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ABSTRACT: In low-income, urban, informal communities lacking sewerage and
solid waste services, onsite sanitation (sludges, aqueous effluent) and child feces
are potential sources of human fecal contamination in living environments.
Working in informal communities of urban Maputo, Mozambique, we developed a
quantitative, stochastic, mass-balance approach to evaluate plausible scenarios of
localized contamination that could explain why the soil-transmitted helminth
Ascaris remains endemic despite nearly universal coverage of latrines that sequester
most fecal wastes. We used microscopy to enumerate presumptively viable Ascaris
ova in feces, fecal sludges, and soils from compounds (i.e., household clusters) and
then constructed a steady-state mass-balance model to evaluate possible
contamination scenarios capable of explaining observed ova counts in soils.
Observed Ascaris counts (mean = −0.01 log10 ova per wet gram of soil, sd = 0.71 log10) could be explained by deposits of 1.9 grams
per day (10th percentile 0.04 grams, 90th percentile 84 grams) of child feces on average, rare fecal sludge contamination events that
transport 17 kg every three years (10th percentile 1.0 kg, 90th percentile 260 kg), or a daily discharge of 2.7 kg aqueous effluent from
an onsite system (10th percentile 0.09 kg, 90th percentile 82 kg). Results suggest that even limited intermittent flows of fecal wastes
in this setting can result in a steady-state density of Ascaris ova in soils capable of sustaining transmission, given the high prevalence
of Ascaris shedding by children (prevalence = 25%; mean = 3.7 log10 per wet gram, sd = 1.1 log10), the high Ascaris ova counts in
fecal sludges (prevalence = 88%; mean = 1.8 log10 per wet gram, sd = 0.95 log10), and the extended persistence and viability of
Ascaris ova in soils. Even near-universal coverage of onsite sanitation may allow for sustained transmission of Ascaris under these
conditions.
KEYWORDS: onsite, sanitation, Ascaris, pathogens, helminths

■ BACKGROUND
When human feces is not safely managed, common in low- and
middle-income countries,1 susceptible individuals may be
exposed to enteric pathogens through well-understood path-
ways.2 The environmental persistence of a pathogen is
dependent on its characteristics and a range of environmental
conditions, including temperature, moisture content, and UV
exposure.3,4 By accounting for enteric pathogens entering and
leaving a defined system and their proliferation or inactivation
over time, a mass-balance approach for estimating fecal waste
and fecal pathogen flows in specific settings of interest is
possible. Such an approach may yield insights into the
suitability of localized control strategies (e.g., improved onsite
sanitation, safe child and animal feces management) to reduce
exposures. In communities where onsite sanitation predom-
inates and fecal wastes are initially sequestered in latrine pits,
septic tanks, or other containment structures, further transport
of wastes and accompanying pathogens is possible via
emptying/desludging, flooding, leakage, aqueous effluent
discharge or via flies and cockroaches.5−7 Such flows are

typically quantitatively minor in comparison with the mass of
fecal waste effectively sequestered in onsite sanitation systems
but may still result in exposure risks if the mobilized pathogens
in these media maintain viability in sufficient numbers to infect
new hosts. Fecal wastes can also be released directly into the
environment via open defecation or improper disposal of child
feces,8,9 which is possible even where sanitation coverage is
good; the presence of and access to a latrine does not
guarantee use by all members of a household all of the time.10

In addition, fecal wastes from animals may also contribute
enteric pathogens to the living environment.11,12 Modeling the
transport of human feces to soils may help explain why some
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onsite sanitation interventions did not achieve substantial
reductions in enteric pathogen detection in soils13,14 and may
help inform and prioritize intervention strategies to control
exposures and reduce the risk of infection, disease, and
sequelae associated with enteric pathogens.15−18

Recent cluster-randomized trials of sanitation interven-
tions�and sanitation combined with water treatment and
hygiene interventions�found mixed effects on child health
outcomes. Some trials observed no effect on either child
diarrhea or growth;10,19−21 Luby et al. found a reduction in
diarrhea but not growth,22 while other trials observed
improvements in growth but not diarrhea.23,24 These
heterogeneous effects on child health outcomes may be
because the interventions did not sufficiently reduce the
transport of human and animal fecal wastes into the living
environment.22,25

Soils are studied in the context of sanitation and health
because they may act as an important environmental pathway
for enteric pathogens. Numerous studies have observed
widespread fecal contamination in soils collected in and
around the living environment.13,14,26 The enteric pathogens
present in these soils reflect circulating enteric pathogens from
ineffectively contained animal11,12 and human wastes.13,14

Enteric microbes have often been cultured from soils,
suggesting the potential for infectivity at the point of
sampling.27,28 Soil ingestion then poses a risk of infection to
infants and young children where and when viable pathogens
are present from the living or play environment.29 Potential
infection risks may be high29 for the pathogens (e.g., protozoa
and helminths) that can maintain viability for extended periods
in soils.30,31

Assessments of fecal contamination in soils often measure
Escherichia coli, a fecal indicator bacterium, which can become
naturalized in soils,32 or pathogen-associated nucleic acids via
PCR. Quantitative estimates of the transport of child feces and
fecal sludges to soils would be useful to inform sanitation
interventions. However, using E. coli may overestimate the
quantity transported due to the possibility of E. coli
proliferation in soils. PCR-based approaches are feasible but
would require consideration of nucleic acid persistence in soil.

Alternatively, the ova of Ascaris, a genus of soil-transmitted
helminth (STH), can persist and maintain viability for years in
soils,33 are only produced in the intestinal tract,34 and are
commonly found in soils from endemic areas,35−38 and
microscopic enumeration of ova is considered the gold
standard.35−39 An estimated 760 million people worldwide40

are infected by Ascaris. Limitations to using Ascaris ova to
estimate the transport of feces and sludges to soils include that
ova are only shed by a subset of the population in endemic
settings, microscopy requires highly trained technicians, and
the ova ofAscaris lumbricoides, the species that infects humans,
are morphologically similar to Ascaris ova shed by some
animals (e.g., pigs shedAscaris suum). Where these animals are
absent, microscopic detection of Ascaris ova presents an
opportunity to estimate fecal loading to soils.

Our research aim was to estimate the mass of human fecal
loading to soils, bounded by confidence intervals, in four
scenarios using a stochastic mass balance of Ascaris ova in soils
from the living environment in Maputo, Mozambique. In
scenario one, we assumed that all Ascaris ova enumerated in
soils were transported from child feces; in scenario two, that all
Ascaris ova were transported from fecal sludges; in scenario
three, that Ascaris ova were transported from child feces and

fecal sludges; and in scenario four, that all Ascaris ova were
transported from the aqueous effluent of an onsite sanitation
system. We subsequently modeled the transport of Ascaris ova
to soils and quantitatively compared child feces, fecal sludges,
and onsite sanitation system effluent as potential pathways of
enteric pathogen transmission in this setting.

■ METHODS
Study Setting. This study was situated within the Maputo

Sanitation (MapSan) trial, a controlled before-and-after trial
that evaluated the impact of an urban onsite sanitation
intervention (i.e., a pour-flush toilet to a septic tank with a
soakaway pit) on children’s health outcomes.41 The study was
located in low-income, informal neighborhoods of Maputo,
Mozambique, where population density exceeded 15,000
inhabitants per km2, sanitary conditions were poor, and the
burden of disease was high.41,42 In this setting, clusters of
households form compounds, which have a wall or fence to
clearly delineate the property boundary. No pigs were present
in the study area (Figure S1). The nongovernmental
organization that delivered the sanitation intervention aimed
to improve fecal sludge management in the study neighbor-
hoods,43 but the intervention did not address child feces
disposal practices. Knee et al. reported no impact of the onsite
intervention on diarrhea or enteric pathogen carriage among
intervention in children compared to those in the control
group.41 At the 24-month follow-up of the MapSan trial, 5.6%
(15/270) of intervention compounds and 30% (74/247) of
control compounds reported emptying their onsite sanitation
system in the previous 12 months, while 29% (289/980) of
children aged one month to seven years defecated directly into
the latrine.41 Among compounds that emptied in the previous
year, most intervention compounds (10/15) reported
mechanical emptying with a pump or vacuum truck, while
most control compounds (67/74) reported manual emptying
with buckets and shovels.41 While some residents were unsure
where their fecal waste was ultimately disposed, most (57/74)
control compounds and some intervention compounds (4/15)
reported burying the pit contents inside the compound. The
widespread detection of culturable E. coli27 and pathogen
genes13 in soils 24 months post-intervention suggests that the
intervention did not sufficiently reduce exposures despite
nearly exclusive use (97%) among households served.41

Four Scenarios. We relied on several fundamental
assumptions and sources of data to estimate the transport of
feces, fecal sludges, and aqueous effluent to soils inside a
hypothetical compound (Table S1). First, we assumed that the
soils from the four sampling points per compound were
representative of the soils in the localized area. In addition, we
assumed that ova only entered the system from child feces,
fecal sludges, or effluent, that no soil or ova leave the boundary
of the system, and that soil ingestion by residents is negligible
compared to the quantity of soil in the localized area. Further,
we applied a steady-state assumption to the number of ova in
the localized area. We applied these assumptions to four
plausible scenarios.

In scenario one, we assumed that the daily die-off of ova in
the system was equal to the number of ova transported to soil
from child feces (Figure 1). There was nearly universal latrine
coverage and use during the MapSan trial, suggesting that the
loading from adult open defecation may be negligible
compared to the loading from child feces.44
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In scenario two, we assumed that the total ova die-off across
the 1095-day timeframe was equal to the number of ova
transported from fecal sludge to soil during a single event (e.g.,
emptying, overflow during flooding, or leakage). While infants
and younger children are more likely to use diapers or a child
potty, older children are more likely to defecate directly into
the latrine.8,45 It is therefore expected that in some
compounds, all children defecate directly into the latrine and
the transport of child feces to soils may be negligible.

In scenario three, we assumed that the daily number of ova
transported from child feces to soil was equal to half the daily
ova die-off, and the resulting difference in ova at day 1095
compared to the initial value was equal to the number of ova
transported to soil during a single transport event on day 1095.
We assumed this ratio to demonstrate the potential transport
that occurs from both sources, but no evidence exists to justify
this assumption as more likely than a different assumption.

In scenario four, we assumed that the daily die-off of ova in
the system was equal to the number of ova transported to soil
daily from the onsite sanitation system’s aqueous effluent.
While we did not observe sanitation systems with direct
discharge to soil in this setting,27 these systems are common in
other low-income urban areas,46−48 and these systems
plausibly existed in study neighborhoods.
Mass-Balance Model. We applied a mass-balance

approach to a hypothetical compound in Maputo, Mozambi-
que. Presumptively viable Ascaris ova were modeled stochas-
tically in soil, stool, fecal sludge, and effluent (eq 1) to model
four scenarios (Text S1). We use Ovain,i to denote the number
of ova transported into the system on day i, Ovaout,i for the
number of ova that leave the system, and −ra,i to represent the
number of ova that die off.

(1)

Assuming that Ovaout,i = 0, because the quantity of soil that
is transported out of the living environment or is ingested by
residents is negligible, compared to the total quantity of soil in
the system, we can rearrange our equation to Ovain,i = −ra,i.
The quantity of ova transported into the system (Ovain,i) can
be described as the product of the concentration of ova in child
feces, fecal sludge, or aqueous effluent (Cova,i) and the mass
(min,i) (eq 2).

(2)

The die-off of ova (−ra,i) can be described by eq 3, where
Nt,(i−1) is the initial number of ova in soil from the localized
area and Nt,i is the number of ova remaining on day i.

(3)

Rearranging these equations enables us to solve for min, the
mass of child feces or fecal sludge transported into the system
(eq 4).

(4)

Initial Number of Ova in Soils. We define the localized
area for this study as the living environment for a hypothetical
compound in a low-income urban unplanned settlement in
Maputo, Mozambique (Text S2). We estimated the mass of
soil that may potentially contain Ascaris ova by accounting for
the median compound surface area (SA = 124 m2), the median
percentage of the living environment covered by hardscape
flooring (P = 74%), the depth to which Ascaris ova are likely
transported (d = 0.5 cm), and the density of soil (ρsoil = 1.7 g/
cm3)49 (Text S2 and eq 5).

(5)

We used maximum likelihood estimation (MLE, NADA
package in R) to fit a log-normal distribution to the observed
number of viable ova in soils (Figure S2). In this process, we
accounted for our recovery efficiency from sandy soil,50 which
was 43% (Text S3). We randomly sampled the resulting log-
normal distribution (Table S1) 274,000 times − the result of
eq 5 − to stochastically assign each gram of soil in the system a
quantity of viable Ascaris ova. We estimated Nt,(i−1) (eq 3) for
day 0 by summing the ova count across the simulated 274,000
grams of soil inside the system boundary.
Ova Die-Off.We assume a well-mixed batch reactor system

that is recharged by feces, fecal sludge, or aqueous effluent,
based on our simplifying assumptions. The die-off of Ascaris
ova each day can then be described by first-order kinetics in a
batch system (eq 6).51

(6)

Assuming isothermal conditions (i.e., k is the constant) for
each day, we integrate eq 6 to obtain eq 7.

(7)

Integrating eq 7 then yields eq 8.

(8)

After rearranging eq 8, we can then solve for Nt,i, the number
of viable ova remaining in the system, using eq 9.

(9)

We calculated the decay constant, k, for each day using a
temperature-dependent equation developed from the literature
for wet soil with a pH of 7.2 (eq 10 and Figure S3).31 We
obtained temperature data corresponding to the three years
preceding sample collection (June 1, 2015 to May 31, 2018)
from the National Oceanic and Atmospheric Administration
(Global Historical Climatology Network Daily Summary,
https://www.noaa.gov/). In rare instances (n = 16 days)
where data were not available, we used the previous day’s
temperature data. With this approach, each day was modeled

Figure 1. Model scenarios.
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independently, and the number of ova estimated to die-off (i.e.,
Nt,(i−1) − Nt,i) each day was dependent on the historical
average daily air temperature.

(10)

Transport of Ova into the System. We modeled the
transport of ova from child feces and liquid effluent to soil as a
daily occurrence because both processes are likely to occur
each day. However, we modeled the transport of ova in fecal
sludge to soil after 1095 days (i.e., 3 years) because we
previously observed that the mechanisms (e.g., emptying and
flooding) that transport fecal sludge to the environment in this
setting were infrequent.43 We selected 1095 days as the model
timeframe because this represents the approximate amount of
time from when MapSan trial data collection began and soil
sampling occurred.41

Soil Collection and Microscopy. In May 2018, we
purposively collected soil at four locations from 90 compounds
enrolled in the MapSan trial as part of a previous study.27 A
subset of 140 samples from 35 compounds (15 intervention
and 20 control compounds) were randomly selected via a
random number generator for inclusion in this study.
Standardized sample locations included a point 0.25 meters
directly in front of (A) the household entrance, (B) the
household’s solid waste storage container or pile, (C) the
shared latrine entrance, and (D) a point where daily activities
were frequently performed (e.g., dish or clothes washing and
meal preparation). These locations were selected because pilot
testing indicated they were easily identifiable by compound
members and consistently accessible by field staff. Approx-
imately 100 cm3 of soil was homogenized at each location and
aliquoted into cryovials using an aluminum scoopula sterilized
with 10% bleach and 70% ethanol between each sample.
Samples were transported on ice to the Mozambican National
Institute of Health (INS) in Maputo, Mozambique, where they
were stored at −80 °C. All samples were shipped from
Maputo, Mozambique, to Atlanta, GA, on dry ice (−80 °C)
with temperature monitoring for analysis.

We developed and validated a rapid density flotation-based
method to recover and enumerate helminth ova from soil
(Text S4 and S5). Four grams of soil was combined with 10
mL of NaNO3 solution (specific gravity = 1.25) containing
0.1% Tween 80 in a sterile 15 mL centrifuge tube. The tube
was shaken for two minutes and centrifuged at 500g for five
minutes, and the resulting supernatant was analyzed using
three mini-FLOTAC52 disks. Controlled experiments indicated
recoveries of 43% from sandy soil, 16% from silty soil, and 77%
from loamy soil (Text S3). In addition, we analyzed replicates
from 20% of samples and used the mean of the two replicates
as the overall result.
Fecal Sludge Collection and Microscopy. From

October 2017−April 2018, we collected fecal sludges from
onsite sanitation systems at a subset of intervention and
control compounds enrolled in the MapSan trial. We randomly
selected 18 samples (nine intervention, nine control) for
microscopy from those that had previously tested positive for
A. lumbricoides via PCR (prevalence = 88%)53 because PCR is
more sensitive than microscopy for helminth ova, and we
accounted for nondetects with eq 11. Detailed sample
collection methods are described elsewhere.53 Briefly, we
used a sludge nabber (Nasco, Fort Atkinson, WI) to collect
fecal sludge from the surface of pit latrines and a modified

Wheaton subsurface sampler (Fisher Scientific, Waltham, MA)
to collect fecal sludge from the surface of the solid portion
inside septic tanks. Sampling devices were sterilized with 10%
bleach and 70% ethanol between uses. Sludge was collected
into sterile 50 mL centrifuge tubes, transported to INS on ice,
aliquoted into cryovials, stored at −80 °C, and shipped to
Atlanta, GA, on dry ice.

We adapted the mini-FLOTAC52 method for enumerating
helminth ova from stools and soils for fecal sludges (Text S6).
First, we added 0.5 grams of fecal sludge (wet weight) and 10
mL of NaNO3 solution (specific gravity = 1.25) into a sterile
15 mL centrifuge tube. Then, we manually shook the mixture
for 20 seconds, pipetted 6 mL from the mixture to fill three
mini-FLOTAC disks, waited for 10 minutes, rotated the disks,
and then read the disks at 100× magnification.
Stool Collection and Microscopy. We collected stool

from children aged 1 to 72 months as part of the MapSan
trial.41 Each enrolled child and their caregiver were provided
with stool collection supplies, including diapers or a child potty
for older children no longer using a diaper. Field workers
returned the following day to collect the stool specimens,
which were stored on ice and transported to the Mozambican
National Institute of Health’s Parasitology Lab. On the same
day as sample collection, a lab technician at the Parasitology
Lab enumerated helminth ova using the single-slide Kato-Katz
technique (Vestergaard Frandsen, Lausanne, Switzerland).41

The MapSan trial protocol was approved by the Comite ́
Nacional de Bioet́ica para a Saud́e (CNBS), Ministeŕio da
Saud́e (333/CNBS/14), the Research Ethics Committee of the
London School of Hygiene & Tropical Medicine (reference #
8345), and the Institutional Review Board of the Georgia
Institute of Technology (protocol # H15160).
Ova Classification. As soils and fecal sludges were frozen

for molecular analysis,13,53 we were unable to perform
traditional STH viability assays after a period of embryona-
tion.54 Instead, we used Schmitz et al.55 and other illustrative
guides from the literature56−59 based on the lifecycle of Ascaris
to classify ova as presumptively viable (Text S7). Any ova
observed in the lifecycle of Ascaris from the single-cell stage to
ova containing a visible larva were considered presumptively
viable (hereafter referred to as viable ova). We used this
approach because Cruz et al. indicated that early stages of ova
development can further develop into infectious stages and
should be considered when assessing viability.59 For a subset of
soil samples and all fecal sludge samples, we also recorded the
number of ova that appeared nonviable based on morpho-
logical characteristics (e.g., internal bubbling from heat
inactivation)57 and the number that was infertile or dead.55

We assumed that all fertilized ova enumerated in stools were
viable and infertile ova were not viable.

We accounted for child feces, fecal sludge, and aqueous
effluent from which we did not detect viable Ascaris ova using
eq 11. We divided each estimate of min for stools or fecal
sludges and aqueous effluent by the percentage (Pa) of children
shedding Ascaris ova or pits containing ova, respectively.

(11)

Estimated Density of Ova in Stools and Fecal
Sludges. We assumed that if a child’s stool did not test
positive41 for any Ascaris ova, then that child did not shed
Ascaris ova, and likewise, if a fecal sludge sample was not
positive for Ascaris ova via PCR, then that onsite system did
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not contain Ascaris ova. Exclusively infertile Ascaris ova were
observed in stool from a small subset of children. Due to the
biological plausibility that these children also shed fertilized
viable ova, we imputed a random value from one to the Kato-
Katz LOD, 24 ova per gram, for these children. Then, we used
MLE ( f itdistr package in R) to fit a log-normal distribution to
the observed concentrations of viable ova in stools and fecal
sludges.60 We did not include nondetect data to fit
distributions because this would have negatively impacted
the distribution fit to the data. Instead, we accounted for the
input of feces and fecal sludges that did not contain ova using
eq 11. This approach produced log-normal distributions
characterizing the Ascaris ova density in child feces and fecal
sludges, which we used as an input to our mass-balance model.

In addition, we estimated that the concentration of ova in
the effluent was 5.5% of the concentration observed in fecal
sludge. This value is based on the ratio of total solid
concentrations reported for sludge and effluent in Manga
2017.61

Monte Carlo Simulation. To propagate the variability in
Cova for stools, fecal sludges, and aqueous effluent, we modeled
eq 4 as a Monte Carlo simulation in R (version 4.0.4) (Figures
S4 and S5). We randomly sampled from the log-normal

distribution of ova in stools and aqueous effluent 10 times for
each day, which we input to eq 4 to generate 10 different
estimates of min per day. The simulation ran using data for
1095 days and generated a total of 10,950 daily estimates of
min for each matrix. We modeled the transport of fecal sludges
to soils as an event on day 1095. To propagate the variability in
Cova for fecal sludge, we randomly sampled from the
distribution of ova in fecal sludge 10,950 times to retain
similarity with stool. Then, we solved eq 4 for min using these
estimates of Cova and calculated min,total using eq 11. Finally, we
pooled the daily estimates for stools and aqueous effluent
across the entire timeframe and the estimates for fecal sludges
from day 1095 to generate summary statistics.
Sensitivity Analysis. We conducted a sensitivity analysis

by running the Monte Carlo simulation using different
assumptions, including soil depth, soil density, recovery
efficiency, fecal sludge transport frequency, and viability, to
evaluate how changes in model parameters would impact our
point estimates.

■ RESULTS
Soils. We observed ≥1 viable Ascaris ova in 64% (78/121)

of soil samples, with a mean of −0.01 log10 (sd = 0.71 log10)

Table 1. Ascaris Ova in Soils, Fecal sludges, and Child Feces

Ascaris classification ≥1 ova observed mean (SD) median (IQR)

Soil (Ascaris ova per gram wet)
presumptively viable 64% (78/121) −0.01 log10 (0.71 log10) 1.3 (ND, 2.5)
presumptively nonviable 60% (54/90) −0.35 log10 (0.84 log10) 0.66 (ND, 1.7)
any ova 78% (70/90) 0.45 log10 (0.69 log10) 3.8 (1.2, 7.7)

Fecal Sludge (Ascaris ova per gram wet)
presumptively viable 100% (18/18) 1.8 log10 (0.95 log10) 41 (8, 310)
presumptively nonviable 100% (18/18) 1.3 log10 (1.1 log10) 19 (3.5, 57)
any ova 100% (18/18) 2.1 log10 (0.88 log10) 87 (29, 430)

Child Feces (Ascaris ova per gram wet)
presumptively viable ova 23% (124/545)a 3.7 log10 (1.1 log10) 8400 (1500, 25000)

aStools (2%) were positive exclusively for infertile Ascaris ova. The concentrations of presumptively viable ova for these samples were imputed from
1 ovum per gram to the LOD of 24. ND = nondetect.

Figure 2. Presumptively viable Ascaris ova in soil samples by compound location (empirical data). Nondetects were imputed below the LOD,
which is shown as the dashed red line.
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viable ova per gram of wet soil and a median of 1.3 ova per
gram (Table 1). The viable ova counts per gram of wet soil
were higher at latrine entrances (median = 1.4) and solid waste
storage areas (median = 1.2), compared to household
entrances (median = 0.61) and activity areas (median =
nondetect) (Figure 2 and Table S2). We excluded 19 samples
from analysis because they were evaluated using an incorrect
concentration of Tween 80, while 121 samples were included.
The median difference among the 27 replicates assessed was
0.67 viable ova per gram wet soil with an intraclass correlation
coefficient (ICC) of 0.80, indicating good reliability.62 Among
the 21 replicates analyzed by different technicians, the ICC was
0.76.
Fecal Sludges. We observed ≥1 viable Ascaris ova in all

fecal sludge samples (n = 18) that had been randomly chosen
among those previously positive by PCR. The mean number of
viable Ascaris ova per gram of fecal sludge (wet weight) was 1.8
log10 (sd = 0.95 log10), and the median was 41 ova per gram of
fecal sludge (Figure S6).
Child Feces. We observed fertile Ascaris ova in 23% (124/

545) of child feces and exclusively infertile Ascaris ova in 1.8%
(10/545) of child feces. Among children shedding ova, there
was a mean of 3.7 log10 (sd = 1.1 log10) ova per gram of feces
and a median of 8,400 ova per gram of feces (Figure S6).
Estimated Mass Transported to Achieve Steady

State. For model scenario one, where we assumed that all
Ascaris ova in soil were transported from child feces, we
estimated that the 10th percentile of fresh child feces
transported to soil per day in the localized area was 0.04
grams, the 50th percentile was 1.9 grams, and the 90th
percentile was 84 grams (Table 2). For model scenario two,
where we assumed that all Ascaris ova were transported from
fecal sludge to nearby soils during a single triennial event, we
estimated that the 10th percentile of fecal sludge transported
to soil was 1000 grams, the 50th percentile was 17,000 grams,
and the 90th percentile was 260,000 grams. For scenario three,
we assumed that half the daily die-off of Ascaris ova in soil was
replaced by child feces, and fecal sludge transported Ascaris ova
equivalent to the ova die-off after three years. In this scenario,
we estimated that the 50th percentile of daily child feces
transported to soil was 0.13 grams and the 50th percentile of
annual fecal sludge transported to soil was 17,000 grams. For
model scenario four, where we assumed that all Ascaris ova
were transported from aqueous effluent, we estimated that the
10th percentile of effluent transported to soil per day was 91
grams, the 50th percentile was 2700 grams, and the 90th
percentile was 82,000 grams (Table 2).
Sensitivity Analysis. Increasing the soil depth, soil density,

recovery efficiency, and viable Ascaris ova in soil, which are
used to calculate the initial number of viable ova in soils (i.e.,
Nt,0), resulted in increased mass loading estimates (Table S3).
In scenario two, transport frequency had little effect on the

estimated fecal sludge loading because nearly all Ascaris died
off in the first year (Figure S7). Likewise, in scenario three,
most of ova that died off needed to be replaced by ova from
child feces to meaningfully reduce the estimated loading of
fecal sludge during a transport event on day 1095 (Table S3).

■ DISCUSSION
Viable Ascaris ova were prevalent in soils and fecal sludges
from household living environments in low-income urban
communities in Maputo, Mozambique, with nearly universal
onsite sanitation coverage. The observed concentration of
Ascaris ova in soil could be held at the steady state by a
relatively small amount of child feces or aqueous effluent
transported to soil daily or fecal sludge transported triennially.
These findings suggest that nearly universal coverage of onsite
sanitation alone may be insufficient to control pathogens such
as Ascaris in endemic settings like Maputo.

The fact that each of these scenarios represents quantita-
tively limited inputs of fecal material reveals a key insight from
this work: in endemic settings where STH and other enteric
infections are common, the stakes for effective operation of
sanitation infrastructure are high. Low- and middle-income
settings are typically where basic technologies like pit latrines
are proposed as solutions to achieve public health goals of
sanitation expansion, but at the same time, they are places
where even minor fecal flows carry non-negligible risks to
people who may come into contact with environmental media
(e.g., soils) contaminated with fecal wastes. The apparent
challenge for the water, sanitation, and hygiene (WASH)
sector and for sanitation innovation specifically is to develop
control strategies that are completely effective in removing
excreta from downstream human contact. Such strategies may
require a substantial change from previous paradigms in
WASH innovation, representing “transformative” approaches
to controlling exposures.63−65 The definition of transformative
WASH is debated, and while sewer systems remain a long-term
goal in low-income settings, consensus63 is forming that
packages of interventions tailored to locally relevant sources of
fecal contamination, in addition to universal coverage of onsite
sanitation, may be the foundation of transformative WASH.

The relative importance of the transmission routes we
evaluated may vary in different contexts based on local
sanitation infrastructure and practices. Additional work to
define the localized relevance of these transmission routes,
including in rural and peri-urban areas, would be helpful to
inform interventions. Further, our model was limited to soil in
the localized area. Exposures to Ascaris ova and other enteric
pathogens occur through multiple well-understood pathways.2

Universal, comprehensive sanitation coverage requires safe
management at each step in the disposal chain to reduce
exposures.66

Table 2. Estimates of Child Feces and Fecal Sludges Transported to Soil

grams transported to soil per day
grams transported to soil during a single event on day

1095

percentile of model output

transport scenario 10th 50th 90th 10th 50th 90th

1. only child feces 0.04 1.9 84 NA NA NA
2. only fecal sludge NA NA NA 1000 17,000 260,000
3. both child feces and fecal sludge 2.4 × 10−3 0.13 7.8 1100 17,000 260,000
4. only aqueous effluent 91 2700 82,000 NA NA NA
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The concept of a threshold effect, meaning that health gains
are realized after a certain threshold of community level
sanitation coverage is achieved, is important to the WASH
field.67 Identification of these tipping points has been an aim of
several studies to elucidate the hypothesized relationship with
health outcomes.68−70 Our results directly inform this type of
work. If such a threshold exists for Ascaris, and potentially
other enteric pathogens, it may require universal onsite
sanitation coverage, as well as other complementary inter-
ventions that interrupt transmission from child feces, fecal
sludges, and liquid effluent.

In scenario two, we estimated that the vast majority of
Ascaris ova died off in the first year, which has been
demonstrated empirically under similar environmental con-
ditions to those in Maputo.3,71,72 This provides further
evidence that infrequent emptying is preferred over frequent
emptying, given safe sequestration in the onsite system.
Infrequent emptying limits the potential for spills, leaks, and
aerosolization of sludge.73 During the 24-month phase of the
MapSan trial, only 5.6% of intervention compounds reported
emptying in the previous year, and most did so using hygienic
mechanized emptying.43 On the other hand, 30% of control
compounds emptied in the previous year, and most used less
hygienic manual emptying. This difference may have
contributed to the 38% reduction in the prevalence of A.
lumbricoides DNA that we observed in intervention latrine
entrance soils compared to controls during the 24-month
follow-up.13

Any defecation event that does not completely and directly
dispose of feces into an onsite containment structure or a toilet
connected to a sewage network poses a risk of transporting
some feces to the environment. Open defecation likely
transfers some feces to soil even if the stool is picked up
later, disposable diapers can break open or leak while stored in
a solid waste pile, and reusable diapers require washing in
water, which may be dumped onto nearby soil.8,9,74 This real-
world heterogeneity, ranging from entire discarded stools to
small quantities of stool transported from diapers or wash
water, is reflected in the wide confidence interval around our
child feces loading estimate in scenario one.

The age at which children begin directly using latrines varies
based on prevalent sanitation technologies, culture, and other
contextual determinants. A study in rural and peri-urban
Cambodia found the mean age when caregivers believed their
child could independently use a latrine was five years old.75 In
low-income informal settlements in India, the median age
caregivers reported beginning latrine training was three years
and that they expected independent latrine use at five years. At
the 24-month follow-up of the MapSan trial, only 29% (289/
980) of children, who were one month to seven years old,
defecated directly into the latrine.41 After this initial defecation
event, MapSan trial caregivers reported that 17% (37/224) of
child feces was ultimately disposed of in a latrine from children
under two years and that 95% (547/574) was disposed in a
latrine from children over two. In rural Bangladesh, caregivers
reported that 89% of children under three years and 40% of
children aged three to eight practiced open defecation.76 Open
defecation by children may occur because caregivers believe
that latrine use by their child would be unsafe or that their
child is not developmentally capable.8 Latrine training mats,
which offer increased safety and accessibility, are one potential
intervention to increase latrine use by developmentally capable
children.77

There are limitations to our data collection and laboratory
methods. First, we assessed presumptive viability, which
potentially misclassified ova. We estimated that 50% of Ascaris
ova in soils were viable, which is less than a recent study in
rural Kenya (99%) and Bangladesh (70%).78 It is possible that
we misclassified some roundworm ova from other animals,
such as Toxocara from cats and dogs or Ascaridia galli from
poultry, as Ascaris ova. However, this was unlikely because
Toxocara are morphologically distinct, and we found no
difference in ova counts between compounds with and without
these animals (Figures S8 and SS9). In addition, we collected
fecal sludges near the surface of the solids in pit latrines and
septic tanks, which represents relatively fresh feces. Ova at
greater depths may have experienced greater die-off, suggesting
that our methods underestimated the transport of fecal sludges
to soils.

In addition, there are limitations to the modeling structure
and parameters used. First, we applied simplifying assumptions
to samples collected cross-sectionally, which permitted steady-
state conditions, but included historical temperature data to
account for temporal variation. We calculated the decay
constant, k, via air temperature, not soil temperature, and
assumed a constant pH and that the soil was wet. Variation in
moisture content, pH, and sunlight may have resulted in an
underestimation of Ascaris ova die-off and subsequently
underestimated the mass transported to soils. We also assumed
a closed system, but mechanisms such as walking, wind, and
yard cleaning can transport ova into or out of the localized
area. Further, we only used data from children ≤7 years.
However, there were likely no large-scale sources of Ascaris ova
except for child feces. Adult residents reported nearly universal
latrine use and no pigs were present which eliminated the
possibility of zoonotic shedding (e.g., of A. suum41). We
observed greater Ascaris ova counts in soils from latrine
entrances and solid waste storage areas compared to household
entrances and activity areas. By including these locations where
ova may be more likely, we may have overestimated the initial
number of ova in the system and subsequently overestimated
fecal mass loading. Finally, this analysis represents a single
pathogen in one low-income setting and required endemicity
of Ascaris.41,79 Yet, the flexibility of this approach offers the
opportunity for similar mass-balance approaches using other
common enteric pathogens that do not reproduce outside the
gut (i.e., viruses, protozoa, and helminths) and targets shed
universally in feces (e.g., human mitochondrial DNA80). Such
models may advance our understanding of how fecal wastes are
transported to the localized environment.

At a localized scale in a low-income urban community, we
estimated that a relatively small quantity of child feces or
aqueous effluent transported daily to soil or a moderate
quantity of fecal sludge transported infrequently could
plausibly explain the observed density of Ascaris ova in soils.
In highly endemic settings, this indicates that nearly all fecal
wastes must be safely sequestered because even small releases
to the environment could allow the cycle of infection to
continue. Foundational to helminth control efforts is mass drug
administration (MDA), but in endemic settings, MDA is a
short-term treatment strategy that should be accompanied by
improvements to sanitation, hygiene, and housing to break the
cycle of infection.81,82 However, onsite sanitation interventions
have not demonstrated substantial reductions in environmental
fecal contamination,13,83,84 and this work suggests that even
nearly universal coverage of these systems alone may be
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insufficient to interrupt Ascaris transmission in endemic
settings. Instead, a sustainable environmental response to the
risks posed by helminths and other fecal-oral pathogens will
require policies and strategies capable of achieving a nearly
complete reduction in the child feces and fecal sludges
transported to the living environment.
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