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Abstract
Background: Epigenetic clocks have been associated with cancer risk in several observational 
studies. Nevertheless, it is unclear whether they play a causal role in cancer risk or if they act as a 
non-causal biomarker.
Methods: We conducted a two-sample Mendelian randomization (MR) study to examine the genet-
ically predicted effects of epigenetic age acceleration as measured by HannumAge (nine single-
nucleotide polymorphisms (SNPs)), Horvath Intrinsic Age (24 SNPs), PhenoAge (11 SNPs), and 
GrimAge (4 SNPs) on multiple cancers (i.e. breast, prostate, colorectal, ovarian and lung cancer). We 
obtained genome-wide association data for biological ageing from a meta-analysis (N = 34,710), and 
for cancer from the UK Biobank (N cases = 2671–13,879; N controls = 173,493–372,016), FinnGen 
(N cases = 719–8401; N controls = 74,685–174,006) and several international cancer genetic 
consortia (N cases = 11,348–122,977; N controls = 15,861–105,974). Main analyses were performed 
using multiplicative random effects inverse variance weighted (IVW) MR. Individual study estimates 
were pooled using fixed effect meta-analysis. Sensitivity analyses included MR-Egger, weighted 
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median, weighted mode and Causal Analysis using Summary Effect Estimates (CAUSE) methods, 
which are robust to some of the assumptions of the IVW approach.
Results: Meta-analysed IVW MR findings suggested that higher GrimAge acceleration increased the 
risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04–1.20, p 
= 0.002). The direction of the genetically predicted effects was consistent across main and sensitivity 
MR analyses. Among subtypes, the genetically predicted effect of GrimAge acceleration was greater 
for colon cancer (IVW OR = 1.15, 95% CI 1.09–1.21, p = 0.006), than rectal cancer (IVW OR = 1.05, 
95% CI 0.97–1.13, p = 0.24). Results were less consistent for associations between other epigenetic 
clocks and cancers.
Conclusions: GrimAge acceleration may increase the risk of colorectal cancer. Findings for other 
clocks and cancers were inconsistent. Further work is required to investigate the potential mecha-
nisms underlying the results.
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preneurship & Innovation’ (OΠΣ 5047228). PH was supported by Cancer Research UK (C18281/
A29019). RMM was supported by the NIHR Biomedical Research Centre at University Hospitals 
Bristol and Weston NHS Foundation Trust and the University of Bristol and by a Cancer Research 
UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). RMM 
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project grant (AS-PG-19b-010) and NIH grant (U01 AG-18-018, PI: Steve Horvath). RCR is a de Pass 
Vice Chancellor’s Research Fellow at the University of Bristol.

Editor's evaluation
This paper is of broad interest to researchers seeking to disentangle the health impact of epigenetic 
age acceleration, and will provide a substantive empirical contribution to the literature. The authors 
were very meticulous in addressing all the concerns from the reviewers, which has further improved 
the paper.

Introduction
DNA methylation (DNAm) at specific cytosine-phosphate-guanine (CpG) sites has been found to be 
strongly correlated with chronological age. Biological age, as predicted by DNAm patterns at specific 
CpG sites, may differ from chronological age on an individual basis. Observational evidence suggests 
that epigenetic age acceleration (i.e. when an individual’s biological age is greater than their chrono-
logical age) may be associated with an increased risk of mortality and age-related diseases, including 
cancer (Fransquet et al., 2019).

Epigenetic clocks are heritable indicators of biological ageing derived from DNAm data. Each 
clock is based on DNAm levels measured at a different set of CpG sites, which capture distinctive 
features of epigenetic ageing (Liu et al., 2020). ‘First-generation’ epigenetic clocks, such as Hannu-
mAge (Hannum et  al., 2013) and Intrinsic HorvathAge (Horvath, 2013), have been derived from 
DNAm levels at CpG sites found to be strongly associated with chronological age. HannumAge is 
trained on 71 age-related CpGs found in blood (Hannum et al., 2013), while Intrinsic HorvathAge is 
based on 353 age-related CpGs found in several human tissues and cell types, and is further adjusted 
for blood cell counts (Horvath, 2013). More recently, ‘second-generation’ epigenetic clocks, such as, 
PhenoAge (Levine et al., 2018) and GrimAge (Lu et al., 2019a), have been developed to predict 
age-related morbidity and mortality. PhenoAge incorporates data from 513 CpGs associated with 
mortality and nine clinical biomarkers (i.e. albumin, creatinine, serum glucose, C-reactive protein, 
lymphocyte percentage, mean corpuscular volume, red cell distribution width, alkaline phosphatase 
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and leukocyte count) (Levine et al., 2018), and GrimAge includes data from 1,030 CpGs associated 
with smoking pack-years and seven plasma proteins (i.e. cystatin C, leptin, tissue inhibitor metallopro-
teinases 1, adrenomedullin, beta-2-microglobulin, growth differentiation factor 15, and plasminogen 
activation inhibitor 1 (PAI-1)) (Lu et al., 2019a). Due to differences in their composition, HannumAge 
and Intrinsic HorvathAge are better predictors of chronological age (Hannum et al., 2013; Horvath, 
2013), while PhenoAge and GrimAge stand out for their ability to predict health and lifespan (Levine 
et al., 2018; Lu et al., 2019a; McCrory et al., 2021).

Several studies suggest that HannumAge, Intrinsic HorvathAge, PhenoAge and GrimAge accel-
eration are associated with cancer risk (Levine et al., 2018; Ambatipudi et al., 2017; Levine et al., 
2015; Dugue et al., 2021; Kresovich et al., 2019b; Kresovich et al., 2019a; Zheng et al., 2016). In 
contrast, others indicate that evidence in support of this claim is weak or non existent (Dugué et al., 
2018; Hillary et al., 2020; Durso et al., 2017; Wang et al., 2021). This lack of consensus could be 
explained by biases that often affect observational research, such as reverse causation (e.g. cancer 
influencing the epigenome and not the other way around) and residual confounding (e.g. unmea-
sured, or imprecisely measured confounders of the association between epigenetic age acceleration 
and cancer) (Relton and Davey Smith, 2012).

The strength of the associations between epigenetic age acceleration and different cancers has 
also been found to vary across epigenetic clocks. For instance, positive associations between epigen-
etic age acceleration and colorectal cancer seem to be much stronger when biological age is esti-
mated using second-generation clocks (i.e. PhenoAge and GrimAge) (Dugue et  al., 2021) rather 
than first-generation clocks (i.e. HannumAge and Intrinsic HorvathAge) (Dugué et al., 2018; Durso 
et al., 2017). Lack of consensus across epigenetic clocks could be explained by differences in their 
algorithms (which may reflect different mechanisms of biological ageing), as well as heterogeneity in 
study designs (Fransquet et al., 2019). Furthermore, even if there were a consensus, it would still be 
unclear whether age-related DNA methylation plays a causal role in cancer risk or if it merely acts as 
a non-causal prognostic biomarker.

eLife digest Have you noticed that some people seem to get older faster than others? Scientists 
have previously found that a chemical tag on DNA known as DNA methylation can be used to predict 
an individual’s chronological age. However, age predicted using DNA methylation (also known as 
biological or epigenetic age) does not always perfectly correspond to chronological age. Indeed, 
some people’s biological age is higher than their years, while other people’s is lower.

When an individual’s biological age is higher than their chronological age, they are said to be 
experiencing ‘epigenetic age acceleration’. This type of accelerated ageing, which can be measured 
with ‘epigenetic clocks’ based on DNA methylation, has been associated with several adverse health 
outcomes, including cancer. This means that epigenetic clocks may improve our ability to predict 
cancer risk and detect cancer early. However, it is still unclear whether accelerated biological ageing 
causes cancer, or whether it simply correlates with the disease.

Morales-Berstein et al. wanted to investigate whether epigenetic age acceleration, as measured by 
epigenetic clocks, plays a role in the development of several cancers. To do so, they used an approach 
known as Mendelian randomization. Using genetic variants as natural experiments, they studied the 
effect of different measures of epigenetic age acceleration on cancer risk.

Their work focused on five types of cancer: breast, colorectal, prostate, ovarian and lung cancer. 
They used genetic association data from people of European ancestry to determine whether genetic 
variants that are strongly associated with accelerated ageing are also strongly associated with cancer. 
The results showed that one of the DNA methylation markers used as an estimate of biological ageing 
could be directly related to the risk of developing colorectal cancer.

This work provides new insights into the relationship between markers of biological ageing and 
cancer. Similar relationships should also be studied in other groups of people and for other cancer 
sites. The results suggest that reversing biological ageing by altering DNA methylation could prevent 
or delay the development of colorectal cancer.

https://doi.org/10.7554/eLife.75374
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Mendelian randomization (MR), a method that uses genetic variants as instrumental variables 
to infer causality between a modifiable exposure and an outcome, is less likely to be affected by 
residual confounding and reverse causation than traditional observational methods (Davey Smith and 
Ebrahim, 2003). A recent genome-wide association study (GWAS) meta-analysis has revealed 137 
genetic loci associated with epigenetic age acceleration (as measured by six epigenetic biomarkers) 
that may be used within an MR framework (McCartney et al., 2021).

McCartney et al., 2021 used IVW MR, MR-Egger, weighted median and weighted mode methods 
to explore the genetically predicted effects of HannumAge, Intrinsic HorvathAge, PhenoAge and 
GrimAge acceleration on breast, ovarian, and lung cancer. Here, we extend this analysis to include 
colorectal and prostate cancer (two of the most common cancers worldwide Sung et al., 2021) and 
use additional methods and datasets to verify the robustness of our findings.

The aim of this two-sample MR study was to examine the genetically predicted effects of epigen-
etic age acceleration (as measured by HannumAge Hannum et  al., 2013, Horvath Intrinsic Age 
Horvath, 2013, PhenoAge Levine et al., 2018 and GrimAge Lu et al., 2019a) on multiple cancers 
(i.e., breast, prostate, colorectal, ovarian and lung cancer) using summary genetic association data 
from (1) McCartney et al. (N = 34,710) (McCartney et  al., 2021), (2) the UK Biobank (N cases = 
2671–13,879; N controls = 173,493–372,016), (3) FinnGen (N cases = 719–8401; N controls = 74,685–
174,006) and (4) several international cancer genetic consortia (N cases = 11,348–122,977; N controls 
= 15,861–105,974).

Materials and methods
Reporting guidelines
This study has been reported according to the STROBE-MR guidelines (Skrivankova et al., 2021; 
Supplementary file 2).

Table 1. Numbers of overall cancer cases and controls by data source.

Cancer type Source N cases (%)* N controls

Breast BCAC 122,977 (53.7%) 105,974

UK Biobank 13,879 (6.5%) 198,523

 �  FinnGen 8401 (7.8%) 99,321

Ovarian OCAC 25,509 (38.4%) 40,941

UK Biobank 1218 (0.6%) 198,523

 �  FinnGen 719 (0.7%) 99,321

Prostate PRACTICAL 79,148 (56.4%) 61,106

UK Biobank 9132 (5.0%) 173,493

 �  FinnGen 6311 (7.8%) 74,685

Lung ILCCO 11,348 (41.7%) 15,861

UK Biobank 2671 (0.7%) 372,016

 �  FinnGen 1681 (1.0%) 173,933

Colorectal GECCO 58,131 (46.3%) 67,347

UK Biobank 5657 (1.5%) 372,016

 �  FinnGen 3022 (1.7%) 174,006

*Percentage (%) of cases within each study source was calculated using the following formula: 100 * N cases / (N 
cases + N controls).
BCAC = Breast Cancer Association Consortium. OCAC = Ovarian Cancer Association Consortium. PRACTICAL 
= Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome. ILCCO = 
International Lung Cancer Consortium. GECCO = Genetics and Epidemiology of Colorectal Cancer Consortium.

https://doi.org/10.7554/eLife.75374
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Genetic instruments for epigenetic age acceleration
We obtained summary genetic association estimates for epigenetic age acceleration measures of 
HannumAge (Hannum et al., 2013), Intrinsic HorvathAge (Horvath, 2013), PhenoAge (Levine et al., 
2018), and GrimAge (Lu et al., 2019a) from a recent GWAS meta-analysis of biological ageing (McCa-
rtney et al., 2021), which included 34,710 participants of European ancestry. Across the 28 European 
ancestry studies considered in the analysis, 57.3% of participants were female. A detailed description 
of the methods that were used can be found in the publication by McCartney et al., 2021. In short, 
the Horvath epigenetic age calculator software (https://dnamage.genetics.ucla.edu) or standalone 
scripts were used to calculate age adjusted DNAm estimates. Outlier samples with clock methylation 
estimates of +/−5 s.d. from the mean were excluded from further analysis. SNPs were genotyped and 
imputed independently for each cohort included in the meta-analysis. Genotypes were imputed using 
either the HRC or the 1000 Genomes Project Phase 3 reference panels in all cohorts but the Sister 
Study (which did not have imputed data at the time of analysis) and the Genetics of Lipid Lowering 
Drugs and Diet Network Study (which used whole-genome sequencing data). GWAS summary statis-
tics were obtained in each cohort using additive linear models adjusted for sex and genetic principal 
components, and they were later processed and harmonised using the ‘EasyQC’ R package. Fixed 
effect meta-analyses were performed using the METAL software (Willer et al., 2010).

We used the clump_data function in the ‘TwoSampleMR’ R package to select GWAS-significant 
SNPs (P < 5 × 10−8) for each epigenetic age acceleration measure and perform linkage disequilibrium 
(LD) clumping (r2 <0.001) using the European reference panel from the 1000 Genomes Project Phase 
3 v5.

We identified 9 independent SNPs for HannumAge, 24 for Intrinsic HorvathAge, 11 for PhenoAge 
and 4 for GrimAge (Supplementary file 1 — Table 1). The proportions of trait variance explained 
by genetic instruments (R2) and instrument strength (F-statistic) were calculated using the following 
formulae: R2 = (2β2×MAF×(1-MAF))/(2β2×MAF×(1-MAF) + 2 N × MAF × (1-MAF)×SE2) and F = (R2×(N-
2))/(1-R2) (where MAF = effect allele frequency, β = effect estimate of the SNP in the exposure GWAS, 
SE = standard error, N = sample size) (Palmer et al., 2012). The genetic instruments for HannumAge, 
Intrinsic HorvathAge, PhenoAge and GrimAge acceleration explained 1.48%, 4.41%, 1.86%, and 
0.47% of the trait variance, respectively. All the selected SNPs had F-statistics greater than 10 (Hannu-
mAge median 38 and range 31–99, Intrinsic HorvathAge median 47 and range 31–240, PhenoAge 
median 45 and range 32–89, GrimAge median 36 and range 31–45).

Genetic Association Data sources for cancer outcomes
We obtained summary-level genetic association data for cancer outcomes from the UK Biobank, 
FinnGen and several international cancer genetic consortia: the Breast Cancer Association Consor-
tium (BCAC), the Ovarian Cancer Association Consortium (OCAC), the Consortium of Investigators of 
Modifiers of BRCA1/2 (CIMBA), the Prostate Cancer Association Group to Investigate Cancer Associ-
ated Alterations in the Genome (PRACTICAL), the International Lung Cancer Consortium (ILCCO) and 
the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) (Table 1). Further details 
of the studies and the data obtained are described in Appendix 1.

We extracted genetic association data for the selected SNPs from each cancer GWAS (for breast, 
prostate, colorectal, ovarian and lung cancers). LD proxies (r2  >0.8) were used when the SNPs of 
interest were missing from the cancer GWAS dataset. The proxies were located using the MR-Base 
platform, which calculates LD using the European subset of individuals from the 1000 Genomes 
Project reference panel as above (Hemani et al., 2018). The ‘LDlinkR’ R package version 1.1.2 was 
used to find proxies for cancer data that were not included in the MR-Base platform. The exposure 
and outcome datasets were then harmonised to ensure the genetic associations reflect the same 
effect allele. Palindromic SNPs with minor allele frequencies (MAF) <0.3 were aligned, while those 
with MAF ≥0.3 or mismatching strands were excluded.

Power calculations
Statistical power was calculated using an online calculator for MR available at: https://shiny.​
cnsgenomics.com/mRnd/. Calculations were performed separately for each clock-cancer combination. 
They were based on a type one error rate of 0.05, the proportion of phenotypic variance explained by 
genetic variants (R2) for each measure of epigenetic age acceleration, and the total number of cases 

https://doi.org/10.7554/eLife.75374
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and controls included in the meta-analysis for each cancer. Across combinations of the four epigenetic 
clock acceleration and five cancer measures, we had 80% power to detect ORs as small as 1.04–1.39 
(Supplementary file 1 — Table s2).

Statistical analysis
We estimated the genetically predicted effects of epigenetic age acceleration (as measured by Hannu-
mAge Hannum et al., 2013, Horvath Intrinsic Age Horvath, 2013, PhenoAge Levine et al., 2018 
and GrimAge Lu et al., 2019a) on multiple cancers (i.e. breast, prostate, colorectal, ovarian, and lung 
cancer) using a two-sample MR framework (Figure 1).
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Figure 1. Flowchart summarising study methods. Abbreviations: BCAC, Breast Cancer Association Consortium; OCAC, Ovarian Cancer Association 
Consortium; PRACTICAL, Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome; ILCCO, International Lung 
Cancer Consortium; GECCO, Genetics and Epidemiology of Colorectal Cancer Consortium; LD, linkage disequilibrium; IVW, inverse variance weighted; 
MR, Mendelian randomization; FDR, false discovery rate; GWAS, genome-wide association study; CAUSE, Causal Analysis Using Summary Effect 
estimates, SNP, single-nucleotide polymorphism.

https://doi.org/10.7554/eLife.75374


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Medicine

Morales Berstein et al. eLife 2022;11:e75374. DOI: https://doi.org/10.7554/eLife.75374 � 7 of 46

Main analyses
Main analyses were performed using multiplicative random effects inverse variance weighted (IVW) 
MR, a method that combines the genetically predicted effect of epigenetic age acceleration on cancer 
across genetic variants (Burgess et al., 2013). This is the default IVW MR method in the ‘TwoSam-
pleMR’ R package, as it accounts for excess heterogeneity across SNP-specific estimates (as opposed 
to the fixed effect IVW method) and it does not affect the relative weights of individual SNP estimates 
(in contrast to the additive random effects IVW method) (Bowden et al., 2017).

We used fixed effect meta-analysis to pool results across studies (i.e. UK Biobank, FinnGen and 
international consortia). For colorectal cancer, we only pooled FinnGen and GECCO estimates, since 
UK Biobank participants were already included in GECCO. I2 statistics and their corresponding confi-
dence intervals were used to estimate heterogeneity across study estimates (von Hippel, 2015). A 
Benjamini-Hochberg false discovery rate (FDR) < 5% was used to correct the pooled main IVW results 
for multiple testing (Benjamini and Hochberg, 1995). This correction was applied considering a total 
of 20 independent statistical tests (4 clocks x 5 cancers = 20).

Sensitivity analyses
MR assumes genetic instruments for epigenetic age acceleration are (1) associated with epigenetic 
age acceleration (relevance assumption), (2) independent of confounders of the association between 
the instruments and cancer (independence assumption), and (3) only associated with cancer through 
their effect on epigenetic age acceleration (exclusion restriction assumption) (Didelez and Sheehan, 
2007; Davies et al., 2018).

As a sensitivity analysis and to test for potential violations of the relevance assumption, we calcu-
lated F-statistics and the R2 for each measure of epigenetic age acceleration (Burgess and Thompson, 
2011). Other sensitivity analyses included MR-Egger (Bowden et  al., 2015), weighted median 
(Bowden et al., 2016) and weighted mode (Hartwig et al., 2017) methods, which are robust to some 
of the assumptions of the IVW approach (described in Appendix 1). These results were also pooled 
across studies, as explained above. Consistency across different MR methods would suggest that it is 
less likely that the independence and exclusion restriction assumptions are violated.

We further assessed the validity of the independence assumption by conducting MR analyses 
using negative control outcomes (i.e. skin colour, ease of skin tanning). Evidence of causality 
between our genetic instruments for epigenetic age acceleration and these negative control 
outcomes would suggest potential bias due to population stratification that has not been fully 
accounted for through adjustments in the GWAS (Sanderson et al., 2021). We also assessed the 
genetically predicted effect of epigenetic age acceleration on cancer risk factors (i.e. body mass 
index, waist circumference, pack years of smoking, time spent doing vigorous physical activity, age 
completed full time education, years of schooling, and alcohol intake frequency) to detect poten-
tial violations of the exclusion restriction assumption. GWAS data for negative control outcomes 
and cancer risk factors were obtained using the University of Bristol’s IEU OpenGWAS API (for 
more details, see Appendix 1).

Where associations between genetically predicted epigenetic age acceleration and cancer were 
identified, we additionally performed single-SNP two-sample MR analysis to assess whether the 
effects were likely to be driven by a single SNP. We used the METAL software (Willer et al., 2010) 
to conduct a GWAS meta-analysis of cancer genetic association data obtained from the UK Biobank, 
FinnGen and international cancer genetic consortia. We then used these meta-analysed summary 
statistics in two-sample MR analyses. Scatter plots showing the effects of genetic instruments on 
epigenetic clock acceleration against their effects on cancer were created using the ‘TwoSampleMR’ R 
package. Additionally, Cochran’s Q statistics were used to quantify global heterogeneity across SNP-
specific MR estimates (Bowden et al., 2019) and MR-Egger intercept tests were performed to detect 
horizontal pleiotropy (Bowden et al., 2015).

We also used Causal Analysis using Summary Effect Estimates (CAUSE) (Morrison et al., 2020), 
a method that uses genome-wide summary statistics to disentangle causality (i.e. SNPs are asso-
ciated with cancer through their effect on epigenetic age acceleration) from correlated horizontal 
pleiotropy (i.e. SNPs are associated with epigenetic age acceleration and cancer through a shared 
heritable factor), while taking into account uncorrelated horizontal pleiotropy (i.e. SNPs are associated 
with epigenetic age acceleration through separate mechanisms). It uses Bayesian modelling to assess 

https://doi.org/10.7554/eLife.75374
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whether the sharing model (i.e. model that fixes the causal effect at zero) fits the data at least as well 
as the causal model (i.e. model that allows a causal effect different from zero).

Secondary analyses
As a secondary analysis, we conducted two-sample MR of epigenetic age acceleration and cancer 
subtypes (i.e. breast cancer: ER+, ER-, triple negative, luminal B/HER2-negative-like, HER2-enriched-
like, luminal A-like, luminal B-like, BRCA1 and BRCA2; ovarian cancer: high-grade serous, low-grade 
serous, invasive mucinous, clear cell, endometrioid, BRCA1 and BRCA2; prostate cancer: advanced, 
advanced [vs non-advanced], early onset, high risk [vs low risk], and high risk [vs low and intermediate 
risk]; lung cancer: adenocarcinoma and squamous cell; colorectal cancer: colon-specific, proximal 
colon-specific, distal colon-specific, rectal-specific, male and female) (Appendix 1).

We also performed two-sample MR analyses of epigenetic age acceleration and parental history 
of cancer in the UK Biobank for breast, prostate, lung and bowel cancer (Appendix 1). Data on 
parental history of ovarian cancer were not available in UK Biobank. Family history data correlate with 
combined hospital record and questionnaire data and it has been suggested that they provide better 
power to detect GWAS-significant associations for some phenotypes in the UK Biobank (DeBoever 
et al., 2020). Therefore, we expected these results to be consistent with those obtained in the main 
analyses.

MR results were reported as the odds ratio (OR) of site-specific cancer per one year increase in 
genetically predicted epigenetic age acceleration. These did not require any scale transformations, 
as the GWAS of biological ageing (McCartney et al., 2021) reported epigenetic age acceleration in 
years.

LD Score regression (Bulik-Sullivan et al., 2015) was used to identify genome-wide genetic correla-
tions between epigenetic age acceleration and cancer. Genetic correlations were estimated using full 
GWAS summary statistics for the epigenetic clocks and cancer, as well as the 1000 Genomes Project 
European LD reference panel. Traits with mean heritability chi-square values < 1.02 were excluded 
from the analyses.

Finally, bidirectional MR analyses were conducted to assess the causality and directionality of the 
link between epigenetic clock acceleration and telomere length, another measure of biological ageing 
that has been shown to influence cancer risk in prior MR studies (Telomeres Mendelian Randomiza-
tion Collaboration et al., 2017; Gao et al., 2020; Kuo et al., 2019). The MR Steiger test of direc-
tionality was used to confirm the assumption that the exposure causes the outcome is valid (Hemani 
et al., 2017). We also corroborated our findings by rerunning the analyses using data that had under-
gone Steiger filtering to remove SNPs that explained more variance in the outcome than in the risk 
factor. Genetic association data for measured telomere length were obtained from Codd et al., 2021, 
the largest GWAS of telomere length available through the OpenGWAS API at the time of analysis (N 
= 472,174, for more details, see Appendix 1).

All MR analyses were performed using R software version 4.0.2. Two sample MR analyses were 
conducted using the ‘TwoSampleMR’ package version 0.5.5. Meta-analyses of IVW results were 
performed using the ‘meta’ package version 4.18. GWAS meta-analyses used to perform single-SNP 
MR analyses were done using the METAL software (Willer et  al., 2010). CAUSE analyses were 
conducted using the ‘cause’ package version 1.2.0. Forest plots were created using the ‘ggforestplot’ 
package version 0.1.0. LD Scores were computed using the ‘ldsc’ command line tool version 1.0.1. 
The code used in this study is available at: https://github.com/fernandam93/epiclocks_cancer.

Results
Breast cancer
We did not find strong evidence of causality between epigenetic age acceleration and breast cancer 
(GrimAge IVW OR = 0.98, 95% CI 0.95–1.00, p = 0.08; PhenoAge IVW OR = 0.99, 95% CI 0.98–1.01, 
p = 0.23; HannumAge IVW OR = 0.99, 95% CI 0.97–1.02, p = 0.63; and Intrinsic HorvathAge IVW 
OR = 0.99, 95%  CI 0.98–1.00, p = 0.13) (Figure  2, Appendix  2—figure 1, Appendix  2—figure 
2, Appendix 2—figure 3, Appendix 2—figure 4, Appendix 2—figure 5, Appendix 2—figure 6, 
Appendix 2—figure 7, Appendix 2—figure 8, Supplementary file 1 — Table s3, Supplementary 
file 1 — Table s4, Supplementary file 1 — Table s5, Supplementary file 1 — Table s6).

https://doi.org/10.7554/eLife.75374
https://github.com/fernandam93/epiclocks_cancer
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Figure 2. Fixed effect meta-analysis of inverse-variance weighted Mendelian randomization estimates for genetically predicted effects of epigenetic age 
acceleration on multiple cancers. Odds ratios and 95% confidence intervals are reported per 1 year increase in (A) GrimAge acceleration, (B) PhenoAge 
acceleration, (C) HannumAge acceleration and (D) Intrinsic HorvathAge acceleration. GrimAge, PhenoAge, HannumAge and Intrinsic HorvathAge 
acceleration were instrumented by 4, 11, 9, and 24 genetic variants, respectively. All meta-analysis estimates were calculated using data from UK Biobank, 
FinnGen and international consortia, except for colorectal cancer estimates, which exclude UK Biobank data to avoid double counting.

https://doi.org/10.7554/eLife.75374
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Ovarian cancer
There was also limited evidence of causality between epigenetic age acceleration and ovarian cancer 
(GrimAge IVW OR = 0.99, 95% CI 0.93–1.06, p = 0.78; PhenoAge IVW OR = 0.98, 95% CI 0.96–1.01, 
p = 0.24; HannumAge IVW OR = 1.00, 95% CI 0.96–1.04, p = 0.95; and Intrinsic HorvathAge IVW 
OR = 1.00, 95%  CI 0.97–1.02, p = 0.89) (Figure  2, Appendix  2—figure 1, Appendix  2—figure 
2, Appendix 2—figure 3, Appendix 2—figure 4, Appendix 2—figure 5, Appendix 2—figure 6, 
Appendix 2—figure 7, Appendix 2—figure 8, Supplementary file 1 — Table s3, Supplementary 
file 1 — Table s4, Supplementary file 1 — Table s5, Supplementary file 1 — Table s6).

Prostate cancer
Meta-analysed IVW MR findings suggested that genetically predicted GrimAge acceleration decreased 
the risk of prostate cancer (OR = 0.93 per year increase in GrimAge acceleration, 95% CI 0.87–0.99, p 
= 0.02) (Figure 2, Supplementary file 1 — Table s3, Supplementary file 1 — Table s4, Supplemen-
tary file 1 — Table s5, Supplementary file 1 — Table s6). Although the direction of the genetically 
predicted effect was consistent across main and sensitivity MR analyses (i.e. MR-Egger, weighted 
median and weighted mode) (Appendix 2—figure 1, Supplementary file 1 — Table s3, Supplemen-
tary file 1 — Table s4, Supplementary file 1 — Table s5, Supplementary file 1 — Table s6), the main 
IVW result for GrimAge and prostate cancer did not withstand multiple testing correction (FDR p = 
0.16) (Supplementary file 1 — Table s6).

We did not find consistent evidence of causality between other measures of epigenetic age 
acceleration and prostate cancer (PhenoAge IVW OR = 1.01, 95% CI 0.99–1.03, p = 0.31; Hannu-
mAge IVW OR = 0.98, 95% CI 0.95–1.02, p = 0.39; and Intrinsic HorvathAge IVW OR = 0.99, 95% CI 
0.98–1.01, p = 0.42) (Figure 2, Appendix 2—figure 1, Appendix 2—figure 2, Appendix 2—figure 
3, Appendix 2—figure 4, Appendix 2—figure 5, Appendix 2—figure 6, Appendix 2—figure 7, 
Appendix 2—figure 8, Supplementary file 1 — Table s3, Supplementary file 1 — Table s4, Supple-
mentary file 1 — Table s5, Supplementary file 1 — Table s6).

Lung cancer
Meta-analysed IVW MR findings suggested that genetically predicted Intrinsic HorvathAge acceler-
ation decreased the risk of lung cancer (OR = 0.97 per year increase in Intrinsic HorvathAge acceler-
ation, 95% CI 0.93–1.00, p = 0.03) (Figure 2, Supplementary file 1 — Table s3, Supplementary file 
1 — Table s4, Supplementary file 1 — Table s5, Supplementary file 1 — Table s6). However, these 
results did not survive multiple testing correction (FDR p = 0.21) and were not strongly supported by 
sensitivity analyses (Appendix 2—figure 1, Supplementary file 1 — Table s3, Supplementary file 
1 — Table s4, Supplementary file 1 — Table s5, Supplementary file 1 — Table s6).

We did not find evidence of causality between other measures of epigenetic age acceleration 
and lung cancer (GrimAge IVW OR = 1.00, 95% CI 0.91–1.09, p = 0.96; PhenoAge IVW OR = 0.97, 
95% CI 0.94–1.00, p = 0.06; and HannumAge IVW OR = 0.99, 95% CI 0.95–1.04, p = 0.82) (Figure 2, 
Appendix  2—figure 1, Appendix  2—figure 2, Appendix  2—figure 3, Appendix  2—figure 4, 
Appendix  2—figure 5, Appendix  2—figure 6, Appendix  2—figure 7, Appendix  2—figure 8, 
Supplementary file 1 — Table s3, Supplementary file 1 — Table s4, Supplementary file 1 — Table 
s5, Supplementary file 1 — Table s6).

Colorectal cancer
Meta-analysed IVW MR findings suggested that genetically predicted GrimAge acceleration increased 
the risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04–1.20, 
p = 0.002) (Figure 2, Supplementary file 1 — Table s3, Supplementary file 1 — Table s5, Supple-
mentary file 1 — Table s6). These results survived multiple testing correction (FDR p = 0.04) and 
there was little evidence of heterogeneity across FinnGen and GECCO estimates (I2 = 0%, 95% CI 
‘NA’, p = 0.61). Additionally, the direction of the genetically predicted effect was consistent across 
main and sensitivity MR analyses (i.e. MR-Egger, weighted median, and weighted mode) (Figure 3, 
Supplementary file 1 — Table s3, Supplementary file 1 — Table s5, Supplementary file 1 — Table 
s6) and results were consistent when using UK Biobank data alone (IVW OR = 1.15, 95% CI 1.04–1.28, 
p = 0.007) (Figure 2, Supplementary file 1 — Table s4).

https://doi.org/10.7554/eLife.75374
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We did not find evidence of residual population stratification in MR analyses using negative control 
outcomes (Appendix 2—figure 9, Supplementary file 1 — Table s7), nor did we find evidence of 
horizontal pleiotropy via potential colorectal cancer risk factors (Appendix 2—figure 10, Supplemen-
tary file 1 — Table s8).

Single-SNP analysis revealed that the effect was not driven by a single SNP (Supplementary file 
1 — Table s9). Figure 4 shows the effect of genetic instruments on GrimAge acceleration against their 
effect on colorectal cancer. Moreover, there was no detectable evidence of uncorrelated horizontal 
pleiotropy (MR-Egger intercept = –0.13, 95% CI –0.33–0.07, p = 0.33), or heterogeneity across indi-
vidual SNP estimates (Cochran’s Q 7.12, p = 0.07) (Supplementary file 1 — Table s10). We further 
explored the genetically predicted effect of GrimAge on colorectal cancer using GECCO data only 
and found no evidence against bias due to correlated pleiotropy (CAUSE OR = 1.00, 95% credible 
intervals 0.96–1.04, p = 1.00; shared q = 4%, 95% credible intervals 0–24%) (Appendix 2—figure 11).

Figure 3. Fixed effect meta-analysis of Mendelian randomization estimates for genetically predicted effects of GrimAge acceleration on multiple 
cancers. Odds ratios and 95% confidence intervals are reported per 1 year increase in GrimAge acceleration. GrimAge acceleration was instrumented by 
four genetic variants. Results were obtained using inverse variance weighted MR (dark blue), weighted median (sky blue) and weighted mode (turquoise) 
methods. All meta-analysis estimates were calculated using data from UK Biobank, FinnGen and international consortia, except for colorectal cancer 
estimates, which exclude UK Biobank data to avoid double counting.

https://doi.org/10.7554/eLife.75374
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Among subtypes, we found strong evidence for a causal relationship between GrimAge accelera-
tion and colon cancer (IVW OR = 1.15, 95% CI 1.09–1.21, p = 0.006). In contrast, we did not find such 
evidence for rectal cancer (IVW OR = 1.05, 95% CI 0.97–1.13, p = 0.24). After further stratification, 
the magnitude of the genetically predicted effect of GrimAge acceleration on colon cancer was the 

Figure 4. Scatter plot showing the effect of genetic instruments on GrimAge acceleration against their effect on colorectal cancer. FinnGen and 
Genetics and Epidemiology of Colorectal Cancer (GECCO) genome-wide association estimates for colorectal cancer were meta-analysed using 
the METAL software. UK Biobank estimates were not included in the meta-analysis to avoid double counting participants included in the GECCO 
consortium. Results were obtained using inverse variance weighted MR (light blue), weighted median (dark blue) and weighted mode (light green) 
methods.

https://doi.org/10.7554/eLife.75374
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same for distal (IVW OR = 1.16, 95% CI 1.03–1.29, p = 0.01) and proximal colon cancer (IVW OR = 
1.16, 95% CI 0.97–1.40, p = 0.11). Also, sex-stratified results suggest that GrimAge acceleration may 
influence colorectal cancer in both males (IVW OR = 1.12, 95% CI 1.00–1.25, p = 0.05) and females 
(IVW OR = 1.14, 95% CI 1.04–1.26, p = 0.008) (Figure 5, Supplementary file 1 —Table s11).

These findings were further supported by evidence of a positive association between GrimAge 
acceleration and parental history of colorectal cancer (OR = 1.06, 95% CI 1.00–1.12, p = 0.03) (Figure 6, 
Supplementary file 1 — Table s12). Additionally, LD Score regression coefficients for GrimAge accel-
eration and colorectal cancer were also in the expected direction (GECCO rg = 0.28, p < 0.001; UK 
Biobank rg = 0.15, p = 0.21; FinnGen rg = 0.27, p = 0.29) (Appendix 2—figure 12, Supplementary 
file 1 — Table s13).

We did not find consistent evidence of causality between other measures of epigenetic age 
acceleration and colorectal cancer (PhenoAge IVW OR = 1.00, 95% CI 0.97–1.02, p = 0.73; Hannu-
mAge IVW OR = 1.02, 95% CI 0.97–1.08, p = 0.37; and Intrinsic HorvathAge IVW OR = 1.00, 95% CI 
0.97–1.02, p = 0.79) (Figure 2, Appendix 2—figure 1, Appendix 2—figure 2, Appendix 2—figure 
3, Appendix 2—figure 4, Appendix 2—figure 5, Appendix 2—figure 6, Appendix 2—figure 7, 
Appendix 2—figure 8, Supplementary file 1 — Table s3, Supplementary file 1 — Table s4, Supple-
mentary file 1 — Table s5, Supplementary file 1 — Table s6).

Figure 5. Mendelian randomization estimates for genetically predicted effects of GrimAge acceleration on colorectal cancer subtypes. Odds ratios and 
95% confidence intervals are reported per 1 year increase in GrimAge acceleration. GrimAge acceleration was instrumented by four genetic variants. 
Results were obtained using inverse variance weighted MR (dark blue), weighted median (sky blue) and weighted mode (turquoise) methods. Data 
source: GECCO.

https://doi.org/10.7554/eLife.75374
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Telomere length
In bidirectional MR analyses, we found evidence that genetically predicted GrimAge acceleration 
may be a cause of telomere shortening (IVW beta coefficient = −0.07 per year increase in GrimAge 
acceleration, 95% CI –0.09 to –0.05, p < 0.001) and that genetically predicted longer telomere length 
may increase Intrinsic HorvathAge acceleration (IVW beta coefficient = 0.57 per standard deviation 
increase in telomere length, 95% CI 0.39–0.77, p = 0.002) (Appendix 2—figure 13, Supplementary 
file 1 — Table s14).

Steiger filtering showed that all genetic instruments for GrimAge acceleration were stronger predic-
tors of GrimAge acceleration than telomere length. In contrast, it identified 20 genetic instruments 
for telomere length that were better predictors of Intrinsic HorvathAge acceleration than telomere 
length (Supplementary file 1 — Table s15). After removing these SNPs from the analyses, the results 
were still suggestive of an effect of telomere length on Intrinsic HorvathAge acceleration (IVW beta 
coefficient = 0.71 per standard deviation increase in telomere length, 95% CI 0.57–0.85, p < 0.001) 
(Appendix 2—figure 14, Supplementary file 1 — Table s16).

There was little evidence of causality between other measures of epigenetic age acceleration and 
telomere length (Appendix 2—figure 13, Supplementary file 1 — Table s14).

Figure 6. Mendelian randomization estimates for genetically predicted effects of GrimAge acceleration on parental history of multiple cancers. Odds 
ratios and 95% confidence intervals are reported per 1 year increase in GrimAge acceleration. GrimAge acceleration was instrumented by four genetic 
variants. Results were obtained using inverse variance weighted MR (dark blue), weighted median (sky blue) and weighted mode (turquoise) methods. 
Data source: UK Biobank.

https://doi.org/10.7554/eLife.75374
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Discussion
In this comprehensive two-sample MR study of epigenetic age acceleration and multiple cancers, we 
found evidence to suggest that genetically predicted GrimAge acceleration may increase the risk of 
colorectal cancer in both males and females. Among subtypes, effects appeared to be stronger in rela-
tion to colon than rectal cancer. Our MR results also suggested that genetically predicted GrimAge 
acceleration may decrease the risk of prostate cancer and that genetically predicted Intrinsic Horva-
thAge acceleration may be protective against lung cancer. Nevertheless, these did not pass multiple 
testing correction. Finally, we found no consistent evidence for other measures of epigenetic age 
acceleration and cancers.

Our MR estimates for the association between GrimAge and colorectal cancer were consistent with 
those reported in Dugue et al., 2021, an observational nested case-control study in the Melbourne 
Collaborative Cohort Study (RR = 1.04 per year increase in GrimAge acceleration, 95% CI 1.01–1.07, 
p = 0.02). However, our findings contrast with those highlighted in Hillary et al., 2020, an observa-
tional cohort study that used Generation Scotland data. The latter authors observed no evidence of an 
association between GrimAge acceleration and colorectal cancer after correcting for multiple testing. 
Nevertheless, it is possible that their analyses were underpowered, as their sample only included 63 
colorectal cancer cases (0.66%). More importantly, the direction of the reported estimate is consistent 
with our findings and those presented in Dugue et al., 2021.

Observational evidence for the association between other measures of epigenetic ageing and 
cancer is inconclusive (the pre-existing evidence has been summarised in Supplementary file 1 — 
Table s17). For instance, epigenetic clock acceleration has been positively associated with breast 
(Ambatipudi et al., 2017; Kresovich et al., 2019b; Kresovich et al., 2019a) and lung cancer (Levine 
et  al., 2018; Levine et  al., 2015; Dugue et  al., 2021) in some studies. However, (Durso et  al., 
2017, Hillary et al., 2020) and (Dugué et al., 2018) did not find strong evidence to support this. In 
some cases, observational evidence is stronger for some clocks than it is for others. For example, for 
colorectal cancer, evidence of a positive association is much stronger for second-generation clocks 
(Dugue et al., 2021) than for first-generation clocks (Dugué et al., 2018; Durso et al., 2017). In 
the case of prostate cancer, as in our study, apart from weak evidence of an inverse association with 
GrimAge, no other associations have been observed (Dugue et al., 2021; Dugué et al., 2018). To 
date, the association between epigenetic age acceleration and ovarian cancer has not been explored 
observationally. Although our findings were less susceptible to biases that often influence observa-
tional research, they still provide no compelling evidence of a causality between several measures of 
epigenetic clock acceleration and cancer.

This MR study had several strengths. For instance, we pooled results from multiple sources using 
fixed effect meta-analysis to improve the precision of the MR estimates presented in McCartney et al., 
2021. We also conducted extra sensitivity analyses, such as MR of negative control outcomes, MR of 
cancer risk factors, single-SNP MR and CAUSE analyses, to assess the validity of the MR assumptions. 
Moreover, we performed subtype-specific MR analyses and sought to corroborate our results using 
UK Biobank GWAS data on parental history of cancer and LD Score regression. Additionally, our find-
ings contribute to the identification of modifiable targets for future interventions aimed at reversing 
epigenetic ageing for the prevention of cancer. Compared to clinical trials, MR provides a cheaper, 
quicker, and ethical way of assessing the long-term impact of interventions on epigenetic ageing. This 
is especially relevant while attempts to develop interventions which reverse epigenetic ageing are still 
in early stages (Fahy et al., 2019; Fitzgerald et al., 2021; Gensous et al., 2020; Chen et al., 2019).

The findings from this study should be interpreted in light of its limitations. We only identified four 
genetic instruments for GrimAge acceleration, which explained 0.47% of the variance in the trait. This 
could lead to two issues: low statistical power and horizontal pleiotropy. First, our GrimAge analyses 
were underpowered to detect ORs < 1.20 for colorectal cancer. Therefore, it is possible that our find-
ings do not reflect a true effect (we identified an OR = 1.12 for colorectal). Similarly, our study was 
underpowered to detect genetically predicted effects of GrimAge acceleration on cancer subtypes 
and cancers with smaller sample sizes (i.e. ovarian and lung cancer). Some of our sensitivity analyses, 
such as the MR-Egger intercept test used to detect uncorrelated horizontal pleiotropy, also had low 
power, resulting in imprecise estimates. The weighted mode method may also be misleading in this 
context, as its use is limited in the presence of very few SNPs. Although these limitations poten-
tially undermine the validity of our results, it is reassuring that point estimates for the genetically 

https://doi.org/10.7554/eLife.75374
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predicted effect of GrimAge acceleration on colorectal cancer were consistent across MR methods 
and study populations. However, since CAUSE analyses did not provide evidence against confounding 
by correlated horizontal pleiotropy, it is possible that the genetically predicted effects identified are 
attributed to correlated pleiotropy (whereby SNPs are associated with epigenetic age acceleration 
and cancer through a shared heritable factor) rather than a causal effect of GrimAge on cancer risk.

One could argue that because the results for GrimAge acceleration were inconsistent with those 
obtained for other measures of epigenetic age acceleration, chance and horizontal pleiotropy are 
more likely explanations for our findings. However, inconsistencies across epigenetic ageing measures 
do not necessarily invalidate our results. They may simply reflect differences in how clocks were trained 
(i.e. they were trained on different outcomes, tissues, and populations). Different clocks may capture 
information on distinct underlying biological ageing mechanisms (Liu et  al., 2020). For example, 
GrimAge was trained on mortality and smoking (factors which are closely related to cancer risk), which 
may explain why it outperforms other measures of epigenetic ageing in predicting time-to-cancer (Lu 
et al., 2019a).

Although little is known about the underlying mechanisms, GrimAge may plausibly influence cancer 
risk through hormonal, inflammatory and metabolic processes (Yu et al., 2020; Bottazzi et al., 2018; 
Lau and Robinson, 2021). In bidirectional MR analyses, we found evidence that genetically predicted 
GrimAge acceleration may be a cause of telomere shortening, another marker of biological ageing. 
Shorter telomeres have been shown to lower cancer risk in prior MR analyses (Telomeres Mendelian 
Randomization Collaboration et al., 2017; Gao et al., 2020; Kuo et al., 2019), so it is plausible that 
GrimAge acceleration decreases cancer risk, at least in part, via its effect on telomere length. GrimAge 
acceleration may still increase cancer risk via pathways other than those related to cellular division. 
The positive effect of GrimAge acceleration on cancer via these other pathways may counteract the 
negative effects mediated via telomere length, resulting in null MR results for GrimAge acceleration 
and breast, ovarian, prostate and lung cancer, and positive MR results for GrimAge acceleration and 
colorectal cancer. To better understand the biology of ageing, future studies should consider running 
MR analyses using data on DNAm-predicted telomere length, since DNAm telomere length is inde-
pendent of telomerase activity and has been more strongly associated with age than measured telo-
mere length (Lu et al., 2019b).

Although promising in terms of consistency and biological plausibility, further research is required 
to confirm our findings. For example, multivariable MR (Burgess and Thompson, 2015; Sanderson 
et  al., 2019) could be used to disentangle the causal effects of GrimAge acceleration on cancer 
from shared heritable factors such as and blood cell composition. Additionally, our analyses could 
be replicated using other large independent cancer datasets. Although we conducted MR analyses 
on parental history of cancer, their effect estimates are not directly comparable to those obtained in 
the main analyses due to cases in the GWAS-by-proxy of parental endpoints being defined as either 
or both parents reportedly having a type of cancer. Furthermore, it would also be useful to replicate 
our analyses once a larger GWAS of epigenetic ageing with more genetic instruments for GrimAge 
acceleration is available. This would allow for a more rigorous assessment of horizontal pleiotropy and 
may be used to assess clustering of genetic variants to reveal distinct biological mechanisms under-
lying the effects (Foley et al., 2021). In spite of these suggestions, we acknowledge that it may be 
challenging to get access to suitable datasets for replication purposes in the short term.

The selection of ‘super controls’ (e.g. in UK Biobank, FinnGen and GECCO), with no other cancers, 
related lesions (i.e. benign, in situ, uncertain or unspecified behaviour neoplasms) or reported family 
history of cancer, could have inflated cancer GWAS effect sizes (and our MR estimates), because 
‘super controls’ are healthier than the general population and are less likely to be genetically predis-
posed to develop cancer.

Another limitation is that we did not have access to individual level data. Therefore, we were 
unable to stratify the analyses by potential effect modifiers, such as sex, smoking, and menopausal 
status. Moreover, we did not have sex-specific instruments for sex-specific cancers. However, it is 
unlikely that the genetic architecture of epigenetic clock acceleration differs across sexes, as DNAm 
levels at individual clock CpGs are highly correlated between males and females (Grodstein et al., 
2020; Tajuddin et al., 2019).

Finally, to reduce bias due to population stratification, this study was conducted using data from 
participants of European ancestry only. The GWAS data used for the analyses had been adjusted for 
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the top genetic principal components for the same reason. Furthermore, our MR of negative control 
outcomes suggests that our MR results are unlikely to be biased by residual population stratification. 
Despite this, confounding due to population stratification, dynastic effects and assortative mating 
cannot be ruled out completely, as it is not possible to test the second MR assumption (i.e. indepen-
dence assumption). Furthermore, more research is required to see if our results could translate to 
other ancestries.

From a public health perspective, our work provides potentially relevant findings. Observational 
and Mendelian randomization studies suggest that GrimAge acceleration may be influenced by 
several cancer risk factors, such as obesity and smoking (Lu et al., 2019a; McCartney et al., 2021). 
If GrimAge acceleration is a causal mediator between these risk factors and colorectal cancer, 
the GrimAge clock may be a treatable intermediary when targeting the underlying risk factors is 
not feasible or too difficult to accomplish. It could also be targeted in populations at high-risk of 
colorectal cancer. Nevertheless, we think it may be too early to make claims regarding the clinical 
utility of our findings. The GrimAge clock has only recently been created and very few studies 
have assessed its association with colorectal cancer. More research is required to corroborate our 
results and to evaluate whether GrimAge acceleration can be modified through lifestyle or clinical 
interventions.

In conclusion, our findings suggest that genetically predicted GrimAge acceleration may increase 
the risk of colorectal cancer. Findings were less consistent for other epigenetic clocks and cancers. 
Further work is required to investigate the potential mechanisms underlying the genetically predicted 
effects identified in this study.
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FinnGen consortium 2021 ​r5.​finngen.​fi https://www.​finngen.​
fi/​en/​access_​results

FinnGen public data r5, ​r5.​
finngen.​fi

Codd, et al 2021 Telomere length https://​gwas.​mrcieu.​
ac.​uk/​datasets/​ieu-​b-​
4879/

IEU OpenGWAS, ieu-
b-4879

Ben Elsworth 2018 Skin colour https://​gwas.​mrcieu.​
ac.​uk/​datasets/​ukb-​b-​
19560/

IEU OpenGWAS, ukb-
b-19560
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Author(s) Year Dataset title Dataset URL Database and Identifier

Ben Elsworth 2018 Ease of skin tanning https://​gwas.​mrcieu.​
ac.​uk/​datasets/​ukb-​
b-​533/

IEU OpenGWAS, ukb-b-533

Ben Elsworth 2018 Pack years of smoking https://​gwas.​mrcieu.​
ac.​uk/​datasets/​ukb-​b-​
10831/

IEU OpenGWAS, ukb-
b-10831

Ben Elsworth 2018 Time spent doing vigorous 
physical activity

https://​gwas.​mrcieu.​
ac.​uk/​datasets/​ukb-​b-​
13702/

IEU OpenGWAS, ukb-
b-13702

Ben Elsworth 2018 Age completed full time 
education

https://​gwas.​mrcieu.​
ac.​uk/​datasets/​ukb-​
b-​6134/

IEU OpenGWAS, ukb-
b-6134

Lee, et al 2018 Years of schooling https://​gwas.​mrcieu.​
ac.​uk/​datasets/​ieu-​a-​
1239/

IEU OpenGWAS, ieu-
a-1239

Ben Elsworth 2018 Alcohol intake frequency https://​gwas.​mrcieu.​
ac.​uk/​datasets/​ukb-​
b-​5779/

IEU OpenGWAS, ukb-
b-5779

Locke, et al 2015 Body mass index https://​gwas.​mrcieu.​
ac.​uk/​datasets/​ieu-​
a-​835/

IEU OpenGWAS, ieu-a-835

Shungin, et al 2015 Waist circumference https://​gwas.​mrcieu.​
ac.​uk/​datasets/​ieu-​
a-​61/

IEU OpenGWAS, ieu-a-61
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Appendix 1

Additional Methods
Cancer datasets
UK Biobank
The UK Biobank is a large cohort study including around 500,000 individuals aged 40–69 years at the 
time of recruitment (2006–2010). The cohort has been described in detail in previous publications 
(Sudlow et  al., 2015; Bycroft et  al., 2018). In short, all participants provided written informed 
consent, after which baseline data were collected using sociodemographic, lifestyle and health-
related questionnaires, physical and cognitive assessments, and biological samples. Participants’ 
data were linked to their health records for longitudinal follow-up. The study obtained ethical 
approval from the National Information Governance Board for Health and Social Care and the North-
West Multicenter Research Ethics Committee (Ref: 11/NW/0382).

Cancer cases (diagnosed prior or after enrolment) were obtained from the UK Cancer Registry 
(updated to April 2019). They were then coded according to the ninth and tenth editions of the 
International Classification of Diseases (ICD-9 and ICD-10, respectively) as follows: breast (ICD-
9: 174; ICD-10: C50), ovarian (ICD-9: 183; ICD-10: C56), prostate (ICD-9: 185; ICD-10: C61), lung 
(ICD-9: 162; ICD-10: C34) and colorectal cancer (ICD-9: 153; ICD-10: C18-C20). Controls excluded 
individuals with any type of cancer (self-reported and/or recorded in cancer registry), as well as 
those with benign, in situ, uncertain or unspecified behaviour neoplasms (ICD-9: 210–239; ICD-10: 
D00-D49).

Sample-level quality control (QC) involved removing any individuals who had non-white British 
genetic ancestry, sex chromosome aneuploidies, who withdrew consent from the UK Biobank study 
and who were closely related to other participants. Variant-level QC consisted in imputing SNPs 
using the Haplotype Reference Consortium (HRC) and restricting SNPs to a minor allele frequency 
(MAF) > 0.1%, a genotyping rate > 0.015 and a Hardy-Weinberg Equilibrium (HWE) P > 1 × 10–4. 
LD pruning was performed to an r2 cutoff of 0.1 using PLINK v2 (Mitchell et al., 2019). In order to 
reduce false positive signals, SNPs were removed when MAF was below our expectations (we would 
expect at least 25 minor alleles in cases), as recommended in http://www.nealelab.is/blog/2017/9/​
11/details-and-considerations-of-the-uk-biobank-gwas.

The GWAS analysis in the UK Biobank consisted of 13,879 cases and 198,523 controls for breast 
cancer, 1,218 cases and 198,523 controls for ovarian cancer, 9,132 cases and 173,493 controls for 
prostate cancer, 2,671  cases and 372,016 controls for lung cancer and 5,657  cases and 372,016 
controls for colorectal cancer. It was performed using BOLT-LMM v2.3.5 (Loh et al., 2015; Elsworth 
et al., 2019), adjusting for sex and genotyping chip. BOLT-LMM uses a linear mixed model to account 
for population stratification and cryptic relatedness in the UK Biobank. Lung cancer associations 
were estimated twice, once adjusting for genotyping chip and once without. Since UKBiLEVE 
participants were genotyped using a different array and using adjusted lung cancer estimates may 
introduce collider bias, we only included MR results obtained using the unadjusted lung cancer 
GWAS estimates in the meta-analysis. For sex-specific cancers, analyses were limited to individuals 
of the pertinent sex (only females were used for breast and ovarian cancers, whereas only males 
were used for prostate cancer). Beta coefficients and their corresponding standard errors were finally 
transformed to log odds ratios (ORs) (Elsworth et al., 2019).

We also performed a GWAS analysis of parental history of cancer reported by UK Biobank 
participants (i.e. breast, prostate, lung and bowel cancer) using BOLT-LMM software v2.3.5 (Loh 
et al., 2015). Age and sex were included as covariates in the model as before. For sex-specific 
cancers, analyses were restricted to individuals of the relevant sex (i.e. maternal history only for 
breast cancer and paternal history only for prostate cancer). We obtained 35,356 breast cancer 
cases and 206,992 controls, in addition to 31,527 prostate cancer cases and 160,579 controls. 
For other cancers, we combined maternal and paternal history of cancer, thus obtaining a total of 
51,073 lung cancer cases and 404,606 controls, as well as 45,213 bowel cancer cases and 412,429 
controls. GWAS of these outcomes have previously provided strong concordance with those based 
on hospital records (DeBoever et  al., 2020). They have also provided consistent results in MR 
(Richardson et al., 2021).

https://doi.org/10.7554/eLife.75374
http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas
http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas
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FinnGen
The FinnGen R5 release includes data on 218,792 individuals of Finnish ancestry, obtained from 
Finnish biobanks and digital health registry records (FinnGen, 2021). Complete study details are 
available elsewhere (https://www.finngen.fi/en). In brief, samples were excluded for the following 
reasons: ambiguous gender, genotype missingness > 5%, heterozygosity +–4 s.d. and non-Finnish 
ancestry. SNPs were genotyped using Illumina and Affymetrix arrays. Variants were excluded for the 
following reasons: missingness > 2%, HWE P < 1 × 10-6 and minor allele count < 3. Genotypes were 
imputed using the Finnish SISu v3 reference panel. The GWAS analysis was conducted using SAIGE 
v0.36.3.2, a mixed model logistic regression R/C ++ package. Sex, age, genotyping batch and the 
first 10 genetically derived principal components were included as covariates in the analysis. We 
used FinnGen R5 release data on breast (8,401 cases and 99,321 controls), ovarian (719 cases and 
99,321 controls), prostate (6,311 cases and 74,685 controls), lung (1,681 cases and 173,933 controls) 
and colorectal cancer (3,022 cases and 174,006 controls). We used the “EXALLC” cancer variables, 
which excluded other cancers from controls.

Breast Cancer Association Consortium
The GWAS summary data for breast cancer were obtained from a Breast Cancer Association Consortium 
(BCAC) meta-analysis performed by Michailidou et  al., 2017. This included 122,977  cases and 
105,974 controls (69,501 cases of ER + and 21,468 of ER- breast cancer). All studies that contributed 
to this meta-analysis have been fully detailed in previous publications (Michailidou et al., 2017; 
Michailidou et al., 2013; Michailidou et al., 2015). In sum, samples were excluded if they had a low 
call rate ( < 95%), abnormally high or low heterozygosity (4.89 s.d. from the mean), < 80% European 
ancestry, probable duplicates and/or close relatives within and across studies. Genetic variants were 
genotyped using the Illumina OncoArray and iCOGS arrays and genotypes were imputed using 
the 1,000 Genomes Project Phase three reference panel. The GWAS analysis was performed using 
logistic regression models, adjusting for up to 10 principal components and either country or study. 
This was done using purpose-written software. OncoArray and iCOGS estimates were combined in a 
fixed-effect inverse variance weighted meta-analysis using the METAL software (Willer et al., 2010). 
Only SNPs with r2  ≥ 0.3 and MAF  ≥ 0.005 were included in the meta-analysis.

We also obtained summary data for breast cancer subtypes from a BCAC GWAS meta-analysis 
by Zhang et  al., 2020. The study comprised data on luminal A-like (7,325 cases), luminal B-like 
(1,682 cases), luminal B/HER2-negative-like (1,779 cases), HER2-enriched-like (718 cases) and triple-
negative (2,006 cases) invasive breast cancer subtypes and 20,815 controls. The details of the study 
can be found in the publication. In brief, the analyses excluded cases of carcinoma in situ, cases 
missing data on tumour characteristics and cases for which there were no controls available in their 
respective countries. Participants were also excluded if age at diagnosis/enrolment was missing. 
Genotypes were obtained using OncoArray and iCOGS arrays. Imputation was performed using the 
1,000 Genomes Project Phase three reference panel. OncoArray and iCOGS datasets were analysed 
separately using two-stage polytomous logistic regression analyses in R. Models were adjusted for 
age and the first 10 principal components. SNPs with r2  <  0.3 and MAF  <  0.01 were excluded 
from the subtype analyses, as well as those in linkage disequilibrium (r2  ≥  0.1) or within ± 500  kb 
of known susceptibility SNPs. GWAS results were then pooled using fixed-effect meta-analysis in 
METAL (Willer et al., 2010).

Ovarian Cancer Association Consortium
We used ovarian cancer genetic summary statistics from an Ovarian Cancer Association Consortium 
(OCAC) study by Phelan et al., 2017. This comprised 25,509 cases and 40,941 controls. Subtypes 
included high grade serous (13,037  cases), low grade serous (1,012  cases), invasive mucinous 
(1,417 cases), clear cell (1,366 cases) and endometrioid (2,810 cases) ovarian cancers. This study 
combined genotype data from OCAC and Consortium of Investigators of Modifiers of BRCA1/2 
(CIMBA) genotyping projects. These have been fully described in the publication. In short, samples 
with > 27% non-European ancestry were excluded, as were those with a genotyping call rate < 
95%, excessively low or high heterozygosity. Non-females and duplicates were also removed. SNPs 
were genotyped using several Illumina arrays (OncoArray, iSelect iCOGS, 550 k, HumanOmni 2.5 M, 
610 Quad and 317 k). Imputations were performed separately for each genotyping project using 
the 1,000 Genomes Project v3 reference panel. GWAS analyses were conducted in custom-written 
software using logistic regression models adjusted for study and principal components. SNPs with 
r2  <  0.3 and MAF  <  0.01 were excluded. GWAS estimates were pooled using fixed effect meta-
analysis in METAL (Willer et al., 2010).

https://doi.org/10.7554/eLife.75374
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Consortium of Investigators of Modifiers of BRCA1/2
We also used CIMBA GWAS data for breast and ovarian cancers in BRCA1 and BRCA2 mutation 
carriers (Phelan et al., 2017; Milne et al., 2017). The genotyping and imputation procedures that 
were used have been described elsewhere (Phelan et al., 2017; Milne et al., 2017). In brief, samples 
were excluded if they were non-female, had discordant genotypes in known sample duplicates, had > 
19% non-European ancestry, a genotyping call rate < 95% or extremely low or high heterozygosity (P 
< 1 × 10−6). SNPs were genotyped using Illumina’s Oncoarray and iSelect Collaborative Oncological 
Gene-Environment Study (iCOGS) arrays. Imputation was performed using the 1,000 Genomes 
Project Phase three reference panel. GWAS analyses were conducted separately for BRCA1 and 
BRCA2 mutation carriers and for iCOGS and OncoArray samples. Genetic association data was 
generated using a survival analysis framework, using a retrospective likelihood approach. Analyses 
were stratified by country of origin and Ashkenazi Jewish origin. Custom written functions in Fortran 
and Python were used to carry out the analyses and kinship-adjusted score test statistics were 
implemented in R software. OncoArray and iCOGS results were pooled using fixed-effect meta-
analysis in METAL (Willer et al., 2010).

Prostate Cancer Association Group to Investigate Cancer Associated Alter-
ations in the Genome
Prostate cancer GWAS summary data were acquired from a Prostate Cancer Association Group to 
Investigate Cancer Associated Alterations in the Genome (PRACTICAL) study by Schumacher et al., 
2018. This included 79,148 cases and 61,106 controls. It also comprised data on prostate cancer 
subtypes: 15,167 advanced cases vs. 58,308 healthy controls; 14,160 advanced cases vs. 62,421 non-
advanced controls; 6,988 early-onset cases (age at diagnosis ≤ 55 years) vs. 44,256 healthy controls; 
15,561 high aggressive cases vs. 9,739 low aggressive controls; and 20,658 high aggressive cases vs. 
38,093 low/intermediate aggressive controls.

Prostate cancer aggressiveness was defined as follows:
•	 Low aggressive: tumor stage  ≤T1 AND Gleason score  ≤6 AND prostate-specific antigen 

(PSA) <10 ng/mL.
•	 Intermediate aggressive: tumor stage T2 OR Gleason score = 7 OR PSA 10–20 ng/mL.
•	 High aggressive: tumor stage T3/T4, N1 or M1 OR Gleason score ≥8 OR PSA >20 ng/mL.
•	 Advanced: metastatic disease OR Gleason score ≥ 8 OR PSA > 100 ng/mL OR death due to 

prostate cancer.
Study details are available in the publication. In brief, individuals were excluded if they presented a 
call rate < 95%, extreme heterozygosity ( > 4.9 s.d. from the mean), if they were duplicates or if they 
were related to other participants. Only men of European ancestry ( > 80%) were included in the 
GWAS. Studies were genotyped using Illumina (OncoArray, Human 610, 60 k, Infinium HumanHap 
550, iSELECT, iCOGS and Human Omni 2.5) and Affymetrix GeneChip (500 k and 5.0 k) genotyping 
arrays and SNPs were imputed to the 1,000 Genomes Project Phase three reference panel. Genetic 
association data were obtained using logistic regression analysis. Models were adjusted for seven 
principal components and study-relevant covariates and stratified by country or study. Odds ratios 
were derived using either SNPTEST or a custom written C ++ software. GWAS estimates were 
combined using fixed-effect meta-analysis in METAL (Willer et al., 2010).

International Lung Cancer Consortium
For lung cancer, we used genetic summary data obtained from an International Lung Cancer 
Consortium (ILCCO) GWAS meta-analysis of 11,348 cases and 15,861 controls by Wang et al., 2014. 
We also used lung cancer subtype data including 3,275 squamous cell lung carcinoma cases and 
15,038 controls, as well as 3,442 lung adenocarcinoma cases and 14,894 controls. Individual studies 
included in the meta-analysis have been explained in prior publications (Timofeeva et al., 2012; 
Amos et al., 2008; Wang et al., 2008; Hung et al., 2008). In summary, sample QC consisted in 
excluding any individuals of non-European ancestry, with low call rates ( < 90%), or abnormally high 
or low heterozygosity (P < 1 × 10–4). Duplicates and closely related individuals were also removed. 
Genotyping was performed using Illumina HumanHap 317 k, 317k + 240 S, 370Duo, 550 k, 610 k or 
1 M arrays. SNPs were imputed from the 1,000 Genomes Project Phase 1 v3 reference panel. GWAS 
estimates were obtained by unconditional logistic regression in R v2.6, Stata v.10 and PLINK v1.06 
software. Analyses were adjusted for principal components. Fixed-effect meta-analysis was used to 
pool estimates across studies.

https://doi.org/10.7554/eLife.75374
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Genetics and Epidemiology of Colorectal Cancer Consortium
Colorectal cancer GWAS summary statistics were retrieved from a Genetics and Epidemiology 
of Colorectal Cancer Consortium (GECCO) GWAS meta-analysis by Huyghe et  al., 2019. This 
comprised 58,131 cases (31,288 male and 26,843 female) and 67,347 controls (34,527 male and 
32,820 female). Cases were defined as patients with colorectal cancer or advanced adenoma.

Data on colorectal cancer subtypes were obtained from another GECCO publication by Huyghe 
et al., 2021. This included 48,214 cases and 64,159 controls (32,002 colon, 15,706 proximal colon, 
14,376 distal colon and 16,212 rectal cancer cases).

Colorectal cancer subtypes were defined as follows:
•	 Proximal colon cancer: any primary tumour starting in the cecum, ascending colon, hepatic 

flexure, or transverse colon (ICD-9: 153.4, 153.6, 153.0, or 153.1, respectively).
•	 Distal colon cancer: any primary tumour starting in the splenic flexure, descending colon, or 

sigmoid colon (ICD-9 codes: 153.7, 153.2, or 153.3, respectively)
•	 Colon cancer: proximal and distal colon cancer cases, in addition to colon cancer cases with 

unspecified site.
•	 Rectal cancer: any primary tumour starting in the rectum or rectosigmoid junction (ICD-9 

codes: 154.1, or 154.0, respectively)
Controls excluded individuals with known history of cancer or reported family history of colorectal 
cancer. QC procedures have been explained in the publications (Huyghe et al., 2019; Huyghe et al., 
2021). In brief, the studies excluded samples with evidence of DNA contamination, high missing 
genotype rates, unintentional duplicate pairs and sex discrepancies. Closely related individuals and 
those of non-European ancestry were also excluded. Genotyping was conducted using Illumina 
(300 k, Oncoarray, 1 M, 550 k, 610 k, OmniExpress, OmniExpressExome, 300/240 S and custom 
iSelect) and Affymetrix (Axiom and 500 k) arrays. Imputation was performed to the HRC reference 
panel. GWAS analyses were conducted for SNPs with an imputation accuracy r2  ≥  0.3 and minor 
allele count  ≥  50 using logistic regression models adjusted for principal components, age, sex and 
study-specific covariates. METAL (Willer et al., 2010) was used to combine summary statistics across 
studies using fixed-effect meta-analysis.

Sensitivity analyses
MR-Egger assumes that the association between SNPs and epigenetic age acceleration is not 
correlated with SNPs that affect cancer via pleiotropic pathways (Instrument Strength Independent 
of Direct Effect—InSIDE assumption) (Bowden et al., 2015). The weighted median method assumes 
that at least half of the SNPs in the analysis are valid instruments. The weighted mode approach 
presupposes that the most frequent association estimate is not affected by pleiotropy, meaning it 
must correspond to the true causal effect (ZEro Modal Pleiotropy Assumption—ZEMPA) (Hartwig 
et al., 2017).

Data availability
Summary statistics for epigenetic age acceleration measures of HannumAge, Intrinsic HorvathAge, 
PhenoAge and GrimAge were downloaded from: https://datashareed.ac.uk/handle/10283/3645. 
Summary statistics for international cancer genetic consortiums were obtained from their respective 
data repositories. Colorectal cancer data were obtained following the submission of a written request 
to the GECCO committee, which may be contacted by email at kafdem@fredhutch.org/upeters@​
fredhutch.org. Breast, ovarian, prostate and lung cancer data were accessed via MR-Base (http://​
app.mrbase.org/), which holds complete GWAS summary data from BCAC, OCAC, PRACTICAL 
and ILCCO. Breast cancer subtype data were obtained from BCAC and can be downloaded 
from: http://bcacccgemedschlcam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-​
result/gwas-summary-associations-breast-cancer-risk-2020/. Data on breast and ovarian cancer 
in BRCA1 and BRCA2 carriers were obtained from CIMBA and can be downloaded from: http://​
cimbaccgemedschlcam.ac.uk/oncoarray-complete-summary-results/. Prostate cancer subtype 
data are not publicly available through MR-Base but can be accessed upon request. These data 
are managed by the PRACTICAL committee, which may be contacted by email at practical@icr.ac.​
uk. FinnGen data is publicly available and can be accessed here: https://www.finngen.fi/en/access_​
results. UK Biobank data can be accessed through the MR-Base platform. Parental history of cancer 
data were obtained from the UK Biobank study under application #15825 and can be accessed via an 
approved application to the UK Biobank (https://www.ukbiobank.ac.uk/enable-your-research/apply-​
for-access). GWAS data for negative control outcomes and potential confounders were obtained 
via the MR-Base platform (GWAS IDs for negative control outcomes: "ukb-b-19560", "ukb-b-533"; 
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GWAS IDs for confounders: "ukb-b-10831", "ukb-b-13702", "ukb-b-6134", "ieu-a-1239", "ukb-
b-5779", "ieu-a-835", "ieu-a-61"). GWAS data for measured telomere length used in bidirectional 
MR analyses were also obtained via the MR-Base platform (GWAS ID: “ieu-b-4879”).

Code availability
The GWAS analysis for cancers in UK Biobank was performed using BOLT-LMM v2.3.5 (http://data.​
broadinstitute.org/alkesgroup/BOLT-LMM/). All MR analyses and visualisations were conducted 
using R software v4.0.2 (https://www.r-project.org/). For cancer datasets that were not obtained 
from the MR-Base platform, LD proxies were identified using the ‘LDlinkR’ v1.1.2 R package (https://​
github.com/CBIIT/LDlinkR; Myers, 2021). Two-sample MR analyses were conducted using the 
‘TwoSampleMR’ v0.5.6 R package (https://github.com/MRCIEU/TwoSampleMR; Parker, 2021). 
Meta-analyses were performed using the ‘meta’ v4.18 R package (https://github.com/guido-s/meta/; 
Schwarzer, 2022). GWAS meta-analyses used to perform single-SNP MR analyses were done using 
the METAL software (https://genome.sph.umich.edu/wiki/METAL_Documentation). MR-CAUSE 
analyses were conducted using the ‘cause’ v1.2.0 R package (https://github.com/jean997/cause; 
Morrison, 2021). Plots were created using the ‘ggforestplot’ v0.1.0 R package (https://github.com/​
nightingalehealth/ggforestplot; Jagerroos, 2020). LD scores were computed using the ‘ldsc’ v1.0.1 
command line tool (https://github.com/bulik/ldsc; Schorsch, 2020). The code used in this study is 
available at: https://github.com/fernandam93/epiclocks_cancer; Morales Berstein, 2021.
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Appendix 2
Additional Figures

Appendix 2—figure 1. Fixed effect meta-analysis of Mendelian randomization estimates for genetically predicted 
effects of epigenetic age acceleration on multiple cancers. Odds ratios and 95% confidence intervals are reported 
per 1 year increase in (A) GrimAge acceleration, (B) PhenoAge acceleration, (C) HannumAge acceleration and 
(D) Intrinsic HorvathAge acceleration. Results were obtained using inverse variance weighted MR (dark blue), 
weighted median (sky blue) and weighted mode (turquoise) methods. All meta-analysis estimates were calculated 
using data from UK Biobank, FinnGen and international consortia, except for colorectal cancer estimates, which 
exclude UK Biobank data to avoid double counting.

https://doi.org/10.7554/eLife.75374
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Appendix 2—figure 2. Mendelian randomization estimates for genetically predicted effects of GrimAge and 
PhenoAge acceleration on multiple cancer subtypes. Odds ratios and 95% confidence intervals are reported per 
1 year increase in (A) GrimAge acceleration, (B) PhenoAge acceleration. GrimAge and PhenoAge acceleration 
were instrumented by four and 11 genetic variants, respectively. Results were obtained using inverse variance 
weighted MR (dark blue), weighted median (sky blue) and weighted mode (turquoise) methods. Data sources: 
BCAC, OCAC, CIMBA, PRACTICAL, ILCCO and GECCO.

https://doi.org/10.7554/eLife.75374
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Appendix 2—figure 3. Mendelian randomization estimates for genetically predicted effects of HannumAge and 
Intrinsic HorvathAge acceleration on multiple cancer subtypes. Odds ratios and 95% confidence intervals are 
reported per 1 year increase in (A) HannumAge acceleration, (B) Intrinsic HorvathAge acceleration. HannumAge 
and Intrinsic HorvathAge acceleration were instrumented by nine and 24 genetic variants, respectively. Results 
were obtained using inverse variance weighted MR (dark blue), weighted median (sky blue) and weighted mode 
(turquoise) methods. Data sources: BCAC, OCAC, CIMBA, PRACTICAL, ILCCO and GECCO.

https://doi.org/10.7554/eLife.75374
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Appendix 2—figure 4. Mendelian randomization estimates for genetically predicted effects of epigenetic age 
acceleration on parental history of multiple cancers. Odds ratios and 95% confidence intervals are reported 
per 1 year increase in (A) GrimAge acceleration, (B) PhenoAge acceleration, (C) HannumAge acceleration and 
(D) Intrinsic HorvathAge acceleration. GrimAge, PhenoAge, HannumAge and Intrinsic HorvathAge acceleration 
were instrumented by 4, 11, 9 and 24 genetic variants, respectively. Results were obtained using inverse variance 
weighted MR (dark blue), weighted median (sky blue) and weighted mode (turquoise) methods. Data source: UK 
Biobank.

https://doi.org/10.7554/eLife.75374
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Appendix 2—figure 5. Scatter plot showing the effect of genetic instruments on GrimAge acceleration against 
their effect on multiple cancer. Genome-wide association estimates for (A) breast, (B) ovarian, (C) prostate, (D) lung 
and (E) colorectal cancer were meta-analysed using the METAL software. Results were obtained using inverse 
variance weighted MR (light blue), weighted median (dark blue) and weighted mode (light green) methods. Data 
sources: UK Biobank, FinnGen and international cancer genetic consortia. For colorectal cancer, UK Biobank 
estimates were not included in the meta-analysis to avoid double counting participants included in the GECCO 
consortium.

https://doi.org/10.7554/eLife.75374
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Appendix 2—figure 6. Scatter plot showing the effect of genetic instruments on PhenoAge acceleration against 
their effect on multiple cancer. Genome-wide association estimates for (A) breast, (B) ovarian, (C) prostate, (D) lung 
and (E) colorectal cancer were meta-analysed using the METAL software. Results were obtained using inverse 
variance weighted MR (light blue), weighted median (dark blue) and weighted mode (light green) methods. Data 
sources: UK Biobank, FinnGen and international cancer genetic consortia. For colorectal cancer, UK Biobank 
estimates were not included in the meta-analysis to avoid double counting participants included in the GECCO 
consortium.

https://doi.org/10.7554/eLife.75374
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Appendix 2—figure 7. Scatter plot showing the effect of genetic instruments on HannumAge acceleration 
against their effect on multiple cancer. Genome-wide association estimates for (A) breast, (B) ovarian, (C) prostate, 
(D) lung and (E) colorectal cancer were meta-analysed using the METAL software. Results were obtained using 
inverse variance weighted MR (light blue), weighted median (dark blue) and weighted mode (light green) methods. 
Data sources: UK Biobank, FinnGen and international cancer genetic consortia. For colorectal cancer, UK Biobank 
estimates were not included in the meta-analysis to avoid double counting participants included in the GECCO 
consortium.

https://doi.org/10.7554/eLife.75374
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Appendix 2—figure 8. Scatter plot showing the effect of genetic instruments on Intrinsic HorvathAge acceleration 
against their effect on multiple cancer. Genome-wide association estimates for (A) breast, (B) ovarian, (C) prostate, 
(D) lung and (E) colorectal cancer were meta-analysed using the METAL software. Results were obtained using inverse 
variance weighted MR (light blue), weighted median (dark blue) and weighted mode (light green) methods. Data 
sources: UK Biobank, FinnGen and international cancer genetic consortia. For colorectal cancer, UK Biobank estimates 
were not included in the meta-analysis to avoid double counting participants included in the GECCO consortium.

Appendix 2—figure 9. Mendelian randomization estimates for genetically predicted effects of GrimAge 
acceleration on negative control outcomes. Odds ratios and 95% confidence intervals are reported per 1 year 
increase in GrimAge acceleration. GrimAge was instrumented by four genetic variants. Results were obtained 
using inverse variance weighted MR (dark blue), weighted median (sky blue) and weighted mode (turquoise) 
methods. Data source: UK Biobank.

https://doi.org/10.7554/eLife.75374
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Appendix 2—figure 10. Mendelian randomization estimates for genetically predicted effects of GrimAge 
acceleration on potential confounders of the association between GrimAge acceleration and colorectal cancer. 
Odds ratios and 95% confidence intervals are reported per 1 year increase in GrimAge acceleration. GrimAge 
was instrumented by four genetic variants. Results were obtained using inverse variance weighted MR (dark blue), 
weighted median (sky blue) and weighted mode (turquoise) methods. Data sources: UK Biobank (for time spent 
doing vigorous physical activity, pack years of smoking, alcohol intake frequency and age completed full time 
education), GIANT consortium (for waist circumference and body mass index) and the SSAGC consortium (for 
years of schooling).

https://doi.org/10.7554/eLife.75374
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Appendix 2—figure 11. CAUSE analysis for the genetically predicted effect of GrimAge acceleration on 
colorectal cancer in GECCO. CAUSE estimates for colorectal cancer reported per 1 year increase in GrimAge 
acceleration. The ELPD Contribution plot shows the relative contribution of each SNP to the CAUSE test statistic. 
Only SNPs with P < 5e-8 are shown. SNPs represented by larger circles reflect smaller p-values for the associations 
between genetic variants and GrimAge acceleration. SNPs that contribute more to the causal model are shown in 
warmer tones (i.e. red), while those that contribute more to the sharing model are shown in colder tones (i.e. blue). 
The delta_elpd is the statistic used to compare models. It is equal to elpd(model 1)- elpd(model 2). In the upper 
table, positive delta_elpd’s suggest that model one is a better fit to the data than model 2 (i.e. that the null model 
is better than the sharing model in row 1, that the null model is better than the causal model in row 2, and that the 
sharing model is better than the causal model in row 3). The corresponding p-values test whether model two is a 
better fit than model 1. Here, row three suggests that the causal model is not a better fit than the sharing model 
(the delta_elpd is positive and the p-value is 1, so there is no detectable evidence against the null hypothesis that 
the sharing model is better than the causal model). In the bottom table, eta represents the sharing factor effect 
(SNPs affect shared factor and shared factor simultaneously affects GrimAge and colorectal cancer) and gamma 
represents the causal factor effect (SNPs affect GrimAge and GrimAge affects colorectal cancer). Here, “0 (-0.04, 
0.04)” represents the genetically predicted effect of GrimAge acceleration on colorectal cancer after adjusting for 
correlated and uncorrelated horizontal pleiotropy (results in log odds ratio scale). The intervals shown are credible 
intervals. Data source: GECCO, Genetics and Epidemiology of Colorectal Cancer Consortium.

https://doi.org/10.7554/eLife.75374
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Appendix 2—figure 12. Genetic correlation estimates for epigenetic age acceleration and multiple cancers. 
Genetic correlation coefficients are reported per 1 year increase in epigenetic age acceleration. Results were 
obtained using LD Score regression. Abbreviations: BCAC, Breast Cancer Association Consortium; OCAC, Ovarian 
Cancer Association Consortium; PRACTICAL, Prostate Cancer Association Group to Investigate Cancer Associated 
Alterations in the Genome; ILCCO, International Lung Cancer Consortium; GECCO, Genetics and Epidemiology 
of Colorectal Cancer Consortium. For UK Biobank lung cancer results, adjusted means results have been adjusted 
for genotyping chip and unadjusted means results have not been adjusted for genotyping chip.

https://doi.org/10.7554/eLife.75374
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Appendix 2—figure 13. Bidirectional Mendelian randomization estimates for epigenetic age acceleration and 
measured telomere length. Beta coefficients and 95% confidence intervals are reported per (A) one standard 
deviation increase in telomere length and (B) 1 year increase in epigenetic clock acceleration. Results were 
obtained using inverse variance weighted MR (dark blue), weighted median (sky blue) and weighted mode 
(turquoise) methods. Telomere length, GrimAge, PhenoAge, HannumAge and Intrinsic HorvathAge acceleration 
were instrumented by 128, 4, 11, 9 and 23 genetic variants, respectively.

https://doi.org/10.7554/eLife.75374
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Appendix 2—figure 14. Bidirectional Mendelian randomization estimates for epigenetic age acceleration and 
measured telomere length after Steiger filtering. Beta coefficients and 95% confidence intervals are reported per 
(A) one standard deviation increase in telomere length and (B) 1 year increase in epigenetic clock acceleration. 
Results were obtained using inverse variance weighted MR (dark blue), weighted median (sky blue) and weighted 
mode (turquoise) methods. GrimAge, PhenoAge, HannumAge and Intrinsic HorvathAge acceleration were 
instrumented by 4, 11, 9 and 22 genetic variants, respectively. Telomere length was instrumented by 104, 105, 105 
and 109 genetic variants in GrimAge, PhenoAge, HannumAge and Intrinsic HorvathAge acceleration analyses, 
respectively,.

https://doi.org/10.7554/eLife.75374

