 

Route of Administration: IM 

Paper 461:  

Day 7 HA-518 
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Day 14 HA-518 

 
Day 7 NP-147 

 
Day 14 NP-147 

 
Paper 1039  

Day 8 -  Ad-CAGoptZGP 

 
Day 8 -  Ad-AdCMVZGP 

 
Paper 1492:  

Day 14 
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Paper 3018 

Day 7 

 
Day 15 

 
Day 30 

 
Route of Administration: SQ 

Paper 555: C 

rAd5 

Day 14 - Tetramer Staining 

 
Day 21 - Tetramer Staining 
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Day 28 - Tetramer Staining 

 
Day 35 - Tetramer Staining 

 
Day  70 - Tetramer Staining 

 
Day 23 - Cytokine Staining 

 
Day 70 -Cytokine Staining 

 
ChAd3 

Day 14 - Tetramer Staining 
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Day 21 - Tetramer Staining 

 
Day 28 - Tetramer Staining 

 
Day 35 - Tetramer Staining 

 
Day  70 - Tetramer Staining 

 
Day 23 - Cytokine Staining 

 
Day 70 -Cytokine Staining 
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Paper 2980:  

Day 60 

 
Host Species: Monkey 

Route of Administration: IM 

Paper 1474:  

Day 8 - Ad5 

 
Day 8 - Ad6 

 
Vector Species: D 

Host Species: Mouse 

Route of Administration: IM 

Paper 924 

Day 14 
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Route of Administration: SQ 

Paper 555 

rAd28 

Day 14 - Tetramer Staining 

 

 
 

Day 21 - Tetramer Staining 

 
Day 28 - Tetramer Staining 

 
Day 35 - Tetramer Staining 

 
Day  70 - Tetramer Staining 
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Day 23 - Cytokine Staining 

 
Day 70 -Cytokine Staining 

 
Vector Species: E 

Host Species: Mouse 

Route of Administration: IM 

Paper 2919:  

Day 10 

 
Day 20 

 
 

Route of Administration: SQ 

Paper 555:  

ChAd63 

Day 14 - Tetramer Staining 
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Day 21 - Tetramer Staining 

 
Day 28 - Tetramer Staining 

 
Day 35 - Tetramer Staining 

 
Day  70 - Tetramer Staining 

 
Day 23 - Cytokine Staining 

 
Day 70 -Cytokine Staining 
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Vector Species: G 

Host Species: Mouse 

Route of Administration: SQ 

Paper 555:  

sAd11 

Day 14 - Tetramer Staining 

 
 

Day 21 - Tetramer Staining 

 
Day 28 - Tetramer Staining 

 
Day 35 - Tetramer Staining 

 
Day  70 - Tetramer Staining 
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Day 23 - Cytokine Staining 

 
Day 70 -Cytokine Staining 

 
Vector Species: None 

Host Species: Mouse 

Route of Administration: SQ 

Paper 555:  

sAd16 

Day 14 - Tetramer Staining 

 
Day 21 - Tetramer Staining 

 
Day 28 - Tetramer Staining 
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Day 35 - Tetramer Staining 

 
Day  70 - Tetramer Staining 

 
Day 23 - Cytokine Staining 

 
Day 70 -Cytokine Staining 

 
Response Type: CD4+ IFN+% 

Vector Species: B 

Host Species: Human 

Route of Administration: IM 

Paper 309:  

Day 28  
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Paper 441:  

Day 28 

 
Response Type: CD8+ IFN+% 

Vector Species: B 

Host Species: Human 

Route of Administration: IM 

Paper 309:  

Day 28 

 
Paper 441:  

Day 28 

 
Vector Species: E 

Host Species: Mouse 

Route of Administration: IM 

Paper 1801:  

Day 10 
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Response Type: CD4+ TNF+% 

Vector Species: B 

Host Species: Human 

Route of Administration: IM 

Paper 309: 

Day 28 

 
Paper 441:  

Day 28 

 
Response Type: CD8+ TNF+% 

Vector Species: B 

Host Species: Human 

Route of Administration: IM 

Paper 441:  

Day 28 

 
Response Type: CD4+ Il2+% 

Vector Species: B 

Host Species: Human 

Route of Administration: IM 
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Paper 309:  

Day 28 

 
Paper 441:  

Day 28 

 
Response Type: CD8+ Il2+% 

Vector Species: B 

Host Species: Human 

Route of Administration: IM 

Paper 441:  

Day 28 

 
Response Type: CD4+ Il17+% 

Vector Species: B 

Host Species: Human 

Route of Administration: IM 

Paper 309:  

Day 28 

 
Response Type: Virus Neutralisation Titre 

Vector Species: B 
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Host Species: Mouse 

Route of Administration: IM 

Paper 1269:  

Day 56 

 
Route of Administration: SQ 

Paper 2030:  

Day 14 

 
Vector Species: C 

Host Species: Mouse 

Route of Administration: IM 

Paper 461:  

Day 7 

  
Day 14 

 
Paper 574:  

Day 7 
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Day 21 

 
Day 35 

 
Day 49 

 
Day 63 

 
Day 77 

 
Day 119 
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Day 161 

 
Paper 669: 

Day 28 

 
Paper 1039  

Day 8 - Ad-CAGoptZGP 

 
Route of Administration: SQ 

Paper 2505:  

Day 10 

 
Day 14 
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Host Species: Cattle 

Route of Administration: IM 

Paper 2841:  

Day 7 

 
Vector Species: D 

Host Species: Human 

Route of Administration: IM 

Paper 594:  

Day 14 

 
Host Species: Rat 

Route of Administration: IM 

Paper 1343:  

Day 28 
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Vector Species: E 

Host Species: Mouse 

Route of Administration: SQ 

Paper 2030:  

Day 14 

 
Host Species: Human 

Route of Administration: IM 

Paper 686:  

Day 14 

 
Day 21 

 

Figure S.Figures.B. The remaining plotted calibrated models. Left shows the saturating curve and 
right shows the peaking curve.  

Supplementary Tables 

T Cells 

Group 
(Adenoviral 
Species/Host 

Species/Administration 
Route) 

Paper Days post 
inoculation 

Absolute 
Peaking 
Evidence 

(<10) 

Strong 
Peaking 
Evidence 

(10-6) 

Slight 
Peaking 
Evidence 

(2-6) 

No 
Evidence 

Slight 
Saturating 
Evidence 

(2-6) 

Strong 
Saturating 
Evidence 

(10-6) 

Strong 
Saturating 
Evidence 

(<10) 

B/Mouse/IM 578 
28    x    

28    x    
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28    x    

28 x       

28    x    

1269 56    x    

B/Human/IM 

441 28  x      

633 
14    x    

28    x    

C/Mouse/IM 2916 

25    x    

25    x    

25    x    

25     x   

25     x   

25     x   

C/Monkey/IM 

1474 

8    x    

24    x    

8    x    

24    x    

1877 
28    x    

168    x    

D/Mouse/IM 
578 

28    x    

28    x    

28    x    

28      x  

28    x    

924 14    x    

D/Human/IM 594 14    x    

E/Mouse/IM 305 21    x    

E/Human/IM 

417 
14    x    

21    x    

686 

14    x    

21    x    

90  x      

Count 1 2 0 27 3 1 0 
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Table S2. Evidence for T cell response 

 

CD4 
Group 

(Adenoviral 
Species/Host 

Species/Administration 
Route) 

Paper Days post 
inoculation 

Absolute 
Peaking 
Evidence 

(<10) 

Strong 
Peaking 
Evidence 

(10-6) 

Slight 
Peaking 
Evidence 

(2-6) 

No 
Evidence 

Slight 
Saturating 
Evidence 

(2-6) 

Strong 
Saturating 
Evidence 

(10-6) 

Strong 
Saturating 
Evidence 

(<10) 

B/Mouse/IM 1201 14    x    

B/Human/IM 309 
28 x       

28  x      

C/Monkey/IM 1474 
8    x    

8    x    

D/Mouse/IM 924 14    x    

Count 1 1 0 4 0 0 0 

Table S3. Evidence for CD4 response 

Group 
(Adenoviral 
Species/Host 

Species/Administration 
Route) 

Paper Days post 
inoculation 

Absolute 
Peaking 
Evidence 

(<10) 

Strong 
Peaking 
Evidence 

(10-6) 

Slight 
Peaking 
Evidence 

(2-6) 

No 
Evidence 

Slight 
Saturating 
Evidence 

(2-6) 

Strong 
Saturating 
Evidence 

(10-6) 

Strong 
Saturating 
Evidence 

(<10) 

B/Mouse/IM 

1201 14    x    

1269 56    x    

1492 14 x       

B/Mouse/SQ 555 

14    x    

21    x    

28    x    

35    x    

70    x    

23    x    

70    x    

B/Human/IM 309 
28 x       

28   x     

C/Mouse/IM 461 
7    x    

14   x     
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7 x       

14    x    

1039 
8    x    

8    x    

1492 14 x       

3018 

7 x       

15 x       

30    x    

C/Mouse/SQ 
555 

14 x       

21 x       

28 x       

35   x     

70    x    

23    x    

70    x    

14    x    

21    x    

28  x      

35 x       

70    x    

23    x    

70    x    

2980 60    x    

C/Monkey/IM 1474 
8    x    

8    x    

D/Mouse/IM 924 14    x    

D/Mouse/SQ 555 

14    x    

21    x    

28    x    

35    x    

70    x    

23    x    

70    x    
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E/Mouse/IM 2919 
10   x     

20    x    

E/Mouse/SQ 555 

14        

21        

28   x     

35        

70        

23        

70        

G/Mouse/SQ 555 

14        

21 x       

28   x     

35  x      

70  x      

23    x    

70    x    

Unknown(sAd16)/ 
Mouse/SQ 555 

14    x    

21    x    

28    x    

35    x    

70    x    

23    x    

70   x     

Count 11 3 7 42 0 0 0 

Table S4. Evidence for CD8 response 

CD4 IFN 
Group 

(Adenoviral 
Species/Host 

Species/Administration 
Route) 

Paper Days post 
inoculation 

Absolute 
Peaking 
Evidence 

(<10) 

Strong 
Peaking 
Evidence 

(10-6) 

Slight 
Peaking 
Evidence 

(2-6) 

No 
Evidence 

Slight 
Saturating 
Evidence 

(2-6) 

Strong 
Saturating 
Evidence 

(10-6) 

Strong 
Saturating 
Evidence 

(<10) 

B/Human/IM 
309 28  x      

441 28 x       

Count 1 1 0 0 0 0 0 
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Table S5. Evidence for CD5 IFN response 

 
CD8 IFN 

Group 
(Adenoviral 
Species/Host 

Species/Administration 
Route) 

Paper Days post 
inoculation 

Absolute 
Peaking 
Evidence 

(<10) 

Strong 
Peaking 
Evidence 

(10-6) 

Slight 
Peaking 
Evidence 

(2-6) 

No 
Evidence 

Slight 
Saturating 
Evidence 

(2-6) 

Strong 
Saturating 
Evidence 

(10-6) 

Strong 
Saturating 
Evidence 

(<10) 

B/Human/IM 
309 28    x    

441 28 x       

E/Mouse/IM 1801 10    x    

Count 1 0 0 2 0 0 0 

Table S6. Evidence for CD8 IFN response 

 
CD4 TNF 

Group 
(Adenoviral 
Species/Host 

Species/Administration 
Route) 

Paper Days post 
inoculation 

Absolute 
Peaking 
Evidence 

(<10) 

Strong 
Peaking 
Evidence 

(10-6) 

Slight 
Peaking 
Evidence 

(2-6) 

No 
Evidence 

Slight 
Saturating 
Evidence 

(2-6) 

Strong 
Saturating 
Evidence 

(10-6) 

Strong 
Saturating 
Evidence 

(<10) 

B/Human/IM 
309 28   x     

441 28    x    

Count 0 0 1 1 0 0 0 

Table S7. Evidence for CD4 TNF response 

 
CD8 TNF 

Group 
(Adenoviral 
Species/Host 

Species/Administration 
Route) 

Paper Days post 
inoculation 

Absolute 
Peaking 
Evidence 

(<10) 

Strong 
Peaking 
Evidence 

(10-6) 

Slight 
Peaking 
Evidence 

(2-6) 

No 
Evidence 

Slight 
Saturating 
Evidence 

(2-6) 

Strong 
Saturating 
Evidence 

(10-6) 

Strong 
Saturating 
Evidence 

(<10) 

B/Human/IM 441 28   x     

Count 0 0 1 0 0 0 0 

Table S8. Evidence for CD8 TNF response 
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CD4 IL2 
Group 

(Adenoviral 
Species/Host 

Species/Administration 
Route) 

Paper Days post 
inoculation 

Absolute 
Peaking 
Evidence 

(<10) 

Strong 
Peaking 
Evidence 

(10-6) 

Slight 
Peaking 
Evidence 

(2-6) 

No 
Evidence 

Slight 
Saturating 
Evidence 

(2-6) 

Strong 
Saturating 
Evidence 

(10-6) 

Strong 
Saturating 
Evidence 

(<10) 

B/Human/IM 
309 28    x    

441 28 x       

Count 1 0 0 1 0 0 0 

Table S9. Evidence for  CD4 IL2 response 

 
CD8 IL2 

Group 
(Adenoviral 
Species/Host 

Species/Administration 
Route) 

Paper Days post 
inoculation 

Absolute 
Peaking 
Evidence 

(<10) 

Strong 
Peaking 
Evidence 

(10-6) 

Slight 
Peaking 
Evidence 

(2-6) 

No 
Evidence 

Slight 
Saturating 
Evidence 

(2-6) 

Strong 
Saturating 
Evidence 

(10-6) 

Strong 
Saturating 
Evidence 

(<10) 

B/Human/IM 441 28   x     

Count 0 0 1 0 0 0 0 

Table S10. Evidence for CD8 IL2 response 

 
 

CD4 IL17 
Group 

(Adenoviral 
Species/Host 

Species/Administration 
Route) 

Paper Days post 
inoculation 

Absolute 
Peaking 
Evidence 

(<10) 

Strong 
Peaking 
Evidence 

(10-6) 

Slight 
Peaking 
Evidence 

(2-6) 

No 
Evidence 

Slight 
Saturating 
Evidence 

(2-6) 

Strong 
Saturating 
Evidence 

(10-6) 

Strong 
Saturating 
Evidence 

(<10) 

B/Human/IM 309 28   x     

Count 0 0 1 0 0 0 0 

Table S11. Evidence for CD8 IL17 response 
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Virus Neutralisation Titre 
Group 

(Adenoviral 
Species/Host 

Species/Administration 
Route) 

Paper Days post 
inoculation 

Absolute 
Peaking 
Evidence 

(<10) 

Strong 
Peaking 
Evidence 

(10-6) 

Slight 
Peaking 
Evidence 

(2-6) 

No 
Evidence 

Slight 
Saturating 
Evidence 

(2-6) 

Strong 
Saturating 
Evidence 

(10-6) 

Strong 
Saturating 
Evidence 

(<10) 

B/Mouse/SQ 
2030 14       x       
1269 56         x     

C/Mouse/IM 

461 
7       x       

14       x       

574 

7       x       
21       x       
35 x             
49       x       
63       x       
77       x       

119     x         
161       x       

669 28       x       
1039 8       x       

C/Mouse/SQ 2505 
10       x       
14       x       

C/Cattle/IM 2841 7           x   

D/Human/IM 594 14       x       

D/Rat/IM 594 28 x             

E/Mouse/SQ 2030 14       x       

E/Human/IM 686 
14       x       
21       x       

Count 2 0 1 17 1 1 0 

Table S12. Evidence for Virus Neutralisation Titre response 
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A.D.2: Additional Supplementary documents for paper 3 

S6. Weighted Utility Functions 
We suggested than alternate approach to the utility function, where I weight the 

expected discomfort of a SARS-CoV-2 infection relative to the expected discomfort 

of receiving a vaccination. This approach requires defining such a weighting, which 

would require making additional assumptions and introducing complexity that I did 

not believe added to the main body of this work. Whilst establishing reasonable 

weightings are beyond the scope of this work, I suggest potential utility functions with 

pseudo-arbitrary values for the weighting. Hence, whilst these utility functions would 

not be useful presently for decision-making, if weights could accurately be 

determined they may be informative. Hence potential weighted utility functions are 

proposed. I note that the likely method of determining weighting is through a 

questionnaire of experts and decision makers or through group discussion, as is 

typical for determining weightings in multi-criteria decision analysis [9]. 

S6.1. 2:1 Ratio 

The utility functions recommended in 3.4 and 3.5 assume that the only desirable 

outcome of vaccination is seroconversion without experiencing grade 3+ adverse 

events. This, implicitly, assumes that both seroconverting and avoiding grade 3+ 

adverse events are equally as desirable. Alternatively, I could consider all outcomes 

of vaccination with relative weightings of utility. I (pseudo-arbitrarily) choose a 2:1 

weighting, where seroconversion is twice as desirable as avoiding a grade 3+ 

adverse event. The possible outcomes are namely; 

x Not seroconverting or experiencing grade 3+ adverse events. 

x Not seroconverting, experiences grade 3+ adverse events. 

x Seroconversion, does not experience grade 3+ adverse events. 

x Seroconversion, experiences grade 3+ adverse events. 

The below table indicates the relative ‘scores’ of each of these outcomes. 
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Name  Experiences Seroconversion 

(+2) 

Experience Grade 3+ Adverse Events (-

1) 

Score 

S’A’  NO NO 0 (= 0 + 0) 

S’A  NO YES -1 (= 0 - 

1) 

SA’  YES NO 2 (= 2 + 0) 

SA  YES YES 1 (= 2 - 1) 

Table S3. Scores for the 2:1 utility function.  

So defining PS as the probability of seroconversion, PS'=1- PS as the probability of 

no seroconversion, PA as the probability of experiencing grade 3+ adverse events, 

PA'=1- PA as the probability of not experiencing grade 3+ adverse events, I have the 

following utility function. 

 U2:1(Dose) = Score(SA) ×PSPA +Score(SA') ×PSPA'+ Score(S'A) ×PS'PA+ 

Score(S'A') ×PS'PA' 

Below is the dose-utility function for this utility function. I see that under this function 

and weighting the utility increases with dose, before decreasing. For sufficiently large 

doses the utility tends to 1 = Score(SA), as the model predicts 100% of individuals 
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experience seroconversion and grade 3+ adverse events.

 

Figure S13. Dose-Utility for the 2:1 utility function. Black dots represent the empirically tested 
doses. 

S6.2. Expected discomfort 

Alternatively, I can look to expressly minimise expected discomfort. I can consider 

that an individual has two sources of potential discomfort, namely discomfort arising 

from the vaccination and discomfort arising from the disease that the vaccine aims to 

prevent or minimise symptoms of.  

We consider that for these two sources of potential discomfort, the discomfort could 

be rated as Mild (Grade 1,2), Severe (Grade 3), Critical without being fatal (Grade 4 

if non-fatal), Critical and Fatal (Grade 4 if fatal). The probability for each of these 

outcomes if an individual's contracts SARS-CoV-2 are derived from literature [43], 

and the probability of mild or severe adverse events are estimated from the ‘dose-

any grade adverse event’ and ‘dose-grade 3+ adverse event’ models discussed in 

the main body of this work. As I have no data to estimate the relationship between 

dose and the other two outcomes, I assume that the vaccine cannot cause either of 

these outcomes. 
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These outcomes are each assigned weights for discomfort, which are not based on 

literature but represent the idea that critical sickness or death are significantly worse 

outcomes than mild sickness.  

Adverse 

Event  

Vaccine probability  SARS-CoV-2 

probability 

Discomfort weight 

(pseudo-arbitrary) 

Mild Estimated in the paper as a 

function of dose, any grade 

adverse events, PA1 

81% 1 = DWM 

Severe Estimated in the paper as a 

function of dose, grade 3+ 

adverse events,  PA3+ 

14% 5= DWS 

Critical 

(Non-fatal) 

Assumed 0%  2.7% 50 = DWC 

Critical 

(Fatal) 

Assumed 0%  2.3% 100 =DWF 

Table S4. Scores for the expected discomfort utility function.  

We can define the expected discomfort of contracting SARS-CoV-2 as 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡

= 𝐷𝑊𝑀 × 0.81 + 𝐷𝑊𝑆 × 0.14 +  DWC × .027 +  DWF × .023  

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = 5.16 

We can also estimate that an individual has a 65.5% (=0.655) (the herd immunity 

threshold) probability of contracting SARS-CoV-2 if they are not protected. However, 

this may be reduced depending on the percentage of individuals in the population 

that have previously contracted or received a vaccine for SARS-CoV-2 (which could 

be investigated by considering epidemiological models). 
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Hence a vaccinated individual is predicted to experience expected discomfort as a 

function of dose: 

Expected Discomfort (Dose) = PA1(Dose) × DWM  + PA3+(Dose) × DWS + 0.655 × 

PS'(Dose) × ExpectedDiscomfortSars 

Where PS'(Dose) is the probability of not seroconverting and hence not being 

protected as a function of dose. S14 shows this relationship. 

 

Figure S14. Dose-Utility for the expected discomfort utility function. Black dots represent the 
empirically tested doses. 

For these weights, the following behaviour is observed. As the dose increases from 

0, the increasing discomfort of vaccination, whilst small, is not justified by the 

possible reduction in SARS-CoV-2 risk, as there is no meaningful level of 

seroconversion. For doses at approximately 1011, I see a reduction in expected 

discomfort. At higher doses, whilst seroconversion is probable, the probability of 

grade 3+ adverse events is large enough that vaccination at this dose may be 

considered to be less comfortable than the average SARS-CoV-2 infection. 

We can also consider the expected reduction in discomfort from baseline by 

subtracting the dose-dependent expected discomfort from the zero-dose expected 

discomfort. 
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Expected Discomfort Reduction (Dose) =  0.655 ×PS'(0) ×ExpectedDiscomfortSars - 

PA1(Dose) × DWM - PA3+(Dose) × DWS - 0.655 ×PS'(Dose) 

×ExpectedDiscomfortSars

 

Figure S15. Baseline subtracted Dose-Utility for the expected discomfort utility function. Black 
dots represent the empirically tested doses. 

Further, I can consider only the doses where the discomfort reduction is predicted to 

be greater than 0. Hence, by dividing by the ‘dose-cost’ model found in the main 

body of this work I can also estimate the expected reduction in discomfort per GBP 

spent on the vaccine at each dosing level.  
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Figure S16. Baseline subtracted Dose-Utility for the expected discomfort utility function, 
divided by cost and censored if discomfort reduction is less than 0. Black dots represent the 
empirically tested doses. 
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A.D.3. Additional Supplementary documents for paper 4 

S4. Scenarios 

Scenario Saturating 2 

Qualitatively this scenario had a saturating efficacy curve and a middling optimal 

dose, with a relatively broad utility curve. 

 
Parameter Value 

Efficacy gradient 1.800 

midpoint 2.500 

maximum 0.900 

Toxicity gradient 0.500 

threshold1 1.000 

threshold2 4.000 

threshold3 5.000 

Utility Weights WeightEfficacy 0.133 

Table.S.4.2 .Saturating 2. Parameters for the scenario Saturating 2 

   

Figure.S.4.2. Saturating 2. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario 
Saturating 2 
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Scenario Saturating 3 

Qualitatively this scenario had a saturating efficacy curve and a low optimal dose, 

with a relatively steep utility curve. 

 
Parameter Value 

Efficacy gradient 2.500 

midpoint 2.000 

maximum 0.900 

Toxicity gradient 0.500 

threshold1 0.100 

threshold2 2.500 

threshold3 3.000 

Utility Weights WeightEfficacy 0.133 

Table.S.4.3.Saturating 3. Parameters for the scenario Saturating 3 

   

Figure.S.4.3.Saturating 3. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario 
Saturating 3 
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Scenario Saturating 4 

Qualitatively this scenario had a saturating efficacy curve and a high optimal dose at 

10, representing the case where the ‘true optimal’ is not within the dosing space. 

 
Parameter Value 

Efficacy gradient 0.700 

midpoint 7.500 

maximum 0.900 

Toxicity gradient 0.500 

threshold1 1.000 

threshold2 2.000 

threshold3 5.000 

Utility Weights WeightEfficacy .266 

Table.S.4.4.Saturating 4. Parameters for the scenario Saturating 4 

   

Figure.S.4.4.Saturating 4. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario 
Saturating 4 
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Scenario Saturating 5 

Qualitatively this scenario had a saturating efficacy curve, which changed only 

gradually over the dosing space. 

 
Parameter Value 

Efficacy gradient 0.100 

midpoint 8.000 

maximum 1.000 

Toxicity gradient 0.500 

threshold1 1.000 

threshold2 4.000 

threshold3 5.000 

Utility Weights WeightEfficacy .266 

Table.S.4.5.Saturating 5. Parameters for the scenario Saturating 5 

   

Figure.S.4.5.Saturating 5. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario 
Saturating 5 
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Scenario Peaking 1 

Qualitatively this scenario had a peaking efficacy curve and a high optimal dose, with 

a relatively steep utility curve. 

 
Parameter Value 

Efficacy base -9.000 

gradient1 3.000 

gradient2 -0.214 

Toxicity gradient 1.000 

threshold1 3.000 

threshold2 9.000 

threshold3 10.500 

Utility Weights WeightEfficacy 0.133 

Table.S.4.6.Peaking 1. Parameters for the scenario Peaking 1 

   

Figure.S.4.6.Peaking 1. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario 
Peaking 1 
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Scenario Peaking 2 

Qualitatively this scenario had a peaking efficacy curve and a middling optimal dose, 

with a relatively broad utility curve. 

 
Parameter Value 

Efficacy base -4.000 

gradient1 2.000 

gradient2 -0.166 

Toxicity gradient 0.100 

threshold1 0.100 

threshold2 0.400 

threshold3 1.500 

Utility Weights WeightEfficacy 0.133 

Table.S.4.7.Peaking 2. Parameters for the scenario Peaking 2 

 

   

Figure.S.4.7.Peaking 2. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario 
Peaking 2 
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Scenario Peaking 4 

Qualitatively this scenario had a peaking efficacy curve and a high optimal dose at 

10, representing the case where the ‘true optimal’ is not within the dosing space. 

Peaking 4 uses a peaking model, but efficacy is still increasing at the maximum 

dose. Thus this is effectively a saturating scenario, but represents the potential case 

where dose-efficacy is peaking but this is unimportant within the feasible dosing 

space. 

 
Parameter Value 

Efficacy base -12.000 

gradient1 2.500 

gradient2 -0.114 

Toxicity gradient .300 

threshold1 1.000 

threshold2 1.500 

threshold3 2.000 

Utility Weights WeightEfficacy 0.266 

Table.S.4.9.Peaking 4. Parameters for the scenario Peaking 4 

   

Figure.S.4.9.Peaking 4. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario 
Peaking 4 
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Scenario Peaking 5 

Qualitatively this scenario had a peaking efficacy curve, which changed only 

gradually over the dosing space. 

 
Parameter Value 

Efficacy base 0.000 

gradient1 0.800 

gradient2 0.067 

Toxicity gradient 0.100 

threshold1 0.100 

threshold2 0.400 

threshold3 1.500 

Utility Weights WeightEfficacy 0.133 

Table.S.4.10.Peaking 5. Parameters for the scenario Peaking 5 

   

Figure.S.4.10.Peaking 5. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario 
Peaking 5 
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Scenario Other 1 

Other 1 represents a vaccine for which nearly zero efficacy is observed for all doses. 

The efficacy model is given as  

Flat(dose) = base 

 
Parameter Value 

Efficacy base 0.020 

Toxicity gradient 0.500 

threshold1 0.000 

threshold2 3.000 

threshold3 5.000 

Utility Weights WeightEfficacy 0.133 

Table.S.4.11.Other 1. Parameters for the scenario Other 1 

   

Figure.S.4.11.Other 1. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario Other 
1 
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Scenario Other 3 

Other 3 represents a vaccine for which dose-efficacy is fundamentally peaking, but 

follows a different and more complicated biphasic parametric form to the latent 

quadratic saturating model assumed elsewhere in this paper.  

 
Parameter Value 

Efficacy gradient1 1.000 

gradient2 2.000 

midpoint1 4.000 

midpoint2 7.000 

maximum 0.500 

fraction 2.000 

Toxicity gradient 0.500 

threshold1 1.000 

threshold2 3.000 

threshold3 5.000 

Utility Weights WeightEfficacy 0.133 

Table.S.4.13.Other 3. Parameters for the scenario Other 3 

   

Figure.S.4.13.Other 3. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario Other 
3 
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Scenario Other 4 

Other 4 represents a vaccine for which dose-efficacy is fundamentally saturating, but 

follows yet another different parametric saturating model, the linear model. The 

efficacy model is given as  

𝑙𝑖𝑛𝑒𝑎𝑟(𝑑𝑜𝑠𝑒) =  
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 × 𝑑𝑜𝑠𝑒
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 + 𝑑𝑜𝑠𝑒

 

 
 

Parameter Value 

Efficacy gradient 3.000 

maximum 1.200 

Toxicity gradient 0.200 

threshold1 1.000 

threshold2 1.200 

threshold3 2.000 

Utility Weights WeightEfficacy 0.133 

Table.S.4.14.Other 4. Parameters for the scenario Other 4 

   

Figure.S.4.14.Other 4. Dose-efficacy, dose-toxicity, and dose-utility plots for the scenario Other 
4. 
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S9. Optimistic Bias 

S9.3. Optimistic Bias: Simplified modelling 

We show that it is intuitive that overestimation may occur in an example simplified 

model case. Consider again an example of trying to optimise some continuous 

function of dose-utility. I use a modified bell curve as the parameters are more 

interpretable and assume that both the true function and assumed function follow 

this. The parameters of this function are midpoint, maximum, and scale. Midpoint is 

the point where the peak of the dose-utility curve occurs, maximum is the value of 

utility for this dose, and scale widens or shrinks the bell curve around this point. Say 

the true curve is defined by: 

Midpointtrue= 5 

Maximumtrue = 3 

Scaletrue = 1 

 

And thus looks like: 
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Figure S9.1. True Dose Utility Curve in toy example. Black point represents optimal dose and 

response. 
An experiment is conducted, and estimates are calculated for these model 

parameters 

𝑒𝑟𝑟𝑜𝑟 ~N(0, errorscale) 

𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 = 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 + 𝑒𝑟𝑟𝑜𝑟  

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 + 𝑒𝑟𝑟𝑜𝑟  

scale = 𝑠𝑐𝑎𝑙𝑒 + 𝑒𝑟𝑟𝑜𝑟  

Results of underestimating/overestimating each of these values individually are 

shown in the figure below. An overestimation would occur in 3 of the 6 cases, and an 

underestimation in only 1 of the 6. See  



 
488 
 

  

  

  

Figure S9.2. Demonstrations for how for some model overestimation can arise from parameter 
uncertainty.  

Running simulations of 10000 clinicals trials with errorscale =0.5 for all parameters, I found 

that in 68.63% of simulation there was overestimation. The figure below should suggest why 

the quasi-convex nature of the dose-utility curve might lead to overestimation even if the 

parameter errors are normally distributed around the true value (unbiased) and the 

distribution of predicted optimal dose/response is a multivariate normal around the true 
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value. 

 

Figure S9.3. Display of overestimation bias. Each point represents a ‘clinical trial’ where instead of 
considering uncertainty in parameters I assume that the predicted optimal dose and predicted optimal 
response are normally distributed around the true optimal. In this case the quasi-convex shape of the 
utility curve ensures that there is an optimistic bias. 

We repeated the simulation of clinical trials with parameter uncertainty for errorscale 

between 0 and 0.5, and I found that increasing the errorscale increases the 

overestimation bias, but that at least some bias is observed for all errorscale > 0 
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Figure S9.4. Effect on errorscale on overestimation bias in the simplified modelling setting 

S9.4. Optimistic Bias: Physical modelling 

To take a break from questions of dose to touch on a different example of a non-

trivial optimisation problem. Consider the toy problem of attempting to choose 

optimal battery size for an unmanned aerial vehicle (‘drone’), where ‘optimal’ means 

the battery such that the drone can fly furthest. A heavily simplified physical model is 

built, see figure S9.5.  
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Figure S9.5. A visual depiction of the model forces of drone flight used in this section. 

 

The distance the drone flies is determined by the following 5 parameters. 

g: the acceleration due to gravity 

m: The base mass of the drone  

a: drain rate, the rate at which the battery drains 

f: The force that the drone is capable of generating to fly (will be divided 

between maintaining height and moving forward) 

b: the size of the battery, nondimensionalised to reflect both mass and 

capacity of the battery. 

Increasing b increases the time taken to drain the battery, but also increases the 

weight of the drone, reducing the amount of force that can be used to move forward.  

It can be shown that the distance travelled (s) given g, m, a, f, and b is  

𝑠 =  
𝑓 − 𝑔(𝑚 + 𝑏) 𝑏

(𝑚 + 𝑏)𝑎
 

and hence that optimal b is found for = 0 and hence the optimal b is equal to   

max (−𝑚 −
𝑓𝑚
𝑔

, −𝑚 +
𝑓𝑚
𝑔

) 

A researcher estimates g, m, a, and f from available data, the results of which are 

normally distributed around the true values with some error scale. That is to say, with  

{𝑒𝑟𝑟𝑜𝑟} ~N(0, errorscale) 

So 
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𝑔{ } = 𝑔{ } + {𝑒𝑟𝑟𝑜𝑟}  

𝑓{ } = 𝑓{ } + {𝑒𝑟𝑟𝑜𝑟}  

𝑚{ } = 𝑚{ } + {𝑒𝑟𝑟𝑜𝑟}  

𝑎{ } = 𝑎{ } + {𝑒𝑟𝑟𝑜𝑟}  

These estimations are then used to predict optimal battery size and hence the 

predicted maximal distance the drone should travel with that battery size. Again an 

overestimation bias observed that again depends on the variance of the parameters 

estimates from the true values [Figure S9.6].  

 

Figure S9.6. The effect of increasing the variance of normally distributed errors in parameters 
for the drone optimisation problem. 10,000 simulations of parameter estimation, optimisation, and 
comparison to true flight distance for the chosen battery size were done for each error scale value. 
95% confidence bounds on the overestimation proportion are in dashed blue. 
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S10. Plotted clinical trials 

Scenario Saturating 2 
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Figure S.10.2. Clinical trials by dose optimisation approach for scenario Saturating 2 

Scenario Saturating 3 
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Figure S.10.3. Clinical trials by dose optimisation approach for scenario Saturating 3 

Scenario Saturating 4 
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Figure S.10.4. Clinical trials by dose optimisation approach for scenario Saturating 4 

Scenario Saturating 5 
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Figure S.10.5. Clinical trials by dose optimisation approach for scenario Saturating 5 

Scenario Peaking 1 
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Figure S.10.6. Clinical trials by dose optimisation approach for scenario Peaking 1 
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Scenario Peaking 2 
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Figure S.10.7. Clinical trials by dose optimisation approach for scenario Peaking 2 

Scenario Peaking 4 
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Figure S.10.9. Clinical trials by dose optimisation approach for scenario Peaking 4 

Scenario Peaking 5 
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Figure S.10.10. Clinical trials by dose optimisation approach for scenario Peaking 5 

Scenario Other 1 
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Figure S.10.11. Clinical trials by dose optimisation approach for scenario Other 1 

Scenario Other 3 
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Figure S.10.13. Clinical trials by dose optimisation approach for scenario Other 2 
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Scenario Other 4 
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Figure S.10.14. Clinical trials by dose optimisation approach for scenario Other 3 
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S11. Objective 1 Plots 

Scenario Saturating 2 

  

  

  

Figure S.11.2. Metrics by dose-optimisation approach for objective 1 for scenario Saturating 2. 
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Scenario Saturating 3 

  

  

  

Figure S.11.3. Metrics by dose-optimisation approach for objective 1 for scenario Saturating 3 
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Scenario Saturating 4 

  

  

  

Figure S.11.4. Metrics by dose-optimisation approach for objective 1 for scenario Saturating 4 
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Scenario Saturating 5 

  

  

  

Figure S.11.5. Metrics by dose-optimisation approach for objective 1 for scenario Saturating 5 
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Scenario Peaking 1 

  

  

  

Figure S.11.6. Metrics by dose-optimisation approach for objective 1 for scenario Peaking 1 
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Scenario Peaking 2 

  

  

  

Figure S.11.7. Metrics by dose-optimisation approach for objective 1 for scenario Peaking 2 
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Scenario Peaking 3 

  

  

  

Figure S.11.8. Metrics by dose-optimisation approach for objective 1 for scenario Peaking 3 
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Scenario Peaking 4 

  

  

  

Figure S.11.9. Metrics by dose-optimisation approach for objective 1 for scenario Peaking 4 
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Scenario Peaking 5  

  

  

  

Figure S.11.10. Metrics by dose-optimisation approach for objective 1 for scenario Peaking 5 
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Scenario Other 1 

  

  

  

Figure S.11.11. Metrics by dose-optimisation approach for objective 1 for scenario Other 1 
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Scenario Other 2 

  

  

  

Figure S.11.12. Metrics by dose-optimisation approach for objective 1 for scenario Other 2 
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Scenario Other 3 

  

  

  

Figure S.11.13. Metrics by dose-optimisation approach for objective 1 for scenario Other 3 
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Scenario Other 4 

  

  

  

Figure S.11.14. Metrics by dose-optimisation approach for objective 1 for scenario 
Other  4 
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S12. Statistical Analysis 

S12.2. Objective 1 

Here I show the p-values for objective 1 for the metrics of PSR, Absolute Inaccuracy, 

and PAR. These are the metrics for the data stratified on scenario. This is the data in 

Supplementary 11.  

For interpretation, the Kolmogorov–Smirnov heatmaps are symmetric, with 

significance representing evidence that the true distribution for the approach-

scenario test metrics of PSR, Absolute Inaccuracy, and PAR differ between the two 

dose-optimisation approaches across all scenarios. The One-sided Mann-Whitney U 

test heatmaps are not symmetric, with significance for the cell in row A and column B 

representing ‘statistically significant’ evidence that approach A was preferable to 

approach B with regards to that metric (e.g. lower PSR, lower Absolute Inaccuracy, 

Lower PAR).  

Each of the below figures shows the Kolmogorov–Smirnov (left) and Mann-Whitney 

U (right) heatmaps of p-values for objective 1 for each scenario. These are for the 

metrics of PSR (top), Absolute Inaccuracy (middle) and PAR (bottom). Cells with a 

light pink hue represent the test statistic for that comparison would be significant 

under the threshold p<0.05, cells with a red hue represent the test statistic for that 

comparison would be significant under the threshold p<0.05 with Bonferroni multiple 

comparison correction.  
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Scenario Saturating 1 

  

  

  

Figure S12.2.1. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Saturating 1 
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Scenario Saturating 2 

  

  

  

Figure S12.2.2. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Saturating 2 
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Scenario Saturating 3  

  

  

  

Figure S12.2.3. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Saturating 3 
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Scenario Saturating 4 

  

  

  

Figure S12.2.4. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Saturating 4 
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Scenario Saturating 5 

  

  

  

Figure S12.2.5. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Saturating 5 
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Scenario Peaking 1 

  

  

  

Figure S12.2.6. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Peaking 1 
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Scenario Peaking 2 

  

  

  

Figure S12.2.7. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Peaking 2 
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Scenario Peaking 3 

  

  

  

Figure S12.2.8. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Peaking 3 
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Scenario Peaking 4 

  

  

  

Figure S12.2.9. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Peaking 4 
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Scenario Peaking 5 

  

  

  

Figure S12.2.10. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Peaking 5 
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Scenario Other 1 

  

  

  

Figure S12.2.11. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Other 1 
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Scenario Other 2 

  

  

  

Figure S12.2.12. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Other 2 
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Scenario Other 3 

  

  

  

Figure S12.2.13. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Other 3 



 
536 
 

Scenario Other 4 

  

  

  

Figure S12.2.14. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 1 for scenario Other 4 
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S12.4. Objective 2 

Here I show the p-values for objective 2 for the metrics of PSR, Absolute Inaccuracy, 

and PAR. These are the metrics for the data stratified on scenario. This is the data in 

Supplementary 12.  

For interpretation, the Kolmogorov–Smirnov heatmaps are symmetric, with 

significance representing evidence that the true distribution for the approach-

scenario test metrics of PSR, Absolute Inaccuracy, and PAR differ between the two 

dose-optimisation approaches across all scenarios. The One-sided Mann-Whitney U 

test heatmaps are not symmetric, with significance for the cell in row A and column B 

representing ‘statistically significant’ evidence that approach A was preferable to 

approach B with regards to that metric (e.g. lower PSR, lower Absolute Inaccuracy, 

Lower PAR).  

Each of the below figures shows the Kolmogorov–Smirnov (left) and Mann-Whitney 

U (right) heatmaps of p-values for objective 2 for each scenario. These are for the 

metrics of PSR (top), Absolute Inaccuracy (middle) and PAR (bottom). Cells with a 

light pink hue represent the test statistic for that comparison would be significant 

under the threshold p<0.05, cells with a red hue represent the test statistic for that 

comparison would be significant under the threshold p<0.05 with Bonferroni multiple 

comparison correction.  
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Scenario Saturating 1 

  

  

  

Figure S12.4.1. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Saturating 1 
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Scenario Saturating 2 

  

  

  

Figure S12.4.2. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Saturating 2 
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Scenario Saturating 3  

  

  

  

Figure S12.4.3. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Saturating 3 
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Scenario Saturating 4 

  

  

  

Figure S12.4.4. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Saturating 4 
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Scenario Saturating 5 

  

  

  

Figure S12.4.5. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Saturating 5 



 
543 
 

Scenario Peaking 1 

  

  

  

Figure S12.4.6. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Peaking 1 
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Scenario Peaking 2 

  

  

  

Figure S12.4.7. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Peaking 2 
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Scenario Peaking 3 

  

  

  

Figure S12.4.8. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Peaking 3 
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Scenario Peaking 4 

  

  

  

Figure S12.4.9. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Peaking 4 
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Scenario Peaking 5 

  

  

  

Figure S12.4.10. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Peaking 5 
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Scenario Other 1 

  

  

  

Figure S12.4.11. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Other 1 
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Scenario Other 2 

  

  

  

Figure S12.4.12. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Other 2 
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Scenario Other 3 

  

  

  

Figure S12.4.13. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Other 3 
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Scenario Other 4 

  

  

  

Figure S12.4.14. Kolmogorov–Smirnov (left) and Mann-Whitney U (right) heatmaps of p-values 
for objective 2 for scenario Other 4  
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S13. Objective 2 Plots 
Scenario Saturating 2 

  

  

  

Figure S13.2. Metrics by dose-optimisation approach for objective 2 for scenario Saturating 2 
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Scenario Saturating 3 

  

  

  

Figure S13.3. Metrics by dose-optimisation approach for objective 2 for scenario Saturating 3 
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Scenario Saturating 4 

  

  

  

Figure S13.4. Metrics by dose-optimisation approach for objective 2 for scenario Saturating 4 
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Scenario Saturating 5 

  

  

  

Figure S13.5. Metrics by dose-optimisation approach for objective 2 for scenario Saturating 5 
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Scenario Peaking 1 

  

  

  

Figure S13.6. Metrics by dose-optimisation approach for objective 2 for scenario Peaking 1 
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Scenario Peaking 2 

  

  

  

Figure S13.7. Metrics by dose-optimisation approach for objective 2 for scenario Peaking 2 
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Scenario Peaking 3 

  

  

  

Figure S13.8. Metrics by dose-optimisation approach for objective 2 for scenario Peaking 3 
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Scenario Peaking 4 

  

  

  

Figure S13.9. Metrics by dose-optimisation approach for objective 2 for scenario Peaking 4 
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Scenario Peaking 5 

  

  

  

Figure S13.10. Metrics by dose-optimisation approach for objective 2 for scenario Peaking 5 
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Scenario Other 1 

  

  

  

Figure S13.11. Metrics by dose-optimisation approach for objective 2 for scenario Other 1 
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Scenario Other 2 

  

  

  

Figure S13.12. Metrics by dose-optimisation approach for objective 2 for scenario Other 2 
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Scenario Other 3 

  

  

  

Figure S13.13. Metrics by dose-optimisation approach for objective 2 for scenario Other 3 
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Scenario Other 4 

  

  

  

Figure S13.14. Metrics by dose-optimisation approach for objective 2 for scenario Other 4 
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S14. Copeland Tables 

Scenario Saturating 2 
 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 12 0.111 11 0.44 10 0.434 

Peaking Uniform, 30 10 0.123 12 0.403 3 0.55 

Weighted Uniform, 30 11 0.116 4 0.519 6 0.51 

Peaking, SoftMax 3 Stage 9 0.403 1 0.591 4 0.544 

Saturating, SoftMax 3 Stage 8 0.406 5 0.51 11 0.412 

Weighted, SoftMax 3 Stage 7 0.46 3 0.537 2 0.573 

Saturating CRM, Fully Continual, Standard 2 0.751 10 0.471 9 0.468 

Peaking CRM, Fully Continual, Standard 1 0.806 9 0.475 5 0.518 

Weighted CRM, Fully Continual, Standard 3 0.741 8 0.479 12 0.393 

Saturating CRM, Fully Continual, Balanced 6 0.681 2 0.58 7 0.494 

Peaking CRM, Fully Continual, Balanced 4 0.708 7 0.489 8 0.483 

Weighted CRM, Fully Continual, Balanced 5 0.692 6 0.508 1 0.622 

Table S.14.2. Copeland metrics for scenario Saturating 2 



 
566 
 

Scenario Saturating 3 

 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 11 0.407 11 0.407 9 0.473 

Peaking Uniform, 30 9 0.49 9 0.49 7 0.525 

Weighted Uniform, 30 7 0.512 7 0.512 2 0.608 

Peaking, SoftMax 3 Stage 2 0.543 2 0.543 3 0.577 

Saturating, SoftMax 3 Stage 4 0.53 4 0.53 5 0.553 

Weighted, SoftMax 3 Stage 1 0.58 1 0.58 1 0.637 

Saturating CRM, Fully Continual, Standard 10 0.462 10 0.462 12 0.297 

Peaking CRM, Fully Continual, Standard 8 0.498 8 0.498 10 0.383 

Weighted CRM, Fully Continual, Standard 12 0.38 12 0.38 11 0.317 

Saturating CRM, Fully Continual, Balanced 3 0.541 3 0.541 8 0.517 

Peaking CRM, Fully Continual, Balanced 5 0.529 5 0.529 4 0.576 

Weighted CRM, Fully Continual, Balanced 6 0.527 6 0.527 6 0.537 

Table S.14.3. Copeland metrics for scenario Saturating 3 
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Scenario Saturating 4 

 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 10 0.192 12 0.379 10 0.445 

Peaking Uniform, 30 12 0.178 11 0.444 1 0.595 

Weighted Uniform, 30 11 0.189 10 0.464 4 0.518 

Peaking, SoftMax 3 Stage 4 0.614 2 0.566 2 0.576 

Saturating, SoftMax 3 Stage 9 0.516 7 0.5 6 0.493 

Weighted, SoftMax 3 Stage 6 0.575 8 0.487 7 0.491 

Saturating CRM, Fully Continual, Standard 1 0.71 9 0.472 8 0.484 

Peaking CRM, Fully Continual, Standard 2 0.654 3 0.54 11 0.439 

Weighted CRM, Fully Continual, Standard 3 0.623 4 0.528 12 0.423 

Saturating CRM, Fully Continual, Balanced 7 0.574 6 0.514 9 0.467 

Peaking CRM, Fully Continual, Balanced 5 0.61 5 0.527 3 0.552 

Weighted CRM, Fully Continual, Balanced 8 0.565 1 0.58 5 0.517 

Table S.14.4. Copeland metrics for scenario Saturating 4 
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Scenario Saturating 5 

 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 10 0.445 9 0.478 11 0.394 

Peaking Uniform, 30 1 0.595 8 0.485 10 0.476 

Weighted Uniform, 30 4 0.518 11 0.463 8 0.48 

Peaking, SoftMax 3 Stage 2 0.576 4 0.517 9 0.477 

Saturating, SoftMax 3 Stage 6 0.493 2 0.532 12 0.389 

Weighted, SoftMax 3 Stage 7 0.491 3 0.524 6 0.507 

Saturating CRM, Fully Continual, Standard 8 0.484 1 0.614 1 0.596 

Peaking CRM, Fully Continual, Standard 11 0.439 10 0.466 2 0.578 

Weighted CRM, Fully Continual, Standard 12 0.423 5 0.509 3 0.567 

Saturating CRM, Fully Continual, Balanced 9 0.467 6 0.504 7 0.49 

Peaking CRM, Fully Continual, Balanced 3 0.552 12 0.415 4 0.528 

Weighted CRM, Fully Continual, Balanced 5 0.517 7 0.493 5 0.518 

Table S.14.5. Copeland metrics for scenario Saturating 5 
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Scenario Peaking 1 

 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 10 0.119 12 0.412 12 0.244 

Peaking Uniform, 30 11 0.115 8 0.497 1 0.701 

Weighted Uniform, 30 12 0.108 11 0.469 2 0.636 

Peaking, SoftMax 3 Stage 7 0.451 2 0.544 5 0.558 

Saturating, SoftMax 3 Stage 9 0.427 9 0.492 10 0.384 

Weighted, SoftMax 3 Stage 8 0.433 1 0.546 3 0.618 

Saturating CRM, Fully Continual, Standard 3 0.727 4 0.513 7 0.505 

Peaking CRM, Fully Continual, Standard 1 0.816 3 0.522 8 0.452 

Weighted CRM, Fully Continual, Standard 2 0.765 5 0.508 9 0.449 

Saturating CRM, Fully Continual, Balanced 5 0.676 7 0.503 11 0.352 

Peaking CRM, Fully Continual, Balanced 6 0.676 6 0.508 6 0.508 

Weighted CRM, Fully Continual, Balanced 4 0.686 10 0.486 4 0.592 

Table S.14.6. Copeland metrics for scenario Peaking 1 
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Scenario Peaking 2 

 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 11 0.19 12 0.406 12 0.269 

Peaking Uniform, 30 12 0.169 9 0.48 1 0.655 

Weighted Uniform, 30 10 0.203 7 0.485 7 0.518 

Peaking, SoftMax 3 Stage 7 0.486 2 0.569 2 0.576 

Saturating, SoftMax 3 Stage 9 0.338 6 0.514 9 0.437 

Weighted, SoftMax 3 Stage 8 0.42 1 0.595 6 0.522 

Saturating CRM, Fully Continual, Standard 1 0.739 4 0.515 5 0.546 

Peaking CRM, Fully Continual, Standard 2 0.733 5 0.515 4 0.559 

Weighted CRM, Fully Continual, Standard 4 0.706 3 0.516 3 0.569 

Saturating CRM, Fully Continual, Balanced 5 0.652 10 0.475 11 0.393 

Peaking CRM, Fully Continual, Balanced 6 0.644 11 0.447 10 0.437 

Weighted CRM, Fully Continual, Balanced 3 0.721 8 0.484 8 0.517 

Table S.14.7. Copeland metrics for scenario Peaking 2 
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Scenario Peaking 3 

 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 11 0.095 12 0.117 12 0.118 

Peaking Uniform, 30 12 0.092 7 0.622 5 0.636 

Weighted Uniform, 30 10 0.097 8 0.603 6 0.623 

Peaking, SoftMax 3 Stage 7 0.559 6 0.637 4 0.647 

Saturating, SoftMax 3 Stage 9 0.482 9 0.272 10 0.298 

Weighted, SoftMax 3 Stage 8 0.516 1 0.703 3 0.654 

Saturating CRM, Fully Continual, Standard 4 0.693 10 0.194 11 0.206 

Peaking CRM, Fully Continual, Standard 6 0.646 5 0.64 8 0.511 

Weighted CRM, Fully Continual, Standard 5 0.675 3 0.682 7 0.597 

Saturating CRM, Fully Continual, Balanced 2 0.708 11 0.188 9 0.339 

Peaking CRM, Fully Continual, Balanced 3 0.699 4 0.647 2 0.671 

Weighted CRM, Fully Continual, Balanced 1 0.738 2 0.695 1 0.7 

Table S.14.8. Copeland metrics for scenario Peaking 3 
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Scenario Peaking 4 

 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 10 0.159 12 0.27 12 0.413 

Peaking Uniform, 30 11 0.127 10 0.431 8 0.494 

Weighted Uniform, 30 12 0.127 11 0.41 11 0.418 

Peaking, SoftMax 3 Stage 8 0.552 1 0.605 5 0.514 

Saturating, SoftMax 3 Stage 9 0.5 7 0.5 9 0.475 

Weighted, SoftMax 3 Stage 7 0.605 6 0.519 7 0.495 

Saturating CRM, Fully Continual, Standard 5 0.633 8 0.488 10 0.444 

Peaking CRM, Fully Continual, Standard 3 0.658 3 0.585 2 0.577 

Weighted CRM, Fully Continual, Standard 1 0.711 4 0.562 6 0.511 

Saturating CRM, Fully Continual, Balanced 4 0.633 9 0.474 3 0.536 

Peaking CRM, Fully Continual, Balanced 6 0.62 2 0.593 1 0.593 

Weighted CRM, Fully Continual, Balanced 2 0.677 5 0.562 4 0.53 

Table S.14.9. Copeland metrics for scenario Peaking 4 
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Scenario Peaking 5 

 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 11 0.389 8 0.488 12 0.427 

Peaking Uniform, 30 9 0.405 12 0.434 8 0.489 

Weighted Uniform, 30 12 0.334 6 0.498 4 0.508 

Peaking, SoftMax 3 Stage 7 0.47 5 0.508 2 0.562 

Saturating, SoftMax 3 Stage 10 0.396 10 0.482 6 0.497 

Weighted, SoftMax 3 Stage 8 0.464 1 0.556 5 0.503 

Saturating CRM, Fully Continual, Standard 3 0.596 4 0.516 10 0.474 

Peaking CRM, Fully Continual, Standard 1 0.65 7 0.498 1 0.57 

Weighted CRM, Fully Continual, Standard 2 0.615 2 0.534 3 0.533 

Saturating CRM, Fully Continual, Balanced 6 0.546 3 0.531 9 0.476 

Peaking CRM, Fully Continual, Balanced 5 0.564 11 0.472 7 0.492 

Weighted CRM, Fully Continual, Balanced 4 0.571 9 0.482 11 0.471 

Table S.14.10. Copeland metrics for scenario Peaking 5 
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Scenario Other 1 

 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 10 0.129 1 0.658 11 0.402 

Peaking Uniform, 30 11 0.124 11 0.427 6 0.47 

Weighted Uniform, 30 12 0.113 7 0.46 8 0.456 

Peaking, SoftMax 3 Stage 7 0.53 9 0.445 4 0.503 

Saturating, SoftMax 3 Stage 4 0.562 4 0.531 10 0.424 

Weighted, SoftMax 3 Stage 5 0.561 5 0.482 5 0.488 

Saturating CRM, Fully Continual, Standard 2 0.83 2 0.613 12 0.385 

Peaking CRM, Fully Continual, Standard 3 0.81 8 0.446 7 0.465 

Weighted CRM, Fully Continual, Standard 1 0.835 12 0.413 9 0.449 

Saturating CRM, Fully Continual, Balanced 8 0.481 3 0.598 3 0.584 

Peaking CRM, Fully Continual, Balanced 9 0.469 6 0.481 2 0.675 

Weighted CRM, Fully Continual, Balanced 6 0.556 10 0.445 1 0.7 

Table S.14.11. Copeland metrics for scenario Other 1 
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Scenario Other 2 

 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 12 0.253 10 0.464 8 0.489 

Peaking Uniform, 30 11 0.274 6 0.508 3 0.536 

Weighted Uniform, 30 10 0.294 8 0.484 7 0.518 

Peaking, SoftMax 3 Stage 9 0.481 1 0.568 2 0.566 

Saturating, SoftMax 3 Stage 5 0.557 11 0.464 5 0.519 

Weighted, SoftMax 3 Stage 8 0.5 2 0.549 4 0.523 

Saturating CRM, Fully Continual, Standard 2 0.657 3 0.526 11 0.427 

Peaking CRM, Fully Continual, Standard 3 0.634 4 0.524 10 0.433 

Weighted CRM, Fully Continual, Standard 1 0.697 9 0.47 12 0.424 

Saturating CRM, Fully Continual, Balanced 6 0.551 12 0.444 9 0.463 

Peaking CRM, Fully Continual, Balanced 7 0.539 5 0.509 6 0.519 

Weighted CRM, Fully Continual, Balanced 4 0.563 7 0.489 1 0.582 

Table S.14.12. Copeland metrics for scenario Other 2 
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Scenario Other 3 

 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 12 0.148 12 0.429 12 0.31 

Peaking Uniform, 30 11 0.154 1 0.563 3 0.587 

Weighted Uniform, 30 10 0.157 8 0.478 10 0.438 

Peaking, SoftMax 3 Stage 7 0.429 3 0.548 4 0.553 

Saturating, SoftMax 3 Stage 8 0.414 10 0.465 11 0.393 

Weighted, SoftMax 3 Stage 9 0.413 5 0.519 7 0.491 

Saturating CRM, Fully Continual, Standard 3 0.771 11 0.452 8 0.477 

Peaking CRM, Fully Continual, Standard 2 0.78 7 0.486 6 0.502 

Weighted CRM, Fully Continual, Standard 1 0.788 2 0.554 2 0.593 

Saturating CRM, Fully Continual, Balanced 5 0.645 9 0.469 9 0.471 

Peaking CRM, Fully Continual, Balanced 4 0.678 4 0.541 1 0.636 

Weighted CRM, Fully Continual, Balanced 6 0.624 6 0.494 5 0.549 

Table S.14.13. Copeland metrics for scenario Other 3 
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Scenario Other 4 

 AR IA SR 

Approach Rank Score Rank Score Rank Score 

Saturating Uniform, 30 12 0.355 11 0.399 10 0.452 

Peaking Uniform, 30 11 0.364 9 0.481 1 0.559 

Weighted Uniform, 30 10 0.374 10 0.448 8 0.5 

Peaking, SoftMax 3 Stage 7 0.473 2 0.568 5 0.519 

Saturating, SoftMax 3 Stage 8 0.471 6 0.513 12 0.424 

Weighted, SoftMax 3 Stage 9 0.463 4 0.538 7 0.51 

Saturating CRM, Fully Continual, Standard 1 0.63 7 0.504 6 0.512 

Peaking CRM, Fully Continual, Standard 6 0.552 1 0.575 4 0.527 

Weighted CRM, Fully Continual, Standard 3 0.591 5 0.526 3 0.528 

Saturating CRM, Fully Continual, Balanced 4 0.571 8 0.499 11 0.434 

Peaking CRM, Fully Continual, Balanced 2 0.592 12 0.394 9 0.498 

Weighted CRM, Fully Continual, Balanced 5 0.564 3 0.553 2 0.536 

Table S.14.14. Copeland metrics for scenario Other 4 
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A.D.4: Additional Supplementary documents for paper 5 

S6. Scenario Creation 

Objective 1, Scenario 2 Efficacy 

Inputs Values 

Prime doses [0.00, 0.01, …, 0.99, 1.00] 

Anchor doses [-0.0], [1.0] 

Anchor probabilities [0.05], [0.9] 

K 9 

Iterations 21 

 

Objective 1, Scenario 3 Efficacy 

Inputs Values 

Prime doses [-0.50, -0.49, …, 1.49, 1.50] 

Anchor doses [-0.2], [0.1], [0.5], [0.9], [1.2] 

Anchor probabilities [0.1, 0.5, 0.8, 0.55, 0.2] 

K 15 

Iterations 21 
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Objective 1, Scenario 4 Efficacy 

Inputs Values 

Prime doses [0.00, 0.01, …, 0.99, 1.00] 

Anchor doses [0], [0.2], [0.4], [0.6], [0.7], [1] 

Anchor probabilities [0.05], [0.1], [0.15], [0.3], [0.7], [0.5] 

K 5 

Iterations 21 

 

Objective 1, Scenario 5 Efficacy 

Inputs Values 

Prime doses [0.00, 0.01, …, 0.99, 1.00] 

Anchor doses [0], [0.2], [0.4], [0.6], [0.8], [1] 

Anchor probabilities [0.8], [0.7], [0.3], [0.15], [0.1], [0.05] 

K 5 

Iterations 21 

 

Objective 1, Scenario 6 Efficacy 

Inputs Values 

Prime doses [0.00, 0.01, …, 0.99, 1.00] 

Anchor doses [0.0], [0.2], [0.55], [0.65], [1.0] 

Anchor probabilities [0.3], [0.5], [0.7], [0.5], [0.7] 

K 5 

Iterations 21 
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Objective 1, Scenario 7 Efficacy 

Inputs Values 

Prime doses [0.00, 0.01, …, 0.99, 1.00] 

Anchor doses [0.0], [0.5], [1.0] 

Anchor probabilities [0.75], [0.85], [0.75] 

K 11 

Iterations 11 

 

Objective 2, Scenario 1 Efficacy 

Inputs Values 

Prime doses [0.00, 0.05, …, 0.95, 1.00] 

Boost doses [0.00, 0.05, …, 0.95, 1.00] 

Anchor doses [1,1],[0,0],[0,1], [1,0], [.6,.6] 

Anchor probabilities [.5],[.1], [.4], [.4], [.9] 

K 15 

Iterations 9 

 

Objective 2, Scenario 2 Efficacy 

Inputs Values 

Prime doses [0.00, 0.05, …, 0.95, 1.00] 

Boost doses [0.00, 0.05, …, 0.95, 1.00] 

Anchor doses [1,1], [0,0], [0,1], [1,0] 

Anchor probabilities [.5], [.1], [.8], [.9] 

K 9 

Iterations 11 
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Objective 2, Scenario 3 Efficacy 

Inputs Values 

Prime doses [0.00, 0.05, …, 0.95, 1.00] 

Boost doses [0.00, 0.05, …, 0.95, 1.00] 

Anchor doses [1,1],[0,0],[0,1], [1,0] 

Anchor probabilities [.95],[.05], [.6], [.6] 

K 9 

Iterations 11 

 

Objective 2, Scenario 4 Efficacy 

Inputs Values 

Prime doses [0.00, 0.05, …, 0.95, 1.00] 

Boost doses [0.00, 0.05, …, 0.95, 1.00] 

Anchor doses [1,1],[.9,.9],[0,0],[0,1], [1,0] 

Anchor probabilities [.6],[.95],[.05], [.4], [.6] 

K 9 

Iterations 11 
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Objective 2, Scenario 5 Efficacy 

Inputs Values 

Prime doses [0.00, 0.05, …, 0.95, 1.00] 

Boost doses [0.00, 0.05, …, 0.95, 1.00] 

Anchor doses [1,1], [1,0.5], [1,0], [.9,1], [.9,0.5], [.9,0], [0,1], [0,0.5], [0,0]  

Anchor probabilities [.8],[.7],[.7],[.9],[.8],[.7],[.1],[.05],[.05]  

K 9 

Iterations 10 

 

 

Objective 2, Scenario 6 Efficacy 

Inputs Values 

Prime doses [0.00, 0.10, …, 0.90, 1.00] 

Boost doses [0.00, 0.10, …, 0.90, 1.00] 

Second-boost doses [0.00, 0.10, …, 0.90, 1.00] 

Anchor doses [0,0,0],[0,0,1],[0,1,0],[0,1,1], [1,0,0],[1,0,1],[1,1,0],[1,1,1], 
[.7,.1,.3], [.7,.1,.3], [.7,.1,.3]  

Anchor probabilities [0],[0],[0],[0], [0],[0],[0],[0], [.9], [.9], [.9]  

K 7 

Iterations 5 
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Objective 2, Scenario 7 Efficacy 

Inputs Values 

Prime doses [0.00, 0.10, …, 0.90, 1.00] 

Boost doses [0.00, 0.10, …, 0.90, 1.00] 

Second-boost doses [0.00, 0.10, …, 0.90, 1.00] 

Anchor doses [0,0,0],[0,0,1],[0,1,0], 
[0,1,1] ,[1,0,0],[1,0,1], 
[1,1,0],[1,1,1], [.5,0,0]  

Anchor probabilities [0.1],[0.5],[0.5], 
[0.8], [0.1],[0.9], 
[0.9],[0.4],[0.1]  

K 27 

Iterations 3 

Objective 3, Scenario 1 Efficacy 

As objective 1 scenario1. 

Objective 3, Scenario 1 Toxicity 

Inputs Values 

Prime doses [-1.00, -0.99, …, 1.99, 2.00] 

Anchor doses [0.2], [1.5] 

Anchor probabilities [0.05], [0.65] 

K 21 

Iterations 11 

Objective 3, Scenario 2 Efficacy 

As objective 1 scenario 4. 
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Objective 3, Scenario 2 Toxicity 

Inputs Values 

Prime doses [-1.00, -0.99, …, 1.99, 2.00] 

Anchor doses [0.7], [0.8] 

Anchor probabilities [0.05], [0.95] 

K 3 

Iterations 11 

 

Objective 3, Scenario 3 Efficacy 

As objective 1 scenario 1. 

Objective 3, Scenario 3 Toxicity 

As objective 3 scenario 1. 

Objective 3, Scenario 4 Efficacy 

As objective 1 scenario 4. 

Objective 3, Scenario 4 Toxicity 

As objective 3 scenario 2. 

Objective 3, Scenario 5 Efficacy 

As objective 2 scenario 3. 
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Objective 3, Scenario 5 Toxicity 

Inputs Values 

Prime doses [0.00, 0.05, …, 0.95, 1.00] 

Boost doses [0.00, 0.05, …, 0.95, 1.00] 

Anchor doses [1,1],[0,0],[0,1], [1,0],[.5,.5], [0,.5], [.5,0],[1,.5], [.5,1] 

Anchor probabilities [.9], [.1], [.7], [.8],  [.2], [.23], [.2], [.85], [.75]  

K 13 

Iterations 9 

 
Objective 3, Scenario 6 Efficacy 

As objective 2 scenario 2. 

Objective 3, Scenario 6 Toxicity 

As objective 3 scenario 5. 

Objective 4 

Objective 4 reused scenarios from the previous sections as detailed in the main 

body. Please refer to the relevant scenarios. 
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Appendix E: D-Optimal Design Theory 
Throughout this work I have described various methods of trial dose selection or 

clinical trial design, in both adaptive and non-adaptive settings. One method in 

particular that was discussed was the ‘Uniform’ method in chapter 5. In that work I 

suggested that it may have been a reasonable method of trial dose selection 

because it samples the entire dosing domain, and hence should be effective for 

estimating model parameters and therefore useful for selecting optimal dose.  

Whilst the above statement is likely to be reasonable if there is no prior 

understanding of model structure (‘curve shape’) or if there is little initial 

understanding of the likely model parameters, in the case where both a likely model 

form and expected model parameters are known in advance it is possible to select a 

method of trial dose selection (‘trial design’) that is better able to provide more 

accurate estimates of model parameters or model prediction than the ‘Uniform’ 

method given the same trial size. This is referred to as optimal experimental design 

theory. 

Here I describe ‘optimal design’ theory, and in particular here I discuss D-optimal 

design, which focuses on maximising accuracy in the estimates of model 

parameters. C-optimal, E-optimal, and various other optimal design topics have also 

been discussed but will not be detailed here [37]. I also compare D-optimal designs 

to the ‘Uniform’ design discussed in chapter 5, and also to a ‘Three near optimal’ 

design which would involve testing three doses near the true optimal dose. 

This is meant to be demonstrative of the ideas behind the field of optimal design in 

the context of the topics of this thesis. In this section I do not intend to provide 

recommendations. 

A.E.1. D-Optimal Design: Methodology 

D-optimal design aims to find a trial design that minimises the variance of the 

estimates of model parameters. Formally a ‘design’ is given by 

𝜉 = {(𝑥 , 𝑝 ), 𝑖 =  𝑖, … 𝑘} 
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Where K is the number of ‘support points’ which is to say the number of dosing 

levels that will be tested under that design. xi is the ith dosing level and pi is the 

proportion of trial individuals that should receive that dose. 

A design is said to be optimal if it maximises the determinant of the information 

matrix det 𝑀(𝜉, 𝜃)  under that design for model 𝑓(𝑥, 𝜃) with parameter vector 𝜃. The 

information matrix 𝑀(𝜉, 𝜃)  is given by 

𝑀(𝜉, 𝜃))  =  𝑝 × 𝜇(𝑥 , 𝜃)
1

 

Where  

𝜇(𝑥 , 𝜃) =  −𝐸
𝛿

𝛿𝜃
log 𝑓(𝑥 , 𝜃)

𝛿
𝛿𝜃

log(𝑓(𝑥 , 𝜃)) ]  

is the information matrix of a single measurement taken at dose xi. 

A.E.2 D-Optimal design in chapter 5 

Here I discuss application of D-optimal design to an example model that was used in 

chapter 5. In particular I use the latent-quadratic model for probability of binary 

efficacy used in the scenario ‘Peaking 1’. This was given by 

𝑓(𝑥 , 𝜃) =  𝑝𝑒𝑎𝑘𝑖𝑛𝑔(𝑥 ) =  
1

1 + 𝑒 1  
 

With 

𝜃 =  (𝑏𝑎𝑠𝑒, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡1, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡2) =  (−9.0, 3.0, −0.214) 

Following [38–40] I find that  

𝜇(𝑥 , 𝜃)  =  
𝐻 ( )

𝐻(𝑧 ) 1 − 𝐻(𝑧 )
(1, 𝑥 , 𝑥 ) (1, 𝑥 , 𝑥 ) 
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Which is a 3x3 matrix with 

𝑧 = 𝑒 1   

𝐻(𝑧 ) =
𝑒 1  

1 + 𝑒 1  
 

𝐻 (𝑧 ) =
𝑒 1  

(1 + 𝑒 1  )
 

A design that maximises det 𝑀(𝜉, 𝜃)  can be found using the Particle Swarm 

Optimisation algorithm as described in [41]. Given that there are three parameters in 

this model, Carathéodory’s theorem guarantees that the number of support points K 

for the optimal design will be at least three and no greater than seven[42]. The works 

of Hyun et al. and Yang et al. suggest that K=3 is likely to be the true optimal [43,44], 

so I set K=3 in this example. 

 Using a particle swarm optimisation algorithm with 

x Objective function = maximise det 𝑀(𝜉, 𝜃)  

x K=3 

x Swarm size = 40 

x Length of the particle position vector = 5, namely (x1,x2,x3,p1,p2) with p3 = 1 - p1 

-p2 then being calculated 

x Inertia = 0.8 

x Personal Best Weight = Global Best Weight = 1 

x Alpha = 1 

x Iterations = 1000 

x Bounds 0<xi<10, 0 <pi<1, p1 + p2 < 1   

This algorithm predicted that the optimal design was 𝜉 = (3.20, 0.33),(5.89, 

0.33),(10.00, 0.33). A visualisation of this design and the efficacy curve 𝑓(𝑥 , 𝜃) that 

was assumed in order to generate it are given in figure A.E.2.1 
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Figure A.E.2.1. Optimal design for Chapter 5’s Scenario Peaking 1. The black line is the a-priori 
efficacy probability predicted by the model for each dose given the assumed model parameters. The 
red dots are the doses and proportion of doses that would be chosen by the D-optimal design 
method. The blue dots are the doses and proportion of doses that would be chosen by the uniform 
design method discussed in the chapter with n=30 trial individuals. The green dots are the doses and 
proportion of doses that would be chosen by choosing 3 doses near the optimal predicted dose, as is 
the standard for vaccine clinical trial design.  

The efficiency of a design can be calculated as 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝜉, 𝜃) =  
det 𝑀(𝜉, 𝜃)

det 𝑀 𝜉𝑜𝑝𝑡, 𝜃

1
𝐽

 

where J is the number of parameters in the model (here J=3). The efficiencies of the 

three designs (d-optimal, uniform, Three near optimal) can thus be calculated, see 

table A.E.2.1. These values can be interpreted as requiring approximately 1.6 (= 

1.000/0.624) times the number of trial participants under the uniform design to get 

the same degree of accuracy in parameter estimation relative to the D-Optimal 
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design. Approximately 53.2 times the number of trial participants would be required 

under the ‘three near optimal’ design.  

Design Efficiency 

D-Optimal 1.000 

Uniform 0.624 

Three near optimal 0.0187 

Table A.E.2.1. Efficiencies of three designs for chapter 5’s Scenario Peaking 1. 

 

This highlights that the uniform method of trial dose selection may be suboptimal 

relative to the D-optimal design, however the uniform design was still more 

informative for the purposes of modelling than selecting a small number of doses 

near the predicted optimal for this dose-response curve. 

A.E.3. Balancing efficiency with benefit to trial population 

Note that above the only optimisation criteria for choosing a design is the 

determinant of the information matrix. Whilst maximising for this is clearly important 

for estimating model parameters, it is also possible that benefit to trial participants 

needs to be considered. This leads to the concept of ‘penalised D-optimal design’. 

Here I choose a trial design that maximises some function 𝜑(𝜉, 𝜃) which should 

include not only the determinant of the information matrix but also some function 

𝑑(𝜉, 𝜃) called the desirability function. Desirability functions are described in more 

detail in [A.C.4], but here are used to represent desirability of an optimal design as 

opposed to desirability/utility of a dose. 

Using the ‘bigger is better’ desirability function from [35] I define the desirability 

function with respect to trial efficacy as  

𝑑 (𝜉, 𝜃) =
𝑚𝑒𝑎𝑛𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(𝜉, 𝜃) − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(𝜃)

𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(𝜃) − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(𝜃)  
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Where minimumefficacy() and maximumefficacy() are respectively the efficacy 

probabilities for the least and most efficacious dose in the [0,10] range as predicted 

by 𝑓(𝑥 , 𝜃). 𝑚𝑒𝑎𝑛𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(𝜉, 𝜃) over the k dosing groups is given by 

𝑚𝑒𝑎𝑛𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(𝜉, 𝜃)  =  𝑝 × 𝑓(𝑥 , 𝜃)
1

 

and m is a parameter that is used to determine the steepness of the desirability 

function [figure A.E.3.1].  

 
Figure A.E.3.1. The effect of m of the desirability function, with (left) showing the efficacy 
desirability of designs that place all doses at a specific dose and (right) showing the 
desirability of a design given some mean efficacy. The black line shows the ‘Scenario Peaking 1’ 
efficacy model that is assumed for this analysis.  

 

Here I chose to define a penalised D-optimal design as that maximised 𝜑 (𝜉, 𝜃) with 

specific form  

𝜑 (𝜉, 𝜃)  = det 𝑀(𝜉, 𝜃) 𝑑 (𝜉, 𝜃) 

Many forms 𝜑(𝜉, 𝜃) have been suggested, but this simple one was used to highlight 

the trade-off between efficiency and benefit to trial participants.  

I investigated six designs. ‘D-optimal’, ‘Uniform’, and ‘ Three near optimal’ were as 

discussed in the previous section. ‘Penalised m = 2.0’, ‘Penalised m = 8.0’, and 

‘Penalised m = 32.0’, instead each optimised 𝜑 (𝜉, 𝜃) for their respective values of 
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m. Optimal designs were again found through the particle swarm optimisation 

algorithm described above. Visualisations of theses designs are shown in figure 

A.E.3.2. The  𝑑 (𝜉, 𝜃) scores and meanefficacy(𝜉, 𝜃) for each design were calculated 

for each of m = 2.0, 8.0, and 32.0 [Table A.E.3.1] 

Figure A.E.3.2. Penalised optimal design for Chapter 5’s Scenario Peaking 1. The black line is 

the efficacy probability predicted by the model for each dose given the assumed model parameters. 

The red dots are the doses and proportion of doses that would be chosen by the D-optimal design 

method. The blue dots are the doses and proportion of doses that would be chosen by the uniform 

design method discussed in the chapter with n=30 trial individuals. The green dots are the doses and 

proportion of doses that would be chosen by choosing a 3 doses near the optimal predicted dose, as 

is the standard for vaccine clinical trial design. The grey, brown, and purple dots represent the doses 

and proportion of doses that would be chosen by the penalised optimal design for m = 2.0, 8.0, and 

32.0 respectively, with increasing m representing an increased desire for trial doses to be highly 

efficacious. 

This showed that each of these designs were each ‘optimal’ for the metric for which 

they were optimised. As the value of m that was optimised for increased, the 

efficiency of the design decreased but the mean efficacy increased. The uniform 
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design was dominated by the D-optimal and penalised designs, but again did not 

require any assumptions on model form or parameterisation. The ‘Three near 

optimal’ design had the highest mean efficacy, but again reduced efficiency and 

would require a-priori knowledge of the true optimal dose. 

Design Name Efficiency Score m = 
2.0 

Score m = 
8.0 

Score m = 
32.0 

Mean 
Efficacy 

D-optimal 1.00 0.91 0.37 0.01 0.45 

Penalised m = 2.0 0.99 0.93 0.43 0.02 0.49 

Penalised m = 8.0 0.94 0.84 0.48 0.05 0.56 

Penalised m = 32.0 0.71 0.40 0.31 0.10 0.68 

Uniform  0.62 0.22 0.09 0.00 0.44 

Three near optimal 0.02 0.00 0.00 0.00 0.81 

Table A.E.3.1. Efficiencies, 𝝋𝒎(𝝃, 𝜽) scores, and mean efficacy for the six designs.  
 

A.E.4. Bayesian D-optimal Design 

So far, I have assumed that there was a model 𝑓(𝑥, 𝜃) where 𝜃 was the 1xJ vector 

𝜃 =  𝜃1, … , 𝜃  with specific known values for 𝜃1, … , 𝜃 . This is referred to as ‘locally 

D-optimal design’, as the designs that are generated are only optimal for if the 

parameter values 𝜃1, … , 𝜃   are accurate. If there is uncertainty in the parameter 

values, then ‘Bayesian D-optimal Design’ is instead preferable.  

In Bayesian D-Optimal Design, a prior can be placed over the model parameters . 

Therefore the model becomes 𝑓(𝑥, �̅�) where �̅� is an LxJ matrix of L possible values 

for the J parameters. The information matrix for which the determinant is to be 

maximised then becomes 

𝑀(𝜉, 𝜃))  =  
1
𝐿

𝑝 × 𝜇(𝑥 , 𝜃 )
11
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Where 𝜃  is the lth row of �̅� and again there are K dosing groups in the trial. 

For a specific demonstration, I assumed that all 5 of the parameter value sets for the 

5 ‘peaking’ scenarios in chapter 5 where possible, and thus had  �̅�  as the 5x3 matrix 

of 5 possible values for the 3 parameters. The dose-efficacy of these 5 curves and 

the mean of the 5 efficacy predictions for each dose are shown in figure A.E.4.1 

 
Figure A.E.4.1. The five efficacy curves that are assumed to be possible for demonstrating 
Bayesian D-optimal design. The 5 possible efficacy curves are shown in orange, and the mean of 
these curves is shown blue.  

 

Bayesian D-optimal design was calculated by maximising the determinant M(,). 

Bayesian Penalised D-optimal designs was calculated by maximising  

𝜑 (𝜉, �̅�)  = det 𝑀(𝜉, �̅�) 𝑑 (𝜉, �̅�) 

With 
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𝑑 (𝜉, 𝜃) =
𝑚𝑒𝑎𝑛𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(𝜉, �̅�) − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(�̅�)

𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(�̅�) − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(�̅�)
 

𝑚𝑒𝑎𝑛𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(𝜉, �̅�)  =  
1
𝐿

𝑝 × 𝑓(𝑥 , �̅�)
11

  

𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(�̅�) = 𝑚𝑎𝑥 𝑓(𝑥 , 𝜃 )
1

 

𝑚𝑖𝑛𝑖𝑚𝑢𝑢𝑚𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(�̅�) = 𝑚𝑖𝑛 𝑓(𝑥 , 𝜃 )
1

 

 

Which is to say that desirability is determined based on the mean prior prediction of 

efficacy at each dose over the 5 parameter sets. 

I investigated the same six trial design as before, again using particle swarm 

optimisation. Visualisations of these designs are shown in figure A.E.4.2. The 

𝜑 (𝜉, �̅�)s and 𝑚𝑒𝑎𝑛𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦(𝜉, �̅�)for each design were calculated [Table A.E.4.1] 
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Figure A.E.4.2. Bayesian optimal designs for Chapter 5’s Scenario Peaking 1. The black line is 
the mean of the efficacy probabilities predicted by the 5 model for each dose given the assumed 5 
sets of model parameters. The red dots are the doses and proportion of doses that would be chosen 
by the D-optimal design method. The blue dots are the doses and proportion of doses that would be 
chosen by the uniform design method discussed in the chapter with n=30 trial individuals. The green 
dots are the doses and proportion of doses that would be chosen by choosing three doses near the 
optimal predicted dose, as is the standard for vaccine clinical trial design. The grey, brown, and purple 
dots represent the doses and proportion of doses that would be chosen by the penalised Bayesian 
optimal designs for m = 2.0, 8.0, and 32.0 respectively, with increasing m representing an increased 
desire for trial doses to be highly efficacious. 
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Design Name Efficiency Score m = 
2.0 

Score m = 
8.0 

Score m = 
32.0 

Mean 
Efficacy 

D-optimal 1 0.55 0.01 0 0.28 

Penalised m = 2.0 0.94 0.79 0.08 0 0.34 

Penalised m = 8.0 0.66 0.42 0.15 0 0.4 

Penalised m = 
32.0 

0.26 0.03 0.03 0.01 0.44 

Uniform 30 0.67 0.3 0.04 0 0.35 

Three near 
optimal 

0.01 0 0 0 0.44 

Table A.E.4.1. Efficiencies, 𝝋𝒎(𝝃, 𝜽)s and 𝒎𝒆𝒂𝒏𝒆𝒇𝒇𝒊𝒄𝒂𝒄𝒚(𝝃, 𝜽) for the six designs on the 
Bayesian optimal design problem.  

Again, this showed that each of the penalised d-optimal designs were ‘optimal’ for 

the metric they were optimised for, and the same impact of increasing m was 

observed. The efficiency of the uniform design (0.67) was increased relative to the 

efficiency in the locally D-optimal setting (0.62). This was expected and is consistent 

with the hypothesis that a uniform design may be reasonable if there is little a-priori 

certainty in model form and parameters. Again the ‘three near optimal’ design was 

not as efficient as the uniform trial design but had higher mean efficacy. 

AE.5 Potential limitations with D-optimal design with regards to vaccine clinical trial design  

Here I have demonstrated how D-optimal design and penalised D-optimal design 

can be used to maximise the amount of information regarding model parameters that 

can be gathered in a clinical trial. Whilst this may be highly beneficial in reducing trial 

costs, improving accuracy in estimations of model parameters, and hence choosing 

optimal dose, there are a number of limitations to implementation. 
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Firstly, the D-optimal design process is complicated relative to some other methods 

of choosing clinical trial doses designs, and clinicians may not be willing to invest the 

time or resources to implement such a complex methodology. Further to the topics 

discussed here, it may be necessary to find a design that is D-optimal with regards to 

modelling multiple responses, for example both an efficacy model and a toxicity 

model. Whilst methods for doing so exist [45], this would even further increase 

complexity. 

Secondly, these methods rely on assuming a model structure and parameters. As I 

showed in chapter 3, it may not be reasonable to assume that a ‘correct’ model is 

known a-priori. Methods of D-optimal design with model uncertainty exist [46,47] but 

again increase complexity in calculating the optimal design and also require some a-

priori estimate for the probability that each model is correct.  

A further argument against D-optimal design is that it assumes that the parametric 

model that is used (or at least one of the models investigated in the case of model 

uncertainty) is for some parameter set a completely accurate representation of the 

true underlying dose-response. Whilst the models that are used to describe dose-

response may be good approximations of dose-response, it is unlikely that they are 

perfectly accurate to the truth.  

Finally, it must be remembered that the overall goal of the mathematical modelling 

that I discuss in this work is to optimise dose. Before D-optimal design is 

implemented mathematical models would have to be accepted as effective for the 

purpose of optimising dose, and that there would be significant benefit in designing 

trials specifically around accurate parameter estimation of these models. For 

example, the benefits of choosing trial doses proportionally to the probability that 

they are optimal based on the present model (‘Thompson Sampling’, chapter 6) may 

be more intuitively reasonable to clinicians than choosing trial doses that will aid in 

model parameterisation.  
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I note here that, at least with regards to efficiency, the uniform method of trial dose 

selection may be a reasonable approximation of D-optimal design without the 

complexity in implementation or requirement of a-priori model knowledge. I also 

found that in this investigation, using three doses near the optimal dose was not 

efficient for parameter estimation for this assumed parameterisation of the latent 

quadratic model, but was often the most efficacious design. Further work would be 

needed to validate if this is the case for other models and parameterisation, but it 

may imply that clinicians should consider whether such designs are optimal if 

mathematical modelling for selecting optimal vaccine dose is to be used.  
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Appendix F: Dosing Space Density 
A.F.1. Discretisation of a continuous decision space 

Throughout this work I at many points refer to the concept that the number of dosing 

groups that are considered when attempting to select optimal vaccine may affect 

how effectively dose may be optimise. This is the concept that, although vaccine 

dose is technically a continuous measure, it is often discretised to a finite (and small) 

number of potential doses during dose finding studies (I call this dosing-domain 

discretisation). For example, the dose-finding study from which data were extracted 

for chapter 4 considered only 3 doses [48]. These were namely 0.5mL, 1.0mL and 

1.5mL. However, other than practicalities of vial size, there is no reason that for 

example 0.75mL or 1.28mL could not be possible optimal doses. Any volume in the 

continuous range between 0 and 1.5mL could have been considered, but the dose-

optimisation approach used in that work considered only three discrete doses.  

I here use the term dosing-domain density to refer to the number of discretised 

doses that are considered within a given continuous dosing domain. A clinical trial 

that considers 3 equally spaced discretised doses would be considered to be sparse 

relative to a clinical trial considering 12 equidistantly spaced doses over the same 

possible range (same maximum and minimum doses). It would be however dense 

relative to a clinical trial considering only 2 equidistantly spaced doses.  

A.F.2. The effect of dose domain density in the uniform naive setting 

In this section I ignore the possibility of modelling to discuss the effect of increasing 

the discretisation density of a dosing domain using the ‘uniform naive’/‘direct 

comparison’ dose optimisation approach in chapter 6. I conducted a small simulation 

study to investigate this, which is not large enough to provide meaningful 

implications but may be of interest. 

Consider the case of trying to locate the optimal single-administration dose dopt, 

defined as the maximum efficacy dose, for a vaccine. Based on past data and input 

from clinicians I assume that there is known a dosing-range which is guaranteed to 

contain the optimal dose. However, I assume that there is a uniform prior over this 
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range for where the true optimal dose is. Knowing that there are some total N 

individuals with which to conduct a dose ranging trial, and deciding to use the 

uniform naive trial design, the question posed is to choose some K such that there 

are K dosing groups each containing N/K individuals. I assume that these K potential 

doses are equidistantly distributed over the range that is known to contain the 

optimal dose. An increase in K therefore represents an increase in the density of the 

discretised dosing domain.  

I hypothesised that as K increases there should be an increase in the efficacy of the 

optimal of the K discretised doses. I also hypothesised that the probability of 

selecting this optimal dose would be decreased, as an increase in K would decrease 

the N/K individuals per dosing group, decreasing the statistical power to determine 

which of the groups was most optimal. I hypothesised that these two above 

statements would combine to mean there was some K that would be optimal for 

maximising the true efficacy of the dose that is chosen based on the clinical trial. 

To investigate this hypothesis, I conducted a simulation study. I used the efficacy 

curve from chapter 5’s ‘Scenario Peaking 1’, but with the dosing range extended. 

See Figure A.F.2.1. The optimal/maximum efficacy dose dopt  = 7.0. 
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Figure A.F.2.1. True dose-response curve 

The range that would be investigated to locate optimal dose was calculated as [min, 

max] where 

min =  𝑑 − 𝑟 × 𝑠𝑖𝑧𝑒  

max = min + 𝑠𝑖𝑧𝑒  

Where r was uniformly sampled in the range [0,1] and 𝑠𝑖𝑧𝑒  is the size of the 

interval that is known to contain the optimal dose. This guaranteed that dopt was in 

the range [min, max] as required. Examples of potential ranges for 𝑠𝑖𝑧𝑒   = 2, 

5, 10 are shown [Figure A.F.2.2]. Note that an increase in 𝑠𝑖𝑧𝑒  reflects a 

greater variance in efficacy between doses in the resulting interval, as for 𝑠𝑖𝑧𝑒  

2 all doses have between 72% and 82% efficacy, whereas for 𝑠𝑖𝑧𝑒  =10 

efficacy could vary between 0% and 82% for some intervals. 
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Figure A.F.2.2. Example dosing ranges for different interval sizes. Top 𝒔𝒊𝒛𝒆𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍 𝟐, middle 
𝒔𝒊𝒛𝒆𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍  = 𝟓, bottom 𝒔𝒊𝒛𝒆𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍  = 𝟏𝟎. 

The doses for the K dosing groups are then chosen to be equidistant from each 

other. If K = 1 the dose is in the middle of the dosing range. If K = 2 then the doses 

are respectively at the ⅓ and ⅔ points along the dosing range. For K>2 the doses 

are chosen such that the smallest dose is at the bottom of the dosing range, the 

largest is at the top of the dosing range, and the rest divide the range into K-1 equal 

segments. Examples for K = 1, 2, 3, 4, 5 and 10 are shown [Figure A.F.2.3.].  
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Figure A.F.2.3. Example dosing groups for different K values over the same interval. 

Clinical trials could then be simulated as per the uniform naive dose optimisation 

approach in chapter 6. Briefly, this involves splitting the N potential trial participants 

equally amongst the K dosing groups. The number of efficacious responses in each 

group is observed, and the dose for which the group with the greatest number of 

efficacious responses was observed is selected as optimal. If there was a tie, the 

smallest dose was selected. For each clinical trial I recorded the metrics  
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x  K, 

x the efficacy of the K potential doses that was truly optimal 

x whether the truly optimal dose out of the K doses was predicted to be the 

optimal dose 

x  the true efficacy of the predicted optimal dose.  

x the predicted efficacy for the predicted optimal dose 

 

I simulated clinical trials for  

x {𝑠𝑖𝑧𝑒}{ } =2,5,10 

x N = 30, 60, 120 and 240, 

x K = 1, 2, 3, 5, 6, 10, 15, 30, 60, and 120.  

I conducted 1000 simulations for each trio of {𝑠𝑖𝑧𝑒}{ }, K and N, each with a 

different randomly sampled r, and the results are plotted below [A.F.2.4. If K were 

greater than N a clinical trial was not simulated as this would mean that the group 

size N/K would be less than 1. All N/K were integers by design. The mean of each of 

these metrics stratified by N, {𝑠𝑖𝑧𝑒}{ } and K were calculated. The K that 

maximised the mean of the true efficacy of the predicted optimal dose for each N 

and 𝑠𝑖𝑧𝑒  was said to be optimal for that N and 𝑠𝑖𝑧𝑒  for this dose-efficacy 

curve. 
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Figure A.F.2.4. Metrics of simulated naïve uniform clinical trials for different K values. N 
increases from top to bottom. 𝒔𝒊𝒛𝒆𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍  increases from left to right.  
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These results support my hypotheses. Increasing K led to an increase in the true 

best efficacy amongst the K possible dose, particularly for large {𝑠𝑖𝑧𝑒}{ }. 

Increasing K decreased the probability that the true optimal dose would be selected. 

The relationship between K and the efficacy of the dose that was predicted to be 

optimal based on the clinical trials was non-monotonic, initially increasing but 

decreasing past a certain value of K.  

The optimal K for selecting maximum efficacy dose was dependent on N and 

𝑠𝑖𝑧𝑒  . An increase in N generally led to an increase in the value for the optimal 

K. This is likely because an increase in N would counterbalance the increased value 

of K with regards to the value of N/K. Increasing 𝑠𝑖𝑧𝑒  also led to an increase in 

the optimal value of K. This is likely because when 𝑠𝑖𝑧𝑒  was small there was 

little difference in efficacy between any of the potential doses, and so a greater value 

of N/K was needed to determine a difference in efficacy between them. 

These results suggest that, if the ‘uniform naive’ dose-optimisation approach is being 

used, then the number of dosing groups that should be used (which is to say the 

density of the dosing domain), may be dependent on a number of factors. If there 

was expected to be a large variance in efficacy between different doses in the range 

that is being investigated, represented here by a large 𝑠𝑖𝑧𝑒 , then a larger 

number of dosing groups should have been considered. If it was believed that there 

would be minor difference in efficacy between doses in the range that is being 

considered, represented here by a small 𝑠𝑖𝑧𝑒  then there was little benefit in 

using more than 1 dosing group. This was particularly true for small N, as it was 

unlikely that any distinction in efficacy between multiple doses can be determined 

given the small group size.  

Further, in this example increasing K in the case where there was slight difference in 

efficacy maximised the risk of optimistic bias and overestimating vaccine efficacy. 

Results for this are shown below [A.F.2.5.], with the mean inaccuracy (blue) 

increasing with K for all N and 𝑠𝑖𝑧𝑒   
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Figure A.F.2.5. Metrics of simulated naïve uniform clinical trials for different K values, 
including inaccuracy. N increases from top to bottom. 𝒔𝒊𝒛𝒆𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍 increases from left to right.  
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I note that, as this was an informal simulation study, this is more a demonstration of 

the potential impact that the decision of dosing space density could have for some 

dose-efficacy curve under certain assumptions (peaking dose-efficacy, optimal dose 

guaranteed to be within the dosing domain and with uniform distribution). These 

findings are presented purely for the interested reader. A larger simulation study 

using more scenarios and with a sensitivity analysis of these assumptions would be 

needed to thoroughly investigate these hypotheses or to make recommendations 

regarding optimal dosing space density.  



 
610 
 

Appendix G: Objective 3 for chapter 5 
In addition to the objectives i and ii which investigated the effect of changing i) 

efficacy model and trial size and ii) efficacy model and trial dose selection method in 

chapter 5, I also considered the logical third objective, investigating the effect of 

changing iii) trial size and ii) method of trial dose selection. This was excluded from 

the published work to reduce the complexity and length of that paper, but results are 

included here as they highlight the importance of exploration for the purposes of 

optimal dose selection. 

For this objective I repeated the simulation study on the same 14 scenarios, as in 

objectives i and ii. I considered dose-optimisation approaches of the form 

Efficacy Model: Weighted 

i. Trial size:  10, 30, 60, or 100 

ii. Trial dose selection method: Full uniform exploration, standard fully 

continual modelling, balanced exploration (SoftMax) fully continual 

modelling, or three stage (SoftMax).  

I chose to fix the assumed efficacy model to the ‘Weighted’ efficacy model, as dose-

optimisation approaches that used this efficacy model were found to be effective in 

the first two objectives.  

With the efficacy model being the ‘weighted’ model, I found that the importance of 

including exploration in the dose-optimisation approach increased with trial size. In 

general, across all 14 scenarios, increasing trial size above 30 did not decrease PSR 

when the standard fully continual method of trial dose selection was used [Figure 

AG.1.]. This is in contrast to the other three methods of trial dose selection, for which 

an increase in trial size always decreased PSR. This is in line with the findings of the 

main body of the work, that not allowing for exploration of doses that are predicted to 

be suboptimal reduces the quality of the final selected dose. These findings suggest 

that this effect increases as trial size dose. 
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Figure A.G.1. Percentage Simple Regret (PSR) for all scenarios, by trial size and trial dose 
selection method. Assumed efficacy model was ‘Weighted’. Individual points represent PSR for a 
single simulated clinical trial using that dose-optimisation approach for one of the 14 scenarios. The 
middle line of each boxplot is the median value, the box marks the 25th and 75th percentiles, and the 
whiskers mark the 5th and 95th percentiles of the data. A lower PSR denotes a more optimal final 
dose. 

With the efficacy model being the ‘weighted’ model there was minimal difference in 

Inaccuracy and Absolute Inaccuracy across the approaches [figure AG.2]. This 

further suggests that accuracy of utility predictions at the model predicted optimal 

vaccine dose was not dramatically improved by using continual modelling method of 

dose selection. There was still an optimistic bias observed. I again found that an 

increased trial size reduced Inaccuracy and Absolute Inaccuracy. 
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(a) 

 

(b) 

Figure A.G.2. Inaccuracy (a) and Absolute Inaccuracy (b) for all scenarios, by trial size and trial 
dose selection method. Assumed efficacy model was ‘Weighted’. Individual points represent 
Inaccuracy/Absolute Inaccuracy for a single simulated clinical trial using that dose-optimisation 
approach for one of the 14 scenarios. The middle line of each boxplot is the median value, the box 
marks the 25th and 75th percentiles, and the whiskers mark the 5th and 95th percentiles of the data. 
The closer Inaccuracy/Absolute Accuracy were to 0 the more accurate that the prediction of utility was 
at the predicted optimal dose. 

With the efficacy model being the ‘weighted’ model, the results suggest that fully 

continual modelling (both standard and balanced) and three stage approaches 

identify optimal dose with a greater net benefit to trial participants than the 

retrospective full uniform exploration approaches (as shown by decreased Average 

Regret) [Fig A.G.3]. The balanced exploration variant of the fully continual modelling 

dose-selection method appeared to have a marginally increased Percentage 

Average Regret compared to approaches with standard fully continual modelling 

dose-selection, but Average Regret was still significantly reduced relative to 

approaches using the three stage SoftMax or full uniform exploration methods of trial 

dose selection. The three stage SoftMax approaches showed a reduced Average 

Regret relative to full uniform exploration but a greater Average Regret relative to the 

fully continual approaches. As trial size increased Percentage Average Regret 

decreased for all methods of trial dose selection other than the full uniform method.  
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Figure A.G.3. Percentage Average Regret for all scenarios, by trial size and trial dose selection 
method. Assumed efficacy model was ‘Weighted’. Individual points represent Percentage Average 
Regret for a single simulated clinical trial using that dose-optimisation approach for one of the 14 
scenarios. The middle line of each boxplot is the median value, the box marks the 25th and 75th 
percentiles, and the whiskers mark the 5th and 95th percentiles of the data. A lower percentage 
Average Regret denotes better outcomes to trial participants. 
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