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Abstract 

Background Influenza is a major year-round cause of respiratory illness in Kenya, particularly in children under 5. 
Current influenza vaccines result in short-term, strain-specific immunity and were found in a previous study not to be 
cost-effective in Kenya. However, next-generation vaccines are in development that may have a greater impact and 
cost-effectiveness profile.

Methods We expanded a model previously used to evaluate the cost-effectiveness of seasonal influenza vaccines 
in Kenya to include next-generation vaccines by allowing for enhanced vaccine characteristics and multi-annual 
immunity. We specifically examined vaccinating children under 5 years of age with improved vaccines, evaluating 
vaccines with combinations of increased vaccine effectiveness, cross-protection between strains (breadth) and dura-
tion of immunity. We evaluated cost-effectiveness using incremental cost-effectiveness ratios (ICERs) and incremental 
net monetary benefits (INMBs) for a range of values for the willingness-to-pay (WTP) per DALY averted. Finally, we 
estimated threshold per-dose vaccine prices at which vaccination becomes cost-effective.

Results Next-generation vaccines can be cost-effective, dependent on the vaccine characteristics and assumed 
WTP thresholds. Universal vaccines (assumed to provide long-term and broad immunity) are most cost-effective in 
Kenya across three of four WTP thresholds evaluated, with the lowest median value of ICER per DALY averted ($263, 
95% Credible Interval (CrI): $ − 1698, $1061) and the highest median INMBs. At a WTP of $623, universal vaccines are 
cost-effective at or below a median price of $5.16 per dose (95% CrI: $0.94, $18.57). We also show that the assumed 
mechanism underlying infection-derived immunity strongly impacts vaccine outcomes.

Conclusions This evaluation provides evidence for country-level decision makers about future next-generation vac-
cine introduction, as well as global research funders about the potential market for these vaccines. Next-generation 
vaccines may offer a cost-effective intervention to reduce influenza burden in low-income countries with year-round 
seasonality like Kenya.
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Background
Influenza is a major cause of respiratory illness in Kenya, 
particularly in children under 5 years old [1, 2]. Current 
influenza vaccines result in short-term, strain-specific 
immunity [3] which is particularly problematic in tropi-
cal and subtropical settings where multiple peaks and 
identifiable year-round activity make it challenging to 
decide if, who and when to vaccinate, as well as which 
formulation (northern or southern hemisphere) to use 
[4–7]. The annual incidence rate of influenza-related 
hospitalisation in children under 5 years old ranges from 
2.7 to 4.7 per 1000 [8] and vaccinating children aged 6 to 
23 months has been recommended since 2016 [2]. Exist-
ing vaccines have been evaluated for cost-effectiveness 
in Kenya, looking at the potential impact of vaccinations 
in 2010 to 2018 [2]. This analysis showed that vaccinat-
ing children in Kenya with currently available vaccines 
was not cost-effective, given current willingness-to-pay 
thresholds [2]. Barriers to the cost-effectiveness of influ-
enza vaccination include inconsistent seasonality (with 
a high burden across the year in some years, meaning 
annual vaccination with a short duration of protection 
may not protect vaccines for a complete season), multi-
ple subtypes of influenza, varying vaccine effectiveness 
depending on match to circulating influenza strains and 
the need for annual revaccination [9].

Many of these obstacles could be addressed by next-
generation vaccines on the near horizon, with 18 vac-
cines in clinical trials (10 in phase I, 6 in phase II and 2 in 
phase III trials), and over 100 in preclinical trials [10, 11]. 
Newer technologies are being trialled, for example mRNA 
vaccines and self-assembling nano-particles, and many 
of these vaccines aim to overcome the immunodomi-
nance of the haemagglutinin (HA) head, instead focusing 
on more conserved proteins across influenza strains and 
often aiming to stimulate a T-cell response [10]. Target-
ing conserved areas may reduce the need for annual vac-
cination as vaccines will target a broader set of influenza 
strains, and stimulating T cells may additionally increase 
the efficacy of the vaccine.

The World Health Organisation (WHO) Preferred 
Product Characteristics (PPC) [12] describes next-gen-
eration influenza vaccines in two categories: improved 
vaccines, which have increased vaccine efficacy (VE) or 
strain cross-protection (breadth) and which generate 
immune protection lasting at least a year; and universal 
vaccines, which have increased efficacy against influenza 
A phylogenetic HA group viruses and which generate 
immune protection lasting at least 5 years. These descrip-
tions are based on the likelihood of development in the 
near to mid future. The US National Institute of Allergy 
and Infectious Diseases (NIAID) uses similar but slightly 
varying definitions [13]. Such next-generation vaccines 

may hold promising benefits for countries like Kenya, but 
their potential population impact and cost-effectiveness 
have yet to be evaluated. Such evaluations could inform 
country-level decision makers about potential future 
vaccine introduction, as well as global research funders 
about the potential market for these vaccines.

Mathematical models are ideal tools for evaluating 
their cost-effectiveness, as they allow analysis and com-
parison of potential hypothetical interventions and strat-
egies. Specifically, transmission dynamic models have 
the additional advantage of including both direct and 
indirect benefits of vaccination. This allows evaluation 
of optimal control strategies including coverage and tim-
ing of vaccination campaigns and vaccine characteristics, 
such as subtype broadness vs efficacy considerations.

We expand the model previously used to evaluate the 
cost-effectiveness of current influenza seasonal vaccines 
in Kenya to evaluate the cost-effectiveness of next-gener-
ation vaccines.

Methods
Overview
We utilise a transmission model from Baguelin et  al. 
(2013) [14] that was fitted to Kenya’s severe acute res-
piratory illness (SARI) data from 2010 to 2018 by Dawa 
et al. (2020) [2] and extend it to include next-generation 
influenza vaccines with longer durations of immunity, 
higher efficacy and/or broader sub-type cross-protection 
(Fig.  1). Code is available at https:// github. com/ Naomi 
Water low/ NextG enFlu_ Kenya. Please see Dawa et al. [2] 
for further information on the background model and fit.

Model 1 — vaccination model
The vaccination model (Fig.  1B, green compartments) 
tracks the dynamics of vaccine-induced immunity for 
each virus subtype without considering prior infection 
or vaccination status. This is a conservative assump-
tion, assuming vaccination status in the population is 
unknown and hence people are vaccinated independent 
of whether they were recently infected or vaccinated. At 
the time of vaccination, the population can be in 1 of 3 
compartments: Susceptible (S), Susceptible-vaccinated 
(Sv) and Recovered-vaccinated (Rv) (Fig. 1A, green). Vac-
cination is assumed to be all-or-nothing, with a propor-
tion defined by the efficacy for each subtype entering the 
Rv compartment where they are immune, and the inverse 
proportion entering the Sv compartment, where they are 
susceptible. Waning of vaccination from compartments 
Sv and Rv occurs exponentially at a rate, ω , determined 
by the duration of vaccine-induced immunity, returning 
the population to the Sv compartment.

https://github.com/NaomiWaterlow/NextGenFlu_Kenya
https://github.com/NaomiWaterlow/NextGenFlu_Kenya
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We consider scenarios where vaccines have character-
istics matching either currently available seasonal influ-
enza vaccines, or next-generation vaccines in line with 
WHO Preferred Product Characteristics [12] (see Table 1 
for assumed vaccine characteristics). In the first year, all 

0–5 year olds are vaccinated across all vaccine scenarios. 
Following this, vaccination occurs every x years, cal-
culated as a proportion of the age group, where x is the 
mean duration of vaccine-derived immunity. We gener-
ate 5 vaccine scenario examples, corresponding to four 

Fig. 1 Modelling overview: A Methods overview, depicting inputs, models and outputs. B Model diagram, including both the epidemic and the 
vaccination model. Elements in solid green are included in both models. Transitions in grey are included only in the epidemic model, and transitions 
in dotted green are included only in the vaccination model. States are Susceptible (S), Exposed (E), Infectious (I) and Recovered (R), and their 
vaccinated counterparts (Sv, Ev1, Ev2, Iv1, Iv2, Rv). v denotes the vaccinated equivalent of the compartments. See Table S3 for parameter details. 
δ is the rate of vaccination in age group i  , α is the efficacy by subtype ( k  ), ω is vaccine-derived immunity waning. The model is run separately for 
each subtype. For the epidemic model, in both vaccinated and unvaccinated compartments, susceptibles who are infected with the viral subtype 
enter the first Exposed (E) compartment. They then progress through the E and Infectious (I) compartments. After ceasing to be infectious they 
enter the R compartment, whereupon they cannot be re-infected during the same epidemic period. Both the E and I populations consist of two 
compartments, in order to get a gamma-distributed waiting time. Each compartment is also subdivided by age (i)

Table 1 Illustrative vaccine scenarios

“Mis-matched seasons” refers to the possibility that the vaccine is not well matched to a particular season’s influenza strain and therefore has reduced efficacy. 
Immunity duration is assumed to be exponential. All vaccines are given as a campaign, across March, April and May

Scenario name Mis-
matched 
seasons?

Efficacy 
(matched/mis-
matched)

Immunity duration Coverage Age-groups vaccinated

No vaccine - - - - -

Current seasonal vaccines Yes 70%/40% 6 months 50% All 0–5

Improved vaccines (minimal) Yes 70%/40% 1 year 50% All 0–5

Improved vaccines (efficacy) Yes 90%/70% 2 years 50% All individuals aged 0–5 in the first year of vaccina-
tion, followed by age 0, 2 and 4 in subsequent years

Improved vaccines (breadth) No 70%/70% 3 years 50% All individuals aged 0–5 in the first year of vaccina-
tion, followed by age 0, 2 and 4 in subsequent years

Universal vaccines No 90%/90% 5 years 50% All individuals aged 0–5 in the first year of vaccina-
tion, followed by age 0 and 5
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categories of Preferred Product Characteristics: cur-
rent seasonal vaccines, minimally improved vaccines, 
improved efficacy vaccines, improved breadth vaccines, 
and universal vaccines (Table  1). We consider vaccines 
to be either ‘matched’ or ‘mis-matched’ to circulating 
strains each season, and a different efficacy is given in 
these cases (see Additional file 1 Sect. 3 for more details). 
We assume vaccines are delivered as a campaign (due to 
available economic costs data for this mode of delivery).

We also run sensitivity analyses where vaccination cov-
erage is 75% for all vaccines, allowing for higher uptake 
upon new vaccine development (Additional file 1 Sect. 9).

We run the model from 1 March 2010, where 1 March 
each year is considered the start of the southern hemi-
sphere (SH) influenza season. The model runs with given 
inputs until 31 August, as we define 1 September as the 
start of the Northern Hemisphere (NH) influenza season. 
VE can differ between seasons to take account of vaccine-
matched or mis-matched strains. As in Dawa et al. [2], we 
identify each season’s strain as matched or mis-matched 
to vaccination based on published VE data (Table S1) and 
assume that a VE >  = 50% is a matched vaccine, and < 50% 

is a mis-matched vaccine. Following the NH season, the 
population size is updated (see Additional file 1, Sect. 1 
[2, 15–23]), and ageing of the population occurs, to allow 
for a build-up of immunity in the relevant age groups. 
The model runs from 1 March 2010 to 28 February 2019. 
We model transmission of each influenza subtype sepa-
rately (A(H1N1), A(H3N2), B) to allow different vaccine 
efficacies across subtypes. We assume all individuals are 
born susceptible to infection.

This vaccination model outputs the proportion of the 
population that is vaccinated, and of this, the proportion 
that is immunised for each subtype every week over the 
modelled period.

Model 2 — epidemic model
We model the 11 subtype-specific epidemic time peri-
ods that were identified and fitted in Dawa et  al. [2] 
(Fig. 2A). As in Dawa et al. [2], we define influenza epi-
demics to start at the first week of a time period con-
sisting of “ ≥ 2 successive weeks where the proportion 
of subtype-specific test-positive cases was greater than 
the average weekly proportion during the entire study” 

Fig. 2 A Number of weekly reported cases during epidemic and inter-epidemic time periods. Epidemic periods are highlighted in brown, and 
periods used to estimate the background force of infection are shown in grey. B Model projections of cumulative number of infections (median and 
95% CrI) by vaccine scenario
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(Fig. 2A). Where an epidemic was previously defined to 
last less than 8 months, we follow it for the full 8 months 
to allow capturing the consequences of a slower epidemic 
progression as the result of vaccination. At the start of 
each epidemic, the proportion of the population in the S, 
Sv and Rv compartments is taken from the output of the 
vaccination model, in the matching week and for the rel-
evant virus subtype. Vaccine efficacy is split into NH and 
SH time frames as in the vaccination model. For each epi-
demic we run an independent transmission model (with 
the structure of Fig. 1B) with the estimated transmission 
rate, susceptibility for three age groups (< = 14, 15–49, 
50 +), the initial number of infections and the probabil-
ity of identifying an influenza-positive patient within the 
catchment population for 3 age groups (< 1, 1–5, 6 +) 
from Dawa et  al. [2]. Influenza immunity is assumed 
to be leaky. Additional file 1 Sect. 2 contains the model 
equations, parameters and values.

For key transmission parameters (transmission rate, 
susceptibility, number of infections at the start of the sea-
son, number of imports and ascertainment rates), we use 
the estimated values by Dawa et al. [2] for each of the 11 
strain/subtype-specific peaks in influenza activity identi-
fied between 2010 and 2018 (input 2). The parameter val-
ues for each strain/subtype-specific peak are estimated 
independently, using the fluEvidenceSynthesis R package. 
We also use the same age groups (< 1, 1–5, 6–14, 15–19, 
20–49 and ≥ 50  years old) contact patterns and popula-
tion sizes. For more details see Dawa et al. [2].

In our main analysis, we assume that the previous sea-
son’s vaccination has no effect on the proportion of peo-
ple who have infection-derived immunity at the start of 
the next season. This is supported by statistical analyses 
indicating that susceptibility at the start of each season 
(based on the model fit in Dawa et al. [2]) is not strongly 
dependent on infections in the previous season (Addi-
tional file 1 Sect. 4). To explore the possibility that there 
is some dependency, we run sensitivity analyses with two 
different assumptions on changes in susceptibility (Addi-
tional file 1 Sect. 9).

Model 3 — background FOI
To characterise influenza epidemiology in Kenya, we 
use weekly numbers of hospitalised patients with SARI 
from 2010 to 2018 from the Kenyan National SARI sur-
veillance system (input 3). Data from a subset of 5 large 
hospitals that have a bed capacity of over 200 and a well-
established surveillance system in place is used. The case 
definition of SARI was a hospitalised patient with acute 
illness onset presenting with fever or cough. A random 
sample of these patients underwent virological analysis to 
identify the presence or absence of influenza. For further 
details and data access, see Dawa et al. [2].

To account for infections in the inter-epidemic peri-
ods, we include a background rate of infection with a 
Poisson distribution with shape parameter �i,k , fitted to 
the weekly observed cases in each age group and of each 
subtype across all inter-epidemic periods. We then calcu-
late the weekly number of background infections per age 
group, i , and subtype, k , across the whole time period:

where sust,i,k is the proportion susceptible each week ( t ) 
for age group i and influenza subtype s outputted from 
the vaccination model, asci,k is the mean ascertainment 
rate by age group as estimated in the Dawa et  al. [2] 
paper.

Model 4 — economic analyses
We estimate the incremental cost-effectiveness of each of 
the vaccine scenarios in Table 1 (compared to no vacci-
nation), following WHO recommendations for economic 
evaluations of vaccines [24]. The analytic time horizon 
used in the economic analyses is the same as the epide-
miological model (2010–2019 inclusive), except that life 
years lost due to death are counted until the full normal 
life expectancy. Information on input costs used in these 
analyses (input 4) can be found in Additional file 1 Sect. 8 
[25–34]). We adopt a societal perspective on costs, and 
both costs and health outcomes are discounted at 3% 
per annum, with 0% discounting for health outcomes in 
a sensitivity analysis. All costs (except vaccine costs) are 
expressed in terms of 2019 USD and costs from other 
years are adjusted using Kenya’s gross domestic product 
(GDP) deflator values [35] before calculating cost-effec-
tiveness measures.

Uncertainty is captured using probabilistic sensitivity 
analysis. This is done by drawing 1000 random samples 
per vaccine scenario of the total number of influenza 
infections generated from 2010 to 2019 by all virus sub-
types across all age groups and charting disease and 
hospitalisation outcomes for each infection. Adopting 
the same approach as Dawa et al. [2], we use a decision 
tree (Additional file 1 Sect. 8 [25–34]) to project health-
related outcomes associated with influenza infections. 
Samples of probability parameters are drawn from a beta 
distribution [36] whose shape parameters were calculated 
first by fitting the mean and 95% confidence intervals for 
each probability parameter (drawn from the literature) to 
a beta distribution [2].

We further divide symptomatic infections into mild 
(upper respiratory tract infections, URTI) or severe 
(lower respiratory tract infections, LRTI) illness. 
Patients with mild illness will receive medical attention 

Background Infections
t,i,k =

n=6
∑

i=1

Λi,k ∗ (sust,i,k∕asci,k )
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at outpatient clinics and eventually recover. Severely ill 
patients go on to be hospitalised, and further progress 
to recover from illness or die. The mean durations of 
influenza-associated illness and length of hospital stay 
are assumed to be 4  days [25, 26]. The proportions of 
people hospitalised, attending outpatient clinic and 
dying vary by age group (< 1, 1–5, 6–14, 15–19, 20–49 
and ≥ 50 years old, see Additional file 1 Sect. 8 [25–34]).

A range of influenza-related healthcare utilisation 
events such as seeking medical care at outpatient clin-
ics, hospitalisation as inpatients and purchase of over-
the-counter medication are assumed to incur healthcare 
costs. To capture uncertainty around these costs, ran-
dom samples of cost parameters are drawn from a 
gamma distribution [36]. Direct medical costs include 
the price of influenza vaccines, assumed to be $3 per 
dose, and vaccine wastage, assumed to be 15% [2]. 
Healthcare-related costs include transportation costs 
for hospital visits to seek medical care for influenza-
associated illness or for influenza vaccination. Similarly, 
indirect costs include lost wages and childcare costs due 
to influenza-related illness (see Additional file 1 Sect. 8 
[25–34] and Fig. 1 and Tables 2 and 3 in Dawa et al., [2] 
for parameter values and references).

For health outcomes, we calculate disability-adjusted 
life years (DALYs) using disability weights for mild URTI, 
moderate and severe LRTI and death (GBD, 2019). In 
contrast to Dawa et al. [2], no age-weighting of DALYs is 
done, as this is no longer recommended [24].

We determine the cost-effectiveness of vaccination 
scenarios by calculating median incremental cost-effec-
tiveness ratios (ICERs) per DALY averted and median 
incremental net monetary benefits (INMBs) across all ten 
years for each vaccine scenario compared to the no vac-
cination scenario. The most cost-effective scenario is the 
one with the lowest ICER value and the highest INMB 
value. In the absence of locally-determined cost-effective-
ness thresholds for health interventions in Kenya, ICERs 
are evaluated against a WHO ‘best buy’ threshold of $100 
per DALY averted in LMICs as well as cost-effectiveness 
thresholds derived using two broad approaches — mar-
ginal productivity thresholds calculated by the Univer-
sity of York [27] and those based on global analyses by 
the Commission for Macroeconomics and Health [33]. 
While results using four WTP thresholds (Table  2) are 
presented in the main paper, details of the full range of 
thresholds used and corresponding results are presented 
in Additional file 1 Sect. 8. These thresholds are also used 
to calculate vaccine prices at or below which a vaccina-
tion scenario is deemed cost-effective.

All results presented in the main text are calculated 
using discounted costs and DALYs. In sensitivity analy-
ses, undiscounted costs are also used. We also analyse the 
effect of changing the vaccine price to $1.50, $6 and $10 
per dose.

Results
Cases averted and doses used
While all modelled vaccine types increased the propor-
tion of the population with some immunity, Univer-
sal vaccines resulted in the highest levels of immunity 
across the whole period (Additional file  1 Sect.  7 [37]). 
In addition, this resulting immunity was generated with 
fewer vaccine doses due to slower waning, with a total of 
14 million vaccine doses used for the Universal vaccine 
scenario over the whole time period. The same number 
of vaccines were used for Improved vaccine (breadth) 
scenarios, 19 million for Improved vaccine (efficacy) 

Table 2 Selected willingness to pay (WTP) thresholds used in 
this study

a pc GDP per capita gross domestic product

WTP threshold 
(USD)

Descriptiona Reference

100 WHO best buy [31]

623 45% Kenya pc  GDPa (2015) [27]

1912.65 1 × Kenya pc  GDPa (2019) [34]

5737.95 3 × Kenya pc  GDPa (2019) [34]

Table 3 Median (and 95% CrI) values of threshold per-dose vaccine prices (2019 USD) at or below which each vaccination scenario is 
cost-effective, calculated using discounted costs and DALYs, at four selected thresholds of willingness-to-pay per DALY averted. These 
are calculated while including a median vaccine administration cost of $1.31 per dose (gamma distributed)

a pc GDP per capita gross domestic product

Vaccine WHO best buy ($100) 45% per capita GDP ($623) 1 × per capita GDP ($1913) 3 × per capita GDP ($5738)

Current seasonal  − 0.88 (− 3.75, 1.84)  − 0.18 (− 2.95, 2.59) 1.4 (− 1.51, 5.65) 6.14 (1.28, 16.15)

Improved (minimal)  − 0.59 (− 3.49, 3.27) 0.4 (− 2.52, 4.3) 2.67 (− 0.79, 8.62) 9.37 (3.22, 22.72)

Improved (breadth) 0.95 (− 2.08, 10.81) 3.6 (− 0.12, 13.88) 9.86 (3.68, 24.8) 28.05 (12.97, 62.65)

Improved (efficacy) 0.44 (− 2.45, 8.37) 2.53 (− 0.77, 10.81) 7.59 (2.37, 19.41) 21.93 (10.02, 49.66)

Universal 1.57 (− 1.54, 14.18) 4.94 (0.81, 18.32) 13.03 (5.53, 30.95) 35.75 (17.5, 77.07)
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scenarios and 30 million for the Current seasonal vac-
cines and the Improved vaccines (Minimal) scenarios.

The high immunity from Universal vaccines trans-
lated into the biggest projected reduction in cumula-
tive infections across the 10  year period with a median 
total of 66% of infections averted (95% Credible Interval 
(CrI) 56%-74%) as compared to the no vaccination sce-
nario. This is compared to the Improved (efficacy) of 57% 
(95% CrI 47–67%), Improved (breadth) of 51% ( 95% CrI 
42–61%), Improved (minimal) of 41% (95% CrI 33–49%) 
and Current seasonal of 29% (95% CrI 23–35%) infec-
tions averted. The mean R0 of influenza across epidemics 
was 2.2 (range 1.2– 6.7, Additional file 1 Sect. 8 [25–34] 
for further details) and across vaccination scenarios, the 
average number of cases averted per vaccine dose ranged 
from 0.33 to 2.6.

Cost-effectiveness
Programmes using Universal and Improved (breadth) 
vaccines incurred the lowest total vaccine purchase and 
administration costs across the entire period, assuming 
per-dose vaccine costs are the same for all vaccines ($3), 
because they required the fewest doses. These amounted 
to a median total value of $78.86 million (95% CrI: 
$60.96, $125.18 (in millions)), compared to $108.54 mil-
lion for Improved (efficacy) and $167.91 million for both 
Improved (minimal) and Current seasonal (Additional 
file  1 Sect.  8 [25–34]). After accounting for these costs 
and the costs of travel to seek vaccination, programmes 
using universal vaccines incurred the lowest total soci-
etal costs (direct medical, healthcare-related and indirect 
costs) and thereby incremental total costs, compared to 
when no vaccination was conducted (Fig.  3A). Median 
discounted incremental total costs for Universal vac-
cines were $27.67 million (95% CrI: $ − 174.38, $78.21 (in 
millions)). In contrast, median discounted incremental 
costs were higher for all Improved vaccines and highest 
for Current seasonal vaccines ($128.64 million (95% CrI 
$35.62, $228.43 (in millions)) (Additional file  1 Sect.  8 
[25–34]).

None of the vaccines was cost-effective at the WHO 
best buy threshold of $100 per DALY averted when 
evaluating cost-effectiveness using discounted costs and 
DALYs (Fig. 3). While there was overlap between uncer-
tainty ranges of ICER values calculated for all five vac-
cines, Universal vaccines were cost-effective across three 
of the four WTP thresholds evaluated in this study, with 
a median ICER per DALY averted of $277 (95% CrI: 
$ − 1793, $1115) (Fig. 3B). Similarly, Improved (breadth) 
vaccines were cost-effective across three of four WTP 
thresholds with a median ICER value of $443 per DALY 
averted, while Improved (efficacy) vaccines had a median 
ICER value of $659, being cost-effective across two of 

four thresholds. In contrast, Current seasonal vaccines 
had a median ICER value of $2923 per DALY averted, 
being cost-effective only at a WTP threshold of 3 times 
the 2019 per capita GDP of Kenya of approximately $5738 
(Fig. 3B, Additional file 1 Sect. 8 [25–34]). Thus, median 
ICER values for Improved (breadth), Improved (efficacy) 
and Current seasonal vaccines were 1.60, 2.38 and 10.55 
times higher than for Universal vaccines, respectively.

Similarly, Universal vaccines had the highest median 
INMB values across all WTP thresholds (Fig.  3C). At a 
threshold of $623 (45% of Kenya’s 2019 per capita GDP), 
the median INMB value of Universal vaccines ($36.12 
million) was 2.50 times higher than that of Improved 
(Breadth) ($14.45 million) vaccines (Additional file  1 
Sect. 8 [25–34]). At this threshold, Universal vaccines had 
a high probability (> 75%) of being cost-effective, at or 
below a median price of $4.94 per vaccine dose (95% CrI: 
$0.81, $18.32) (Table 3, Fig. S7, Additional file 1 Sect. 8 
[25–34]). Calculated threshold per-dose vaccine prices 
were consistently higher for Universal vaccines across all 
WTP thresholds. Universal vaccines had median INMB 
values 4.39 times higher than that of Current seasonal 
vaccines ($121.60 million) at a WTP threshold of $5738.

In our sensitivity analyses, increased coverage of vac-
cination made only slight differences to the cost-effec-
tiveness of any of the vaccines across the different WTP 
thresholds evaluated (Additional file 1 Sect. 9). The num-
ber of cases averted per vaccine dose was slightly lower 
in the 75% compared to the 50% coverage scenario, rang-
ing from 0.31 to 2.16; however, the lower 25% coverage 
became more cost-effective, with Universal vaccines 
being cost-effective at the $100 WTP. In addition, we 
found that assumptions around susceptibility had a large 
impact on impact and cost-effectiveness. If we assumed 
that a greater reduction in infections in one season 
increased susceptibility in the next season, then vaccines 
were less impactful and cost-effective (see Additional 
file 1 Sect. 10 for details).

Discussion
Our study indicates that next-generation vaccines are 
likely to have a much greater impact and an improved 
cost-effectiveness profile than currently available 
influenza vaccines. This is true even for incrementally 
improved vaccines with slightly greater breadth or 
duration. These are evidenced by the scale of reduction 
in influenza infections and improvements in cost-effec-
tiveness measures, particularly for universal vaccines. 
Universal vaccines result in the most substantial reduc-
tion in influenza infections utilising the least vaccine 
doses, averting 66% of infections compared to no vac-
cination. In contrast, our model predicts that cur-
rent vaccines avert only 29% of infections, while even 
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improved (minimal) vaccines avert 41% of infections. 
Similarly, ICER values are higher for improved (1.60 to 
2.38 times) and current seasonal (10.55 times) vaccines 
than for universal vaccines. Universal vaccines also 
have the highest INMB values – 2.50 times higher than 
Improved (breadth) vaccines at a WTP threshold of 
$623, and 4.39 times higher than current seasonal vac-
cines at a WTP threshold of $5738, the only threshold 

at which current vaccines are cost-effective. Thus our 
results suggest that universal vaccines result in the 
highest immunity per vaccine dose and subsequently, 
the least number of infections, as well as having the 
most favourable cost-effectiveness profile among all the 
vaccines evaluated.

Our conclusions are influenced by vaccine dose costs 
and cost-effectiveness thresholds. We assumed that 

Fig. 3 A Mean (with 95% CrI) discounted incremental total costs (in millions of USD) vs. mean (with 95% CrI) reduction in the number of cases 
(in millions) for each vaccine (2010–2019). B Boxplot of ICER per DALY averted for each vaccine (2010–2019). Horizontal lines represent different 
willingness-to-pay thresholds per DALY averted. C Boxplot of INMB (in millions of USD) (2010 to 2019) at four selected thresholds of WTP per DALY 
averted
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vaccine per-dose costs are the same for all vaccines ($3), 
which is unlikely to be true. More advanced vaccines 
may cost more per dose. As a comparison, SARS-Cov-2 
AstraZeneca vaccines, which were sold without profit, 
cost between $2.15 and $5.25 per dose, compared to 
mRNA SARS-CoV-2 vaccines costing $14.70 to $23.50 
per dose [38]. Nevertheless, our estimates of the thresh-
old per-dose vaccine price (prices at or below which 
vaccination programmes are cost-effective) suggest that 
universal vaccines are cost-effective even when priced 
higher than current seasonal or improved vaccines and 
irrespective of the WTP threshold. At the same time, we 
find that improved vaccines can also be cost-effective at 
comparatively low WTP thresholds and result in fewer 
influenza cases than currently available seasonal vac-
cines, even if priced higher per dose. The development 
and use of universal vaccines are very likely to benefit 
low-and-middle-income countries which may only be 
willing or able to pay less for health benefits than more 
advanced economies. However, universal vaccines are 
unlikely to be immediately available for widespread 
use, but improved vaccines offer substantial value as an 
achievable and satisfactory alternative to current influ-
enza vaccines, especially since these may be available in 
the near future.

Our analyses demonstrate the importance of assumed 
cost-effectiveness thresholds when determining whether 
health interventions are cost-effective or not. Kenya 
does not have an official cost-effectiveness threshold, but 
Dawa et  al. [2] reported that vaccination with current 
seasonal influenza vaccines in Kenya had a low prob-
ability of being cost-effective given WTP thresholds of 
1–51% of per capita GDP. To address uncertainty around 
thresholds, we used a wide range of values ranging from 
extremely low WHO “best buys” threshold reserved for 
evaluating some of the most cost-effective programmes 
that WHO has ever evaluated [31], to very high 1–3 
times GDP per capita thresholds representing the poten-
tial value of human capital associated with disability [39]. 
Like Dawa et al., we find that current vaccines are cost-
effective only at a very high threshold of 3 times the per 
capita GDP of Kenya and at a maximum threshold price 
of $6.14 per dose, which is much lower than prices at 
which most influenza vaccines are available in the US 
[40] or UK [41]. Conversely, both universal and improved 
influenza vaccines are cost-effective at lower thresholds. 
In our analysis, we assumed vaccination was adminis-
tered as a vaccination campaign. However, administra-
tion of the vaccines as part of routine vaccine schedules 
may save on some delivery costs, although there are cur-
rently no local data on the magnitude of the cost savings. 
Such administration may result in a higher cost-effective-
ness of vaccination.

A key strength of our epidemiological model is the 
direct incorporation of vaccine-derived immunity wan-
ing over multiple years, with ageing of the population, 
which is required to evaluate next-generation vaccines 
with benefits that last several years. This contrasts to 
many seasonal vaccination models where vaccine-
derived immunity is not tracked across seasons [2, 14]. 
In contrast with the marked annual seasonality of influ-
enza in temperate regions [42], influenza epidemics in 
Kenya do not have a regular seasonal pattern, with the 
substantial transmission in between epidemics, which we 
included by separately modelling the inter-epidemic peri-
ods. However, we used a relatively simple approach for 
this and we do not capture the indirect effects of vaccina-
tion between epidemics. In addition, while we include 3 
influenza subtypes (AH1N1, A H3N2 and B), we do not 
allow for any interaction between these subtypes, which 
may contribute to the dynamics of transmission [43–48]. 
However, as our modelling is based on fitted models, this 
should not have major impacts on our economic analy-
sis. Therefore the main practical disadvantage is that we 
are unable to investigate vaccines with different efficacies 
within the influenza B viruses.

Country decisions to invest in health interventions can 
be influenced by considerations other than cost-effec-
tiveness [49], for example due to competing options for 
implementation or due to widespread vaccine hesitancy. 
While our modelling indicates that next-generation vac-
cines can be cost-effective, their implementation will be 
competing against other public health interventions. In 
Kenya, separate studies have shown both rotavirus and 
pneumococcal childhood vaccination to be cost-effective, 
with between $25 and $59 [50] and $38 [51] per DALY 
averted respectively, and programmes covering these 
vaccines have been introduced. However, these esti-
mates are substantially lower than for even the univer-
sal influenza vaccines calculated here. Equity in vaccine 
distribution [52] is also a key consideration for vaccine 
programme implementation. The availability of financing 
options such as from Gavi, the Vaccine Alliance [53], is 
also important, but Kenya is already starting to transition 
out of Gavi support.

Our study has a number of other limitations. We have 
assumed that vaccination occurs independent of current 
vaccine status, meaning that individuals can receive mul-
tiple vaccinations and therefore some vaccinations will 
be ‘wasted’ on individuals already immune. This is a con-
servative assumption, likely making the vaccine scenarios 
appear less cost-effective, and is more likely to have an 
effect at higher coverage levels. It is also recommended 
that children between 6  months and 8  years of age, or 
those who have only ever received one dose, should 
receive two vaccine doses at least 4 weeks apart [54, 55]. 
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Administration of a second vaccine dose will incur addi-
tional costs for vaccine purchase, transport and adminis-
tration, although these additional costs may be offset by 
vaccinating independent of vaccine status. In reality, there 
may also be challenges to administer vaccines twice due 
to limited access. We also do not consider adverse vaccine 
reactions [55, 56] in our DALY calculations. These would 
influence cost-effectiveness and vaccine threshold prices, 
particularly at lower cost-effectiveness thresholds.

Immune protection to influenza virus infection and 
vaccination are poorly understood and we found that 
assumptions on infection-derived immunity have a large 
impact on incidence and resulting cost-effectiveness esti-
mates. However, such assumptions could not be empiri-
cally informed, because in this setting the previous season 
does not have an impact on estimated susceptibility levels 
in the following season and our sensitivity analyses with 
different infection-susceptibility assumptions show dif-
ferent behaviour than observed for current seasonal vac-
cines. Therefore our main analysis presents the most likely 
assumptions. We also assume in our model that trans-
mission is independent of clinical symptoms and that all 
infections (whether previously vaccinated or not) are 
equally transmissible. Another important consideration 
is the potential population-level effects of universal vac-
cines on vulnerability to newer influenza virus variants. 
Previous mathematical modelling studies suggest that 
universal vaccines can prevent the development of cross-
protective immunity developed through natural infection. 
In the absence of sufficiently high vaccination coverage, it 
was thus suggested that universal vaccines can increase 
the risks of the emergence of vaccine escape variants that 
could cause influenza pandemics [57, 58]. These studies 
suggest that combining the administration of seasonal and 
universal vaccines may help to mitigate these risks [57], a 
strategy which we have not explored in our study.

Conclusions
Our study provides the first formal evaluation incorpo-
rating both direct and indirect (herd) protection, of the 
effectiveness and cost-effectiveness of a range of next-
generation influenza vaccines meeting WHO PPCs. In 
doing so it bolsters the case for investing in the develop-
ment of these vaccines, while highlighting the benefits to 
be derived from improved vaccines. This provides proof 
of principle for similar studies to be conducted in other 
LMICs, so that a global picture of potential demand for 
these vaccines can be built.
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