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Background: Antimicrobial resistance (AMR) has been deepening in the layer poultry sector in Zambia partly due 
to the inappropriate use of antimicrobials. Escherichia coli (E. coli), a commensal and zoonotic bacterium, can 
potentially be a source of AMR.

Objectives: This study assessed the phenotypic AMR profiles of E. coli isolated from the apparent health-laying 
hens in Lusaka and Copperbelt provinces of Zambia.

Methods: A cross-sectional study was conducted between September 2020 and April 2021 in which 365 cloacal 
swabs were collected from 77-layer farms based in Lusaka and Copperbelt provinces of Zambia. E. coli isolation 
and identification were done using cultural and biochemical properties and confirmed using the 16S rRNA gene 
sequencing. Antimicrobial susceptibility testing (AST) was done using the Kirby–Bauer disc-diffusion method. 
Data analysis was done using WHONET 2020 and Stata v.16.1.

Results: Of the 365 samples, E. coli was isolated from 92.9% (n = 339). The AMR was detected in 96.5% (n = 327) 
of the isolates, of which 64.6% (n = 219) were multidrug-resistant (MDR). E. coli was highly resistant to tetracyc-
line (54.6%) and ampicillin (54%) but showed low resistance to meropenem (0.9%), ceftazidime (6.2%) and 
chloramphenicol (8.8%).

Conclusion: This study found a high prevalence of E. coli resistant to some commonly used antibiotics in poultry, 
which is a public health concern because of the potential contamination of eggs and layers of chicken meat that 
enter the food chain. Urgent attention is needed, including strengthening antimicrobial stewardship and surveil-
lance programmes in layer poultry production in Zambia.

© The Author(s) 2023. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/ 
by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Antimicrobial resistance (AMR) has increased in poultry over the 
past decade due to the inappropriate use of antimicrobial 
agents.1–4 Antimicrobial agents have primarily been used for im-
proved egg production, growth promotion, prophylaxis, meta-
phylaxis and therapeutics in the poultry industry.5–8 The use of 
antimicrobials in poultry production can be attributed to the in-
creased demand for poultry products such as chicken meat 
and eggs.9,10 This has contributed to the continuous exposure 

of poultry microorganisms to antimicrobials and, thus, the devel-
opment of AMR.11,12 Escherichia coli (E. coli) are among the com-
mensal or pathogenic microorganisms isolated from poultry that 
have become resistant to common antibiotics used in human 
and animal health.13–16 E. coli causes infections such as urinary 
tract infections, bloodstream infections, sepsis and meningi-
tis.17–19

In the poultry sector, the effect of AMR can cause economic 
losses due to challenges in containing antimicrobial-resistant in-
fections, increased mortality, costs associated with the disposal 
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of carcasses and the compromise on safety and security.20 In the 
public sector, AMR leads to increased medical costs, prolonged 
hospital stays and increased mortality.21–23 If this problem is 
not addressed, it is estimated to cause 10 million human deaths 
globally by the year 2050.24–26

Imprudent use of antimicrobials among poultry farmers 
worldwide have contributed to the emergence and spread of 
AMR.27–30 Studies have shown that most poultry farmers are un-
aware of the implications of inappropriate use of antimicrobials 
that leads to AMR.31–33 The ease of access to antibiotics without 
prescriptions has contributed to their inappropriate use.31,34

Poultry farmers’ high antibiotic demand often drives this to en-
hance production.3,31,34 This issue has been exacerbated by the 
ready availability and sale of antibiotics in drug stores and 
through street vendors.34,35 Additionally, antibiotics are incor-
rectly used in poultry to treat viral infections.36 Consequently, 
some poultry farmers administer lower doses of antibiotics to 
their chickens and usually stop before the course is completed, 
provided their birds look in fair health.8

At a global level, antimicrobial-resistant E. coli has been isolated 
from poultry.37–40 E. coli was reportedly resistant to antimicrobials, 
including tetracycline, trimethoprim, ampicillin and gentami-
cin.36,41,42 Alongside the reported AMR profiles of E. coli, there are 
reports of multidrug-resistant (MDR) E. coli isolated from 
poultry.41,43,44 This is of public health concern and puts pressure on 
animal and human health prescribers when choosing antibiotics to 
prescribe for a particular condition. Additionally, antimicrobial- 
resistant E. coli can be transmitted from poultry to humans and 
cause infections that may be difficult or impossible to treat.15,45–48

As this problem can affect both humans and animals, there is a 
need to enhance the one health approach to address it.49–52

In Africa, some reports have been documented on the resistance 
patterns of E. coli isolated from poultry in some studies.16,53–58 E. coli 
resistant to ampicillin, tetracycline, cotrimoxazole, ciprofloxacin and 
gentamicin has been identified. Besides, MDR E. coli isolated from 
poultry was reported from different studies, with 76% in 
Bangladesh,15 78.1% in Ethiopia,59 98.1% in Nigeria60 and 86.76% 
in Tanzania.53 This reported resistance to antimicrobials highlights 
the need for the prudent use in poultry farming.

In Zambia, antimicrobial-resistant E. coli have been isolated 
from humans,61,62 broiler chickens,63,64 dairy65 and wildlife and 
livestock.66 In broilers, E. coli, was observed to be resistant to 
tetracycline, ampicillin, cotrimoxazole and ciprofloxacin, where-
as, in dairy, it was resistant to tetracycline, ampicillin, cotrimoxa-
zole and ciprofloxacin.65 Besides, E. coli isolates from wildlife and 
livestock were highly resistant to ampicillin (27%), ceftazidime 
(14.3%), cefotaxime (9.5%) and kanamycin (9.5%).66 In these 
animal species, a prevalence of 36.5% MDR was reported in broi-
lers63% and 18.8% in wildlife.66 However, the study of the preva-
lence and AMR profiles of E. coli isolated from laying hens in 
Zambia was not reported prior to this study.

The reported AMR in Zambia requires enhancement and im-
plementation strategies to address this problem. Among the pro-
posed strategies, the Zambia Multi-sectoral National Action Plan 
(NAP) on AMR, launched in 2017, aimed at addressing this prob-
lem in humans and animals.67,68 The NAP on AMR was developed 
in line with the Global Action Plan on AMR to successfully prevent 
and treat infections across all populations with safe and effective 
medicines and reduce AMR.69 The NAP on AMR strives to address 

AMR in animals and humans by increasing awareness and 
knowledge of AMR among different populations and promoting 
the rational use of antimicrobials.67 Alongside this, strengthening 
antimicrobial stewardship (AMS) and surveillance programmes are 
critical in addressing AMR across humans and animals.67,69–74 This 
study assessed the AMR profiles of E. coli isolated from laying 
hens in Lusaka and Copperbelt provinces of Zambia.

Materials and methods
Study design, site and population
A cross-sectional study was conducted in layer farms of Lusaka and 
Copperbelt provinces from September 2020 to April 2021. The two pro-
vinces contribute (75%) to poultry production in the country.75 On the ba-
sis of information from the Poultry Association of Zambia, Lusaka province 
contributes 50% while Copperbelt province contributes 25% to poultry 
production.75 The study sites are shown in Figure 1.

Study population and sampling
This study enrolled layer poultry farmers after obtaining informed con-
sent. The study participants were poultry farmers who were rearing laying 
hens and resided in Zambia’s Lusaka and Copperbelt provinces. A multi- 
stage sampling method was used to select six districts, farms and later 
laying hens from the poultry houses. All layers in the production age 
were sampled randomly to increase the chances of all hens being se-
lected. However, laying hens that were on antibiotic treatment or sick 
during data collection were excluded from the study. We used registers 
from the District Veterinary Offices and the Poultry Association of 
Zambia to identify the layer poultry farmers. Farm visits were conducted 
with the help of Veterinary Assistants. The layer poultry farms were cate-
gorized into small-scale (farmers rearing up to 1000 hens), medium-scale 
(farmers rearing 1001 to 10 000 hens) and large-scale (farmers rearing 
greater than 10 000 hens). On the basis of the registers from the 
District Veterinary Offices and the Poultry Association of Zambia, active 
layer poultry farmers were estimated to be 96, i.e. 56 from Lusaka and 
40 from the Copperbelt province. A recent study also reported this esti-
mated population of layer poultry farms.31 Before sampling, the sample 
size was estimated using Ausvet Epitools (https://epitools.ausvet.com. 
au/) at a 95% confidence level, 50% estimated proportion and a 5% de-
sired precision, as reported in a similar poultry study.76 Because there 
were few layer poultry farms that were identified and active in rearing 
laying hens, we conducted a complete enumeration to recruit all the 
farmers, which resulted in the recruitment of 77-layer poultry farms.

At each farm, laying hens were randomly sampled per 25 m2 (sampling 
unit) from each poultry house. A cloacal swab was collected from each lay-
ing hen per sampling unit and pre-enriched in 10 millilitres (mL) of buffered 
peptone water (BPW) broth (Oxoid, Basingstoke, UK). The pre-enriched sam-
ples were then transported within eight hours of collection to the Public 
Health Laboratory at the School of Veterinary Medicine at University of 
Zambia, for processing and analysis. A total of 365 cloacal swab samples 
were collected and processed for E. coli isolation.

Isolation and identification of E. coli isolates
To isolate E. coli, the samples were incubated in the pre-enriched BPW 
broth at 37˚C for 16–24 hours. Aliquots of the pre-enriched broth were 
then spread and cultured on MacConkey agar (Oxoid, Basingstoke, UK) 
plates and incubated aerobically at 37˚C for 24 hours. The pink-coloured 
(lactose fermenting) colonies were sub-cultured on Eosin Methylene Blue 
(EMB) agar (Oxoid, Basingstoke, UK) plates and incubated aerobically for 
an additional 24 hours. The green metallic colonies on EMB were pre-
sumed E. coli and were sub-cultured on nutrient agar (Oxoid, 
Basingstoke, UK) plates and incubated aerobically for 24 hours. The 
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E. coli colonies appeared large, thin, circular and greyish-white on nutrient 
agar. Further identification of the isolates was made using the Analytical 
Profile Index (API 20E) (Biomerieux®, Inc., 100 Rodolphe Street, Durham, 
NC 27712, USA) test kit. We stored the presumptive E. coli isolates in 10% 
glycerol at −20˚C before further analysis.

Confirmation of E. coli isolates
The presumptive E. coli isolates were sequenced using 16S rRNA as de-
scribed for E. coli.77 The boiling method was used to extract DNA from 

presumptive E. coli isolates, as was used in a similar study.78 Each 
pure colony was suspended in 200 µL of nuclease-free water and heated 
at 95°C for 5 minutes. The suspension was centrifuged at 6000 g for 
2 minutes at four °C to extract the DNA. Polymerase Chain Reaction 
(PCR) was used for DNA amplification using Taq polymerase, and the 
uidA F (Forward) primers (5′-CGGAAGCAACGCGTAAACTC-3′) and uidA 
R (Reverse) primers (5′-TGAGCGTCGCAGAACATTACA-3′) (Sigma-Aldrich, 
Merck, Germany) in a thermo-cycler. The PCR conditions were; initial de-
naturation 95°C for 3 minutes, and 40 cycles of 95°C for 45 seconds, 
55°C for 45 seconds and 72°C for 60 seconds. The final extension was 

Table 1. Distribution of samples collected from laying hens

Province District
Number of farms sampled,  

n (%, 95% CI) Number of samples collected Samples that yield E. coli isolates Positivity rates (%)

Lusaka Chongwe 17 (22.1; 14.0–33.0) 103 96 93.2
Kafue 20 (26.0; 17.2–37.1) 81 68 84.0
Lusaka 5 (6.49;2.67–14.9) 34 34 100
Rufunsa 3 (3.90; 1.23–11.7) 7 7 100

Copperbelt Kitwe 22 (28.6; 19.4–39.9) 94 88 93.6
Ndola 10 (13.0; 7.03–22.7) 46 46 100
Total 77 365 339

Figure 1. Map of Zambia indicating the study sites in Lusaka and Copperbelt provinces (ARCGis: 2021).
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at 72°C for 5 minutes and held at 4°C. After that, the amplicons were 
run on 1.5% agarose gels by gel electrophoresis in 1X tris-acetate EDTA 
(TAE) buffer at 100 volts for 30 minutes. The gels were then stained 
with ethidium bromide and read on a BioDoc-IT™ Imaging System 
Trans-illuminator to confirm the amplifications of the uidA target region.

Antimicrobial susceptibility testing
Antimicrobial susceptibility testing (AST) was done using a panel of 13 
antibiotics by the Kirby disc-diffusion method. The AST procedure was 
done as described in other studies.79–81 The antibiotic discs (Oxoid, 
Basingstoke, Hampshire, UK) that were used included amoxicillin/clavula-
nic acid (20/10 µg), ampicillin (10 µg), cefepime (30 µg), cefotaxime 
(30 µg), ceftazidime (30 µg), chloramphenicol (30 µg), ciprofloxacin 
(5 µg), gentamicin (10 µg), meropenem (10 µg), nalidixic acid (30 µg), 
nitrofurantoin (300 µg), tetracycline (30 µg) and trimethoprim/sulfa-
methoxazole (1.25/23.75 µg).

The bacterial suspension was prepared and turbidity adjusted to 0.5 
McFarland standard, after which it was inoculated onto Mueller-Hinton 
Agar (Oxoid, Basingstoke, Hampshire, UK) petri dishes and incubated at 
37°C for 16–24 hours. The zones of inhibition were measured in milli-
metres using a Vernier calliper, and results were interpreted according 
to the Clinical and Laboratory Standards Institute (CLSI) 2020 guidelines 
as susceptible (S), intermediate (I) and resistant.82 We used E. coli ATCC 
25922 for quality control.

Data process and analysis
Data analysis used Stata version 16.1/BE (Stata Corp., College Station, TX, 
USA) and WHONET 2020. The zones of inhibition were interpreted using 
the CLSI 2020 guidelines and interpreted as susceptible (S), intermediate 
(I) and resistant (R). Frequencies and percentages are presented in 
Tables 1 and 2.

Ethical approval
We obtained ethical clearance from the ERES Converge Ethics Committee 
with a protocol ID: reference no. 2019-Dec-004. Permission to conduct 
the research in the selected sites was also obtained from the Zambia 

National Health Research Authority. Additionally, we obtained further 
permission to collect data in layer poultry farms from the Lusaka and 
Copperbelt Provincial and District Veterinary Offices. Finally, we obtained 
informed consent from the layer poultry farmers to collect samples from 
their laying hens.

Results
Seventy-seven layer poultry farms from six districts across Lusaka 
and Copperbelt provinces were enrolled in this study from which 
365 cloacal swabs were collected from the laying hens. Of the 
365 cloacal swab samples, 339 tested positive for E. coli, resulting 
in a 92.9% positivity rate (Table 1).

E. coli isolates were highly resistant to tetracycline (54.6%) 
and ampicillin (54.0%) while highly susceptible to meropenem 
(94.7%), chloramphenicol (85.8%) and ceftazidime (85.3%) as 
depicted in Table 2.

Multidrug-resistant, extensively drug-resistant 
and pan-drug-resistant E. coli
Overall, 12/339(3.54%; 95% CI: 1.93–6.27) of the isolates were 
susceptible to all antibiotics, while 327/339 (96.5; 95% CI: 
93.73%–98.07%) were resistant to at least one antibiotic. A total 
of 219/339 (64.6%; 95% CI: 59.22–69.64) isolates were MDR and 
resistant to three or more antibiotics from different classes. Of 
these isolates, 25/339 (7.37%; 95% CI: 4.92–10.83) were possible 
XDR isolates. However, no PDR isolates were recorded.

Overall, layer poultry farms obtained MDR isolates from 75/ 
77(97.4%; 95% CI: 89.9–99.4). All the farms (45/45) from 

Table 2. AMR patterns of Escherichia coli isolates (n = 365)

Antibiotic name % R % I % S % R 95%CI

Amoxicillin/Clavulanic 
acid

25 (7.4) 32 (9.4) 282 (83.2) 13.1–21.3

Ampicillin 183 (54.0) 40 (11.8) 116 (34.2) 48.5–59.4
Cefotaxime 103 (30.4) 39 (11.5) 197 (58.1) 25.6–35.6
Ceftazidime 21 (6.2) 29 (8.6) 289 (85.3) 4.0–9.5
Cefepime 21 (6.2) 61 (18.0) 257 (75.8) 4.0–9.5
Chloramphenicol 30 (8.8) 18 (5.3) 291 (85.8) 6.1–12.5
Ciprofloxacin 86 (25.4) 80 (23.6) 173 (51.0) 20.9–30.4
Gentamicin 29 (8.6) 69 (20.4) 241 (71.1) 5.9–12.2
Meropenem 3 (0.9) 15 (4.4) 321 (94.7) 0.2–2.8
Nitrofurantoin 41 (12.1) 72 (21.2) 226 (66.7) 8.9–16.2
Tetracycline 184 (54.3) 52 (15.3) 103 (30.4) 49.1–59.9
Trimethoprim/ 

Sulfamethoxazole
90 (26.5) 12 (3.5) 237 (69.9) 22.0–31.6

Nalidixic acid 82 (24.2) 58 (17.1) 199 (58.7) 19.8–29.2

Note. R = Resistant, I = Intermediate, S = Susceptible, 95% CI = 95% confi-
dence interval.

Table 3. Selected common and less common MDR patterns of 
Escherichia coli

Antimicrobial combination
Number of 

isolates
Number of antimicrobial 

classes

AMC, AMP, CTX, CIP 4 3
AMC, AMP, CTX, FEP, CIP 4 3
AMC, AMP, CTX, CAZ, CIP 3 3
AMC, AMP, CTX, FEP, CHL, 

CIP
4 4

AMP, CTX, CAZ, FEP, CIP 6 3
AMP, CTX, FEP, CHL 2 3
AMP, CTX, FEP, CIP 12 3
AMP, CTX, CHL, CIP 4 4
AMP, CTX, CHL 3 3
AMP, CTX, CIP 19 3
AMP, CAZ, FEP, CIP 3 3
AMP, CAZ, CIP 5 3
AMP, CHL, CIP 5 3
AMC, AMP, CTX, CAZ, FEP, 

CHL, CIP
5 4

AMC, AMP, CTX, CAZ, FEP, 
CIP

6 3

Note: AMC = Amoxicillin/clavulanic acid; AMP = Ampicillin; CTX =  
Ceftriaxone; FEP = Cefepime; CHL = Chloramphenicol; CIP = Ciprofloxacin; 
CAZ = Cefpodoxime.
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Lusaka province and 30/32 (93.8%; 95% CI: 77.4–98.5) from the 
Copperbelt province recorded MDR isolates.

The most MDR pattern was seen with resistance to AMP, CTX 
and CIP, while the least frequent pattern was seen with resist-
ance to AMP, CTX, FEP and CHL (Table 3).

Discussion
In this study, we assessed the AMR profiles of E. coli isolated from 
laying hens in selected districts of Lusaka and Copperbelt pro-
vinces in Zambia. Our study found a high isolation rate of 
92.9%, with a 96.5% prevalence of E. coli resistant to at least 
one antibiotic. Additionally, 64.6% of the isolates were MDR. 
This study found that most E. coli isolates were highly resistant 
to tetracycline (54.6%), ampicillin (54.0%), cefotaxime (30.4%), 
trimethoprim-sulfamethoxazole (26.5%), ciprofloxacin (25.4%) 
and nalidixic acid (24.2%). Conversely, E. coli was highly suscep-
tible to meropenem (94.7%), chloramphenicol (85.8%), ceftazi-
dime (85.3%), amoxicillin-clavulanic acid (83.2%) and cefepime 
(75.8%).

The present study found a high E. coli isolation rate of 92.9%. 
The isolation rate of E. coli in our study was similar to (93%) what 
was reported in Sierra Leone.83 However, our isolation rate was 
slightly higher than (86%) what was reported in broiler chickens 
in Bangladesh.15 Other studies have reported even higher isola-
tion rates, including 100% in Tanzania,53 99% in the USA84 and 
94% in Nepal.85 The high isolation rate of E. coli reported in our 
study and similar studies could be due to adherence to the micro-
biology isolation protocols that resulted in increased bacteria re-
covery. This level of isolation rate makes E. coli a suitable 
microorganism to evaluate the AMR prevalence and profiles in 
many production systems, including layer poultry farms. 
However, lower isolation rates have been reported in other stud-
ies, such as a study in Bangladesh that used frozen chicken sam-
ples.41 The differences in sample sources may account for these 
variations in isolation rates.

The highest resistance of E. coli to antibiotics was observed 
with tetracyclines. A previous study conducted from commercial 
farms in the Chisamba district of Zambia reported a 100% resist-
ance of E. coli to tetracycline.86 Another recent study in Zambia 
found high (87.9%) resistance of E. coli to tetracycline.87 The 
ease of access to tetracyclines in Zambia’s poultry industry with-
out prescriptions may contribute to AMR.88 Our findings corrobor-
ate observations from other studies conducted on 
poultry.13,41,55,59,89 The misuse of tetracyclines in poultry for 
growth promotion, improved egg production, prophylaxis and 
treatment of diseases has contributed to the resistance of 
E. coli to these drugs.90–93 However, by contrast, a study in 
Bangladesh found that E. coli isolated in poultry were highly re-
sistant to levofloxacin.15 These discrepancies may be due to dif-
ferences in poultry disease burdens and the availability of 
particular poultry antimicrobials across countries. Furthermore, 
the ease of access to common antibiotics such as tetracyclines, 
quinolones and penicillins for use in poultry has contributed to 
development and spread of AMR.42,53

Our study found that E. coli was also highly resistant to ampi-
cillin. Our findings are similar to a study that was conducted in 
poultry farms in Zambia.87 Additionally, our findings are consist-
ent with those reported in other studies.14,53,60,85,94 The 

resistance of E. coli to ampicillin may indicate the misuse of peni-
cillins in the poultry sector. Additionally, studies in humans have 
also reported high resistance of E. coli to ampicillin.61,62,95,96 The 
resistance rate reported in our study is higher than that reported 
in a study that was done in the USA97 and in Sierra Leone.83

This study found that E. coli was resistant to cefotaxime, a 
third-generation cephalosporin. A similar resistance rate to cefo-
taxime has been reported in Bangladesh,15 and resistance to cef-
tiofur, another third-generation cephalosporin, was reported in 
China.98 Studies suggest that increased resistance of E. coli to 
third-generation cephalosporins may be associated with the ad-
ministration of beta-lactams, which may result in the production 
of extended spectrum beta-lactamases.98–100 In human medi-
cine, third-generation cephalosporins such as cefotaxime and 
ceftriaxone are ‘Watch group’ antibiotics and should only be 
used when the ‘Access (to first-line) group’ have failed.101

However, there is evidence that antibiotics such as ceftriaxone 
or cefotaxime are usually prescribed inappropriately, thereby in-
creasing the risk of bacterial resistance to cephalosporins.102–104

In Zambia, the misuse of enrofloxacin, a quinolone commonly 
used in poultry, is evidenced by the resistance rates of E. coli to 
ciprofloxacin and nalidixic acid in our present study, a recent 
comparable study87 and the ease of access to poultry antibio-
tics,33,88 in Zambia. This finding aligns with similar resistance pat-
terns of E. coli to quinolones reported in other 
studies.15,16,44,85,105 The misuse of enrofloxacin in the poultry 
sector may contribute to the resistance of E. coli and other micro-
organisms to this drug, as well as other quinolones.106 This high-
lights the importance of prudent use of antimicrobials in the 
poultry sector to prevent the development and spread of AMR 
that would subsequently compromise the treatment of human 
infections.

Our study found high resistance (96.5%) of E. coli to at least 
one of the tested antibiotics, similar to a study done in China, 
where 94% of E. coli isolates were resistant to at least one anti-
biotic.44 This high resistance may be partially attributed to the in-
appropriate use of antibiotics in poultry.33 The detection of 64.6% 
MDR E. coli in our study is a public health concern requiring urgent 
attention and control of antibiotic use in poultry. Similar findings 
were reported in other studies. An earlier study from three com-
mercial poultry farms in Zambia showed that 4.8% of E. coli were 
MDR,86 while higher levels of MDR E. coli have been reported in 
broiler chickens in Bangladesh (100%),41 95.7% in Austria,107

86.76% in Tanzania,53 76% in Bangladesh,15 71% in Nepal,85

56.3% Nigeria108 and 44% in Ireland.37 The treatment failure of 
poultry diseases due to MDR microorganisms can cause farmers 
to seek more options of the available antimicrobials that can fur-
ther increase the selection pressure of AMR and make the treat-
ment of infections even more difficult or impossible.109–111 The 
occurrence of MDR isolates in our study, as well as in other stud-
ies, highlights the need to intensify biosecurity measures in poult-
ry10,108,112–117 and for more robust AMS and surveillance 
programmes to address AMR.118–125

This study highlights the AMR profiles of E. coli isolated from 
laying hens from Zambia’s two provinces that produce the largest 
number of poultry products. However, this study focused on one 
priority microorganism and does not give a clear picture of the re-
sistance patterns of other priority microorganisms isolated from 
poultry.
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Conclusion
This study found a high resistance of E. coli to antibiotics com-
monly used in both poultry and humans in Zambia. The presence 
of MDR isolates is a significant public health concern because of 
the potential risk of transmission of AMR from chickens and 
eggs to humans. The regulation of antibiotic use in poultry is crit-
ical in addressing this issue. To combat this problem, there is a 
need to increase education and awareness among poultry 
farmers and veterinary drug dispensers on the rational use of 
antimicrobials, biosecurity measures, vaccinations and AMR. 
Furthermore, a multifaceted response, implementation and 
strengthening of AMS and surveillance programmes in poultry 
should be promoted to reduce the development and spread of 
AMR.
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