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Introduction: Intercropping cereals with legumes can intensify rainfed cereal

monocropping for improved household food and nutritional security. However, there

is scant literature confirming the associated nutritional benefits.

Methodology: A systematic review and meta-analysis of nutritional water

productivity (NWP) and nutrient contribution (NC) of selected cereal-legume

intercrop systems was conducted through literature searches in Scopus, Web of

Science and ScienceDirect databases. After the assessment, only nine articles written

in English that were field experiments comprising grain cereal and legume intercrop

systems were retained. Using the R statistical software (version 3.6.0), paired t-tests

were used to determine if differences existed between the intercrop system and the

corresponding cereal monocrop for yield (Y), water productivity (WP), NC, and NWP.

Results: The intercropped cereal or legume yield was 10 to 35% lower than that

for the corresponding monocrop system. In most instances, intercropping cereals

with legumes improved NY, NWP, and NC due to their added nutrients. Substantial

improvements were observed for calcium (Ca), where NY, NWP, and NC improved by

658, 82, and 256%, respectively.

Discussion: Results showed that cereal-legume intercrop systems could

improve nutrient yield in water-limited environments. Promoting cereal-
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legume intercrops that feature nutrient-dense legume component crops could

contribute toward addressing the SDGs of Zero Hunger (SDG 3), Good Health and

Well-3 (SDG 2) and Responsible consumption and production (SDG 12).

KEYWORDS

cereal–legume intercropping, multicrop agriculture, nutrient dense food, SDG #2, water use
efficiency, nutritional water productivity

Introduction

Sustainable intensification (SI) in agriculture has been part of a
multipronged approach that seeks to optimize efficiencies and reduce
losses within crop production systems (1, 2). Demand for agriculture
that supports a healthier diet is less dependent on monocultural
systems and external inputs and is better suited to marginal and semi-
arid environments has revived interest in diverse traditional systems
(3). Notably, intercropping is recognized as a viable traditional SI
technique within semi-arid regions with the potential to improve
household food and nutrition security while minimizing the negative
impacts of continuous cereal monocropping (4, 5). Previous research
has shown that unhealthy diets, such as those high in sugar and
sodium, are associated with diseases such as type 2 diabetes (6, 7) and
that the food we eat can have environmental impacts such as excessive
use of water and climate disruption (8).

Cereal-legume intercrop systems are particularly beneficial
in marginal sub-Saharan African (SSA) landscapes, which are
characterized by high levels of malnutrition, resource limitation
and rainfall variability. These conditions are further exacerbated
by climate-related risks and uncertainty (9). Apart from enhancing
water and nutrient use efficiency, improving soil fertility (9, 10),
and financial gains (11, 12), cereal-legume intercrop systems have
become a better bet for increased food and nutrition security in
marginal farming communities (13). However, concerns have arisen
on whether intercropping can move food security beyond calories
produced per capita and address household nutritional needs (4,
14–16).

Within the study of intercropping, increases in “food security”
are usually extrapolated from any positive gains in productivity (17),
and improvement in “nutritional security” is assumed as a result
of increased crop diversity (18, 19). However, the latter may not
always be accurate, especially for household nutritional contributions
within marginal farming communities. From a nutritional point of
view, mineral bioavailability from cereals and legumes is usually
low due to their high dietary fiber content or the presence of
antinutritional components like phytic acid, oxalate, or polyphenols
that may interfere with mineral absorption (20). Antinutritional
components further confound the purported nutrient gains within
cereal-legume intercrop systems. Furthermore, under increased
water stress conditions such as drought, antinutritional factors have
been found to increase, decreasing the overall nutritional quality of
a crop (21). Depending on species, growing conditions (e.g., water
and fertilizer) and cooking method, the bioavailability of minerals
in legumes range between 5 and 35% (22), while for cereal crops,
it ranges between 20 and 80% (23, 24). There is, therefore, a need
to understand the impacts of water on yield and nutritional yield,

as this impacts household food and nutrition security, especially in
water-stressed environments.

Nutritional water productivity (NWP) is an emerging concept
that combines information on the nutritional value of crops with
that of crop water productivity. Here, crop Water productivity
is defined as the economic or biophysical gain from using a
unit of water consumed in crop production. The combination
of a crop’s nutritional value and crop water productivity makes
NWP a useful index for evaluating the impacts of agriculture
on food and nutrition security, especially under limited water
availability (25). The NWP index provides a way of understanding
the complex and dynamic interlinkages between crop water use and
the nutrient value of a crop or cropping system. The NWP index
also allows for a holistic assessment of water, food, and nutrition
security (25–28). What is desirable is a higher NWP, which means
more nutrients for less water. The quantification of NWP within
agricultural systems is in its infancy, with (26) evaluating NWP for
legumes [bambara groundnut (Vigna subterranea), cowpea (Vigna
unguiculata), groundnut, (Arachis hypogaea) and dry bean (Phaseolus
vulgaris)], and (25) in leafy vegetables [amaranth (Amaranthus
cruentus) spider flower (Cleome gynandra), Swiss chard (Beta
vulgaris)] and orange-fleshed sweet potatoes (Ipomoea batatas).
Presently, this is only one of a few studies that have evaluated the
NWP of multi-crop systems.

We hypothesized that cereal-legume intercropping could
improve household nutritional contribution through the
improvements in NY, WP, and NWP compared to cereal
monocropping. Therefore, this study aimed to synthesize and
analyses available published evidence on the NWP of cereal-legume
intercrop systems and, in addition to that, their potential to improve
the sustainability of food systems in water-scarce environments. It
should be noted that the work presented is exploratory.

Methodology

Identification of studies

Three databases (Scopus, Web of Science and ScienceDirect)
were used to search for published peer-reviewed literature on cereal–
legume intercrop systems from 1980–2022, using the PRISMA
methodology (Figure 1). The search terms used were (“intercrop∗”
OR “mixture∗” OR “multicrop∗”) AND (“water use∗” OR “water
use efficiency” OR “water productivity”) and (“Kidney bean” OR
“Common bean” OR “Lima bean” OR “Adzuki bean” OR “Mung
bean” OR “Black gram” OR “Scarlet runner bean” OR “Ricebean” OR
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“Moth bean” OR “Tepary bean” OR “Horse bean” OR “Broad bean”
OR “Field bean” OR “Garden pea” OR “Pea” OR “Protein pea” OR
“Chickpea” OR “Cowpea” OR “Pigeon pea” OR “Lentil” OR “Bambara
groundnut” OR “Vetch” OR “Lupins” OR “Lablab” OR “Jack bean”
OR “sword bean” OR “Winged bean” OR “Velvet bean” OR “Yam
bean”) and (maize OR rice OR wheat OR durum OR barley OR
sorghum OR millets OR oats OR triticale OR rye OR fonio OR teff
OR “Wild rice” OR spelt OR einkorn OR emmer OR kamut OR
“Canary grass” OR quinoa OR amaranth OR buckwheat OR kaniwa
OR pitseed OR goosefoot).

Inclusion and exclusion criteria

The initial search retrieved 1,333 articles; after that, articles were
screened for duplicates, and 692 remained. We retained articles
written in English and excluded those not written in English. From
the remaining 662 articles, titles and abstracts were examined to
check whether studies were field experiments comprising grain
cereal and legume intercrop systems. We excluded all articles not
considering grain cereal and legume intercrop systems. Following
the screening, 54 abstracts remained. Full-length articles were only
considered if they measured plant parameters included yield (Y) and
water use {WU -[evapotranspiration (mm), rainfall (mm) received
and/or water used (m3)]} and the experiments presented yield (in
kg ha−1, t ha−1, and g m−2) values for monocrop treatments
for both intercrop component crops. This was to allow yield and
nutrient yield comparisons between monocrops and intercrops to be
compared. Articles that did not meet these criteria were excluded.
Overall, 9 articles met the inclusion criteria (refer to Supplementary
Information 1, Table 1 for the PRISMA flowchart). Since the work
was largely exploratory and, given the limited number of retained
articles, we did not consider bias. A glossary of key terms has been
provided in Supplementary Information 2.

Data extraction

Multiple data records were extracted from each publication based
on the number of experiments and appropriate treatments within
experiments in an article. We extracted site-specific data (geographic
coordinates and mean annual rainfall (mm) (Supplementary
Information 1, Table 2), management data (plant densities, fertilizer
and water management), yield, water applied as well as water
productivity (Supplementary Information 1, Table 3). Data were
directly extracted from published tables or digitized graphs using
WebPlotDigitizer (29). All grain yield data were presented as t ha−1.
Only treatment mean values were extracted regardless of the number
of replications.

Nutrient content
A second literature search on nutrient concentration (NC)

of crops was performed to quantify the nutrient yield (NY) for
each system (cereal monocrop and intercrop). We focused on
estimating the NY of three essential micronutrients, Fe, Zn, and
Ca, within the intercrops (30). This selection reflects some of the
micronutrients of public health interest because of either existing
widespread deficiency (Fe and Zn) or because Ca intakes are low

in developing countries (31). We also included carbohydrates, fiber,
and protein as essential macronutrients. A detailed description of
why the selected nutrients were included in this study is presented
in Supplementary Information 3.

Data on proximate and nutrient composition for crop species
were sourced from databases such as the United States Department
of Agriculture Food Composition1 and the Food and Agricultural
Composition/In Foods.2 We also used peer-reviewed literature
obtained from the above-mentioned electronic databases. The
search terms were “proximate composition,” “nutrient composition,”
“nutrient yield,” “cereal,” “legume,” “maize,” “sorghum,”’ “pearl
millet,” “wheat,” “dry bean,” “soybean,” “cowpea,” “groundnut,” “pea,”
“chickpea” (refer to Supplementary Information 1, Table 4 for
the search strings used). Similar to the intercrop system data, the
database comprised articles published in English between 1980 and
2019. The selection criterion was that proximate compositions and
nutrient concentrations must be reported in nutrient concentration
per 100 g (g mg−1 per 100 g). After screening, eight articles and ten
nutrient composition databases from usad.gov and fao.org were used
to develop the proximate composition and nutrient content data to
calculate NWP for the crops included in the study. The average grain
nutrient composition (per 100 g at 12 % moisture) of cereals and
legumes pooled from the literature on the identified crops can be
found in Supplementary Information 1, Table 4.

To calculate available nutrients, we assumed a modest value of
70% of legume nutrients are unavailable for absorption due to limited
bioavailability inside human bodies (22, 23, 32). We assumed that
around 35% are unavailable for absorption for cereal crops due
to limited bioavailability inside human bodies (23, 25). Using the
method outlined by Nyathi et al. (25), the percentage contribution
of an intercrop system, after adjusting for bioavailability, to the daily
recommended nutrient intake was calculated according to Kruger
et al. (33). Refer to Supplementary Information 1 and Tables 4, 5
for calculations of the bioavailability of nutrients.

Nutrient yield (NY), nutritional water
productivity (NWP) and potential
contribution to human nutrition

The nutrient yield of intercrop systems was calculated based on
an equation adapted from (34) as follows

NYs = (YIC × %NCC)+ (YIL × %NCL) (1)

NYc = (YC × %NCC) (2)

where NYC and NYs are the nutrient yield for cereal (C) in the
monocrop system and corresponding intercrop system (S), YC is the
grain yield of the cereal in the monocrop system (C), YIC is the grain
yield of the cereal component (C) in intercrop system (S), YIL is the
grain yield of the legume component L in intercrop system S, NCC
is the nutrient concentration of the cereal, and NCL is the nutrient
concentration of the legume component.

1 https://fdc.nal.usda.gov/fdc-app.html

2 http://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-
databases/en/
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Nutritional water productivity (NWP) of intercrop systems was
calculated as a ratio based on a formula adapted from (35):

NWPC/S(kg m−3) = WPC/S(kgm−3) × NCC/S g 100 g−1 (3)

where NWP of cereal monocrop (C) or intercrop (S) system is the
nutritional water productivity, WP of cereal (C) and intercrop (S)
system is defined as the amount of agricultural output produced
per unit of water used. Water productivity (25) for monocrop and
intercrop systems was calculated as

WPC =
Yc

(
kg ha−1)

water used
(
m−3

) (4)

WPS =
YIC

(
kg ha−1)

water used
(
m−3

) + YIL
(
kg ha−1)

water used
(
m−3

) (5)

Household nutritional contribution
We determined the probability that average households could

meet their nutritional needs by growing the cropping systems
examined in this study. Nutrients obtained from foods consumed
vary depending on the portion size consumed, amount of food
utilized, and food preparation and processing (36). To estimate the
nutritional requirements for a household of four individuals [Male
and female adults, an adolescent female and a child (4–8 years old)],
the Estimated Average Requirement (EAR) was calculated from the
Dietary Reference Intake (DRI) (Supplementary Information 1,
Table 6). The EAR value is an estimated daily value for a specific
nutrient that meets 50% of a specific age group and gender. It is seen
as a primary reference for assessing nutrient adequacy. Estimated
weight was used for each household member to determine the
protein requirements. Uusiku et al. (37) used a similar methodology;
however, our results for nutritional requirements differ. One of
the reasons for this difference is that Uusiku et al. (37) used the
recommended Daily Nutrient Intakes (RNIs), and this study used
the DRI values, which have replaced and expanded on the RNIs and
Recommended Dietary Allowances (RDA) (38).

The per cent contribution to EAR was calculated as

%contribution
[
Nutrient concentration

(
g or mg 100g−1) /

Nutrient concentration (g or mg day−1)
]
× 100 (6)

Data visualization and statistical analyses

Publication bias is a challenge in meta-analysis. This bias often
occurs when the published studies report larger or more significant
effect sizes (e.g., the effect of a treatment). Also, published studies are
more likely to have found significant and/or larger yield changes than
unpublished studies. Our study acknowledges that if any publication
bias was present, it impacted the results of this meta-analysis since
we used the resultant yield data from each selected publication.
However, due to the limited number of articles identified, we did not
subject the data to any statistical correction. Using the R statistical
software (version 3.6.0) (39), paired t-tests were used to detect the
difference between the sole cereal and intercropped cereal. We also
used generalized linear mixed analysis (GLMM) at 95% confidence

levels to determine if differences existed between the intercrop system
and the corresponding cereal monocrop for Y, WP, NC, and NWP.
Descriptive statistics such as means, standard deviations, bubble chart
box and whisker plots were used to analyses outputs. Box and whisker
plots can show stability and general distribution of the data sets. The
bar charts visualized the relationship between two or more variables
and helped assess co-dependent variables. On the other hand, box and
whisker plots can show stability and general distribution of data.

Results and discussion

Literature review

The intercrop data consisted of nine articles (Supplementary
Information 1 and Tables 1, 2) representing five countries
from two continents. The locations were China (3 articles),
South Africa (2), Kenya (1), Ethiopia (1), and India (1). The
cereal component crops included maize (Zea mays L.), pearl
millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and wheat
(Triticum aestivum). At the same time, the legumes intercropped
were dry beans (P. vulgaris), cowpea (Vigna unguiculata), pea
(Pisum sativum), groundnut (Arachis hypogea), and chickpea (Cicer
arietinum). The various crop species identified highlighted the
potential of intercropping in improving crop diversity. Crop diversity
is critical in food and nutrition security (40) and dietary diversity
(41). Maize intercrop systems were dominant (five out of eight);
this is consistent with the global importance of maize as a staple
crop (40). Also, water use issues are more prudent in maize
production systems due to the crops’ higher requirements than
the other cereal crops (42–45). Most intercrop systems (six out
of eight) were grown in semi-arid regions (average 550 mm
annual rainfall), indicating the potential of intercrop systems to
do well under conditions of low water availability. However, the
limited number of articles found during the literature search
highlights the need for more research focusing on WU and NY in
intercrop systems.

Yield, land equivalent ratio, and water
productivity

Table 1 presents the grain yield (Y) of selected cereal crops
and legumes (monocropping and intercropping) reported in the
selected studies. The mean values for the cereal monocrops (n = 23
experiments) ranged from 0.9 to 11.0 t ha−1; the highest and lowest
cereal Y was observed from maize and sorghum, respectively. For
the intercrop, the mean values for cereal Y ranged from 0.8 to 8.9 t
ha−1; similarly, maize and sorghum exhibited the highest and lowest
Y, respectively. The mean Y for legume monocrops ranged from 0.1
to 3.9 t ha−1, whereas for the intercrop system, it ranged from 0.1
to 2.1 t ha−1 (Table 1). Groundnut and cowpea exhibited the highest
and lowest mean Y for monocrop and intercrop systems, respectively.
The differences in species mean Y could be attributed to differences
in Y potentials for each crop species (46, 47). Compared to maize,
groundnut and soybean, commercial crops with high Y potential,
millet, sorghum and cowpea, are regarded as underutilized crop
species with limited crop improvement and low yield potential (48).

On average, intercrop systems produced 14% [95% CI 0–4.5 t
ha−1] lower cereal Y than monocrop Y. The most considerable yield
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FIGURE 1

PRISMA flow diagram used for selection of studies.

differences when comparing intercropping to monocropping were
observed from the fox millet–groundnut (−53−20%), maize-dry
bean (−35 to −10%), and wheat-chickpea (−32 to −12%) systems.
The low Y observed for intercropped cereal and legumes relative to
their monocrop systems could be attributed to increased resource
competition between the intercropped crops. In multicrop systems,
competition between component crops is always present as the crops
require the same growth resources, e.g., water, nutrients, and solar
radiation (4, 49). The competition for these resources is significantly
increased when critical growth stages such as canopy expansion,
flowering and grain filling overlap, as could have been the case for
the aforementioned systems (50). Then again, where there are lower
yield reductions, it could be that the cereal and legume crops are
complementary. Chimonyo et al. (4) and Smith et al. (15) observed
complementary interactions for the maize-pigeon pea intercrop
system, which was attributed to asynchronous phenology and less
competition for growth resources during critical growth stages. The
low Y in the maize–cowpea system was consistent with low plant
populations, nitrogen fertilizer rates, and, more importantly, low
water availability (314 mm; Supplementary Information 1, Table 2).
To reduce yield gaps in cereal–legume systems, there is a need to
exploit crop interactions to manage competition between cereals

and legumes. Under low water availability, manipulating agronomic
practices such as sowing time, sowing density, and N fertilizer
rate can enhance species complementarity and total productivity,
optimizing productivity (50).

Water productivity for cereal monocrops ranged from 0.40 to
1.85 kg m−3, whereas for legume monocrops, it ranged from 0.08 to
0.61 kg m−3. The differences in WP between the cereal and legume
crops can be attributed to differences in physiology (51). Several
studies have shown that C4 plants are more efficient at carbon fixation
and have a higher WP than C3 plants owing to photosynthetic
pathways (52–54). This could explain why many of the C4 cereals
showcased in the study had higher WP than C3 cereals and legumes.
The differences in WP between the cereal or legume crops could also
be attributed to the differences in Y potential across the different crop
species (46, 47). The study results highlighted that intercropping (0.47
to 1.90 kg m−3) improved WP by 19% [95% CI 0.0–0.44 kg m−3]
compared to monocropping. It could be assumed that improved WP
could be due to increased capture and use of unproductive water
(water that is not taken up and transpired by the plant and is lost
to plant production through deep drainage or evaporation) (55). The
wide range for WP was consistent with the observed variation in
Y (correlation = 0.81, P < 0.05). Maize–groundnut (0.47 kg m−3),
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maize – soybean (0.49 kg m−3), and sorghum–cowpea (0.37 kg m−3)
intercrop systems showed the lowest WP, while maize–pea (1.90 kg
m−3) and millet–groundnut (1.49 kg m−3) showed the highest WP
(Table 1).

Nutrient concentrations (NC), nutrient
yield (NY), and nutritional water
productivity (NWP)

We calculated the nutrients that can be harvested per unit
area of land (NY) for selected cereals and legumes (monocropping
and intercropping) (Supplementary Information 1). Excluding the
results of carbohydrate Y, this study indicated that intercrop systems
had higher NY than corresponding cereal monocrops. Intercropping
improved fiber, Fe and Ca Y by 10, 15, and 135%, respectively
(Figure 2). The most substantial improvements in Ca Y were
observed in the maize-soybean intercrop system, with a 658%
increase compared to the corresponding maize monocrop (Figure 2).
The maize-soybean intercrop system also significantly improved
protein (63%) and Fe (152%). The improvements can be attributed to
the legumes used within the intercrop systems. For instance, soybean
was seen to have a comparative advantage over other legumes as they
contain a more significant amount of protein, Ca and Fe (56, 57). In
this regard, legumes could be considered a good, cheaper alternative
to animal protein and Ca (58) and can improve the nutritional value
of starch-based foods despite low bioavailability. When a starch-based
food is consumed with legumes, it provides other complementary
proteins (59) and enhances Ca absorption (60). Starch-based foods
lack lysine and tryptophan found in legumes, and the sculpture-
containing amino acids limiting in legumes are found in starch-based
foods (61). It could be assumed that the protein quality of a starch-
based cereal could be improved when consumed with a legume, thus,
contributing to the reduction of protein-energy malnutrition (62–
64). It is recommended that the assessment of protein content in
foods, such as legumes, should be measured by the sum of individual
amino acids (61, 65). However, these data are not always readily
available, and it is acceptable to estimate protein content based on
total nitrogen content (66). This study showed that intercropping
cereals with legumes did not always improve Zn contributions. While
legumes contain more Zn than cereal crops, the bioavailability and
absorption are affected by the total protein content within the legume
and phytic acid found in several cereal crops (67). The consumption
of cereal and legumes with Zn-rich vegetables should be encouraged.

The results indicated that carbohydrates’ nutritional water
productivity (NWP) values were moderately higher under
intercropping than monocropping (Figure 3 and Supplementary
Information 1, Table 8). The values ranged from 238 to 5,047 g
m−3 for intercrop systems, whereas for monocropping, the values
ranged from 258 to 4,888 g m−3. The increase in carbohydrate
NWP and the NWP for all the nutrients under investigation agreed
with our hypothesis that intercropping cereals with legumes would
improve NY. From a water perspective, the results suggest that
improving NWP might require less water to produce comparable
yields in intercropping to those produced in cereal monocrops.
However, when considering human nutrition and health, an increase
in carbohydrate NWP could be detrimental to poor rural households
that consume a high-energy diet. As suggested by our results,
the legume component’s benefits are that any carbohydrate content
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FIGURE 2

Improvements in nutrient yield (NY) for Carbohydrates, Protein, Fiber, Iron, Zinc, and Calcium across the intercrop systems relative to monocropping.
The intercrop systems used in the study include Maize-Cowpea (MC), Maize-Dry Bean (MD), Maize-Groundnut (MG), Maize-Pea (MP), Mazie-Soybean
(MS), Millet-Groundnut (MG), Sorghum-Cowpea (SC), and Wheat-Chickpea (WC).

reductions resulting from a cereal yield reduction are offset by legume
carbohydrate content. In addition, there is a bonus of the addition
of other nutrients. When comparing the results of monocropping
and intercropping, there was an overall improvement in NWP for
protein, fiber, Fe, Zn and Ca by 55, 52, 60,45, and 82%, respectively
(Figure 2). Under low water availability and within cereal–legume
intercrop systems, the slight improvement in carbohydrate yield can
be considered a worthwhile trade-off for an overall improvement
in NY. This improved balance between nutrients, especially protein
and carbohydrates, can reduce protein-energy malnutrition and
obesity–under and over-nutrition, respectively.

The most considerable improvement for NWP was for Ca, which
showed an 82% improvement under intercropping relative to cereal
monocrops (Figure 2). For Ca-NWP, intercropping (32 to 3,287 mg
m−3) indicated higher values than monocropping (21 to 945 mg
m−3). The improvements in Ca-NWP were associated with the
legume species used in the systems. A closer look at maize systems
showed that the highest Ca-NWP improvement was when soybean
was used, while the least improvements were observed when peas
were used. Soybean has high Ca content that averages 35.7 mg
100g−1 compared to other legumes such as pea (4.9) and groundnut
(19.3). As a commercially important food and feed crop, soybean has
undergone significant genetic improvements for improved nutrient
yield (68). Although soybean is not, particularly drought tolerant,
intercropping it with cereals under water-scarce conditions could be
viable for improving the overall system Ca NWP.

Household nutritional contribution

The estimated percentage contribution of a cropping system
(cereal monocrop and intercrop) for a family of four (comprising
of a male and female adult, a female adolescent and a toddler) is
presented in Figure 4 and Supplementary Information 1, Table 9.
An ideal cropping system for optimum nutritional benefits provided
more than 100% estimated average requirement (EAR for a family
of four for a year). Maize–pea and millet–groundnut systems and
their corresponding maize monocrop systems provided more than
100% of the EAR for a family of four for carbohydrates, protein, Fe,
and Zn. Our results illustrated that despite intercropping improving
Ca yields, the improvements were inadequate to meet the EAR for

a family of four. It was interesting to note that maize-pea systems
could provide ten four-member families with EAR for carbohydrates
for a year. Millet–groundnut systems produced the highest nutrient
contribution of Zn. Most intercrop systems reduce the EAR ratio
between carbohydrates and other nutrients. For example, the maize–
soybean intercrop system had the lowest carbohydrates to Fe ratio
(1: 0.7), millet–groundnut had the lowest carbohydrates to Zn ratio
(1:1.5), and wheat–groundnut had the lowest carbohydrates to Ca to
protein ratio (1:0.5:0.1). The result shows that different crop species
combinations result in different contributions to household nutrition.
This would suggest that more than one type of legume species or
adding other crop species could improve the balance of NC for a
household across the nutrients relative to carbohydrates.

Study limitations

The number of studies included in this review was small (N = 9),
limiting our findings’ generalisability. While the number of studies is
sufficient for quantitative analysis (69), it should be recognized that it
limits the strength of our conclusions. The limited number of studies
included was restricted by the search criteria imposed by our research
objective. Higgins (70) proposed that a minimum of 10 studies are
necessary for conducting analyses. However, Valentine et al. (69)
concluded that two studies are adequate for quantitative analysis of
secondary data provided that the random and fixed effects are well
defined and the effect size of both studies are similar; the current
study satisfied these conditions stipulated by Valentine et al. (69).

We obtained Y and WU values from different literature sources
to compute water productivity. To standardize the calculation of
WP, this paper used total water applied and/or total irrigation
amount as the denominator. According to Nyathi et al. (25), the
use of transpiration as the denominator, as opposed to water
applied or water used, as was used in this study, could provide
a more accurate determination of WP. van Halsema and Vincent
(71) emphasized the need to use the beneficial use of water
(transpiration rather than evapotranspiration) when assessing the
water productivity of crops. However, because it is challenging to
separate evaporation from evapotranspiration, evapotranspiration is
used as a denominator when computing water productivity. Also,
when assessing the NWP of the cereal-legume intercropping system,
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FIGURE 3

A comparison between intercrop systems and corresponding cereal monocrop for nutritional water productivity (NWP) for Carbohydrates, Protein, Fiber,
Iron, Zinc, and Calcium. The intercrop systems used in the study include Maize-Cowpea (MC), Maize-Dry Bean (MD), Maize-Groundnut (MG), Maize-Pea
(MP), Mazie-Soybean (MS), Millet-Groundnut (MG), Sorghum-Cowpea (SC), and Wheat-Chickpea (WC).

FIGURE 4

A comparison between intercrop systems and corresponding cereal monocrop for Nutrient Contribution (NC) in terms of Estimated Average
Requirement (EAR) per cent for each nutrient for an average family of four comprising an adult male and female, an adolescent female, and a child.
Carbo is the abbreviation for carbohydrates.

we computed NWP as a product of WP and NC. These values
are complex as; (i) they are obtained from different locations, (ii)
different management strategies, including soil fertility levels and
irrigation water regimes, (iii) different soil types due to different
locations, and (iv) different crop species might consist different
nutrient concentrations. These factors could influence crop WU and
perhaps NC, and ultimately NWP.

Study implications

Notwithstanding these limitations, our findings show that
intercropping cereals with legumes is more beneficial than
monocropping in terms of increasing food diversity and nutrient
productivity per unit of water and land used. The main findings
and implications are summarized in Table 2. Our results suggest
that research on the climate-environment-nutritional-benefits of

multicropping is scant and uncoordinated. Research to provide
insights into nutrition-sensitive cropping systems in marginal
environments must be multidisciplinary with standardized protocols
and frameworks to ensure harmonization of methods, data collection
tools and data. Further, there is a need to integrate socio-economic
and bio-physical factors into the assessment of NWP as they might
affect the interpretation of the results (12). Since food and nutrition
insecurity is synonymous with poverty (72, 73), future studies should
include an econometric assessment to determine the cost-benefit
from a household nutrition and water perspective for intercropping
cereals with legumes. Also, the use of indicators such as Nutrient-
Rich Foods (NRF) (74) or Overall Nutritional Quality (75) and
nutritional function diversity (19), which are metrics of nutrient
density and value, can be used for crop nutrient profiling. Including
such methods and metrics will provide a more holistic assessment
of the co-benefits of such systems by informing policy on the value
of nutrition-sensitive cropping systems for reducing poverty and
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TABLE 2 Key findings, implications and recommendations grouped according to benefits for productivity, environment and human nutrition.

Domain Key findings Implications Recommendations

Productivity • Productivity within the intercrop systems
was dependent on crop species and
management

• Cereal–legume intercrop systems can be
modeled to match socio-economic and
bio-physical characteristic

• Several iterations are needed with agronomists,
irrigation experts, and nutritionists working together
to design cereal–legume intercrop systems for
improved health and environmental outcomes
• Econometric assessment needs to be done to
determine cost and nutrient-benefits of different
cereal–legume intercrop systems
• Agricultural policies need to be based on a better
understanding of smallholders’ objectives and
constraints

• Underutilized cereal and legume crop
species were low yielding when compared to
important commercial ones
• Yield instability for the same species
across different intercrop systems
• Intercropping reduces the productivity of
component crops but increases overall
productivity

• Yield gaps within and across crop
systems still exist, and this presents
opportunities to further intensify
cereal–legume intercrop systems

• Adopt management strategies such as asynchronous
planting and shifting plant populations can improve
yield and yield stability

Environmental • Under semi-arid conditions intercropping
cereal with legume improved WP

• Under low water availability,
intercropping cereals with legumes can be
used to mitigate the impacts of water
stress and drought on crop productivity

• Under low water availability, intercropping should be
recommended as a viable water management strategy

• Several cereal–legume intercrop
combinations were identified in the study

• Legumes can contribute to the ecological
intensification of cropping systems
• Crop species diversity within cereal and
legumes can contribute to enhancing
functional biodiversity
• Crop diversification implies economic
diversification
• Increased resilience to shocks
• Cereal–legume intercrop systems can
enhance environmental sustainability in
terms of water use and nutrient cycles

• Efforts to improve marginal production systems
require innovative and inclusive approaches that
enable adaptation to the socio-ecological context
• There is a need to map ecosystem services provided
by cereal–legume intercrop systems

Human nutrition •High yields for selected nutrients were
observed in cereal – legume intercrop
systems relative to corresponding cereal
monocrop systems

• Cereal–legume intercrop systems can be
used to address specific or collective
nutrient deficiencies in marginal
production systems

• There is a need to do crop nutrient profiling to
determine the full nutritional benefits of cereal–legume
intercrop systems

• Intercropping cereals with legumes
o reduced the carbohydrate to protein, Fe,
and Ca ratio
o reduced NWP for carbohydrate, and
protein under cereal–legume intercrop
systems
o increased NWP for Ca, Fe and Zn

• Under low water availability,
intercropping cereals with legumes can
improve nutrient balance
•More water is required to maintain
carbohydrate and protein yields under
cereal–legume intercrop systems

• Cropping systems within marginal communities
need to be designed to address multiple objectives,
including improving nutrient balance for nutrition
• To improve water availability, there is a need to adopt
rainwater harvesting and soil water conservation
strategies to enhance soil water capture and storage and
minimize unproductive loss of soil water

• Cereal – legume intercrop systems could
not provide EAR for Ca

• Nutritional gaps still exist within
cereal–intercrop systems, which creates
opportunities to refine agronomic
management and crop choices

• There is a need to assess nutritional gaps within
different intercrop systems
• Increase crop diversity within the systems to improve
the yield of limiting nutrients

malnutrition. This will ensure that there is relevant and scalable
data to assess the contribution of cereal-legume intercropping and
other multicrop systems to achieving sustainable intensification of
agricultural systems and sustainable human health and wellbeing
outcomes.

Yield and nutritional gaps still exist across intercrop systems.
Good agronomy resulted in high NY and NWP. There is a need to
develop “better bet” agronomic practices to intensify cereal-legume
intercrop systems (Table 2) sustainably. In cases where inputs such
as fertilizer are limited, as in much of SSA, farmers can opt to
intercrop cereals with legumes that have high nitrogen fixation rates
(76). Future studies should generate new experimental data focused

on exploring the effects of additional factors such as management
practices [asynchronous planting and plant density (50)], climate
and edaphic factors on nutrient content, and NWP for a range of
cereal-legumes systems (Table 2).

In line with resource use management and as water becomes
scarcer, we advocate for the use of water footprint (WF) instead
of WP as it can help to inform farmers and policymakers
on less water-intensive cropping systems. The WF potentially
provides a way of better understanding the complex and dynamic
interlinkages between water along the whole food production chain
and the nutrient value of the crop or a cropping system (77),
which should allow for holistic assessment of direct and indirect
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challenges faced within and across challenges of water and, food and
nutrition insecurity.

Conclusion

We assessed if cereal–legume intercropping could increase NY,
WP, and NWP and thereby improve contributions to household
nutrition compared to cereal monocropping. Our findings show that
intercropping significantly improved NY and NWP for the most
investigated nutrients. While almost all of the studied intercrop
systems could provide more than 100% of the EAR for carbohydrates,
protein, Zn and Fe for a family of four, they could not meet the
required EAR for Ca. Species composition was an important factor
determining an intercrop system’s relative Y, NY, NWP, and NC.
Using NWP as an index provided insights into the nutritional value of
different intercrop systems under semi-arid conditions. Thus, NWP
could generate evidence for informing context-specific and nutrition-
sensitive policies and strategies that promote sustainable and healthy
cropping systems within marginalized communities in water-scarce
environments. Promoting cereal-legume intercrops that feature
nutrient-dense legume component crops could contribute toward
addressing several Sustainable Development Goals related to social
and environmental outcomes, specifically, SDGs 2 (Zero hunger),
3 (Good health and wellbeing), and 12 (responsible consumption
and production).
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