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The impact of introduction of the 10-valent
pneumococcal conjugate vaccine on pneu-
mococcal carriage in Nigeria

Aishatu L. Adamu 1,2,3 , J. Ojal 1,2, Isa A. Abubakar3, Kofo A. Odeyemi4,
Musa M. Bello3, Christy A. N. Okoromah5, Boniface Karia1, Angela Karani1,
Donald.Akech1, Victor Inem4, J. AnthonyG.Scott1,2,7 & IfedayoM.O.Adetifa1,2,5,6,7

Pneumococcal conjugate vaccines (PCVs) protect against invasive pneumo-
coccal disease (IPD) among vaccinees. However, at population level, this
protection is driven by indirect effects. PCVs prevent nasopharyngeal acqui-
sition of vaccine-serotype (VT) pneumococci, reducing onward transmission.
Each disease episode is preceded by infection from a carrier, so vaccine
impacts on carriage provide a minimum estimate of disease reduction in set-
tings lacking expensive IPD surveillance. We documented carriage prevalence
and vaccine coverage in two settings in Nigeria annually (2016–2020) follow-
ing PCV10 introduction in 2016. Among 4,684 rural participants, VT carriage
prevalence fell from 21 to 12% as childhood (<5 years) vaccine coverage rose
from 7 to 84%. Among 2,135 urban participants, VT carriage prevalence fell
from 16 to 9% as uptake rose from 15 to 94%. Within these ranges, carriage
prevalence declined with uptake. Increasing PCV10 coverage reduced pneu-
mococcal infection at all ages, implying at least a comparable reduction in IPD.

In 2015, pneumococcal disease was estimated to cause ~300,000
deaths globally among children aged 1–59 months. Over 50% of these
deaths occurred in Africa, and Nigeria alone accounted for nearly
50,000 of these pneumococcal deaths1. Between 2014 and 2016, in
three geographically distinct phases, Nigeria introduced the 10-valent
Pneumococcal Conjugate Vaccine (PCV10) in a three-dose schedule for
infants aged 6, 10 and 14 weeks, without a catch-up campaign.
Although PCV is the most expensive vaccine programme in the
Nigerian portfolio, the country could not evaluate the impact of the
vaccine programme on invasive disease or pneumonia due to lack of
surveillance data.

Every episode of pneumococcal disease is preceded by infection
from another infected person, normally a nasopharyngeal carrier2.
Young children are the main reservoirs for carriage and have the
highest number of effective contacts3,4. Consequently, a reduction in

carriage prevalence among young children is likely to reduce onward
transmission and the incidence of disease proportionately across the
population. Among vaccinated children, PCVs provide direct protec-
tion against both acquiring carriage and progressing to invasive dis-
ease following carriage of vaccine-serotypes (VTs)2. At the population
level, PCVs provide indirect protection, regardless of vaccine status, by
reducing everyone’s exposure to new infections from VTs. This indir-
ect effect is driven by the direct protection against carriage among
vaccinees5,6. As vaccine coverage increases, VT carriage prevalence
declines linearly due to direct protection among vaccinees and non-
linearly due to indirect protection from the consequences of reduced
VT transmission in the whole population2,5.

In real-world settings, the indirect effects of PCVs account for
most of the vaccine programme impact2,7. Consequently, some coun-
tries have tailored their PCV schedules tomaximise indirect effects of a
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booster dose at the expense of marginal direct effects of additional
primary doses in infancy. For example, in the UK, population protec-
tion is being achieved with only a single dose in infancy and a booster
dose at 12months8. A disadvantage of PCV introduction is replacement
carriage by non-vaccine serotypes (NVTs) leading, to a varying extent,
to serotype replacement disease9,10. However, in most settings, any
increase in serotype replacement disease is small compared to the
reduction in vaccine-type disease because non-vaccine types are gen-
erally less invasive10.

In the absence of robust IPD surveillance and given the strong
anticipation of indirect protection following PCV10 introduction, we
set out to evaluate the impact of the Nigerian PCV programme using
carriage prevalence as an endpoint11. In Nigeria, among children aged
<5 yearswhowere studied immediately after PCV10 introduction, from
a rural and an urban setting, VT pneumococci accounted for 52 and
64% of all carriage, respectively12. We conducted annual carriage and
vaccination coverage surveys in these same two sites, for 4 years fol-
lowing PCV10 introduction. We assessed changes in the prevalence of
overall carriage (i.e. all pneumococci), and VT and NVT carriage
separately and explored the relationship between changes in vacci-
nation uptake and changes in VT carriage prevalence.

Results
Including the baseline survey, reported above12, we conducted five
annual carriage surveys in the rural and four in the urban sites (Fig. 1)
and recruited 4684 and 3653 participants, respectively. In the rural and
urban sites, the proportion of eligible residents who consented to
participate varied from 60–98% and 63–99%, respectively, across the
sampling age groups and surveys (Supplementary Fig. 1 and Supple-
mentary Table 1).

Participants in the rural site resided in larger households andmore
commonly reported living with ≥2 children aged <5 years, using solid
fuel for cooking, and having a cough or runny nose in the preceding
two weeks compared to their counterparts in the urban site (Table 1).

Carriage prevalence
Table 2 shows the crude and age-standardised carriage prevalence
stratified by survey. Among the age-standardised results, overall
pneumococcal carriage prevalence was consistently high across all
ages in all surveys at the rural site. At both sites, overall pneumococcal
carriage prevalence and NVT carriage prevalence were higher in

children aged <5 years compared to persons aged ≥5 years; VT carriage
prevalence was also higher in children aged <5 years in the baseline
surveys at both sites. The crude carriage prevalence (by sampled ages)
is also illustrated in Supplementary Fig. 2.

Changes in carriage prevalence
Overall carriage prevalence in the total population (all ages com-
bined) remained unchanged across the surveys, in both settings
(Tables 2 and 3). However, in the rural site (Table 2), overall carriage
prevalence increased significantly among persons aged ≥5 years
(χ2 test for trend, p = 0.004), and in the urban site (Table 3), overall
carriage prevalence declined significantly among children <5 years
(χ2 test for trend, p < 0.0001).

In the total population VT carriage prevalence steadily declined
from 21 to 12% (χ2 test for trend, p<0.001) in the rural site and from 16
to 9% (χ2 test for trend, p <0.001) in the urban site. In the total popu-
lationVT carriageprevalence steadily declined from21 to 12% (χ2 test for
trend, p <0.001) in the rural site and from 16 to 9% (χ2 test for trend,
p <0.001) in the urban site. Among the total population sample, there
was a significant trend for an increase in NVT carriage over the survey
years in the rural site (Chi squared test for trend p <0.001) and but not
in the urban site (Chi squared test for trend p=0.36).

For both age groups, VT carriage declined significantly across
surveys in at each site (χ2 test for trend, p < 0.001 for all 4 trends). NVT
carriage prevalence increased significantly in both age groups across
surveys but only at the rural site (χ2 test for trend, p <0.001).

Compared to the baseline survey, the adjusted age-standardised
PR for VT carriage prevalence in the final survey was 0.52 and 0.53
(Table 4) among children <5 years and older persons, respectively, in
Kumbotso (rural). The adjusted PRs were 0.31 and 0.60 among chil-
dren <5 years and older persons, respectively, in Pakoto (urban). NVT
carriage increased significantly in both age groups in Kumbotso, with
adjusted PRs of 1.34 and 1.26 in children aged <5 years and persons ≥5
years, respectively. In Pakoto, serotype replacement carriage was sig-
nificant only in those aged ≥5 years (adjusted PR 1.36, Table 4).

For children aged <5 years, the individual serotypes with the
highest age-standardised prevalence in the final surveys were 6A
(11.4%), 19F (5.5%) and 19A (5.4%), 11A (4.7%), 14, (4.4%) 16F (4.4%) and
23F (3.7%) in the rural site (Fig. 2 and Supplementary Table 2); and 19A
(7.4%), 15B (4.6%), 6B (4.0%), 19F (3.9%), and 16F (3.7%) in the urban site
(Fig. 2 and Supplementary Table 3). Among persons aged ≥5 years, in
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Fig. 1 | Timelines for surveys in the two sites. For each site, surveys were conducted around the same time. Note PCV10 coverage surveys started from 2018 onwards.
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the rural site (Supplementary Table 4), themost prevalent serotypes in
thefinal surveyswere 3, 34, 11A, 16F and 10A; in the urban site, themost
prevalent serotypes were 11A, 3, 19A, 4, 23B and 38 (Fig. 2 and Sup-
plementary Table 5).

In the rural site(Supplementary Tables 2 and 4), significantly
increased prevalence odds (final vs baseline survey) were observed for
serotypes 16F (OR 12.6) and 10A (11.6), among children aged <5 years,
and for serotypes 19A (4.4), 16F (2.9), 10A (2.4), and 37(5.0) for persons
aged ≥5 years. In the urban site (Supplementary Tables 3 and 5), NVT

replacement was significant for serotypes 19A (OR 2.3), 15B (2.6) and
16F (5.0) in children aged <5 years; therewas no significant increases in
individual NVTs among persons aged ≥5 years.

We compared the carriage prevalence of serotypes included in
different PCV formulations (Supplementary Table 7) in the final survey
among children <5 years old. The total carriage prevalences of all
serotypes contained in the Serum Institute of India 10-valent PCV (SII-
PCV), 13-valent PCV (PCV13), 15-valent PCV (PCV15) and 20-valent PCV
(PCV20) were 54%, 61%, 62% and 68%, respectively, in the rural site and
50%, 53%, 53% and 60%, respectively, in the urban site.

PCV10 vaccine coverage
We assessed the PCV10 vaccination status of 2165 children (aged <5
years) in the rural site and 1313 children in the urban site. We accepted
either written evidence of vaccination or the caregiver’s recall. The
average proportion of children for whom the caregivers had retained
their vaccination card was 70% in the rural site (52% in 2018; 77% in
2019; and 90% in 2020) and 80% in the urban site (70% in 2019 and 91%
in 2020). Figure 3A shows the annual proportions of children aged <5
years who had received at least two doses of PCV10. PCV10 coverage
(≥2 doses) increased steadily from 7% in 2016 to 84% in 2020, in the
rural site; and from 15% in 2017 to 94% in 2020, in the urban site.

Relationship between PCV10 coverage and VT carriage
Within the range of PCV10 coverage observed in children, the ecolo-
gical relationship between PCV10 coverage and the prevalence of VT
carriage (Fig. 3B) shows a lineardecline for older persons aged ≥5 years
in both settings (gradient −0.09 (95% CI −0.13 to −0.04) in Kumbotso;
−0.07 (95% CI −0.10 to −0.04) in Pakoto. For children aged <5 years, a
log-linear model had a better fit to the data (Supplementary Fig. 3)
which show a steep decline in VT carriage prevalence associatedwith a
small increase in PCV coverage towards 20% followed by slower gains
as coverage increases further.

Discussion
The aim of this study was to evaluate the introduction of a new,
expensive vaccine programme in Nigeria using an inexpensive proxy
measure of impact, vaccine-type nasopharyngeal carriage. Over five
years, in a rural setting (Kumbotso) in northernNigeria, the proportion
of children aged <5 years who were vaccinated increased from 7 to
84%. During the same period, the age-standardised population pre-
valence of VT carriage fell from 21 to 12%, giving an adjusted pre-
valence ratio of 0.52 or a VT carriage reduction of 48%. Over three
years, in an urban setting (Pakoto) in southern Nigeria, the proportion
of children vaccinated increased from 15 to 94%. During the same
period, the age-standardised population prevalence of VT carriage fell
from 16 to 9%, giving an adjusted PR of 0.34 or a reduction in carriage
of 66%. In both settings, we observed a decrease in VT carriage pre-
valence among children and older persons as vaccine coverage among
children <5 years accumulated over time. For older persons (aged ≥5
years) this relationship was approximately linear representing a
reduction in VT carriage prevalence of 1.4–1.5% for every 20% increase
in vaccine coverage among children in the same setting.

Although carriage is only a proxy, we can use it to infer the impact
of PCV10 on disease rates in these settings. A reduction in carriage
prevalence will produce a proportionate reduction in the number of
carriers each person contacts, reducing the incidence of carriage
acquisition and the incidence of all pneumococcal diseases commen-
surately. A reduction in VT carriage prevalence of 66% at all ages in
Pakoto is likely to translate into a reduction in the incidence of all VT
pneumococcal disease of at least 66% at all ages. This estimate con-
siders only the indirect effect of the programme, but it is, in itself, a
very significant public health gain. Direct effects cannot be estimated
from these surveys, but in an individually-randomised controlled trial
of PCV9 in The Gambia, vaccine efficacy against VT IPD was 77%13.

Table 1 | Background characteristics of study participants of
the carriage surveys

N (%) N (%) N (%) N (%) N (%)
Survey
1 (2016)

Survey
2 (2017)

Survey
3 (2018)

Survey
4 (2019)

Survey
5 (2020)

Kumbotso (rural)

Total sample 878 879 999 973 954

Clinical historya

Runny
nose (%)

714 (81) 681 (77) 900 (90) 843 (87) 727 (76)

Cough (%) 450 (51) 551 (63) 687 (69) 558 (57) 487 (51)

Antibiotic
use (%)

65 (7) 431 (49) 510 (51) 233 (24) 202 (21)

Household composition

Living with ≥2
aged <5
years (%)

645 (73) 469 (53) 555 (56) 619 (64) 748 (78)

Sharing bed
with ≥2 per-
sons (%)

729 (83) 704 (80) 882 (88) 795 (82) 857 (90)

Household cooking fuel

Solid fuel (%) 833 (95%) 795 (90) 959 (96) 892 (92) 850 (89)

Gas (%) 12 (1%) 19 (2) 18 (2) 38 (4) 51 (5)

Kerosene (%) 16 (2%) 18 (2) 5 (0.5) 66 (0.6) 3 (0.3)

Others (%) 17 (2%) 47 (5) 17 (2) 40 (4) 46 (5)

Household sizeb

All persons,
median (IQR)

9 (7–13) 6 (3–10) 6 (4–9) 8 (6–10) 9 (7–12)

Survey
1 (2017)

Survey
2 (2018)

Survey
3 (2019)

Survey
4 (2020)

Pakoto (urban)

Total sample 924 943 932 854 N/A

Clinical historya

Runny nose (%) 238 (26) 163 (17) 106 (11) 51 (6) N/A

Cough (%) 216 (23) 122 (13) 75 (8) 32 (4) N/A

Antibiotic
use (%)

145 (16) 76 (8) 39 (4) 10 (1%) N/A

Household composition

Living with ≥2
aged <5
years (%)

95 (10) 81 (9) 69 (7) 53 (6) N/A

Sharing bed
with ≥2 per-
sons (%)

185 (20) 212 (23) 121 (13) 121 (14) N/A

Household cooking fuel

Solid fuel (%) 58 (6) 38 (4) 35 (4) 11 (1) N/A

Gas (%) 326 (35) 584 (62) 713 (76) 775 (91) N/A

Kerosene (%) 515 (56) 238 (25) 155 (17) 29 (3) N/A

Others (%) 25 (3) 83 (8) 29 (3) 39(5) N/A

Household sizeb

All persons,
median (IQR)

4 (3–5) 5 (4–6) 5 (4–6) 5 (4–6) N/A

aHistory of any of the symptoms in the 2 weeks preceding the interview date.
bIncluding the participant.
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Therefore, even among the 34% of new pneumococcal infections that
have not been potentially averted by indirect effects in Pakoto, the risk
of developing disease will still be attenuated (by 77%) if the infected
child has been vaccinated with PCV10, as most have.

This concept of additional gains from indirect vaccine effects is
substantiated by the results from other settings. In Kilifi, Kenya, for
example, a 74% decline in VT carriage prevalence among children aged
<5 yearswas associatedwith a 92%decline in VT IPD in this age group14.
In Sao Paulo, Brazil, a 91% decline in VT carriage prevalence among
toddlers aged 12–23 months was associated with an 83–87% decline in
VT IPD in children across the whole age range <5 years15,16.

The decline in VT carriage prevalence in Nigeriawas accompanied
by an increase in NVT carriage prevalence among children in Kum-
botso (rural) and among older persons in both settings, with adjusted
prevalence ratios of 1.26–1.34. In Kenya, the 74% decline in VT carriage
prevalence was accompanied by a 1.71-fold increase in NVT carriage
prevalence, though there was no significant rise in serotype replace-
ment disease14. Non-vaccine serotypes with high frequency in the final
surveys in children <5 years were 6A, 19A, 11A, 15B, and 16F. The first
two are contained in the alternative PCV10 manufactured by Serum
Institute of India, and 11A and 15B are contained in the PCV20 recently
licensed for adult use17,18. This NVT distribution suggests that if

Table 2 | Crude and age-standardiseda prevalence (and 95% CI) of overall, non-vaccine serotype (NVT) and vaccine serotype
(VT) pneumococcal carriage stratified by age group and survey in the rural site

Overall carriage VT carriage NVT carriage

Survey N Crude Age-standardised Crude Age-standardised Crude Age-standardised

Kumbotso (rural)

All ages

Survey 1 (2016) 872 74 (71–77) 68 (65–71) 26 (22–28) 21 (18–24) 48 (45–52) 47 (43–51)

Survey 2 (2017) 879 74 (71–77) 71 (67–74) 18 (16–21) 16 (14–19) 55 (52–59) 54 (51–58)

Survey 3 (2018) 999 77 (74–80) 77 (74–79) 16 (14–19) 16 (13–18) 60 (57–64) 61 (58–64)

Survey 4 (2019) 976 77 (74–79) 74 (71–77) 15 (13–17) 13 (11–15) 61 (59–65) 60 (57–64)

Survey 5 (2020) 953 78 (75–80) 74 (71–77) 14 (12–17) 12 (10–14) 63 (61–67) 61 (58–65)

<5 years

Survey 1 (2016) 296 92 (88–94) 91 (88–94) 42 (37–48) 41 (35–46) 50 (44–56) 50 (45–56)

Survey 2 (2017) 264 93 (89–95) 92 (89–96) 30 (25–36) 30 (25–36) 63 (57–68) 62 (56–68)

Survey 3 (2018) 304 93 (89–95) 92 (90–95) 25 (21–30) 25 (20–30) 68 (62–73) 67 (62–72)

Survey 4 (2019) 365 91 (88–94) 91 (88–94) 21 (17–26) 22 (17–26) 70 (65–75) 69 (64–74)

Survey 5 (2020) 333 89 (85–92) 88 (84–91) 22 (18–27) 22 (18–27) 67 (61–72) 65 (60–71)

>5 years

Survey 1 (2016) 576 65 (60–68) 62 (58–66) 17 (14–20) 16 (13–19) 48 (43–52) 46 (42–50)

Survey 2 (2017) 615 66 (62–64) 65 (61–69) 13 (11–16) 13 (10–16) 53 (49–56) 52 (48–56)

Survey 3 (2018) 695 70 (67–74) 73 (69–76) 13 (10–15) 13 (11–16) 57 (54–61) 59 (55–63)

Survey 4 (2019) 611 68 (64–71) 69 (66–73) 11 (9–14) 11 (9–14) 57 (53–61) 58 (54–62)

Survey 5 (2020) 620 72 (69–76) 70 (66–74) 10 (8–13) 9 (7–11) 62 (58–66) 61 (57–64)
aStandardised using the respective population structures of the two study sites taken from population models of the Nigerian census37.

Table 3 | Crude and age-standardiseda prevalence of overall, non-vaccine serotype (NVT) and vaccine serotype (VT) pneu-
mococcal carriage stratified by age group and survey in the urban site

Overall carriage VT carriage NVT carriage

Survey N Crude Age-standardised Crude Age-standardised Crude Age-standardised

Pakoto (urban)

All ages

Survey 1 (2017) 919 50 (47–53) 40 (36–43) 22 (19–24) 16 (13–18) 29 (25–31) 24 (21–27)

Survey 2 (2018) 941 52 (49–55) 51 (47–54) 15 (13–18) 14 (12–17) 37 (34–40) 36 (33–39)

Survey 3 (2019) 932 47 (44–50) 44 (41–48) 12 (10–14) 11 (9–14) 35 (32–38) 33 (30–36)

Survey 4 (2020) 851 40 (36–43) 39 (36–42) 9 (7–11) 9 (6–10) 31 (28–34) 31 (28–34)

<5 years

Survey 1 (2017) 335 78 (73–82) 77 (72–81) 38 (33–43) 36 (31–42) 40 (35–45) 40 (35–45)

Survey 2 (2018) 244 70 (64–76) 70 (65–76) 23 (18–29) 23 (18–29) 47 (41–53) 47 (41–54)

Survey 3 (2019) 243 70 (64–75) 69 (63–75) 19 (15–25) 19 (14–24) 51 (44–57) 50 (43–56)

Survey 4 (2020) 185 52 (45–59) 53 (46–61) 12 (8–17) 12 (7–17) 40 (33–47) 41 (34–49)

≥5 years

Survey 1 (2017) 584 34 (31–38) 32 (28–36) 13 (10–15) 12 (9–15) 22 (19–25) 20 (17–24)

Survey 2 (2018) 697 46 (42–50) 47 (43–50) 12 (10–15) 13 (10–15) 34 (30–37) 34 (30–38)

Survey 3 (2019) 689 39 (36–43) 40 (36–43) 9 (7–12) 10 (8–12) 30 (26–33) 29 (26–33)

Survey 4 (2020) 666 36 (33–40) 36 (33–39) 8 (6–10) 7 (5–9) 29 (25–32) 29 (25–32)
aStandardised using the respective population structures of the two study sites taken from population models of the Nigerian census37.
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serotype replacement disease becomes problematic, it may be con-
trolled by wider valency vaccines. However, the relevance of serotype
replacement carriage is dependent on the inherent invasiveness of the
serotypes increasing in prevalence19–21 which can only be ascertained
from linked studies of carriage and IPD14,20,22.

The study findings need to be interpreted in light of several
practical constraints. The study began more than four months after

PCV10 introduction, and at the baseline survey, an estimated 7–15% of
children aged <5 years had already been vaccinated. Had the baseline
survey pre-dated PCV10 introduction, the measured impact may
have been larger. The evaluation is a ‘before-after’ study which is sus-
ceptible to confounding by secular trends in VT carriage prevalence. It
is difficult to control for this possibility in retrospect. Nonetheless, it is
unlikely that secular trends alone could account for so large an effect

Table 4 | Prevalence ratios (PR), and 95% CI, showing changes in overall, non-vaccine serotype (NVT), and vaccine serotype
(VT) carriage stratified by age and site

Overall carriage VT carriage NVT carriage

Crude PR Adjusted age-
standardised PRa

Crude PR Adjusted age-
standardised PRa

Crude PR Adjusted age-
standardised PRa

PR for carriage in the final survey compared to the baseline surveyb

Kumbotso (rural)c

All ages 1.06 (1.00–1.11) 1.00 (0.95–1.05) 0.55 (0.45–0.67) 0.52 (0.43–0.64) 1.32 (1.22–1.44) 1.30 (1.19–1.42)

<5 years 0.97 (0.82–1.14) 0.97 (0.92–1.02) 0.52 (0.41–0.67) 0.52 (0.41–0.67) 1.34 (1.17–1.54) 1.34 (1.17–1.54)

≥5 years 1.12 (0.97–1.28) 1.06 (0.97–1.14) 0.58 (0.43–0.78) 0.53 (0.39–0.72) 1.31 (1.18–1.46) 1.26 (1.12–1.40)

Pakoto (urban)d

All ages 0.79 (0.71–0.88) 0.72 (0.65–0.80) 0.40 (0.31–0.51) 0.34 (0.26–0.45) 1.09 (0.95–1.26) 1.03 (0.89–1.20)

<5 years 0.67 (0.58–0.78) 0.68 (0.58–0.79) 0.32 (0.21–0.48) 0.31 (0.20–0.48) 1.01 (0.81–1.25) 1.02 (0.82–1.28)

≥5 years 1.05 (0.91–1.22) 1.07 (0.90–1.28) 0.61 (0.44–0.86) 0.60 (0.41–0.87) 1.30 (1.07–1.58) 1.36 (1.10–1.69)
aAdjusted for symptoms of upper respiratory tract infection in past 2 weeks, living with ≥2 children aged <5 years, and age-standardised to the respective age distribution of study sites.
bPR = prevalence ratios comparing each survey compared to the baseline (first) survey.
cFive surveys (2016–2020).
dFour surveys (2017–2020).
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Fig. 2 | Serotype-specific carriageprevalenceper survey stratifiedbyagegroup.
Distribution and ranking of serotypes in carriage (serotypes with >1 isolate) among
children aged <5 years and persons ≥5 years by vaccine-type (greyscale bars –

vaccine-serotypes, navy blue bars – non-vaccine serotypes) in the baseline and final
surveys. Note the differences in scale in graphs by age.
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size on VT carriage. The study design did, however, control for sea-
sonal variation in pneumococcal carriage23, as the surveysweredone at
the same time each year.

Vaccination coverage surveys were only introduced in 2018, and
we inferred the coverage estimates for young children prior to 2018
from the coverage results among older children. Despite random
selection and a study of adequate size, the coverage data contain
internal inconsistencies; for example, in Pakoto, the rise in coverage in
Year 3 (2019) was >40% and yet only ~20% of children aged <5 years
were eligible to be vaccinated in that year. This may implicate poor
recall of vaccination among caregivers of older children sampled in
2019. Vaccination coverage is notoriously difficult to ascertain24.
Therefore, the ecological relationship we observe between coverage
and VT carriage in older persons should be interpreted with some
caution.

For practical reasons we selected two markedly different sites to
represent the broad environmental and socio-demographic differ-
ences in Nigeria. However, we do not consider these sites to be wholly
representative of all settings in Nigeria. Households in the rural site
(Kumbotso) from northernNigeria were larger, hadmore children and
generally used solid cooking fuel. Households in the urban site
(Pakoto) from southern Nigeria were smaller, had substantially fewer
children and generally used gas and kerosene for cooking. At baseline,
VT carriage prevalence was higher in the rural setting at all ages but,
paradoxically, vaccine impact was greater in the urban setting, at least
among children <5 years old; adjusted prevalence ratios were 0.52 in
Kumbotso and 0.31 in Pakoto. This differential impact may be attri-
butable to the steeper rise in PCV10 coverage among children aged <5
years in Pakoto. Alternatively, the lower density of children in urban
households may imply a lower force of infection. A high force of
infection has been proposed as an important cause of residual VT
carriage in mature vaccine programmes in Africa25, and in Kumbotso,
VT carriage prevalence reaches its nadir at 22% in years 2019/2020,
compared to 9% in Pakoto in 2020.

Hence, the impact of the vaccineon carriage prevalence is likely to
be affected by several additional factors; the baseline serotype dis-
tribution, age-specific carriage prevalence, demography, the contact
patterns of the community, the probability of transmission at each
contact and the duration of carriage and of vaccine-induced
immunity26–28. The age structure of the vaccinated population is also
influential; for example, a catch-up campaign for children aged <5
years in Kenya elicited a 64–66% reduction in VT carriage prevalence at
all ages within six months of PCV10 introduction29. The full interaction
of these effects can only be understood within a formal framework,
such as a dynamic transmission model. Even here, the accuracy of
predicting disease depends on a clear understanding of the risk of
disease per episode of carriage for both VTs and NVTs30,31. The full
spectrum of data required to parameterise such a model is not cur-
rently available for Nigeria.

Among children, we found that VT carriage declines exponentially
with a large reduction in VT carriage prevalence observed at low levels
of increasing PCV10 uptake. In an ecological analysis in Australia, 73%
of VT-IPD cases were estimated to have been prevented by approxi-
mately 50% vaccine uptake of PCV7 [32], which lends credence to the
hypothesis that indirect effects may begin at relatively low levels of
uptake. It is also possible that our data are capturing the dynamic stage
of a complex polynomial effect, and the exponential fit works only
within the coverage range we explored. Although both direct and
indirect effects are expected in children, changes are mostly driven by
the latter, which supports the non-linear effect observed. Given that
the impact on adult carriage is entirely attributable to indirect effects,
we would expect the same function should be observed in older
people. The arithmetic decline we observed in this population is,
therefore, difficult to explain.

We restricted our study to detect a single serotype in each swab
despite abundant evidence supporting multiple serotype colonisation
in children32. The dynamics and clinical importance of multiple ser-
otypes in nasopharyngeal carriage are not fully understood19,33.
Nonetheless, sampling a single strain per child provides a valid esti-
mate of the distribution of serotypes colonising the population of
children in these areas.

The measurable impact on VT carriage reported here should
reassure immunisation policymakers and service providers in Nigeria
that, in settings with similar baseline epidemiology and comparable
vaccine coverage across the country, PCV10 is bringing about popu-
lation protection through its indirect effect. This protection is likely to
have reduced the incidence of pneumococcal disease among all ages
by 48–66%, depending on the setting. Among the majority of children
aged <5 years who have now received a course of PCV10, this indirect
effect will have been augmented by direct effects that are likely to be

Fig. 3 | Coverage of PCV10 and its relationship to VT carriage. a (top) Annual
Coverage of two doses of PCV10 among children aged < 5 years. Year 1 represents
the year of PCV10 introduction. PCV10 coverage values for Year 3 to Year 5 were
assessed directly among 817, 655 and 693 children in Kumbotso, and for Year 3 and
4 among 652 and 661 children in Pakoto. PCV10 coverage values for Year 1 and Year
2 were estimated using a birth-cohort analysis of children observed during Years
3–5 (among 2165 and 1140 children in Kumbotso, and 1,313 and 568 children in
Pakoto). Error bar = 95% confidence interval CI). b (bottom). Relationship between
Vaccine serotype (VT) carriage prevalence and PCV10 coverage. Scatter graph of
log-linear regression among children aged <5 years and linear regression among
persons ≥5 years of VT carriage prevalence against PCV10 coverage for each of the
9 surveys, stratifiedby age of carrier and shown separately for the Kumbotso (rural)
site and Pakoto (urban) site. The lines for children (aged <5 years) are exponential
fits (log-linear regression) and the lines for the older persons (age ≥5 years) are
arithmetic (linear regression). Values from the log-linear regression among children
are exponentiated and shown here on the non-log (arithmetic) scale.
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very strong. The decline in VT carriage prevalence as PCV10 coverage
increases among children <5 years suggests that, in settings with sub-
optimal coverage, efforts to improve coverage will yield significant
reductions in carriage and transmission and, therefore, disease
incidence.

Methods
Study design and participants
We conducted annual cross-sectional carriage surveys in Kumbotso,
Kano State and Pakoto, Ogun State (Fig. 1). The sites were purposively
selected to represent a rural and urban setting, respectively. We did
four surveys (2017–2020) in the rural site and three (2018–2020) in the
urban site. PCV10 was introduced in Kumbotso in July 2016 and in
Pakoto inOctober 2016with a schedule of three primary doses (3p +0)
at ages 6, 10 and 14 weeks and no booster. There was no formal catch-
up campaign for children aged ≥12 months. From 2018 onwards, we
conducted annual vaccine coverage surveys in both sites simulta-
neously with all carriage surveys. The target population for the car-
riage and vaccine coverage surveys was defined as residents living
within 10 km of the Kumbotso and Pakoto Comprehensive Primary
Health Care Centres, respectively. Baseline carriage surveys were
conducted in December 2016 (rural) and February 2017 (urban), four
to five months after PCV10 was introduced, and have already been
published12. They are included in this analysis as the referencebaseline.

Carriage surveys were seasonally restricted at each site; Novem-
ber/December for four years (2017–2020) in the rural site and Feb-
ruary/March for three years (2018–2020) in the urban site (Fig. 1).
Carriage surveys targeted all ages, and each annual sample was inde-
pendent of all other samples. PCV10 coverage surveys targeted chil-
dren aged<5 yearswhowere age-eligible to have received PCV10 at the
date of the baseline carriage survey. Each annual PCV10 coverage
sample was selected independently of prior samples.

Having selected representative study areas, we used a two-stage
sampling design. In the first stage, we selected households using
simple random sampling. To obtain a sampling frame, we conducted a
census of all households in the catchment area before each survey. We
selected separate samples of households for the carriage and PCV10
coverage surveys. If the household was known to be occupied, but
there was no one at home, we revisited it later. If the house was non-
residential, unoccupied, or empty, we chose the next household on
the list.

In the second stage of sampling for the carriage surveys, we ran-
domly selected one participant per household drawn from a specific
age-stratum. We recruited participants in ten age strata (<1, 1–2, 3–4,
5–9, 10–14, 15–19, 20–39, 40–49, 50–59, and ≥60 years), starting with
the lowest and moving upwards, from household to household, until
we had recruited one participant per age group and then we restarted
the process. If there was no participant in a particular age group in the
household or if the targeted individual declined to participate,
we selected the next age group in sequence and then looked for
the missed age group in the next household.

The baseline surveys sampled the same defined catchment areas
at all ages using a convenience sample of volunteers, recruited at the
two health centres, recruited by community outreach12. For the base-
line carriage surveys (2016/2017)12, the sample size was set at 1000
participants to achieve a desired precision; given a VT carriage pre-
valence of 22–26% in this survey, we estimated a prevalence reduction
of 50% could be detected with a power of 0.90 if the follow-up surveys
were also 1000 in size. Therefore, we targeted to recruit 100 partici-
pants in each of the ten age groups.

In the second stageof sampling for the PCV10 coverage survey,we
recruited all eligible children per selected household. A sample size of
at least 639 children per site per survey was sufficient to estimate
coverage of the second dose of PCV of 50% with a 5% precision (i.e., a
coverage of 45–55%), assuming at least two eligible children per

household, an intra-class coefficient (ICC) of 0.33 (as recommendedby
WHO34) and an 80% probability of response or participation35. Tar-
geting a vaccination coverage of 50% allowed the estimation of the
largest possible sample size required.

Procedure
Sociodemographic and clinical information was obtained from car-
riage survey participants using an interviewer-administered ques-
tionnaire. Nasopharyngeal swabbing, transport, storage and culture
were done according to WHO-recommended standards36. We col-
lected one swab specimen per participant from the posterior wall of
the nasopharynx using nylon-tipped flexible flocked swabs (FloQS-
wabs®). Swabs were transported to the laboratory within 8 h of col-
lection in skimmed milk-tryptone-glucose-glycerine (STGG) on ice
packs in a coldboxandwere stored at−80 °C to−55 °Cbefore shipping
on dry ice to the KEMRI-Wellcome Trust Research Programme
(KWTRP), Kilifi, Kenya. In Kilifi, swabs were stored at −80 °C until they
were thawed and cultured on blood agar with 5μg/ml gentamicin.

We identified pneumococci by α-haemolysis and optochin sensi-
tivity testing. For optochin-resistant isolates (zone of inhibition
<14mm diameter), we used bile solubility testing to confirm S. pneu-
moniae. For serotyping, we selected one colony per plate from the
dominant colony morphology. We identified serotypes using latex
agglutination confirmed by Quellung Reaction. For isolates with
inconclusive serotyping, we confirmed species and serotype by poly-
merase chain reaction (PCR) for autolysin (lytA) and capsular locus
genes, respectively36.

For the PCV10 coverage survey, we obtained the PCV10 vaccina-
tion status of each child in the household, including doses and dates
received from the vaccination cards or caregiver recall, through
household interviews of caregivers.

Statistical analysis
Carriage surveys. We calculated the total (all ages) and age-stratified
prevalence of overall carriage (all pneumococci), VT pneumococci,
and NVT pneumococci for each survey year. Vaccine serotypes (VT)
were those contained in the vaccine introduced locally (PCV10 – ser-
otypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F). Any other serotype,
including non-typeable isolates, was classified as NVT.We recalculated
VT prevalence for four other commercially licensed PCVs (Supple-
mentary Table 8). We standardised crude prevalence estimates to the
population age structure of Kumbotso (for rural) and Ifo and Ado-Ota
(for urban) Local Government Areas (LGAs). Thesewereobtained from
2019 population models of the 2016 Nigerian census data37.

We assessed changes in carriage prevalence across the survey
years using Chi-square test for trend. To derive prevalence ratios (PRs)
comparing the last survey with the first, we modelled carriage pre-
valence using log-binomial regression or Poisson regression with
robust standard errors when the models failed to converge. We
adjusted PRs for exposure variables independently associated with
carriage and survey year at p < 0.1 which included: living with children
aged <5 years and a history of cough and runny nose in the preceding
two weeks. We also adjusted for the stratified sampling method by
(probability) weighting age-specific PRs by the local population age
structure, as above, obtained from the Nigerian census data37. We
calculated PRs for the total population (all ages), for children aged <5
years and for persons aged ≥5 years.

Vaccination coverage surveys. The purpose of the coverage survey
was to infer population immunity, not to evaluate programme effec-
tiveness. Therefore, we estimated PCV10 coverage in each survey year
(2018–2020) as the proportion of children aged <5 years (regardless of
age-eligibility) who received two doses of PCV10 irrespective of timing
and age of receipt. In addition, because we did not conduct PCV10
coverage surveys in the early period (2016–2017), we used a birth

Article https://doi.org/10.1038/s41467-023-38277-z

Nature Communications |         (2023) 14:2666 7



cohort analysis to estimate the PCV10 coverage of children aged <5
years retrospectively from the data collected in 2018–2020.

Relationship between PCV10 coverage and VT carriage. Within the
range of vaccine coverage observed, we analysed a simple ecological
associationbetween population-level PCV10 coverage in children aged
<5 years and VT carriage, in both children aged <5 years and persons
aged ≥5 years, using linear regression. We considered a non-linear
relationship between PCV10 coverage and VT carriage using a log-
linear model and compared the fit of linear to the log-linear model
graphically. We also examined this non-linear relationship by com-
paring the models using the Akaike Information Criterion (AIC). A
lower value of AIC is a better fit model. To allow direct comparison of
AIC values from the linear and log-transformedmodel, we adjusted the
AIC of the log-linear model by adding the following quantity38:

2 × sumðlog VT carriageð ÞÞ ð1Þ
We did all the analysis separately for each site with Stata® version

15.1(College Station, TX, USA).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that data supporting the findings of this study are
available within the paper and its supplementary information files
(Supplementary Data). Additional data requests can be made to the
KEMRI-Wellcome Trust Research Programme Data Governance Com-
mittee (dgc@kemri-wellcome.org).

Code availability
Data were analysed using Stata® version 15.1 (College Station,
Texas, USA).
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