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Abstract

Integrating findings from genome-wide association studies with molecular datasets can help develop insight into the underlying
functional mechanisms responsible for trait-associated genetic variants. We have applied the principles of Mendelian randomization
to investigate whether brain-derived gene expression (n = 1194) may be responsible for mediating the effect of genetic variants on
eight cognitive and psychological outcomes (attention-deficit hyperactivity disorder, Alzheimer’s disease, bipolar disorder, depression,
intelligence, insomnia, neuroticism and schizophrenia). Transcriptome-wide analyses identified 83 genes associated with at least one
outcome (PBonferroni < 6.72 × 10−6), with multiple trait colocalization also implicating changes to brain-derived DNA methylation at
nine of these loci. Comparing effects between outcomes identified the evidence of enrichment, which may reflect putative causal
relationships, such as an inverse relationship between genetic liability towards schizophrenia risk and cognitive ability in later life.
Repeating these analyses in whole blood (n = 31 684), we replicated 58.2% of brain-derived effects (based on P < 0.05). Finally, we
undertook phenome-wide evaluations at associated loci to investigate pleiotropic effects with 700 complex traits. This highlighted
pleiotropic loci such as FURIN [initially implicated in schizophrenia risk (P = 1.05 × 10−7)], which had evidence of an effect on 28 other
outcomes, as well as genes which may have a more specific role in disease pathogenesis [e.g. SLC12A5 which only provided evidence of
an effect on depression (P = 7.13 × 10−10)]. Our results support the utility of whole blood as a valuable proxy for future studies analysing
molecular datasets, but also suggest that conducting analyses in a tissue-specific manner may be more comprehensive.

Introduction
Genome-wide association studies (GWAS) have discovered and
replicated thousands of variants associated with cognitive and
neurological traits and disease (1,2). However, findings from GWAS
on their own do not provide insight into the biological processes
that mediate the effect of these genetic variants. Developing our
understanding of these molecular mechanisms is crucial in terms
of disease prevention and treating disorders which affect normal
brain function.

The majority of known trait-associated variants reside in
the non-protein-coding regions of the human genome, with
previous research implicating them in transcriptional regulatory
mechanisms (3,4). This includes altering promoter and enhancer
elements as well as enrichment in regions of the genome
affecting gene regulation. With developments in microarray and
sequencing technologies, data on genome-wide genotyping and
gene expression from large samples are becoming increasingly
available and have been used to identify genetic variants which
robustly influence transcription (5,6). These variants are known
as expression quantitative trait loci (eQTL) and have been shown
to operate in a tissue-dependent manner (7). The GWAS variants
responsible for cognitive and psychiatric trait variations are likely
to exert their influence via gene regulation in the brain, given

this organ’s role in the pathogenesis of these phenotypes (8).
As such, using eQTL derived from brain tissue should be the
most pertinent tissue type in terms of characterizing these
effects. Furthermore, there are various cognitive traits and
psychiatric disorders, which have been shown to be correlated
either genetically or phenotypically [e.g. intelligence with ADHD
(9) and Alzheimer’s disease (10,11) as well as neuroticism with
schizophrenia, bipolar disorder and depression (12)]. As such,
exploring whether these traits share a common eQTL derived
from the brain tissue may highlight shared genetic architecture
underlying such correlations.

We previously integrated tissue and cell-type specific eQTL
data with findings from GWAS to investigate putative molecular
mechanisms using the principles of Mendelian randomization
(MR) (13,14). As with conventional risk factors, gene expression
may be prone to confounding and reverse causation, which MR is
robust to, by assessing whether a genetically predicted exposure
has an effect on a complex trait or disease outcome. This approach
is complemented by techniques in genetic colocalization to miti-
gate the likelihood that detected associations are driven by link-
age disequilibrium between separate, but correlated, causal vari-
ants (i.e. one responsible for gene expression and the other for
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complex trait variation). As postulated previously, genetic colo-
calization at conditionally independent loci is necessary but not
sufficient for causality (15).

In this study, we have applied a transcriptome-wide MR
framework to discern whether the brain-derived gene expres-
sion may mediate the effect of genetic variants on eight
different cognitive and psychiatric outcomes [attention-deficit
hyperactivity disorder (ADHD), Alzheimer’s disease, bipolar
disorder, depression, intelligence, insomnia, neuroticism and
schizophrenia]. We subsequently applied the same analysis using
eQTL data from a large collection of transcriptomes derived from
whole blood (based on findings from the eQTLGen project). This
was to elucidate brain tissue-dependent signals which would not
have been detected using whole blood eQTL despite the large
increase in sample size (brain eQTL, n = 1194, compared with
whole blood eQTL, n = 31 684). Next, we integrated methylation
quantitative trait loci (mQTL) data derived from brain tissue to
discern whether there is evidence at the associated loci that
DNA methylation may also reside along the causal pathway to
cognitive or psychiatric outcomes along with the gene expression.
Finally, to investigate pleiotropic effects, we have undertaken
phenome-wide analyses by systematically applying MR to 700
different complex traits and disease.

Results
Uncovering transcriptome-wide signatures in
brain tissue which putatively mediate genetic
effects onto outcomes
We applied the principles of MR to identify genetically predicted
effects between brain-derived gene expression and eight cognitive
and psychological outcomes, using cis-acting single nucleotide
polymorphisms (SNPs) (i.e. within 1 Mb distance of their
associated gene) as instruments obtained from brain-derived
eQTL datasets. There were 7443 genes whose expression could
be instrumented by at least 1 cis-eQTL (P < 5 × 10−8) using the
brain tissue. Analysing each of these genes with the eight
cognitive and psychological outcomes identified 91 genetically
predicted effects (across 83 genes with several genes linked
with more than one outcome) which survived a P < 6.72 × 10−6

(i.e. 0.05/7443) as well as a genetic colocalization posterior
probability of association (PPA) > 0.8 for single SNP analyses
using the ‘coloc’ method (16) (Supplementary Material, Table
S3). These included established loci in psychiatric genetics, such
as NEGR1 with depression (P = 2.15 × 10−9) as well as RERE and
FURIN with schizophrenia (P = 4.43 × 10−6 and P = 1.05 × 10−7,
respectively). There were also a host of loci which have not been
linked as strongly to neuropsychiatric disorders in the literature.
These included solute carrier family 12 member 5 (SLC12A5)
(P = 7.13 × 10−10 with depression), TRIO binding protein (TRIOBP)
(P = 3.59 × 10−8 with intelligence), STX1B and solute carrier family
25 member 12 (SLC25A12; both of which had a putative effect on
neuroticism with P = 1.26 × 10−8 and P = 6.42 × 10−6, respectively).
We include a table of full MR results (i.e. without thresholding
for genetic colocalization) in the Supplementary Material, Table
S4. We found that 38.7% of these results were supported by the
evidence of colocalization. Performing a sensitivity analysis using
an intelligence GWAS (i.e. based on fluid intelligence score) not
adjusting for socioeconomic status (SES) produced similar results
to those of Savage et al. (17) (Supplementary Material, Table S5).
The results from our study were comparable to those detected
by previous transcriptome-wide association studies. For example,
similar to publications by Hall et al. (18) and Gusev et al. (3), we

identified genes such as chloride channel 3 (CLCN3), GATAD2A
and ELAC2 but also identified novel genes not highlighted by
these studies such as NEURL, TRIM37 and SDCCAG8 using MR and
genetic colocalization.

Subsequently, to assess the potential shared aetiology between
the eight traits, we investigated how the genetically predicted
effects of identified genes on all eight outcomes clustered based
on Euclidean distance matrix computation (19). We did this by
applying the R package ‘dist’ to compare the distances between
our MR estimates for the same gene across the eight cognitive
traits and psychiatric disorders. These results were therefore used
to highlight the local genetic correlation which exists between
the 83 loci identified in our analysis across each of the outcomes
evaluated. A heatmap visualizing these results can be found in
Figure 1.

This analysis highlighted clusters of genes whose shared
effects amongst outcomes which may reflect causal relationships.
For example, we observed evidence of enrichment for an
inverse relationship between schizophrenia-associated genes and
intelligence (Fig. 1), which may reflect the evidence postulating
a causal relationship between schizophrenia genetic liability
and lower cognitive ability in later life as presented by previous
MR analyses (20). Likewise, there was enrichment of an inverse
relationship between ADHD-associated genes and intelligence
(Fig. 1), which has also been reported by a previous MR study
(21). Therefore, these loci contain candidate genes where vertical
pleiotropy may exist, such that their effect on schizophrenia
liability through changes to gene expression may consequently
have an influence on the measures of cognition.

Enrichment analyses provided evidence that the genetically
predicted expression of the 83 identified genes were enriched for
various regions of the brain compared with a background set of
loci (Supplementary Material, Table S7). For example, the pre-
dicted expression of neuroticism-associated genes was enriched
in the hippocampus (P = 8.61 × 10−7), amygdala (P = 3.61 × 10−5)
and substantia nigra (P = 4.36 × 10−5). Genes associated with intel-
ligence were enriched in the frontal cortex (P = 0.0001), cerebellum
(P = 0.0005) and anterior cingulate cortex (P = 0.0004) (Supplemen-
tary Material, Fig. S3). There was also enrichment for the genes
associated with bipolar disease in the hypothalamus (P = 0.0005),
whereas the expression of insomnia-associated genes were over-
represented in the cerebellum (P = 0.0006).

Discerning whether effects are brain
tissue-dependent or identifiable using whole
blood data
Applying our MR framework using whole blood eQTL data
(n = 31 684) identified 260 genetically predicted effects (across 234
loci), which survived multiple testing corrections [P < 3.27 × 10−6

based on a maximum of 15 301 genes (Alzheimer’s disease) with
at least one instrument in this tissue] (Supplementary Material,
Table S8). Comparing effect estimates from our brain tissue
analysis found that 53 of the 91 genetically predicted effects had
a P < 0.05 in blood (Supplementary Material, Table S9). Therefore,
41.8% of these putative effects may have been overlooked by
not using brain tissue based on this heuristic. This included
several genes which appear to be predominantly expressed in
brain tissue based on findings from the GTEx consortium, such
as N-ethylmaleimide sensitive factor (NSF), protocadherin alpha
8 (PCDHA8) and SLC12A5 (Supplementary Material, Figs S1–S3,
respectively). Figure 2 provides an illustration of findings for
intelligence as an outcome, where four loci [PSME4, kinesin family
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Figure 1. A heatmap illustrating MR effect estimates between the brain-derived gene expression for 83 genes and eight neurological and psychiatric
traits and disease.

member C2 (KIFC2), NSF and TRIOBP] provided much stronger
evidence of a genetically predicted effect using brain tissue
than in whole blood despite the large difference in sample sizes
(n = 1194 in brain tissue and n = 31 684 in whole blood). Conversely,
37 (14%; i.e. 37/260) genetically predicted effects from the whole

blood analysis had an effect resulting in P < 0.05 in brain tissue,
although these did not survive transcriptome-wide corrections
(Supplementary Material, Table S10). However, this may be due to
having lower power in the brain tissue-based analyses. As such,
they may be worthwhile candidates for future studies to prioritize.
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Figure 2. A bi-directional Manhattan plot depicting the transcriptome-wide effects for gene expression on intelligence. The top plot represents effects
derived from brain tissue (purple, n = 1194), whereas the bottom plot illustrates the same analysis using whole blood data (red, n = 31 684). Genes surviving
multiple testing (P < 6.72 × 10−6 in brain, P < 3.27 × 10−6 in blood) based on single SNP analyses were additionally subjected to genetic colocalization
(PPA > 0.8). Loci highlighted in blue survived multiple testing in brain-derived tissue but not in whole blood (despite the large difference in sample size).
Loci which are labelled in red on the inverse plot represent candidates that were not identified in our brain tissue analysis but may survive multiple
testing corrections in larger samples.

Figure 3. A Manhattan plot representing the transcriptome-wide associations between brain-derived expression and neuroticism. Genes surviving
multiple testing (P < 3.27 × 10−6) based on single SNP analyses were additionally subjected to genetic colocalization (PPA > 0.8). Points highlighted in
pink provided evidence from multiple trait colocalization analyses that brain-derived DNA methylation, as well as gene expression, share a causal
variant at these loci with neuroticism susceptibility.

Elucidating epigenetic mechanisms which may
also play a role in trait variation and disease
susceptibility
For effects identified in the initial analyses using brain-derived
eQTL data, we conducted follow-up analyses to distinguish
whether DNA methylation levels are also implicated in the risk
of the examined traits/disease outcomes. We undertook multiple
trait colocalization using the R package ‘moloc’ (16) at each of the
83 loci identified in the brain tissue analysis to discern whether
DNA methylation, gene expression and complex traits all shared
a common causal variant. There was evidence that this was true
at nine loci based on brain-derived DNA methylation data with
a PPA > 0.8 (Supplementary Material, Table S11). Figure 3 depicts
the results from the transcriptome-wide analysis of neuroticism,
where highlighted loci provided evidence of a shared causal
variant for DNA methylation, gene expression and neuroticism
risk. These were SLC25A12 (highest PPA = 0.96), VIPR2 (highest
PPA = 0.96) and NR1H3 (highest PPA = 0.99).

A phenome-wide evaluation of genes to highlight
pleiotropic effects
MR and genetic colocalization analyses were undertaken system-
atically on 700 outcomes using findings from large-scale GWAS
consortia and the UK Biobank study (Supplementary Material,
Table S12). Undertaking MR analyses at each of the 83 brain
tissue genes and 700 complex traits from across the phenome
identified 52 genes which had a genetically predicted effect on
more than one outcome (Supplementary Material, Tables S13 and
S14). There were established psychiatric loci which appear to be
highly pleiotropic, such as FURIN (genetically predicted to influ-
ence 28 traits, Fig. 4A) and MAPT (predicted effects on 33 traits)
based on the phenome-wide corrections of P < 7.14 × 10−5. These
findings therefore suggest that they should be deprioritized as
therapeutic targets for functional follow-up studies, as inhibiting
their expression may result in unanticipated adverse effects.

In contrast, our analyses did not flag the potential adverse
effects for various loci in this analysis. This included genes whose
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genetically predicted expression was associated with schizophre-
nia, such as CLCN3 (P = 5.99 × 10−7) and ABCB6 (P = 9.48 × 10−7) and
SLC12A5, which was associated with depression (P = 7.30 × 10−10,
Fig. 4B), serine protease 36 (PRSS36) which was associated with
Alzheimer’s disease (P = 7.30 × 10−8) and neuromedin B (NMB)
which was associated with bipolar disease (P = 1.70 × 10−6, Fig. 4C).

Discussion
We have applied an integrative approach using brain-derived
molecular datasets to highlight biologically relevant genes which
may putatively influence risk of eight neurological and psychi-
atric outcomes. This analysis provided evidence suggesting that
genetically predicted gene expression in brain tissue may influ-
ence at least one of these traits at 83 genetic loci. Integrating DNA
methylation data obtained from brain samples provided further
evidence that epigenetic factors and gene expression may play
a role in trait variation at nine of these loci. Furthermore, we
repeated our integrative framework using gene expression data
derived from whole blood to examine whether these putative
effects would have been detected using this proxy tissue type. In
our study, a large proportion of brain-derived associations (∼60%)
survived a heuristic threshold of P < 0.05 in blood, corroborating
the use of blood as a starting point for target identification. Con-
versely, despite the dramatically lower sample size for brain tissue
(less than 30×), there were ∼40% of the genetically predicted
brain tissue effects that were not detected in blood based on this
threshold. This may suggest that these effects depend strongly
on using data from a tissue-type which is biologically relevant
to the outcomes assessed. However, it is important to consider
that despite brain being the primary tissue of interest in this
study, other tissues may be more pertinent in some instances.
For example, lung and spleen tissues have previously been shown
to be enriched amongst Alzheimer’s disease loci (17). Finally, we
investigated potential pleiotropic effects at these loci by assessing
their association with 700 outcomes from large-scale GWAS and
the UK Biobank study.

Tissue- and cell-dependent gene expressions have been pre-
viously shown to help elucidate the biological processes and
functions of genes (22,23). There are various genes highlighted
in our study which only provided evidence of a genetically pre-
dicted effect on outcomes when leveraging brain-derived gene
expression. For instance, the genetically predicted effects between
KIFC2, NSF and TRIOBP with intelligence appeared to depend on
using expression data from the brain tissue, despite the roughly
30-fold increase in the sample size with whole blood. Further-
more, we identified other genes that provided much stronger
evidence of association using brain tissue in comparison with
whole blood. This included genes such as SLC12A5, which showed
evidence of a genetically predicted effect on depression and neu-
roticism (P = 7.13 × 10−10 and P = 2.10 × 10−9 respectively), as well
as PCDHA8, which provided evidence of genetically predicted
effect on schizophrenia risk (P = 6.04 × 10−6). All these loci have
been shown to have a role in neuronal maintenance and neuro-
transmitter release (see details in Table 1).

We also found evidence suggesting that both gene expression
and DNA methylation may be involved along the causal pathway
between the genetic variant and trait variation at nine of the
83 associated loci. These findings build upon previous research
that has harnessed QTL datasets from the brain tissue (24,25),
suggesting a coordinated system of effects between the regulatory
elements (e.g. transcription factors) and gene transcription, which
is consistent with causality. These loci included SLC25A12, where

a PPA of 0.96 suggested that genetic variation here influences
proximal DNA methylation, SLC25A12 expression and neuroti-
cism risk. This gene encodes a calcium-binding solute carrier in
the inner mitochondrial membrane, which is essential for energy
homeostasis (26). Polymorphisms in the SLC25A12 gene have been
shown to strongly associate with autism in candidate gene studies
(27–30). Furthermore, its expression has been associated with
neurite outgrowth and is upregulated in the prefrontal cortex
of autistic individuals (31). Although we did not study autism,
neuroticism and autism are genetically (32) and phenotypically
correlated (33,34).

Phenome-wide investigations of the genes identified using
brain tissue provide indications of possible pleiotropic effects,
which may suggest that therapeutically targetting them could
be detrimental to other health outcomes. For example, FURIN,
whose expression was linked with schizophrenia risk (P =
1.05 × 10−7), was also associated with traits such as high blood
pressure and diastolic blood pressure but with the opposite
direction of effect. In contrast, we did not find evidence of
potential adverse effects for potentially novel targets, such as
SLC12A5 (depression, P = 7.13 × 10−10), NMB (bipolar disorder,
P = 1.70 × 10−6) and PRSS36 (Alzheimer’s disease, P = 7.30 × 10−8),
deeming them potentially promising and worthwhile druggable
loci. Moreover, we identified evidence to support previously
implicated targets, such as CLCN3 (schizophrenia, P = 5.99 × 10−7),
which have been reported to play a role in the control of
glutamatergic transmission (35). As with all analyses in this study,
however, these genes are merely examples to highlight potentially
translatable opportunities from our findings (more examples are
provided in Supplementary Material).

A previous study by Qi et al. (36) reported that the genetic effects
at the top cis-eQTLs and mQTLs are highly correlated between
independent brain and blood samples (r2 = 0.7 and r2 = 0.78,
respectively), supporting the use of whole blood as a proxy for
gene discovery efforts in brain-related traits. We integrated whole
blood-derived expression data from eQTLGen with the GWAS
summary statistics of examined traits to prioritize potential
candidates which we may have been underpowered to detect in
brain tissue. This analysis identified 37 candidate loci for future
follow-up once larger samples of brain tissue are available. Whilst
these findings support the utility of whole blood as proxy for more
pertinent tissue-types, our analyses also uncovered evidence
suggesting that various genetically predicted effects may still be
overlooked by not using brain tissue data (∼40%). This therefore
supports future endeavours aiming to derive molecular datasets
using brain tissue in larger sample sizes. Subsequently, this will
reduce false positives rates to which smaller sample sizes may be
prone to as well as validate findings such as those in our study.
That said, whole blood may still be a useful proxy when sufficient
samples of brain tissue data are not accessible. Genes identified
in this study such as SLC12A5 and NSF are such examples where
whole blood appeared to be a valid proxy in our study, given
that findings from GTEx suggest that they are expressed much
more in brain tissue compared with whole blood (Supplementary
Material, Figs S1 and S2).

In terms of future work, we performed our analysis instrument-
ing gene expression with cis-variants as trans-effects may be more
prone to horizontal pleiotropy. The small variance explained by
individual trans-eQTL/mQTL necessitates larger sample sizes for
their identification and use in MR analyses (37). Furthermore, the
lack of full summary data for the mQTL data poses a limitation
for the multiple trait colocalization analysis. Our findings
therefore prioritize these loci for future evaluations by epigenetic
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Table 1. Function and previous literature on genes mentioned in the discussion

Gene name Putative biological function and previous transcriptome-wide studies Current study

CLCN3 Studies (18,35) using expression data in adult brain tissue from the
dorsolateral prefrontal cortex of the CMC (35) showed that genetic
variants encoding CLCN3 are upregulated by schizophrenia risk allele.
CLCN3 is a brain-expressed chloride ion channel, implicated in
controlling fast excitatory glutamatergic transmission (65). CLCN3−/−

mice show neurological symptoms such as blindness, motor
coordination deficits and spontaneous hyperlocomotion as well
progressive degeneration of the retina, hippocampus and ileal mucosa
(66).

DNA methylation and expression of CLCN3
associated with a higher risk of schizophrenia
(β: 0.28, se = 0.06, P = 5.99 × 10−7 in brain tissue)

FURIN (paired
basic amino acid
cleaving
enzyme)

Previous eQTL studies have shown the expression of FURIN to be
associated with the risk of schizophrenia (67,68). One of these studies
(68) integrated genetic associations from schizophrenia GWAS and brain
eQTL from 193 normal human subjects, using different approaches such
as Sherlock, summary MR, DAPPLE, Prix Fixe and NetWAS. The other
study (67) performed this analysis using the summary MR package, only
using brain tissue samples from the CMC (N = 467). A study showed that
altering expression of FURIN changed neurodevelopment in zebrafish,
and knockdown of FURIN in human progenitor cells resulted in
abnormal migration (35). FURIN processes precursor proteins to mature
forms, including brain-derived neurotrophic factor (BDNF), whose
downregulation has been associated with a higher risk of schizophrenia
(69).

Expression of FURIN associated with risk of
schizophrenia (β: −0.25, se = 0.05,
P = 1.05 × 10−7 in brain tissue)

KIFC2 KIFC2 was implicated in genetically predicted intelligence through eQTL
mapping in two different studies (17,70). The KIFC gene encodes
C-terminal kinesin-related motor protein that has been found to be
specifically expressed in adult neurons in mice and has been shown to
be involved in microtubule-dependent retrograde axonal transport in
dendrites (71).

Expression of KIFC2 associated with
intelligence (β: −0.05, se = 0.01, P = 9.93 × 10−8

in brain tissue)

NMB NMB encodes a family of bombesin-like peptides which are mainly
expressed in the hypothalamus, stomach and colon (72). A study using
summary MR integrating their GWAS summary statistics (73) findings
with eQTL data from the dorsolateral prefrontal cortex (35) and whole
blood (6), showed that genetic variants encoding NMB are upregulated by
the bipolar risk allele.

Expression of NMB associated with bipolar
disease (β: 0.30, se = 0.06, P = 1.70 × 10−6 in
brain tissue)

NSF The most recent genome-wide meta-analysis for intelligence (17)
implicated NSF in predicting intelligence using methods such as
SNP-based genome-wide association test, gene-based genome-wide
association test (using aggregate effect of all SNPs in a gene) and eQTL
mapping. The NSF gene encodes ATPase N-ethylmaleimide-sensitive
factor, which plays an important role in vesicle fusion events and in
regulating neurotransmitter release kinetics (74).

Expression of NSF associated with intelligence
(β: 0.05, se = 0.01, P = 1.70 × 10−8 in brain tissue)

PCDHA8 A study (16) which applied multiple trait colocalization to identify
regulatory effects at GWAS risk loci for schizophrenia identified a shared
causal variant affecting the risk of schizophrenia through DNA
methylation and expression of PCDHA8. This study used methylation
data from postmortem tissue of the dorsolateral prefrontal cortex of
non-psychiatric control donors (N = 121), gene expression data from
dorsolateral prefrontal cortex of patients in a case-control study
collected by the CMC sample (48) and the schizophrenia GWAS by Ripke
et al. (75). PCDHA8 was associated with schizophrenia risk which is a
member of the protocadherin family of genes that are involved in the
establishment and maintenance of neuronal connections in the brain
(76).

Expression of PCDHA8 associated with the risk
of schizophrenia (β: 0.11, se = 0.02,
P = 6.04 × 10−6 in brain tissue)

PRSS36 (serine
protease 36)

PRSS36 has been implicated via eQTL association in the hippocampus,
which is highly affected early in Alzheimer’s disease. Furthermore, a
summary-based tissue-specific transcriptome-wide association study
(77) using a factor polygenic QTL analysis, jointly modelling gene
expression across tissues and individuals, found brain-specific
expression of PRSS36 to be associated with Alzheimer’s disease.

Expression of PRSS36 associated with risk of
Alzheimer’s disease (β: −0.02, se = 0.003,
P = 7.30 × 10−8 in brain tissue)

Continued

studies to determine whether a disruption to transcription bind-
ing sites or chromatin compaction has downstream implications
for neurological trait variation. For ADHD, we may have lacked the
power to identify many disease-associated loci due to the small

sample of the corresponding GWAS. Due to modest sample sizes
for current molecular datasets, largely attributed to the cost of
sequencing arrays, we are unable to robustly delineate the causal
sequence of events between molecular traits and outcomes. For

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/32/6/885/6106231 by London School of H
ygiene & Tropical M

edicine user on 14 M
ay 2023



Human Molecular Genetics, 2023, Vol. 32, No. 6 | 891

Table 1. Continued

Gene name Putative biological function and previous transcriptome-wide studies Current study

SLC12A5 A previous integrative analysis using a different brain eQTL and mQTL
dataset found that the expression of the SLC12A5 colocalized the risk of
neuroticism (78). Furthermore, it has been reported to increase the risk
of other brain-related disorders, such as epilepsy (79). Changes in
SLC12A5 expression were not identified as conferring risk to MDD in a
Sherlock analysis (80), integrating the genetic associations from a MDD
GWAS (42) and brain eQTL dataset (46). The SLC12A5 gene encodes a
neuron-specific transmembrane cotransporter (81), which plays a role in
mediating fast synaptic inhibition.

Depression (β: 0.03, se = 0.004, P = 7.13 × 10−10).
Neuroticism (β: 0.04, se = 0.007, P = 2.10 × 10−9

in brain tissue)

SLC25A12 None of the integrative analyses (78,82) have identified methylation or
expression of SLC25A12 to affect risk of neuroticism. SLC25A12 encodes
a calcium-binding solute carrier in the inner mitochondrial membrane
that is essential for energy homeostasis (26).

DNA methylation and expression of SLC25A12
associated with neuroticism score (β: 0.06,
se = 0.01, P = 6.42 × 10−6 in brain tissue)

TRIOBP-1 A GWAS study (17) which performed functional annotation of top hits
for intelligence identified a SNP nearest to the TRIOBP gene.
Furthermore, TRIOBP contained three exonic non-synonymous variants
associated with intelligence. TRIOBP has also been identified in
gene-based association analyses of brain volumetric phenotypes (83).
TRIOBP encodes proteins with a role in neural tissue development and
controlling cytoskeleton organization, cell motility and cell growth (84).

Expression associated with intelligence (β:
0.03, se = 0.01, P = 3.59 × 10−8 in brain tissue)

Abbreviations: MDD, major depressive disorder; qTL, quantitative trait locus.

example, it is plausible in our study that the outcome may have
an effect on DNA methylation and/or gene regulation rather than
the converse direction of effect as evaluated in our framework.

Furthermore, although the integration of various biological
datasets in many situations can help prioritize genes responsible
for disease risk, it is difficult to isolate the causal gene(s) due
to the mechanistic co-regulation of genes, where the expression
of two or more genes is correlated due to their regulation by
the same eQTL (i.e. mechanistic co-regulation). Moreover, co-
regulation may imply that the genes are involved in the same
pathway, making it plausible that multiple genes play a causal
role. Although genetic colocalization analyses can mitigate the
likelihood of false positives due to linkage structure at the loci,
functional studies are required to definitively rule out horizontal
pleiotropy as a potential explanation for our results. Conducting
phenome-wide association studies in other tissues may be useful
in identifying pleiotropic signals not confined to brain tissue. Like-
wise, applying our framework using tissue-specific protein QTL
should prove useful in terms of identifying evidence potentially
overlooked by eQTL (38). Lastly, there are limitations in using
MR, such as the presence of non-transmitted genetic effects [3,
4] known to violate the independence assumption of MR [5].
Future developments in family studies may aid in disentangling
transmitted environmental effects from those of genetic origin.

Our findings emphasize the importance of leveraging molecu-
lar datasets derived from biologically relevant tissues to develop
insight into the causal pathway for trait-associated variants. Our
results provide a prioritized list of candidate genes which future
studies can investigate to better characterize the biological mech-
anisms which influence the neurological traits and risk of psychi-
atric disorders.

Materials and Methods
Data sources
GWAS summary data
We obtained the beta coefficient (log odds ratio), standard error,
effect allele, alternate allele, effect allele frequency and sample

size from the summary statistics of eight independent GWAS
for the following brain-related diseases/traits: Alzheimer’s dis-
ease (Ncases = 71 880), ADHD (Ncases = 20 183) (39), bipolar disorder
(Ncases = 20 129) (40), depression (Ncases = 170 756) (41,42), insomnia
(Ncases = 208 716) (43), intelligence (N = 279 930) (17), neuroticism
(score) (N = 374 317) (44) and schizophrenia (Ncases = 33 426) (40).
As the GWAS summary statistics for intelligence by Savage et al.
(17) have been conditioned on socioeconomic status (SES), we also
include the effect estimates of identified genes from a GWAS
of fluid intelligence score without adjustment for SES in Sup-
plementary Material. Details on GWAS datasets are described in
Supplementary Material, Table S1.

Brain tissue-derived quantitative trait loci data
We obtained eQTL summary data from a meta-analysis (neff = 1194)
of GTEx brain (n = ∼233) (45), Common Mind Consortium (CMC)
(n = 467) (35) and Religious Orders Study and Memory Aging
Project (ROSMAP) (n = 494) (46) undertaken by Qi et al. Only SNPs
within 1 Mb distance from each probe (n = 28 538) were available
(cis-QTLs). Additionally, from Qi et al. (36), we extracted mQTL
summary statistics from a meta-analysis of three brain-derived
datasets: brain cortical region from ROSMAP study (nind = 468,
nprobe = 420 103, nsnp = 5 million) (36); fetal brain (nind = 166,
nprobe = 26 840, nsnp = 0.3 million) (47) and frontal cortex region
(nind = 526, nprobe = 138 917, nsnp = 1.5 million) (48) (Supplementary
Material, Table S2). DNAm levels in all these studies were based
on the Illumina Human Methylation 450 K array. In ROSMAP, only
SNPs within 5 kb of each DNA methylation probe were available.
In the Hannon et al. data, only SNPs within 500 kb distance from
each probe and with P < 1.0 × 10−10 were available. In the Jaffe
et al. data, only SNPs within 20 Kb distance from each probe and
FDR < 0.1 were available. In the CMC sample, 209 participants
had a diagnosis of schizophrenia, whilst 288 in ROSMAP had a
diagnosis of Alzheimer’s disease.

Whole blood-derived eQTL data
We obtained eQTL data from a large-scale meta-analysis (6)
in non-transformed peripheral blood samples (N = 31 684) from
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Figure 4. Bi-directional phenome-wide association plots depicting MR results between brain-derived gene expression and over 700 different traits and
outcomes for (A) FURIN, (B) SLC12A5 and (C) NMB. Points are coloured and clustered based on the subcategories of traits.

37 cohorts (Supplementary Material, Table S2). Data from the
eQTLGen consortium include association summary statistics
for 10 023 016 SNPs and 19 251 genes (resource accessed on 18
October 2018). Cis-eQTLs were defined based on a distance less
than 1 Mb from their associated genes probe. Several of these
cohorts included participants with cardiovascular disease or/and
psychiatric disorders (Supplementary Material, Table S2). Further
details are available at https://www.eqtlgen.org/.

Statistical analysis
Brain-derived gene expression analysis
Linkage disequilibrium clumping was undertaken with PLINK
using r2 < 0.01 and based on a reference panel of European
individuals from the 1000 genomes phase 3 project (49). When we
were only able to instrument a gene’s expression using a single
independent eQTL, the Wald ratio method was used to estimate
the MR effects (50). When two or more independent eQTL were
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available for MR analyses, we used the inverse variance weighted
(IVW) method (51). Single SNP MR analyses may be prone to
higher false discovery rates due to the linkage disequilibrium
between the causal eQTL at a locus and a separate but correlated
variant responsible for changes in trait variation. As such, results
which survived multiple testing comparisons based on single SNP
analyses were evaluated using genetic colocalization to discern
whether the effects were attributed to the same underlying
variant. This was assessed using the ‘coloc’ R package (52)
where a PPA > 0.8 was used as the evidence of colocalization.
Effects which survived multiple testing (Bonferroni-corrected
threshold of P < 0.05/number of tests) were carried through to
subsequent downstream analyses. We also compared the genes
identified in our study for schizophrenia to those identified in two
transcriptome-wide association studies (3,18) (Supplementary
Material, Table S6).

Detecting shared aetiology between traits and brain region
enrichment analysis
To examine potential shared aetiology between the eight
traits, we investigated how the genetically predicted effects of
identified genes for these traits clustered based on Euclidean
distance matrix computation using the R package ‘dist’ (53).
A heatmap to visualize these clusters was generated using
the package ‘pheatmap’ (54). Enrichment analyses for clusters
of genes associated with the same trait were evaluated using
the MAGMA approach (55), which was undertaken as part of
the FUMA platform (56). Genes of interest were tested against
19 283 protein-coding gene sets obtained from MsigDB (i.e.
hallmark gene, sets, positional gene sets, curated gene sets, motif
gene sets, computational gene sets, GO gene sets, oncogenic
signatures and immunologic signatures) and WikiPathways,
using hypergeometric tests (56). Using data from GTEx v7 (45),
we assessed whether there was evidence of gene expression
enrichment clustering in specific regions of the brain.

A comparison between brain-derived gene expression
effects and those identified using whole blood
We repeated our analysis pipeline using eQTL derived from
eQTLGen in whole blood to compare the effect estimates between
brain and blood-derived analyses. This allowed to highlight effects
which were much stronger in brain-derived tissue, particularly
given the discrepancy in sample sizes (n = 1194 in brain and
n = 31 684 in blood). A threshold of P < 0.05 was used as a heuristic
in this analysis to highlight associations with a strong evidence
of differential expression in either brain or blood.

Multiple trait colocalization analysis using brain-derived
DNA methylation effects
We used multiple trait colocalization to discern whether there was
evidence that DNA methylation, gene expression and cognitive
or psychological trait of interest are all influenced by the same
causal variant at each loci investigated. A PPA > 0.8 was used as
evidence of genetic colocalization, this time using the ‘moloc’ R
package (16). Analyses were run multiple times to investigate the
DNA methylation at CpG sites within 100 kb distance of gene
coordinates. For loci where there were two or more independent
eQTLs based on linkage disequilibrium clumping, we evaluated
each signal in turn by conditioning out separate effects using
GCTA-COJO (57).

Phenome-wide analysis
We undertook hypothesis-free analyses of genes identified in our
primary analysis using brain eQTL data to elucidate pleiotropic
effects. A Bonferroni-corrected threshold of P < 7.14 × 10−5 (i.e.
0.05/700 traits) was used as a heuristic to highlight putative
pleiotropic effects for target genes, provided they were druggable
based on previous evidence as described in the study by Leyden
et al. (58). Briefly, this comprised of a curated list obtained from
four data-driven drug discovery endeavours, which evaluated
whether the product of protein-coding genes could be altered
using targeted therapeutics (59–62). These findings were derived
to flag the possible adverse side effects as well as the multi-
purposing potential of therapeutic interventions of these genes.

Supplementary Material
Supplementary Material is available at HMG online.

Data Availability
All GWAS datasets on primary outcomes analyzed in this study
are available publicly as described in Supplementary Material,
Table S1. Analyses were conducted using R (version 3.3.1)
unless stated otherwise. MR analyses were undertaken using the
‘TwoSampleMR’ package (63) where all the outcomes analyzed in
our phenome-wide association analyses are available. Plots were
generated using the ‘ggplot2’ package (64).
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