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Diagnosis of cerebral malaria:
Tools to reduce Plasmodium
falciparum associated mortality
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Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf)

infection and is associated with the sequestration of parasitised erythrocytes in the

microvasculature of the host’s vital organs. Prompt diagnosis and treatment are

key to a positive outcome in CM. However, current diagnostic tools remain

inadequate to assess the degree of brain dysfunction associated with CM before

the window for effective treatment closes. Several host and parasite factor-based

biomarkers have been suggested as rapid diagnostic tools with potential for early

CM diagnosis, however, no specific biomarker signature has been validated. Here,

we provide an updated review on promising CM biomarker candidates and

evaluate their applicability as point-of-care tools in malaria-endemic areas.

KEYWORDS

cerebral malaria, plasmodium falciparum, diagnosis, biomarkers, therapeutic avenues
Background

Malaria, a blood-borne parasitic disease, is a devastating illness that caused 247 million

cases globally in 2021, increasing from the 227 million reported in 2019, and still predominantly

affecting African paediatric populations (WHO, 2022). Caused by apicomplexan parasites of

the Plasmodium genus, the greatest burden is found in tropical and subtropical parts of the

world; approximately fifty percent of the world’s population is at risk of infection (Mace et al.,

2018). Symptoms are often mild (e.g., fever, headaches, and vomiting) in endemic areas where

populations develop a degree of immunity to the parasite, leading to uncomplicated malaria

(UM) and asymptomatic malaria (AM, who harbour malarial parasites, but manifest minimal

clinical symptoms) (Mace et al., 2018; Gupta and Wassmer, 2021). However, in non-exposed

populations this immunity fails to build up and individuals are more likely to develop severe

malaria (SM). SM is a broad-spectrum sepsis-like syndrome defined by organ dysfunctions

caused by the excessive production of inflammatory mediators and sequestration of infected

erythrocytes within the host’s microvasculature (White et al., 2013; WHO, 2014). This results in

a range of complications, organ dysfunction, and systemic inflammation, which include

cerebral malaria (CM), severe anaemia, acute respiratory distress syndrome (ARDS),

intestinal injury (gut leak) and acute kidney injury (AKI) (Wassmer et al., 2015; Ouma et al.,
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2020; Namazzi et al., 2022; Ngai et al., 2022). CM is an often-fatal form

of SM: it requires immediate intervention, has a mortality rate up to

30%, and long-term residual neurological complications. Some studies

showed long-term sequelae/poor outcomes in 25-50% of survivors

(WHO, 2014; Bruneel, 2019; Langfitt et al., 2019). Children under

five are disproportionately affected, accounting for approximately 77%

of deaths worldwide in 2020 (WHO, 2021). Children under five with

CM are predominantly seen in Africa, as the malaria transmission

intensity is high in sub-Saharan Africa, leading to the development of

antimalarial immunity during childhood. In contrast, CM cases are

mostly reported in older children and adults in Southeast Asia, where

malaria transmission is seasonal, irregular, and do not allow the

generation of a robust immunity (Sahu et al., 2015). Additionally,

while CM is typically reported in combination with metabolic acidosis

and/or severe anaemia in African children, it is frequently accompanied

by lung, liver, and kidney dysfunction in Asian adults, resulting in

ARDS, jaundice, and AKI, respectively (Wassmer et al., 2015). It is still

unclear what causes these unique clinical traits in these two age and

geographically distinct groups. While Plasmodium falciparum (Pf) is

responsible for the highest number of malarial deaths, Plasmodium

vivax (Pv) can also cause fatal disease. Previously thought to be

relatively benign, Pv is now recognised to trigger potentially

debilitating and life-threatening complications, although to a lesser

degree than Pf (Gupta et al., 2015a; Gupta et al., 2016; Anvikar

et al., 2020).
Host response

During the blood-stage of Pf infection infected red blood

cel l s ( iRBCs) rupture , re leas ing parasi t ic components

including3glycosylphosphatidylinositol anchors, haemozoin, and

immunostimulatory nucleic acids (Gazzinelli et al., 2014). These

components are detected by toll-like, retinoic acid-inducible gene I-

like, and nucleotide-binding oligomerisation domain-like receptors
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on membranes and in the cytosol of host immune cells, triggering

NFkB translocation to the nucleus, and activating type 1 IFN

pathway genes in immune cells (Gazzinelli et al., 2014; He et al.,

2020). This induces: IL-12 to promote the release of IFNg by NK

cells, CD4 and CD8 T cells; differentiation of TH1 lymphocytes; and

interference with dendritic cell roles (Miller et al., 2014).

Chemokines such as C-X-C motif chemokine ligand 10 (CXCL10)

are also released to recruit NK cells (Wilson et al., 2011). The

recognition of Pf infection by pathogen-associated molecular

patterns (PAMPs) and damage-associated molecular patterns

(DAMPs) inititate pro-inflammatory cascades, resulting in the

release of cytokines (IL-1a, IL-1b, IL-6, IL-10, CXCL10, IFNg and
TNF) (Kwiatkowski et al., 1990; Mshana et al., 1991; Day et al., 1999;

Lyke et al., 2004; Armah et al., 2007; Jain et al., 2008; Gazzinelli et al.,

2014). The release of IFNg then causes the release of further pro-

inflammatory cytokines in a positive feedback loop, resulting in

exacerbated inflammation and the upregulation of cell adhesion

receptors on endothelial cells within the microvasculature of various

organs, consequentially promoting iRBC cytoadherence (King and

Lamb, 2015) (Figure 1). The IFN-I response is aimed at preventing

replications within hepatocytes, but it appears insufficient against

the vast number of merozoites released into the bloodstream upon

iRBC rupture (Sebina and Haque, 2018; He et al., 2020). In addition

to cytokine-mediated inflammation, systemic endothelial activation

and dysregulation driven by endothelial and angiogenic factors

contribute to organ failure and rapid disease progression (Higgins

et al., 2016). The integrity of the blood-brain barrier (BBB) is also

compromised by endothelial dysregulation mediated by parasite

proteins such as Pf histidine-rich protein 2 (PfHRP2) (Pal et al.,

2016), a soluble parasite-specific protein released by iRBCs during

schizont rupture (Desakorn et al., 2005); by proinflammatory

cytokines such as TNF and IFNy (Barker et al., 2017); through

cytoskeletal remodelling caused by PfEMP1 and ICAM-1

interaction (Ramachandran and Sharma, 2022); and CD8+ T cell-

mediated cytotoxicity (Riggle et al., 2020).
FIGURE 1

iRBC adhesion and subsequent release of potential biomarkers for cerebral malaria in Plasmodium falciparum infection. The cytoadherence of infected
red blood cells triggers the release of parasitic and host components leading to a cascade of inflammatory mechanisms. In turn, these result in brain
microvasculature endothelial disruption and clinical manifestations of cerebral malaria. These factors, listed in the blue boxes, can be considered as
biomarkers of cerebral malaria.
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iRBC adhesion

Healthy cerebral endothelium regulates platelet aggregation and

coagulation, controls permeability, and prevents leukocyte adhesion

via downregulation of adhesion molecules. The strong inflammatory

response triggered by Pf infection interferes with these functions

(Moxon et al., 2009).

iRBCs harbouring Pf parasites express Plasmodium falciparum

erythrocyte membrane protein 1 (PfEMP1), which is synthesised

within the erythrocyte during the blood stage of infection,

exported on to its surface and plays an essential role in parasite

adhesion and immunopathogenesis (Jensen et al., 2020). Pf uses

the 60 var gene repertoires to switch between different PfEMP-1

variants, thereby facilitating immune evasion (Fairhurst et al.,

2012). Selection pressures driving the parasite to improve

receptor binding affinities while maintaining immune evasion

have led to various specific encoded domains that interact with

specific host endothelial receptors. This process is responsible for

organ tropism, as different PfEMP1 subsets preferentially bind to

host receptor molecules with specific domains (Montgomery et al.,

2007). For example, PfEMP1 binds endothelial protein C receptor

(EPCR) via structural elements named CIDRa1 domains (Lau

et al., 2015; Kessler et al., 2017). Increased binding of PfEMP1 to

EPCR via CIDRa1 is seen in SM (Jespersen et al., 2016; Bernabeu

and Smith, 2017; Duffy et al., 2019) and may also be implicated in

CM. Furthermore, a transcript analysis showed that CIDRa1 and

parasite biomass are both strong indicators of disease severity

(Bernabeu et al., 2016).

Host cell receptors such as intercellular adhesion molecule 1

(ICAM-1) and EPCR are expressed on the surface of endothelial

cells, and when inflammation is triggered, TNF upregulates the

expression of ICAM-1. PfEMP1 on the surface of iRBCs interacts

with these receptors (Jensen et al., 2020), causing the iRBCs to

adhere to the endothelial lining and sequester in the blood vessels of

vital organs such as the brain, lungs, kidney, liver and placenta

(Figure 1). This cytoadherence has been linked to SM and to the

process of sequestration of iRBCs in the microvasculature of the

host’s vital organs (Turner et al., 2013). Chemokines such as

CXCL10 are secreted by cerebral microvasculature endothelial

cells, reorganising tight junction proteins to increase BBB

permeability, and allowing access to previously immune-privileged

tissues (Tunon-Ortiz and Lamb, 2019).

Another form of cytoadhesion and suspected contributor to CM

pathogenesis is ‘rosetting’, an aggregation of uninfected RBCs to

iRBCs via the complement receptor-1 (CR1), potentially causing

further vessel blockage and inflammation (Rowe et al., 1997).

However, this phenomenon has only been demonstrated in vitro.

Rosetting has been shown to be higher in SM compared to UM

(Doumbo et al., 2009). Additionally, ‘clumping’, the platelet-induced

formation of iRBC clumps within vessels, is also strongly associated

with SM and its complications, such as CM (Pain et al., 2001;

Wassmer et al., 2008). The combination of inflammation,

sequestration, and dysregulated coagulation in CM act as a triple

threat, contributing to overwhelming inflammation (Moxon

et al., 2009).
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CM diagnosis, neuroimaging and
limitations of diagnosis

The clinical definition of CM, as described by the World Health

Organization (WHO), is a syndrome characterised by coma at least 1

hour after termination of a seizure or correction of hypoglycaemia,

asexual forms of Pf parasites on peripheral blood smears, and no other

reasoning for the coma (WHO, 2000). The latter is assessed by verbal

and motor responses and is rated on the Blantyre coma score for pre-

verbal patients such as infants (CM if < 3) or Glasgow coma score for

verbal patients (CM if < 11) (WHO, 2014).

Current diagnostic measures for CM remain inaccurate. This was

highlighted by Taylor et al., who demonstrated that 23% of a cohort of

Malawian children clinically diagnosed with CM were found to have

been misdiagnosed upon post-mortem examination (Taylor et al.,

2004). This was supported by Makani et al. in 2003, who found that

CM was over diagnosed (38%) when assessed by clinician’s

judgement prior to consideration of available data, compared with

diagnosis by fulfilment of the WHO criteria (1%) (Makani et al.,

2003). A recent study from our team demonstrated that up to 20% of

patients with non-CM, according to the WHO criteria, present

magnetic resonance imaging (MRI) signatures associated with CM

(Sahu et al., 2021b), confirming that it is a disease with a wide

spectrum, with coma at one end of it (Mohanty et al., 2022).

Although full autopsies have been instrumental in advancing our

understanding of CM pathogenesis, they have limited applicability in

resource-limited settings, and novel live imaging techniques can

provide critical information during life, especially by allowing the

comparison of patterns associated with survival versus death.

Relatives and guardians may be reluctant to authorise these

procedures, particularly in areas with cultural or religious

objections to post-mortem analyses. Furthermore, samples from

deceased patients may not accurately reflect their state during life

and could be influenced by agonal events. Therefore, there is a need

for techniques allowing accurate early diagnosis in living patients.

Neuroimaging can increase confidence in the clinical diagnosis of

CM by identifying pathological patterns (Sahu et al., 2021b). It offers a

non-invasive, real-time approach to visualising brain changes,

bypassing many of the challenges that exist with post-mortem

diagnosis through autopsy and allowing diagnosis in living patients.

Imaging-based identification of CM-associated patterns circumvents

the pitfalls of the broad diagnostic criteria used clinically.

Computerised tomography (CT) scanning has been used in several

studies with varying results, likely due to limited sample sizes,

differing timepoints through disease progression and inclusion of

non-malarial patients (due to inaccurate diagnosis) (Mohanty

et al., 2014).

Previous research studies have confirmed the occurrence of

cerebral oedema in CM but did not conclude that it was the cause

of death (Looareesuwan et al., 1983; Newton et al., 1994). However,

poor prognosis of CM is closely associated with presence of cerebral

oedema, found in 63% of patients (Mohanty et al., 2011). In one study

from India, no patients with normal CT scans (i.e., showing no

cerebral oedema, and with median Glasgow coma score of 10) died

from the infection (Patankar et al., 2002). This cerebral swelling is
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likely multifactorial, caused by: (1) increased blood flow in the brain

as a result of anaemia, (2) seizures; (3) fever; (4) sequestration of

iRBCs; and (5) endothelial damage due to the overwhelming

inflammation triggered by the host in response to Pf infection

(Mishra and Newton, 2009). Sequestration contributes to

endothelial cell activation, congestion within vessels, and reduced

perfusion of tissue (Seydel et al., 2015), which, along with interactions

between platelets and iRBCs, is suspected to cause the breakdown of

the BBB. This injury allows excess fluid to accumulate within the

brain parenchyma, leading to cerebral oedema (Idro et al., 2010).

The use of MRI in malaria research studies is relatively new and

was limited to single case studies for a long time (Bellazreg et al., 2021;

Schubert et al., 2021), before gradually becoming more available in

endemic areas. A study of 24 adults demonstrated that brain swelling

and increased volume is common in CM due to iRBC sequestration in

the brain (Looareesuwan et al., 1995). Since its inception, MRI

technology has improved greatly. A 2012 milestone trial of 120

Malawian children found that children with CM and retinopathies

(Ret+CM), the latter consisting of whitening, vessel alternations,

haemorrhages, papilledema, and cotton wool spots used to

differentiate between malarial and non-malarial coma (Beare et al.,

2006), presented numerous findings when compared with

retinopathy-negative (Ret-) children who were comatose due to

non-malarial reasons. These included: lesions of the basal ganglia;

cerebral oedema; brainstem abnormalities; and changes to the corpus

callosum and cerebellum (Potchen et al., 2012). Most of these features

aligned with those previously seen in CT studies and intracranial

pressure measurements in Kenyan children (Newton et al., 1991;

Newton et al., 1994), and were distinct from the pathophysiology

previously seen in adult patients (Millan et al., 1993; Cordoliani et al.,

1998; Yadav et al., 2008). Several age-dependent brain changes

identified by MRI on admission were linked to poor outcomes. In

paediatric CM, severe brain swelling with brain stem herniation was

associated with fatality (Seydel et al., 2015), a feature not observed in

fatal adult cases (Mohanty et al., 2011; Maude et al., 2014). In the

latter group, hypoxic injury evidenced by a decrease in apparent

diffusion coefficient (ADC) values was associated with mortality

(Sahu et al., 2021b). Furthermore, MRI studies in patients with UM

and severe non-cerebral malaria (SNCM) showed both increased and

decreased ADC values in the SNCM cohort compared with healthy

controls and showed that low ADC values (suggesting cytotoxic

oedema) demonstrated CM-like hypoxic patterns even without

deep coma, and that high ADC values (suggesting mild vasogenic

oedema) were present in both SNCM and UM patients (Mohanty

et al., 2022).

Unfortunately, confirmation of diagnosis by neuroimaging

requires expensive imaging facilities to be set up and accessible,

which is often not financially or logistically feasible in malaria-

endemic regions. In addition, early malarial symptoms are

nonspecific and overlap with bacterial or viral infections,

contributing to its late diagnostic and misdiagnosis. ‘Triage tools’

similar to those of septic children discussed elsewhere (Leligdowicz

et al., 2021), may also allow earlier diagnosis and treatment of SM

(including CM), once such prognostic biomarkers are identified.

Finding an effective biomarker could make CM diagnosis more

straightforward, reliable, faster, and less costly. CM may be more

widespread than initially thought, so identification of patients with
Frontiers in Cellular and Infection Microbiology 04
CM features unacknowledged in the WHO criteria may decrease

societal consequences such as long-term neurocognitive sequelae

(Mohanty et al., 2022). True CM could also be differentiated from

false CM (Taylor et al., 2004) - this cannot be solely done on the basis

of retinopathy, given that no clear associations have been established

in adults (Mohanty et al., 2017). Biomarkers reflecting prognosis and

severity of disease may dramatically reduce neurological sequelae and

also guide decisions regarding aggressive treatment as well as resource

allocation, for example in ICU settings. As therapeutic options

improve in the future, these prognostic biomarker-based tools can

be deployed in malaria-endemic areas against falciparum malaria for

an accurate diagnosis and save lives by providing the treatment on

time. Here, we cover the current knowledge of host and parasite

factors in biological fluids that have previously been investigated for

their potential as CM biomarkers across patient age groups.
CM biomarkers

Parasite factors

PfEMP1 is a central protein in Pf infection, key to parasite

adhesion and sequestration. It evades immune recognition by

frequently switching the variant of the molecule expressed (Jensen

et al., 2020). Its essential role in disease pathogenesis makes it a

molecule of interest in terms of associations with SM; this is

supported by the fact that EPCR-binding PfEMP1 transcript levels

are higher in CM than in milder or asymptomatic cases (Shabani

et al., 2017). However, it is still not a promising biomarker due to

numerous variants making it a difficult target.

Transcriptomic studies have helped to identify the conserved

EPCR-binding sequences associated with CM. PfEMP1 molecules

that bind to EPCR have been shown to belong to two distinct

groups of var genes; A and B [as identified by RT-qPCR using loci-

specific primers for certain PfEMP1 domain types (Tembo et al.,

2014)]. Furthermore, following characterisation of the dominant

transcripts in children with SM, it was found that CIDRa1
domains were the only common feature and that these

were linked to CM (Jespersen et al., 2016; Kessler et al., 2017;

Mkumbaye et al., 2017; Sahu et al., 2021a). Another study revealed

a specific upregulation of genes involved in pathogenesis, adhesion

to host cell, and erythrocyte aggregation in parasites from patients

with CM compared to parasites from asymptomatic carriers

(Almelli et al., 2014). Remarkably, UPs A1, A2, A3, B1, DC8 and

DC13 var genes were also predominantly found in CM-associated

isolates (Almelli et al., 2014). Recently, differential expression

analysis showed that distinct transcriptome profiles between

parasites from CM and UM patients, 284 genes were upregulated

and 267 were downregulated in CM parasites compared with

UM. Numerous upregulated genes (for example: eba175 and

ama-1) involved in entry into host pathway reflects an increased

invasion capacity of CM isolates. Finally, genes involved in

adhesion, excluding variant surface antigens, were dysregulated,

supporting the idea of increased cytoadherence capacity of CM

parasites (Guillochon et al., 2022). var A gene transcripts and

CIDRa1 domains may therefore be central to the development of

an effective CM biomarker (Table 1).
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Host factors

Cytokines have been shown to be crucial to the pathophysiological

processes leading to CM (Dunst et al., 2017). When measured in CSF,

some cytokines (IL-1ra, IL-8, CXCL10, PDGFbb, MIP-1b, Fas-L, sTNF-
R1, and sTNF-R2) were significantly elevated in a CM mortality group

(Armah et al., 2007). Of these, CXCL10 was the only serum cytokine to

be independently associated with mortality (Armah et al., 2007).

While Type-I IFNs have been explored in diagnosis of other

diseases, they are yet to be investigated as biomarkers in the context of

CM, despite their clear relevance, notably in experimental models.

Murine models with knockouts for the IFNa receptor showed partial

protection from experimental CM post-infection by mechanism of

reduced T-cell-associated cytokines including CXCL9 and CXCL10,

thus highlighting the importance of IFNa in CM development

(Palomo et al., 2013). Both CXCL9 and CXCL10 share the C-X-C

chemokine receptor type 3 (CXCR3) which is present on various

immune cells including NK, T, and NKT cells (Vazirinejad et al.,

2014; Tokunaga et al., 2018). They recruit these cells to sites of

immune compromise following recognition of Pf pattern recognition

receptors. CXCL10 is produced by many cells, including endothelial

cells, hepatocytes, and astrocytes (Park et al., 2006; Hassanshahi et al.,

2007; Vazirinejad et al., 2014), and is implicated both in recruitment

of cells to the original site of infection, but also across the BBB and

into the brain, inducing CM progression.

Murine P. berghei ANKA studies have demonstrated that CXCL9,

CXCL10 and CXCR3 are all required for CM development in

experimental models, and that levels were increased in both serum

and CSF (Campanella et al., 2008). Other murine models have shown

that CXCR3 deficiency reduces CXCL9/10 mechanisms and protects

mice from CM (Miu et al., 2008b). Despite this data, neither of these

cytokines have been used as diagnostic markers in CM, although they

have been explored in other diseases such as multiple sclerosis and

trypanosomiasis (Balashov et al., 1999; Hainard et al., 2009). These

cytokines could be promising rapid diagnostic testing candidates,

particularly given the independent correlation of CXCL10 with CM

development and mortality in both African and Indian cohorts in

serum and CSF samples (Armah et al., 2007; Jain et al.,

2008) (Table 1).

IFNg also plays a key role in regulating inflammatory immune

responses to control Pf infection in the liver and blood stages.

However, its strong pro-inflammatory characteristics can lead to

exacerbation of symptoms and overwhelming inflammation (King
Frontiers in Cellular and Infection Microbiology 05
and Lamb, 2015). Its potential as a CM biomarker is limited due to its

release upon infection by numerous other pathogens and in varying

severities of malarial infection, meaning it is not specific enough to

the CM disease state to be a viable option (Mitchell et al., 2005;

D'Ombrain et al., 2008). In 2006, Prakash et al. investigated clusters of

cytokines and their ability to determine disease severity; they found

that IFNg-related clusters were associated with mild or severe malaria,

but not specific to CM (Prakash et al., 2006). Another finding of this

study included a cluster of TNF, TGFb, IL-10, and IL-1b which

significantly correlated with CM.

TNF is released along with other pro-inflammatory cytokines

such as IL-6, IL-1 and Fas. Many studies have reported that CSF levels

of TNF, Fas-L, sTNF-R1 and R2, IL-6 and IL-1ra are significantly

higher in CM cases, however, this was not consistently replicated in

serum (Armah et al., 2007; John et al., 2008). Plasma levels of soluble

TNF receptors and TNF were found to be higher in CM patients than

those with UM, but other conflicting studies show that in serum TNF

cannot distinguish between SM and UM (Molyneux et al., 1993;

McGuire et al., 1998; Awandare et al., 2006).

Despite these promising findings regarding pro- and anti-

inflammatory cytokines, a full signature is yet to be identified.

Additionally, the specific point of disease progression at which

cytokines are measured may also be critical to their usefulness as

biomarkers. For example, TNF is released particularly early in the

inflammation cascade, and so may not be a realistic candidate since

relying on its detection would require rapid diagnostic testing to be

carried out soon after infection – this is unlikely to happen if TNF

levels rise then fall again before patients experience symptoms. This

has resulted in conflicting conclusions regarding the potential role

of TNF as a CM marker; in 1989, Grau et al. found that serum TNF

positively correlated to fatality, hypoglycaemia, hyperparasitaemia,

severity of disease, and declined in recovered patients (Grau et al.,

1989). However, in 2009, Lovegrove et al. showed that, although

serum TNF was significantly higher in Thai adults with CM, it was

unable to differentiate CM from UM in African children

(Lovegrove et al., 2009). Further work investigating cytokine

profiles and their associations to CM progression in various

biological fluids would make cytokines a more feasible option

as biomarkers.

Angiopoietin-1 (Ang-1) and Angiopoietin-2 (Ang-2) act as

ligands binding to the receptor Tie-2 (de Jong et al., 2016). Under

normal conditions, Ang-1 binds to Tie-2 to promote an anti-

inflammatory environment and apoptosis. Infection by Pf initiates
TABLE 1 Promising host and parasite factors-based CM biomarkers identified in humans.

Biomarker Sample type Method Cut-off Reference

CIDRa1 domains Parasites from host blood Next generation sequencing 96% sequence identity Kessler et al., 2017

CXCL10 Plasma ELISA >831.2 pg/ml Erdman et al., 2011

CXCL10 and CXCL4 combined Plasma ELISA NA Wilson et al., 2011

Angiopoietin-2/1 ratio Serum ELISA >3.47 in adults, >0.14 in paediatric Lovegrove et al., 2009

Tau Plasma Single-molecule array detection (Simoa) >6.43 pg/ml Datta et al., 2021

BDNF Plasma ELISA NA McDonald et al., 2017

miR-3158-3p Plasma RT-qPCR >1.08 REL Gupta et al., 2021b
Relative expression levels; NA, not available.
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inflammation, which causes Ang-2 to be released into the

bloodstream from the Weibel-Palade bodies, tipping the balance

between Ang-1 and Ang-2 in the favour of Ang-2 (de Jong et al.,

2016). Ang-2 outcompetes Ang-1 in binding to Tie-2, leading to

decreased anti-inflammatory and anti-apoptotic effects (Page and

Liles, 2013; de Jong et al., 2016). Conroy et al. found that both CM

and SM patients had significantly lower Ang-1 and higher Ang-2

levels than UM patients, and that CM patients had greater Ang-1

levels than SM patients (Conroy et al., 2009).

In 2016, De Jong et al. conducted a systematic review which found

that all studies investigating Ang-1 and Ang-2 levels showed

associations between increased disease severity, decreased levels of

Ang-1, and increased levels of Ang-2 (de Jong et al., 2016). The

studies included in the review also demonstrated the ability of Ang-2/

1 ratio to distinguish between categories of malarial severity (de Jong

et al., 2016). Lovegrove et al. showed that the Ang-2/1 ratio is a

promising biomarker to distinguish UM from CM (Lovegrove et al.,

2009). Although it is clinically easier to distinguish UM from CM

using WHO guidelines, Ang-2/1 ratio could be used for diagnosis

confirmation. It may also have prognostic value – many patients

presenting with UM develop CM after admission despite initiation of

treatment (Mousa et al., 2020; Borgstein et al., 2022), and Ang-2/1

ratio may allow the identification of such patients (Table 1).

Dysregulation of the Ang-2/1 balance is more associated with

malarial severity than with CM specifically; although elevated Ang-2

concentrations have been linked to ‘pure’ CM, this increased

expression was not significant when differentiating between cerebral

and non-cerebral infections (Prapansilp et al., 2013). Furthermore,

immunostaining of Ang-1, Ang-2 and Tie-2 did not correlate with

iRBC sequestration in the brain. The work was conducted on post-

mortem samples, and so cannot reliably be applied to in vivo

infections (Prapansilp et al., 2013).

A study reported that the balance of Ang-1 and Ang-2 was not an

effective measure of distinguishing between SM and CM. Only Ang-1

demonstrated a significant predictive value, but the area under the

curve (AUC) value was limited to 73.5% (Conroy et al., 2009).

Nevertheless, measurement of Ang-1 and Ang-2 can help improve

confidence in the diagnosis of CM when used in conjunction with

other biomarkers such as CXCL10, sFlt-1, PCT, sTREM-1 and

sICAM-1; in 2011, these biomarkers were used in combination with

Ang-2 to predict mortality in Ugandan children with SM, and

together showed 95.7% sensitivity and 88% specificity in

differentiating fatal and non-fatal cases (Erdman et al., 2011). Ang-

1 has also proved useful in differentiating between Ret+CM and UM

patients as well as between patients with Ret+CM and non-malaria

febrile illness with decreased consciousness with AUC of 96% and

93%, respectively (Conroy et al., 2010).
BBB dysfunction

A critical component in development of inflammation of CM is

microvascular leakage – the process by which increased permeability

allows plasma proteins and cells such as leukocytes to pass through

and emigrate to other tissues (Renia et al., 2012; Nishanth and

Schluter, 2019). Dysregulation of the BBB is a pivotal component of

the pathology of Pf-related brain injury (Tunon-Ortiz and Lamb,
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2019). The key regulators of this process are the endothelial cells

lining blood vessels and acting as a barrier for circulating

macromolecules and immune cells (Renia et al. , 2012).

Inflammatory conditions disrupt these barriers to accommodate

migration of necessary immune cells and inflammatory protein

such as cytokines (Chen et al., 2018). Notably, there is evidence for

similarities in markers across a spectrum of brain injuries and

neurodegenerative disorders (NDs) which provide a sound basis for

exploring CM specific brain markers. Furthermore, BBB disruption

also results in neurological sequalae, thus would be beneficial in

establishing both prognostic and diagnostic markers (Tunon-Ortiz

and Lamb, 2019). The disruption of the cerebral endothelium could

also be pivotal for the detection of early CM (Conroy et al., 2010; Page

and Liles, 2013).

Lipocalins, a protein family involved in cell homeostasis,

transport, and immune functions, have great potential in indicating

BBB disruption and have been investigated as biomarkers of vascular

dementia. The pathology of vascular dementia involves impaired

blood flow to the brain, and therefore may mimic the hypoxaemia

and reduced blood flow also seen in CM due to iRBC sequestration

(Llorens et al., 2020), which likely causes endothelial disruption and

increased permeability of the BBB. Specifically, lipocalin-2 (LCN2)

has been shown to play a role in innate immunity and to be expressed

greatly in the CNS under inflammatory conditions (Xiao et al., 2017),

suggesting that LCN2 hold potential as an early marker of CM.

LCN2 were able to discriminate vascular dementia from

Alzheimer’s disease with good sensitivity (82%) and specificity

(87%) (Llorens et al., 2020). Similarly, it was able to differentiate

between vascular dementia and other neurodegenerative diseases with

78% of sensitivity and 82% of specificity (Llorens et al., 2020). This

ability to distinguish between similar disease groups with high

accuracy makes LCN2 an attractive biomarker for CM, which is

commonly misdiagnosed as similarly presenting diseases including

intracranial haemorrhage, Reye’s syndrome, poisoning and rabies

(Beare et al., 2011). Furthermore, ELISA testing for LCN2 can

diagnose brain injury (Suk, 2016). Given the similarities in

pathology between brain injury and CM development, in addition

to the potential role of LCN2 in BBB breakdown and

neurodegenerative diseases, the use of LCN2 as a marker for CM

is promising.

Whilst lipocalins have been investigated in the role of hemozoin

production by Plasmodium and of neutrophil activation (Mohammed

et al., 2003; Matz et al., 2020), a specific lipocalin in CM pathogenesis

has not been widely researched. Its diagnostic ability in other

neurodegenerative diseases marks it as an area of exploration,

particularly through proteomic studies in fatal CM. Serum LCN2

has been found to be elevated in plasma in patients with fatal CM,

particularly in adults, and this elevation was associated with decreased

brain ADC on MRI (Sahu et al., 2021b). LCN2 may be particularly

promising if it can be measured via antibody-based lateral flow assays

for use in simple, cost-effective methods, with potential for scaling

into point-of-care tools.

The tau protein is involved in microtubule assembly and

stabilisation. During brain injury or degeneration, its expression is

increased, and this has recently been shown in CM (Weingarten et al.,

1975; Buee et al., 2000; Morris et al., 2011). Animal models have

demonstrated that this increased expression could make tau protein a
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useful biomarker of brain injury, specifically axonal damage (Bi et al.,

2017). CSF tau levels were significantly elevated in children with CM

compared with either malaria with prostration or malaria with

seizures but normal consciousness, which suggests axons are more

vulnerable to damage in childhood and could potentially explain the

greater incidence of sequelae in children (Medana et al., 2007).

Although immunoassays have shown a significant increase in tau

levels in CSF of Vietnamese adults diagnosed with SM, this did not

hold true for CM patients, but there was a significant association

between CSF tau level and length of coma (Medana et al., 2005).

Associations were also found between CSF tau and levels of other

markers linked to severe disease, such as plasma creatinine, blood

urea nitrogen, and serum glutamic oxaloacetic transaminase.

Importantly, statistical significance was still achieved when age-

group outliers were removed from analyses (Medana et al., 2005).

These findings were confirmed by Datta et al. in 2020: they found

that higher CSF tau levels correlated with younger age, increased

disease severity (evidenced by low glucose, kidney injury, and

prolonged coma death) and an elevated CSF-to-plasma albumin

ratio, a marker of BBB breakdown (Datta et al., 2020). In 2021,

they demonstrated that plasma tau is also raised in children with CM

and is linked to mortality and long-term neurocognitive impairment

in children under five (Datta et al., 2021).

Despite these promising results, CSF-based biomarkers present

drawbacks. There are often discrepancies between CSF and plasma

marker levels. CSF sampling can also be time-consuming, and

sequential samples cannot be taken from children as this exposes

them repeatedly to the associated risks, such as bleeding and subdural

haematomas, infection, and damage to surrounding structures.

Additionally, CSF sampling requires training and equipment that

may be difficult to access locally in community clinics. Furthermore,

CSF can act as an optimum medium for growth of other bacterial or

fungal infections that could bias the results. Refrigerating samples is

not sufficient; they must be frozen at sub-zero temperatures, creating

another barrier to the accessibility of the testing method in endemic

areas (Teunissen et al., 2009). Moreover, cultural acceptance of

lumbar puncture remains limited in some endemic areas, and

represents a major hurdle to obtain CSF (Thakur et al., 2015;

Elafros et al., 2022). However, serum/plasma tau levels may be a

viable alternative to CSF levels. In 2020, Jain et al. demonstrated that

detection of serum tau levels increased with disease severity, and that

detection was much higher in CM patients, particularly non-

survivors, than non-CM patients (Jain et al., 2020; Datta et al.,

2021). This work suggests that serum tau levels detected by ELISA

could be a viable alternative diagnostic marker in endemic regions

(Table 1). Remarkably, technological advances have allowed the

detection of plasma/serum markers at femtogram levels [i.e., Simoa

(Sanchez-Valle et al., 2018; Zeitlberger et al., 2018)] and that will

revolutionise biomarker identification in the blood. However, there’s

the caveat of the transfer to lateral flow assays.

In recent years, anti-TNF treatments have been utilised for the

treatment of neurodegenerative diseases. Research into these has led

to the discovery of potential links between TNF and brain proteins

such as apolipoprotein E (ApoE) (Clark and Vissel, 2018). TNF can

cross the BBB, leading to pro-inflammatory conditions associated
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with brain injury and neurodegeneration; however, it is known to be a

poor correlate for CM severity (Turner et al., 1998; Gimenez et al.,

2003; Lovegrove et al., 2009). Anti-TNF treatments have also proven

ineffective (Kwiatkowski et al., 1993; van Hensbroek et al., 1996).

However, serum apolipoprotein E (ApoE) shows potential as a CM

biomarker. In the mouse model, deletion of ApoE protected animals

against CM, reduced parasite sequestration within the brain, and

prevented BBB disruption and vascular leakage (Kassa et al., 2016).

Despite limited evidence of diagnostic value, ApoE is easily measured

in serum, and upon further study, may prove useful to detect CM-

associated BBB impairment in conjunction with other brain factors.

Another potential marker implicated in neurodegenerative

diseases is the brain-derived neurotrophic factor (BDNF). In a

cohort of Ugandan children, lower levels of BDNF on admission

were associated with more severe disease, including CM, and higher

chance of disability or death (McDonald et al., 2017). This highlights

its potential as a prognostic marker of disease (Table 1), but further

studies are needed for its validation.
Genetic signatures

Evidence indicates that host genetics can regulate Pf infection,

specifically in severe, life-threatening manifestations of the disease

(Jallow et al., 2009; Gupta et al., 2013; Saadi et al., 2013; Fernandes

et al., 2015; Gupta et al., 2015b; Mukhi et al., 2020). During human

evolution, there are classical examples of genetic variations that have

occurred to provide resistance against malaria, including i) sickle-cell

trait; ii) thalassemia; iii) glucose-6-phospahte dehydrogenase (G6PD)

deficiency; and iv) Duffy antigen deficiency (Hedrick, 2011). Therefore,

single nucleotide polymorphisms (SNPs) could explain CM

predisposition, especially in malaria-related genes that are involved in

immunological responses and cell receptors. TNF promoter region SNPs

have been associated with CM susceptibility in several African and Asian

populations (Gimenez et al., 2003; Hananantachai et al., 2007). SNPs

present in CR1 have been shown to contribute to protection against CM

both in Indian and Thai populations (Teeranaipong et al., 2008; Panda

et al., 2012). Similarly, SNPs present in ABCA1 (Sahu et al., 2013), TIM1

(Nuchnoi et al., 2008), ICAM-1 (Fernandez-Reyes et al., 1997), HO-1

(Takeda et al., 2005), PECAM-1/CD31 (Kikuchi et al., 2001) and CD36

(Omi et al., 2003) genes have been associated with CM susceptibility.

Jallow et al. in 2009 demonstrated the association between CM

susceptibility and SNPs present in several chromosomal regions and

genes (Jallow et al., 2009). These genetic signatures are promising and can

be used as prognostic biomarkers to identify and treat patients at the risk

of developing CM. However, the genetic background variations in each

ethnic population adds to the differences in levels of disease

predisposition and severity. Thus, further studies with large sample

sizes are required to confirm these results in different geographic

populations, as well as to determine whether these genetic signatures

will be suitable for point-of-care testing. The recent advancement in

DNA sequencing technology now allow SNP analysis in a large

population of individuals through targeted sequencing of specific gene

sets and circumvents the financial challenges of whole human genome

sequencing (Bansal et al., 2010; Tabata et al., 2022).
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Thrombocytopenia

Platelets have long been implicated in the pathogenesis of CM.

They accumulate in the cerebral microvasculature in fatal paediatric

CM cases (Grau et al., 2003), bind to endothelial cells, providing

previously absent PfEMP1 receptors (Wassmer et al., 2004), and form

clumps with iRBCs (Pain et al., 2001; Wassmer et al., 2008). Through

these three mechanisms, they have been suspected to aggravate

microvascular obstruction during CM (Wassmer et al., 2011).

Conversely, studies have also shown that platelets can block the

growth of parasites in vitro (McMorran et al., 2009; McMorran

et al., 2012), suggesting that they are activated as part of the innate

immune response to the infection. However, when parasitemia

increases, they become active players in CM pathogenesis

(Wassmer et al., 2011). Indeed, platelet-erythrocyte complexes

leading to parasite killing were found to make up a major

proportion of the total platelet pool in patients with malaria and

may therefore contribute considerably to malarial thrombocytopenia

(Kho et al., 2018). In turn, this platelet-mediated clumping of iRBCs

may worsen the plugging of brain microvessels in CM, and severe

thrombocytopenia in this context may become a protective strategy

for the host (Wassmer et al., 2008). Thrombocytopenia has been

associated with CM (Grau et al., 2003); platelets have been found in

mouse studies to play a negative role in CM, which may be reliant on

the presence of Plasmodium infection via CD36-dependent

interactions (Lou et al., 1997; Grau et al., 2003; van der Heyde

et al., 2005; Wassmer et al., 2006; Srivastava et al., 2008; McMorran

et al., 2009). Thrombocytopenia is common in all types of malaria

(Naing and Whittaker, 2018) and has also been used as a diagnostic

marker for the disease (Gebreweld et al., 2021). In children with

falciparum malaria, thrombocytopenia has been shown to be a good

predictor of disease severity and outcome (Gerardin et al., 2002).

However, contradictory findings have been provided, implying that

thrombocytopenia can only predict parasitaemia, not malaria severity

(Ladhani et al., 2002; Arman et al., 2007). Furthermore, platelet

sequestration within brain microvessels, increased production of

pro-inflammatory cytokines, and disruption of the BBB are all

hallmarks of CM brain lesions (Combes et al., 2006; Wassmer et al.,

2006). Remarkably, CM children with retinopathy exhibited

considerably lower platelet counts than those without (Chimalizeni

et al., 2010), probably owing to immune destruction of circulating

platelets, splenic pooling, reduced platelet lifespan, and accumulation

of platelets in brain microvessels (Chimalizeni et al., 2010; Wassmer

et al., 2011). Recently, the subgrouping of patients with CM revealed

that severe thrombocytopenia was associated with increased parasite

biomass, while moderate thrombocytopenia was associated with more

Group A–EPCR var transcripts (Sahu et al., 2021a), suggesting that

these elements could be investigated in combination with

thrombocytopenia to determine CM prognosis, although further

research is needed.

During platelet aggregation, CXCL4 is released from the alpha-

granules of activated platelets. CXCL4 is involved in the regulation of

haematopoiesis and angiogenesis, as well as the control of immunity

and inflammation (Maurer et al., 2006). It has been shown that iRBC

activates platelets and stimulates CXCL4 secretion (Srivastava et al.,

2008). Platelet build-up in cerebral microvessels of CM patients

suggests that platelets and CXCL4 may play a role in its
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pathogenesis (Grau et al., 2003). CXCL4 levels have been linked to

acute human malaria (Essien and Ebhota, 1983) and in experimental

CM (ECM) (Srivastava et al., 2008). TNF, a major proinflammatory

cytokine linked to the development of CM, is stimulated by CXCL4

(Gimenez et al., 2003; Wilson et al., 2011). TNF also promotes platelet

binding to brain microvasculature during ECM, implying that

platelets are important in CM pathogenesis (von Zur Muhlen et al.,

2008; Srivastava et al., 2010). According to a study, CXCL4 negatively

drives immunological stimulation and monocyte activation in ECM

(Srivastava et al., 2010). Another study found that significant increase

in CXCL4 plasma levels is linked to CM (Wilson et al., 2011). This

adds to the data suggesting CXCL4 is involved in CM

immunopathogenesis (Srivastava et al., 2008; Srivastava et al., 2010)

and may also be used as a diagnostic biomarker of CM alone and in

combination of other molecules (Table 1). Remarkably, combination

of CXCL4 and CXCL10 have been shown to predict risk of fatal CM

(Wilson et al., 2011). Receiver operating characteristic (ROC) curve

analysis demonstrated their ability to differentiate CM non-survivors

from those with mild malaria (MM) (P<0.0001) and from CM

survivors (P<0.0001), with an AUC of 100% (Wilson et al., 2011).

However, further research with larger sample size in different

populations is needed as this study only included 80 samples (16

healthy control, 26 mild malaria, 26 CM survivors and 12 non-

survivors) from Madhya Pradesh, India.
Transcriptomic signatures

The examination of genome-wide RNA expression, known as

transcriptomics, is a method to study host and pathogen mechanisms

involved in infectious diseases. Advances in technology and

bioinformatics have allowed many transcriptomic in-depth analyses

of Plasmodium species conducted in vitro and in vivo to understand

the relationship between RNA expression and fundamental malaria

biology, immunity, and pathogenesis, as well as to identify diagnostic

and prognostic biomarkers (Lee et al., 2018a). A study reported 842

genes whose expression differed between patients with CM and MM.

Five out of six CM patients and six out of six MM patients were

accurately identified using differentially expressed genes using the

support vector machine method. It was also shown that genes

involved in immunological signalling pathways appear to play a

role in the development of CM, according to functional enrichment

analysis. These included BCR-, TCR-, TLR-, cytokine-, FcϵRI-, and
FCGR- signalling pathways, and natural killer cell cytotoxicity

pathways, which are involved in the activation of immune cells

(Thiam et al., 2019). Additionally, whole-blood transcriptomes of

Malawian CM children with Ret+CM and Ret-CM were compared.

Upregulation of 103 gene sets, including cytokine, blood coagulation,

and extracellular matrix (EM) pathways, was linked to Ret+CM.

Neutrophil transcripts were the most elevated in Ret+CM patients.

Activated neutrophils can influence a variety of host processes,

including the EM, inflammation, and platelet biology, which could

aid parasite sequestration (Feintuch et al., 2016). Pathways associated

to coagulation, platelet activation, and cytokine signalling were also

overrepresented (Feintuch et al., 2016), which aligns with other

studies on coagulopathy and inflammation involving CM patients

(Moxon et al., 2009; Moxon et al., 2015). In Ret+CM patients, plasma
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levels of TNF, neutrophil primary granule proteins, monocyte

chemotactic protein 1, and IL-10 were higher. In contrast, higher

concentrations of plasma type I IFN was associated with Ret-CM

patients (Feintuch et al., 2016). Similarly, upregulation of type I IFN

was associated with UM but not with CM in Malawian Children

(Krupka et al., 2012). Mutations in the type I IFN receptor gene have

been linked to protection against SM, and type I IFNs may control

endothelial alterations to protect against iRBC sequestration have

been demonstrated (Aucan et al., 2003; Khor et al., 2007). In the ECM

model, type I IFN-treated mice showed improved survival, lower

ICAM-1 expression in brain endothelial cells, and decreased serum

TNF levels (Vigario et al., 2007; Morrell et al., 2011). However, a

recent study demonstrated that type-I IFN levels correlated negatively

with parasite load, suggesting that downregulation of type-I IFN with

high parasite load ultimately increased severity (Lee et al., 2018b).

Similarly, ECM-based studies demonstrated that type I and type II

IFN signalling are enriched and upregulated in ECM compared to

comparators (Sexton et al., 2004; Delahaye et al., 2006; Lovegrove

et al., 2006; Lovegrove et al., 2007; Miu et al., 2008a; Berghout et al.,

2013). These results suggest that although findings on type I IFN in

CM patients remain contradictory, it still has an important role

in CM.

Boldt et al. (Boldt et al., 2019) found strong repression of IFN

beta-regulated genes and of genes with key roles in IFN signalling, of

which IFNb has emerged as a strong candidate for the treatment of

CM (Franklin et al., 2011; Morrell et al., 2011). In addition, it

appears that downregulation of several genes in CM patients may be

a response to hypoxia, orchestrated by AhRF, GABP and HIF1

transcription factors. This correlated with hypoxia effects due to

sequestration of iRBCs and vessel occlusion in CM children.

Thus, improving perfusion to diminish hypoxic injury may be

beneficial in children with CM (Beare et al., 2009; Boldt et al.,

2019). Cabantous et al. (Cabantous et al., 2020) identified 538

differentially expressed genes between CM and UM patients.

Pathway analyses revealed novel genes and biological pathways

related to immune/inflammatory responses, erythrocyte alteration,

and neurodegenerative disorders. Microarray analysis showed that

CXCL10, IL12RB2, IL18BP, IL2RA, AXIN2, and NET expression

levels were significantly lower in CM whereas ARG1 and SLC6A9

were higher in CM compared to UM. Upon validation using RT-

qPCRs, all the selected genes showed significant changes between

CM and UM consistent with those observed by microarrays

(Cabantous et al., 2020). In addition, plasma protein levels of

CXCL10 were significantly lower in CM than in UM while levels

of IL-18 were higher. Remarkably, among children with CM, those

who died from malaria complications generally had higher

concentrations of CXCL10 and IFN-g than those who recovered

(Cabantous et al., 2020). Li et al. identified MBP, SAMSN1, PSMF1,

SLC39A8, EIF3B, SMPDL3A, FABP5, SPSB3, and SHARPIN genes,

which were associated with CM, and suggested that these genes may

be good potential targets or immune modulators for novel

therapeutic interventions of CM (Li et al., 2021). In addition,

newly developed technologies like Olink can further help to

identify protein signatures utilizing minimal sample volume with

unrivalled specificity and sensitivity, as recently shown for active

tuberculosis (Mousavian et al., 2022).
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Neutrophil extracellular traps

Formation of neutrophil extracellular traps (NETs) is one of the

important innate strategies for killing pathogens. This is triggered

when activated neutrophils degranulate, allowing neutrophil

antimicrobial factors to enter the extracellular environment. NETs

are web-like structures made up of highly modified chromatin and

different antimicrobial granular proteins that can kill and neutralise

several microbes (Brinkmann et al., 2004). NET formation can be

influenced by several factors including crystal uric acid (a potent

inducer of NETosis) (Hoppenbrouwers et al., 2017) and its precursor

hypoxanthine, which is released upon iRBC rupture (Gallego-

Delgado et al., 2014), and extracellular haem, a malarial DAMP

(Knackstedt et al., 2019). Additionally, TNF and IL-8, which are

increased during Plasmodium infections (Dunst et al., 2017), and

immune cells stimulated by Plasmodium antigen produces H2O2

(Percario et al., 2012) have been shown to induce NETosis

(Hoppenbrouwers et al., 2017). Similarly, CXCR4 and macrophage

migration inhibitory factor (MIF) are required for NET release

triggered by iRBCs (Rodrigues et al., 2020). Neutrophils impose

strong immune pressure against PfEMP1 variants implicated in

CM, selectively eliminating iRBCs expressing subsets of PfEMP1

with ICAM-1-binding properties (Zelter et al., 2022). Activated

neutrophils were shown to be associated with CM, an autopsy

study showed that neutrophils were rarely present in brain

microvasculature of Malawian children (Feintuch et al., 2016).

However, another study demonstrated that NETosis was strongly

associated with iRBC sequestration in retinal capillaries of children

who died from CM (Knackstedt et al., 2019). In the murine model of

CM, neutrophils were also found to play a critical role in the

pathogenesis of ECM (Chen et al., 2000). The release of matrix

metallopeptidase (MMP) -8 and 9 is another sign for neutrophils

activation. MMP-8 levels have been shown to be higher in plasmas

obtained from malaria patients (Dietmann et al., 2008). In addition,

MMP8 release within the retina has been associated with parasite

sequestration in brain blood vessels of Malawian children clinically

diagnosed with CM, with a median of 88% of capillaries containing

MMP8, compared to 14% in those diagnosed clinically but without

parasite sequestration (Georgiadou et al., 2021). This expression of

MMP8 was also strongly linked with extravascular fibrinogen leakage,

suggesting that MMP8 release may cause the vascular endothelial

barrier disruption in CM, potentially precipitating fatal brain

swelling. MMP-9 was found in brains from CM patients but not in

brains of mice with non-CM. However, MMP-9 knockout had no

significant effect on CM development (Van den Steen et al., 2006).

Further studies examining NETs in clinical samples from patients

with CM and in organs outside the brain in SM are warranted.
microRNAs and methylation

The concept of using microRNAs (miRNAs) as biomarkers for

severe disease in malaria remains relatively novel. miRNAs are small,

highly evolutionarily conserved noncoding RNAs ranging from 18 to

24nt, which regulate gene expression, transcription and translation by

interacting with mRNA post translation. They are detectable in
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plasma, serum, urine, and tissue, and have been shown to be highly

stable in a wide range of biological fluids and samples of fixed tissues,

which makes them exceptionally promising non-invasive biomarkers

suitable for use in RDTs in regions with fewer healthcare facilities

(Gupta and Wassmer, 2021; Sikka et al., 2022). miRNAs have been

evaluated as biomarkers in several diseases so far, including infectious

diseases, cancers, cardiovascular diseases and diabetes (Xu et al., 2014;

Condrat et al., 2020; Nazarizadeh et al., 2020; Tribolet et al., 2020;

Gupta and Wassmer, 2021; Gupta et al., 2021a). Meta-analyses of

miRNA biomarker studies reported higher accuracy in diagnoses

using miRNA clusters compared to single miRNA (Gao et al., 2020).

This is promising, considering the clusters of miRNAs that have been

identified in CM.

miR-155 has a key role in the pathogenesis of CM through

dysregulation and compromise of the BBB and through T-cell

functioning (Barker et al., 2017). Furthermore, murine studies have

highlighted a number of biomarker candidates for CM, such as miR-

19a-3p, miR-540-5p, miR-223-3p, miR-142-3p, miR-19b-3p, let-7i,

miR-27a, miR-150, miR-146a, miR-193b, miR-205, miR-215 and

miR-467a (El-Assaad et al., 2011; Cohen et al., 2018; Martin-Alonso

et al., 2018). These miRNAs are associated with various CM-related

pathways – inflammation, TGF-b, TNF signalling, monocyte

sequestration in cerebral microvessels, and endocytosis (El-Assaad

et al., 2011; Cohen et al., 2018; Martin-Alonso et al., 2018). Of the

noted candidates, miR-146a-5p, miR-150-5p, miR-222-3p and miR-

3158-3p were also linked to CM in a cohort of Indian patients (Gupta

et al., 2021b). On further study, increased levels of miR-150-5p and

miR-3158-3p were shown to correlate with fatal disease. By 30 days

following treatment, miR-3158-3p levels were notably lower in the

CM cohort who survived, greatly implying the specificity of the

miRNA to CM. Finally, a positive correlation with hypoxia in

adults’ brains, and a negative correlation with increase in volume in

children’s brains, were both found with miR-3158-3p upon MRI

(Gupta et al., 2021b). This suggests that miR-3158-3p production is

lower in CM patients with increased brain volume upon admission (a

feature linked to poor outcome in children) (Seydel et al., 2015; Sahu

et al., 2021b). Conversely, patients with marked hypoxia on

admission, a hallmark of fatal CM in adults, had increased levels of

miR-3158-3p (Sahu et al., 2021b). Although the associations between

this miRNA and MRI signs suggesting poor CM outcomes need

further corroboration, these findings support the potential utility of

miR-3158-3p in determining CM prognosis in both children and

adults without the need for neuroimaging (Gupta et al.,

2021b) (Table 1).

They have the potential to fulfil the requirements of good

biomarkers in a number of ways: they are accessible through

minimally invasive techniques such as blood tests and urine sample

collection; they have been found to vary with disease severity,

meaning they could be used to guide disease management; nucleic

acid detection technology already exists and could be honed to

develop malaria-detecting lateral flow assays, an approach already

being explored in cancer (Gupta and Wassmer, 2021); and several

miRNAs could be detected within one test to provide a more

comprehensive picture of the patients’ condition.

In addition to non-coding RNAs, there are two other main

mechanisms of post-translational modification: methylation, the
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critical regulation of gene expression via targeting of cytosine-

guanine motifs where numerous promoters lie; and histone

modification, the alteration of the tail ends of histone proteins

(Chhabra, 2015; Cross et al., 2019).

Methylation and demethylation of promoter regions allow genes

to be turned on or off (Gupta H. et al., 2017). This can inhibit miRNA

transcription by methylation of specific CpG sites. Equally, miRNAs

can prevent methylation by blocking the activity of DNA

methyltransferases, which are involved in the addition of methyl

groups. Some infectious agents have evolved to manipulate this

process to promote survival. For example, Mycobacterium

tuberculosis alters the function of the IL-12B gene (Chandran et al.,

2015). DNA methylation-based panels have been used for the

prognosis and diagnosis of patients with breast cancer (Liu et al.,

2020), in some cases outperforming other biomarkers in prediction of

survival. Although methylation of inflammatory genes has been

widely explored, there is limited knowledge of the role of this

process within the context of malaria (Gupta H. et al., 2017; Arama

et al., 2018).

The similarities in disease progression between sepsis and CM

opens new avenues to identify CM-specific aberrantly methylated

genes as in sepsis. Several specific regions so far have been associated

with severe sepsis, for example, DNA methylation of a specific

binding site for Nf-kb was found to be independently associated

with increased risk of death in sepsis patients (Rump et al., 2019).

Likewise, another study identified a correlation between specific

methylation changes in monocytes of sepsis patients, IL-10 and IL-

6 levels, and organ dysfunction (Lorente-Sorolla et al. ,

2019). Hypermethylation occurred in genes for immune and

inflammatory processes, including MAPK and NF-kB signalling,

and chemokine–cytokine pathways; hypomethylation occurred in

genes involved in IFNg signalling and phagocytic vesicles. It was also
shown that organ dysfunction was linked to changes in

DNA methylation.

Elevated IL-1b and IL-6 in Alzheimer’s disease echo the

neuroinflammation seen in sepsis. One 2017 study found

hypomethylation in the IL-1b promoter region and higher levels of

methylation in IL-6 were linked to disease (Nicolia et al., 2017).

Another more recent study by Altuna et al. found approximately 118

differentially methylated positions (DMPs) in the hippocampus of

Alzheimer’s patients, which were significantly correlated with

neurogenesis (the process by which neural stem cells give rise to

new neurons), including tau burden (Altuna et al., 2019).

The involvement of DMPs in neurogenesis and development

suggest a role for them in early Alzheimer’s disease development,

highlighting them as effective diagnostic biomarkers. Given the

involvement of tau in CM pathogenesis, DMPs may be a potential

area for consideration in CM biomarkers. Furthermore, it has been

shown that both ApoE and BNDF promoters were subject to

hypermethylation in Alzheimer’s patients (Wang et al., 2008; Chang

et al., 2014).

Aberrant methylation patterns are seen in a vast number of genes

associated with CM. Positively, there is agreement between studies,

particularly those investigating genes associated with inflammatory

pathways. If specific genes involved in the pathogenesis of CM were to

be identified, gene-specific methylation analysis may be an attractive
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method for diagnosis. Given the conclusions of studies into sepsis and

Alzheimer’s disease, it would be beneficial to explore the methylation

status of tau, ApoE, BDNF, IL-1 and IL-6 alongside more CM-specific

genes such as CXCL10.

Practically, when beginning to identify a wide range of

methylation clusters (multi-gene analysis), an epigenome-wide

approach is preferred. However, once specific genes are identified,

single-gene analysis (which is relatively rapid and cost-effective) can

be performed to aid diagnosis of CM (Sant et al., 2012). Overall, this

area remains greatly under-researched in CM and further studies

identifying panels of methylation targets could present advances in

the search for a suitable diagnostic tool.
Metabolites

Metabolomics is another avenue of exploration to identify

metabolites with the potential to act as markers in diagnosis of

Plasmodium infections. Several attempts have been made in rodent

models (Ghosh et al., 2011; Ghosh et al., 2012; Ghosh et al., 2013;

Ghosh et al., 2016; Srivastava et al., 2016) and humans (Lopansri et al.,

2003; Medana et al., 2003; Pappa et al., 2015; Alkaitis et al., 2016;

Sengupta et al., 2016; Holmberg et al., 2017; Gupta S. et al., 2017) to

demonstrate the potential of metabolomics as a tool to differentiate

malaria severity, ranging from asymptomatic to CM. A study reported

a low plasma arginine concentration in children with CM and

decreased nitric oxide (NO) production (Lopansri et al., 2003).

Similarly, CM patients exhibited low plasma glycoproteins

(Sengupta et al., 2016). In contrast, CSF NMDA (N-methyl-D-

aspartate)-receptor antagonist kynurenic acid and kynurenine were

elevated in children with CM, indicating an inhibition of

glutamatergic and cholinergic signalling that may lead acute to

prolonged coma (Holmberg et al., 2017). Tryptophan catabolites

are of interest given that elevation of CSF levels of kynurenine and

picolinic acid have been reported in CM patients. In addition,

picolinic acid was also shown to be significantly associated with

hyperparasitaemia (Medana et al., 2003). Another study reported a

series of significant changes in levels of kynurenate, indolepropionate,

glutamate, arginine and glutamine molecules that could impact

neurologic function during CM (Gupta S. et al., 2017). Children

with CM were also found with depleted plasma arginine, ornithine,

and citrulline levels (Alkaitis et al., 2016). Lipid metabolites of the

phospholipase A2 pathway were shown to be associated with brain

volume in children with CM (Pappa et al., 2015), and high brain

volume in paediatric CM has been associated with a poor outcome in

CM (Seydel et al., 2015; Sahu et al., 2021b). Furthermore, several of

these molecules including kyurenate, 1-methylimidazoleacetate,

arachidonic acid and dimethylarginine have been associated with

mortality (Gupta S. et al., 2017).

The specificity of markers to CM is crucial, since metabolic

changes occur in a range of diseases and could lead to

misdiagnosis. Many of the currently identified metabolites are

reflective of metabolic changes seen in other infectious diseases

prevalent in malaria-endemic areas (Tounta et al., 2021) and/or
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have also been observed in non-CM malaria (Abdelrazig et al.,

2017; Gardinassi et al., 2018; Leopold et al., 2019). Thus,

longitudinal studies employing repetitive metabolic measurements

over the course of the disease would provide a more accurate

representation of metabolic changes and potential diagnostic

markers. Indeed, the high sensitivity of metabolomics and the easily

accessible samples (i.e., urine, serum, plasma) highlight it as an

appropriate route for CM diagnosis. Noting the challenge of

employing testing in malaria-endemic regions, running

metabolomic analyses on every patient sample is unrealistic.

Additionally, while validation of specific levels of metabolite and

lipid changes using longitudinal studies could aid this, the costs of

these are still high, and therefore remain challenging.
Potential combinations of biomarkers to
increase specificity and accuracy

The combination of specific biomarkers mentioned within this

review also show promise in increasing diagnosis specificity and

accuracy. IFN-y-related clusters of cytokines, similarly to IFN-y

alone, was shown to be associated with MM or SM, but non-

specific to CM (Prakash et al., 2006). The same study also

investigated a cluster of TNF, TGFb, IL-10, and IL-1b and found it

correlated significantly with CM. A combination of six biomarkers

including Ang-2, CXCL10, sFlt-1, PCT, sTREM-1 and sICAM-1 in

2011 was able to predict mortality in Ugandan children with SM and

showed 95.7% sensitivity and 88% specificity in differentiating fata

and non-fatal cases (Erdman et al., 2011). In addition, the Ang-2/1

ratio has been shown as a robust biomarker of malarial severity

(Prapansilp et al., 2013; de Jong et al., 2016). Combination of CXCL4

and CXCL10 have also been shown to predict risk of fatal CM (Wilson

et al., 2011). ROC curve analysis demonstrated their ability to

differentiate CM non-survivors from those with mild malaria

(P<0.0001) and from CM survivors (P<0.0001), with an AUC of

100% (Wilson et al., 2011). However, further research with larger

sample size is needed. Similarly, combinations of cytokines and

proteins, detection of multiple miRNAs which show promise may

prove more specific and accurate than single markers alone (Gupta

and Wassmer, 2021). Finally, simultaneously evaluating parasite

biomass, number of Group A–EPCR var transcripts, and degree of

thrombocytopenia, may offer insight into disease prognosis (Sahu

et al., 2021a).
Conclusions

Over the last decade, many studies have focused on a wide range

of candidate biomarkers to improve the diagnosis of CM. While some

show great promise, such as antibody-based detection of cytokine and

endothelial dysfunction signature panels and miRNAs, these still

require extensive research and development to allow their

deployment to malarious areas. In addition to their encouraging

accuracy, focus should be made to ensure these new tools are
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minimally invasive, cost-effective, accessible, easily measured and

produce rapid results with high sensitivity and specificity.
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