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A comparison of the genes and genesets
identified by GWAS and EWAS of fifteen
complex traits

Thomas Battram 1,2 , Tom R. Gaunt 1,2, Caroline L. Relton 1,2,
Nicholas J. Timpson 1,2 & Gibran Hemani 1,2

Identifying genomic regions pertinent to complex traits is a common goal of
genome-wide and epigenome-wide association studies (GWAS and EWAS).
GWAS identify causal genetic variants, directly or via linkage disequilibrium,
and EWAS identify variation in DNA methylation associated with a trait. While
GWAS in principle will only detect variants due to causal genes, EWAS can also
identify genes via confounding, or reverse causation. We systematically com-
pare GWAS (N > 50,000) and EWAS (N > 4500) results of 15 complex traits. We
evaluate if the genes or gene ontology terms flagged by GWAS and EWAS
overlap, and find substantial overlap for diastolic blood pressure, (gene
overlap P = 5.2 × 10−6; term overlap P =0.001). We superimpose our empirical
findings against simulated models of varying genetic and epigenetic archi-
tectures and observe that in most cases GWAS and EWAS are likely capturing
distinct genesets. Our results indicate that GWAS and EWAS are capturing
different aspects of the biology of complex traits.

Determining molecular associations with complex traits can yield
novel therapeutic interventions. Large efforts have been made to
conduct hypothesis-free searches to identify associations between
disease variation and variation in molecular features. Two popular
study designs include genome-wide association studies (GWAS) and
epigenome-wide association studies (EWAS). GWAS and EWAS identify
mechanistically distinct aspects of inter-individual genomic variation
whichmay lead them to prioritise different aspects of disease biology.
In this paper, we investigate the relationship between the results of
these two approaches.

EWAS assess the association between one facet of epigenetics,
DNA methylation (DNAm), and complex traits1–3. Often in EWAS, the
potential biological implications of differentially methylated positions
or regions (DMPs or DMRs) will be investigated further through
genomic annotations4–7. Previous studies have demonstrated a rela-
tionship betweenDNAm levels and proximal genes8,9. This observation
has lead to it being common place to map sites identified in EWAS to
nearby genes and these genes and their functions are often probed to
ascertain their relevance to the trait of interest4–7. Further, genes can

be grouped with others into “genesets” that have similar functionality
or lie within the same biological pathway. Examining over-represented
genesets may provide an insight into the molecular biology of a trait.
For example, Reese et al. (2019) performed an EWAS of asthma and
discovered the DMPs and DMRs identified mapped to genes within
relevant immunological pathways more than expected by chance5.
These genesets included endothelial nitric oxide synthase (eNOS)
signalling, the inflammasome, and nuclear factor κB (NF-κB)
signalling5. Other assessments may be made to attempt to infer bio-
logical understanding, including enrichmentofother epigeneticmarks
at the regions identified10 and follow-up experimental studies1,11.
However, using open accessdatabases to investigate tagged genes and
genesets is a simple and potentially effective approach to further
biological understanding.

GWAS often use similar approaches to EWAS to help in the dis-
covery of genomic regions related to complex traits1,12. Examples of
genetic-epigenetic equivalence are known, that is the identical, clini-
cally measurable, effects of a genetic lesion and an epigenetic change.
For example, Angelman syndromeand PraderWilli syndrome can both
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be caused by a deletion mutation or by imprinting13,14. However, the
properties of genetic variants and DNAm differ in terms of the causal
mechanisms that can give rise to trait associations, making potential
inferences from EWAS and GWAS diverge. Importantly, DNAm is
responsive to environmental stimuli, thus making associations identi-
fied in EWAS potentially attributable to forward causation (where the
DNAm level is causal for the trait), reverse causation (where the trait
influences the DNAm level) and to confounding (where one factor
influences both DNAm level and trait)2,3,15. Recent work has suggested
that there is a general trend for DNAmassociations with complex traits
beingmore likely due to confounding or reverse causation thanDNAm
itself being causal16,17. A simple theoretical model suggests that statis-
tical power in EWAS to detect associations due to reverse causation far
exceeds those due to forward causation or confounding (Supple-
mentary Information - Supplementary Note). It should be noted that
GWAS may be susceptible to confounding due to various population
phenomena such as population stratification or dynastic effects18, but
statistical adjustments are routinely applied to address this, and con-
founding is unlikely to be affecting a majority of GWAS signals, espe-
cially for clinical traits19,20.

A direct comparison between GWAS and EWAS results could
provide insight intowhat biological information EWAS are capturing. If
EWAS are highlighting a similar set of genes and genesets to GWAS, it
suggests changes in DNAm are either themselves involved in trait
aetiology or tagging molecular aetiologically relevant genomic fea-
tures. Similarly, DMPs identified as the result of confounding and
reverse causation may also highlight similar genes and genesets as
GWAS if these confounding and reverse causal pathways are similar to
the causal pathways for a trait. Regardless, in that scenario EWAS is still
identifying facets of trait aetiology. Under the circumstance that bio-
logical insights from GWAS and EWAS overlap, the efficiency of EWAS
would far outstrip that of GWAS, for example an EWAS of BMI using
around 10,000 samples identified 187 independent genomic loci17

while it required a GWAS of 330,000 samples to identify 97 indepen-
dent genomic loci21. Yet, via Mendelian randomisation analyses, Wahl
et al. (2017) provided evidence that BMI likely caused a change in
DNAm at the majority of these 187 loci.

In the event thatGWAS andEWAS arenot highlighting a similar set
of genes and genesets, it is plausible that EWASmay still be identifying
facets of trait aetiology. If DNAm mediates non-genetic effects or if
sites are mapped to genes or genesets incorrectly then overlap
between highlighted genes and genesets will not be guaranteed even if

DNAm changes identified are aetiologically relevant. When DNAm
mediates the effect of genetic variants distal to their genomic position
on complex traits the genes identified by GWAS and EWAS will also
differ, but the genesets would likely overlap. A lack of overlap could
also reflect that associations in EWAS may be driven by confounding
and reverse causation. Despite the caveats mentioned, it is plausible
that in the absence of confounding and reverse causation genes and
genesets identified in EWAS would overlap more than expected by
chance with those identified by GWAS. The extent to which this
expectation holds is explored in more detail in the “Discussion”.

In this paper, we determine the overlap between genes and gen-
esets identified by GWAS and EWAS of 15 complex traits and we use
these results to infer genetic and epigenetic architectures that are
likely to be consistent with our results. We do not attempt to infer the
causal structure of DNAm-trait associations directly as has been
attempted through methods such as Mendelian randomisation, but is
often difficult due to being unable to prove the vertical pleiotropy
assumption16,22. Rather, we adopt a different approach by simulating a
range of causal systems to explore potential interpretations of the
patterns of overlap between genomic features reported by GWAS and
EWAS. For convenience, we denote the terms “causal gene” as a gene
that influences the trait of interest and an “associated gene” as a gene
that correlates with the trait of interest, without necessarily being
causal (Fig. 1).

Results
Study data
We selected traits for which EWAS had been conducted with over
4500 samples, had more than 10 associations at P < 1 × 10−7 and for
which corresponding well-powered GWAS summary data were avail-
able. Suitable traits were identified using The EWAS Catalogue23 on
2021-12-20. Traits and study data information is in Table 1.

Genomic position overlap
Wedivided the genome into 5591 non-overlapping 500 kb regions that
each contained at least one probe from the Illumina 450k array, and
mapped GWAS and EWAS signals for each trait to these regions (see
“Methods” for more details). For each trait, the number of regions that
were identifiedbyone study type andnot theotherwas higher than the
number of overlapping regions (Fig. 2). Further, the magnitude of the
greatest GWAS effect estimate in each region had little ability to pre-
dict whether or not a DNAm site was likely to be identified in the same
region (AUC range = 0.43–0.61, Supplementary Fig. 1).

Assessing power to detect shared annotations between GWAS
and EWAS
Genomic function and trait biology are not divided into discrete
500 kb genomic chunks, thus GWAS and EWAS could still be identi-
fying similar facets of trait biology without identifying the same
genomic regions.

We sought to assess whether the genes and genesets identified
overlapped more than expected by chance, thus genomic positions
were mapped to genes and genes to genesets (details in “Methods”).
Overlap between genes identified was assessed using Fisher’s exact
test. Two methods for testing overlap between genesets were con-
sidered, one simplymapped genes to genesets and used Fisher’s exact
test in the sameway as assessing the overlap between identified genes.
The other generated ‘enrichment scores’ for each geneset and asses-
sed the correlation between the geneset enrichment scores across
studies.

In the case that genetic influences on disease aremediated via cis-
acting DNAm levels, or other proximal regulatory factors that in turn
correlate with proximal DNAm levels, if all DMPs associatedwith a trait
were on thepathway fromSNP todisease, thenGWASandEWASwould
be identifying genes from the exact same geneset (i.e., genes that

CpG-G CpG-GTrait
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Fig. 1 | A diagram of causal and associated genes. A causal gene is one where the
product of that gene affects the trait of interest and in this study, we are assuming
that SNPs identified in relation to a trait will affect these genes or tag SNPs that do
(SNP-G). An associated gene is one where the product of that gene correlates with
the trait of interest, but may not affect it. In this study, we are assuming that CpG
sites identified in relation to a trait will map to these genes (CpG-G). The diagram
shows how a gene productmay be correlated with a trait: 1. by affecting the trait, 2.
by sharing a common causewith the trait (confounding), 3. by being affected by the
trait (reverse causation). A genesetmay be composedof causal and associated gene
products. U = confounder.
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caused changes in the trait). We note that there are ways in which
EWASmight be identifying aetiologically relevant signal without being
at the same loci as GWAS signal, which is discussed in detail in the
Introduction and Discussion. The more DMPs that are identified
because of confounding effects or reverse causation, the smaller the
chance of overlap, assuming that causal and responsive genesets are
independent (more on this in the “Discussion”). In a scenario where no
DMPs are causing phenotypic changes then any overlap in genes and

genesets found would be entirely attributable to chance. We ran
simulations to assess which scenarios the enrichment and annotation
methods had power to detect whether there was more overlap than
expected by chance. Power was also assessed across different anno-
tation methods. Box 1 shows the steps involved in this simulation.

Under each of a range of genetic and epigenetic architectures and
study sizes, the ability to infer whether EWAS were identifying, at least
in part, the same set of genes as GWAS (‘causal genes’) compared to a

Table 1 | Study data

Trait EWAS author EWAS PMID EWAS n GWAS author GWAS PMID GWAS n

Body mass index Wahl S 2800240417 10,238 Yengo L 3012484265 681,275

Current versus never smoking Joehanes R 2765144475 9389 Liu M 3064325176 632,802

Former versus never smoking Joehanes R 2765144475 13,474 Elsworth B NA 424,960

Alcohol consumption per day Liu C 2784315177 9643 Liu M 3064325176 335,394

C-reactive protein Ligthart S 2795569778 8863 Ligthart S 3038839979 204,402

Educational attainment Karlsson Linner R 2908677080 10,767 Lee JJ 3003839681 766,345

Fasting glucose Liu J 3119717376 4808 Manning AK 2258122882 58,074

Fasting insulin Liu J 3119717376 4808 Manning AK 2258122882 51,750

Systolic blood pressure Richard MA 2919872350 17,010 Evangelou E 3022465383 757,601

Diastolic blood pressure Richard MA 2919872350 17,010 Evangelou E 3022465383 757,601

Birthweight Kupers L 3101546184 8825 Horikoshi M 2768069485 143,677

Cognitive abilities: digit test Marioni R 2931165386 4794 Lee JJ 3003839681 257,841

FEV1 Imboden M 3107308187 5370 Elsworth B NA 421,986

eGFR Schlosser P 3488741788 33,605 Stanzick KJ 3427238189 961,734

Urate Tin A 3488738952 17,996 Tin A 3157852890 278,592

PMID PubMed ID, author = first author on the publication. References can be found after each PMID.
Where GWAS PMID = NA, the GWAS were conducted as part of a UK Biobank GWAS pipeline within the University of Bristol’s Integrative Epidemiology Unit and can be found on the OpenGWAS
Project website (see “Methods” for more).
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Fig. 2 | Overlap between genomic positions identified by corresponding GWAS
and EWAS. The genome was divided into 500kb regions. Those where no probes
on the HM450 array measured DNAm were excluded from the analysis. This left
5591 regions. Regions were counted as being identified by a GWAS if one or more
SNPs in that region associated with the trait and as being identified by an EWAS if
one or more CpGs in that region associated with the trait. Neither = no GWAS or
EWAS sites identified in the region, GWAS = GWAS sites only were identified,

EWAS = EWAS sites only were identified, Both = Both GWAS and EWAS sites were
identified, ACalcohol consumptionper day, BWbirthweight, BMI bodymass index,
Cog cognitive ability (digit test), CRP c-reactive protein, CsNs current smokers vs
never smokers, DBP diastolic blood pressure, EA educational attainment, Gluc
fasting glucose, Ins fasting insulin, FEV1 forced expiratory volume in one second,
FsNs former smokers vs never smokers, SBP systolic blood pressure.
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random set of genes (‘associated genes’) was tested. Performance
improved as the study sample sizes and the proportion of DMPs that
were causal increased (Fig. 3 and Supplementary Fig. 3). Performance
of the overlap tests tended to increase as the number of identified
genes increased, but this parameter was largely inconsequential when
the proportion of DMPs that were causal was low (Supplementary
Fig. 3). Performance was similar across annotation methods and
between methods attempting to assess geneset overlap, with assess-
ment of gene overlap performing better (Fig. 3). Overall there was
more power to detect overlap in genes than overlap in genesets.
Between the geneset methods, there was more power to detect a
correlation between enrichment scores than direct overlap in gene-
sets. Therefore, gene overlap and correlation between geneset
enrichment scores were taken forward for the empirical analyses.
Assigning genes to GO terms24,25 to use as genesets had more power,
than assigning genes to genesets derived from the KEGG26–28,
Reactome29 or protein–protein interaction database from
EpiGraphDB30, when assessing overlapbetween these genesets (Fig. 3).
Therefore, GO terms were taken forward and used as the geneset
annotations in the empirical analyses.

Gene and geneset overlap between GWAS and EWAS
For the 15 traits used, the number of genes identified by GWAS and
EWAS that overlapped was low and for three traits no genes identified
by the studies overlapped (Table 2). The number of genesets that
overlapped was higher, peaking at 1264 for GWAS and EWAS of eGFR
(Table 3).

The number of overlapping genes identified was no more than
expected by chance for 11 of 15 traits, but for systolic blood pressure,
diastolic blood pressure, eGFR, and urate the overlap between
observed geneswas greater than expected (6, 9, 24, and 12more genes
overlapped than expectedby chance respectively) (Table 2). Therewas
also evidence that correlation between enrichment scores of the GO
terms identified by GWAS and EWAS of diastolic blood pressure was
greater than expected by chance (P = 0.0013), but there was little
evidence for this across the other traits, including systolic blood
pressure, egfr, and urate (Table 3).

There were 56 GO term genesets that were commonly enriched
(FDR <0.1) for both the GWAS and EWAS traits. All of these genesets
were relatively broad (contained over 100 genes). There were 261
genesets of size <100 genes that did not overlap between studies of
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Fig. 3 | Power to detect overlap between genes and genesets identified by
corresponding GWAS and EWAS. Simulations were set up as illustrated in Box 1
and simulations iterated over each set of parameters 1000 times. EWAS power is
equivalent to the proportion of associated genes (Assoc genes) EWAS is detecting.
In the scenario where Assoc genes = 500, EWAS power = 1, and the proportion of
causal EWAS genes = 0.05, the EWAS is detecting 500 genes, 25 of which are causal.
Panel A show results when the proportion of causal EWAS genes = 0.05 and panel
B show results when the proportion of causal EWAS genes = 1. The area under
receiver operator curves (AUC) was used to estimate the ability to distinguish

between results generated when GWAS and EWASwere sampling, in part, from the
same set of causal genes and results generated when EWAS was sampling random
genes from the genome. Error bars represent the 95% confidence intervals of the
AUC estimates. The header of each set indicates the proportion of genes identified
by the simulated EWAS thatwere set to be causal. ORg = assessing overlap of genes,
ORp = assessing overlap of genesets, ρp = assessing correlation between geneset
enrichment scores. GO gene ontology, PPI protein–protein interaction database
from EpiGraphDB. This is a summary of the results, full results can be found in
Supplementary Fig. 3.
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corresponding traits, for example, the genes identified by the GWASof
alcohol consumption were enriched for the “ethanol catabolism”

pathway (geneset size = 12 genes), however none of the genes identi-
fied by the EWAS were present in this pathway.

Understanding architecture from geneset overlap
Given observations of numbers of genesets discovered and geneset
overlap for a particular trait, we next asked ifwe can impose bounds on
the likely genetic and epigenetic architectures of that trait. To do this
we assumeddiscoveredgenes andgenesets represented some fraction
of total genes and genesets, and then re-sampled GWAS and EWAS
results to ascertain architectures that generated overlap scores
matching the empirical results.

For the simulations, three sets of genes were linked to each trait:
genes identified by the GWAS (known GWAS genes), genes identified
by the EWAS (knownEWAS genes), and a random set of genes sampled
from the total set of Ensembl gene IDs (excluding the genes identified
by the GWAS and EWAS).

Having generated the GWAS and EWAS genes, enrichment of GO
terms was performed and the correlation between enrichment scores
across all the terms was estimated. A schematic of the methods for
these simulations can be found in Supplementary Fig. 4 and it is
described in full in the “Methods”.

From the simulations, we determined, that for many traits the
overlapbetween causal and associatedgenes is unlikely tobehigh if the
total number of genes still to discover for these traits is low. However,

Table 2 | Overlap of genes identified by EWAS and GWAS

Trait n EWAS genes n GWAS genes Gene overlap obs OR exp overlap exp OR p diff

Body mass index 232 3228 23 2.0 39 3.04 5.2e−02

Current versus never smoking 1933 312 27 2.9 39 3.42 3.2e−01

Former versus never smoking 282 323 9 6.4 7 3.43 2.2e−02

Alcohol consumption per day 361 190 3 2.6 3 2.44 9.1e−01

C-reactive protein 189 302 3 3.2 1 0.91 1.2e−01

Educational attainment 25 1594 1 1.5 3 3.00 4.3e−01

Fasting glucose 15 50 0 0.0 0 0.00 1.0e+00

Fasting insulin 36 5 0 0.0 0 0.00 1.0e+00

Systolic blood pressure 99 3210 18 4.0 12 2.13 9.4e−03

Diastolic blood pressure 56 3586 15 5.8 6 1.87 5.2e−06

Birthweight 894 162 6 2.6 7 2.64 9.1e−01

Cognitive abilities: digit test 26 875 0 0.0 1 2.44 4.2e−01

FEV1 51 1664 4 3.0 3 1.92 3.9e−01

eGFR 256 2611 44 4.7 20 1.81 2.1e−10

Urate 251 666 16 6.3 4 1.28 3.5e−11

exp = expected, obs = observed, fev1 = forced expiratory volume in 1 s.
odds ratios (ORs) can be interpreted as the odds of an gene being identified by EWAS and a GWAS over the odds of a gene being identified by an EWAS but not by a GWAS.
exp OR = the mean OR after repeating the analysis 1000 times, randomly sampling EWAS genes equal to the number identified in the empirical analysis.
p diff = P value from a two-sided Z-test assessing the difference between the observed and expected OR.

Table 3 | Correlation of geneset enrichment scores between EWAS and GWAS

trait n EWAS genes n GWAS genes Geneset overlap obs cor exp cor p diff

Body mass index 232 3,228 1,243 0.187 0.20 0.2287

Current versus never smoking 1933 312 1,053 0.200 0.22 0.0343

Former versus never smoking 282 323 661 0.298 0.30 0.9936

Alcohol consumption per day 361 190 562 0.259 0.27 0.5753

C-reactive protein 189 302 600 0.265 0.26 0.7983

Educational attainment 25 1,594 215 0.105 0.13 0.1729

Fasting glucose 15 50 50 0.153 0.16 0.7723

Fasting insulin 36 5 19 0.093 0.12 0.4400

Systolic blood pressure 99 3,210 631 0.145 0.14 0.7679

Diastolic blood pressure 56 3586 594 0.160 0.11 0.0013

Birthweight 894 162 683 0.224 0.24 0.2476

Cognitive abilities: digit test 26 875 198 0.164 0.14 0.2064

FEV1 51 1,664 403 0.158 0.14 0.1948

eGFR 256 2611 1,264 0.233 0.20 0.0332

Urate 251 666 877 0.306 0.27 0.0414

For each geneset, oddsof studygenes being in the geneset divided by the oddsof the study genes not being in thegeneset were assessed and correlation between these odds ratios are given here.
exp cor = the mean correlation between odds ratios after repeating the analysis 1000 times, randomly sampling EWAS genes equal to the number identified in the empirical analysis.
geneset overlap indicates the number of gene ontology terms that map to both genes identified by the EWAS and GWAS.
p diff = P value from a two-sided Z-test assessing the difference between the observed and expected correlations.
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for some traits such as systolic blood pressure, diastolic blood pres-
sure, and former vs. never smoking the simulations suggest the
observed degree of overlap corresponds to a high overall overlap
between causal and associated genes. It should be noted though, that
the correlation of enrichment scores across different scenarios varied
little for each trait, making inference difficult. The results from the
analysis of former vs. never smoking and C-reactive protein (repre-
senting simulations for the other traits) are shown in Fig. 4. Supple-
mentary Figure 5 shows the results for theother traits.Of 405 scenarios,
there was some evidence against 124 reflecting reality (FDR<0.05).
Across the traits, the scenarios that were least likely tended to be when
the number of genes yet to discover was low, and the overlap between
causal and associated genes was high, except for former vs. never
smoking, highlighting architecture differences between traits.

Overlap of non-corresponding GWAS and EWAS
We next hypothesised that EWAS of one trait might actually relate
more closely to GWAS of another trait. For example, if DNAm changes
related to BMI were mediating the effect of BMI on changes in

metabolites, then one could expect to see greater correspondence in
identified genes and genesets with GWAS of those metabolites.

To test if this was the case for any of the EWAS in this study we
extracted 1886 GWAS from the OpenGWAS Project31,32. The criteria for
inclusion can be found in theMethods. The GWAS extracted consisted
of a variety of traits, including diseases like breast cancer, anthropo-
metric measures, measures of cognitive performance, metabolite
measures. All traits can be found in Supplementary Data 1. For each
GWAS and the 15 EWAS, enrichment scores were calculated using
geneset enrichment analysis, and correlation between the enrichment
scores was calculated, as in previous analyses.

Across all pairwise comparisons, correlations between enrich-
ment scores ranged from −0.014 to 1 and had a mean of 0.12 (Sup-
plementary Fig. 6). The mean correlation between GWAS traits and
EWAS traits was 0.26, which was higher than the correlations between
just GWAS traits (0.12). Amongst justGWAS results, therewas evidence
that 14652 pairwise enrichment score correlations were greater than
the the mean (FDR <0.05). However, there was little evidence that any
pairwise correlations between enrichment scores derived from GWAS
and EWAS were greater than the mean correlation (FDR >0.05).

This suggests that the signal from EWAS is not capturing aspects
of any specific factor that impacts the aetiology of anyof the 15 traits of
interest.

Discussion
Several EWAS papers have compared their findings with those of the
corresponding trait GWAS6,33–36, but it is unknown if any overlap that
might occur should be attributed to shared underlying architectures
or if it occurs by chance. In this study, the genes identified by 11 of 15
large EWAS (N > 4500) were not identified in their corresponding
GWAS any more than expected by chance, and only one EWAS iden-
tified genesets overlapping with the corresponding GWAS more than
expected by chance. Simulations suggested the other EWAS could still
be identifying aspects of trait aetiology but given EWAS likely have
greater power to detect reverse causal associations (Supplementary
Information) andprior evidence for EWASfindings not being causal16,17,
it seems likelymostDMPs identified aredue reverse causation. Further
simulations suggested that the overlap between genes that impact
phenotypic variation and those that might be identified through con-
founded analyses or because of reverse causation is likely to be low
amongst EWAS of most traits. However, if the number of genes still to
identify inGWASand EWAS is high (e.g., ifwehave discovered less than
one quarter so far), it is possible that the number of associated genes
discovered by EWAS that are causal could be high (over 50%).

Overlap expected
GWAS identifies the effects of genetic variation on complex traits.
These effects are less likely to be confounded than associations esti-
mated between observational phenotypes37,38. Thus, one would expect
overlap between genes and genesets identified by GWAS and EWAS of
the same trait if the DMPs identified are also of aetiological relevance.
Assuming mapping of DMPs and SNPs to genes is correct, the genes
identifed by EWAS may cause variation in complex traits without
overlapping with genes identified in GWAS. Under the scenario where
the effect of a SNP on a complex trait ismediated by a distal DNAmsite
(or the gene that site is tagging), GWAS and EWAS may identify genes
that do not overlap, but that are along the same causal pathway from
genome to complex trait. One plausible mechanism for which trans-
methylation quantitative trait loci (trans-meQTLs; that is SNPs that
effect DNAm at distal sites)may act is via transcription factors. A trans-
meQTLmay influence the transcriptionof a nearby transcription factor
then the transcription factor could cause a change in DNAm at distal
sites. One study has provided evidence this may occur frequently39. In
this scenario the genes proximal to the identified SNP and DMPwould
lie on the same causal pathway and sowould likely be part of the same

Fig. 4 | Simulations to understand the likely number of genes still to identify in
GWAS and EWASofC-reactive protein and smoking (former vs. never smokers)
under different trait architectures. Simulations were set up as illustrated in
Supplementary Fig. 4. Correlation of geneset enrichment scores from empirical
data (Table 3), is shown as a red dashed line. Box plots show the range of enrich-
ment score correlations from 1000 simulations using the parameters indicated.
The number of causal and associated genes, as well as the number of associated
genes that were causal were varied. Already discovered EWAS genes were added to
the pool of associated genes and already discovered GWAS genes were added to
the pool of causal genes. The proportion of simulated associated genes that were
causal is shown on the X-axis. The number of causal genes and associated genes
were equal in each simulation. Scenarios which lie close to the empirical result (red
dashed line) are more likely to reflect the true underlying number of genes related
to a trait and the true overlap between the causal and associated genes. Where
there is evidence that on average the geneset enrichment scores from a simulation
scenario are different to the empirical enrichment score (FDR <0.05, z-test for
difference), the box outline is grey, otherwise it is black. The centre of the boxplots
are the median, the bounds of the box represent the interquartile range (IQR), the
upper whisker represents either the minimum of (1.5 multiplied by the IQR) + the
75%percentile and themaximumvalue, the lowerwhisker represents themaximum
of 25% percentile − (1.5 multiplied by the IQR) and the maximum value. Values that
fall outside the whiskers are marked as points.
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genesets. This is likely not the only plausible mechanism of trans-
meQTL function though. DNAmmay alsomediate non-genetic effects,
allowing for causal DMPs to be identified at genes not near pertinent
genetic variation. However, there is strong evidence that the majority
of DNAm sites have a heritable component16,40,41. As such any effect of
DNAm on a trait could be influenced by genetic variation. If DNAm is
influenced by proximal genetic variants then the discovery of the same
gene(s) will be a function of GWAS, EWAS power and the heritability of
the DNAm sites. If only distal genetic variants influence the DNAm site,
then the overlap of genesets is a function of regulatory mechanisms
and power. These two issues, and likely others, may introduce some
noise into the results. However, there is overwhelming evidence that
confounding and reverse causation are pervasive across observational
epidemiology42–45 as well as within EWAS3,46. This suggests that the
evidence that GWAS and EWAS are not identifying any more over-
lapping genes and genesets than expected by chance, is likely due to
identified DMPs mostly being the result of reverse causation or con-
founding, and that these different mechanisms have relatively distinct
biological functions.

As the simulations showed, even if an EWAS identifies DMPs that
cause a change in the trait, if themajority of DMPs identified are due to
confounding or reverse causation then the overlap will be indis-
tinguishable to the overlap expected by chance. Thus, our empirical
results do not preclude the possibility that some DMPs identified by
the EWAS are involved in trait aetiology.

For body mass index, work has already suggested the trait causes
changes in DNAm rather than vice versa17, supporting our findings
here. Further, one study suggested DNAm changes capture different
components of body mass index variance than genetic variation47 and
another estimated the percentage of trait variance captured by DNAm
was 76% when accounting for genotype48.

Simulations involving empirical data from former vs. never
smoking GWAS and EWAS suggested that overlap between causal and
associated genes was high. This is surprising for two reasons. Firstly, it
differs from the current vs. never smoking results, suggesting distinct
genetic or epigenetic architectures of those traits. Secondly, there is
evidence that for DNAm changes identified in relation to smoking,
smoking is likely causing DNAm variation and not vice versa49.
Although the statistical tests suggested that it was unlikely that the
proportion of causal and associated genes is 0.1 or lower, it should be
noted that the absolute difference between simulated results and
empirical results were subtle. Another consideration is that ‘former
smoking status’ is a progression measure, which makes the former vs
never smoking variable susceptible to collider bias. Throughout this
work we have not investigated how collider bias might impact gene or
geneses enrichment, and it is possible that this has an impact on the
results.

It’s also potentially unexpected that genes identified by EWAS
diastolic and systolic blood pressure overlapped more with genes
identified by their respective GWAS than expected by chance. In the
study that conducted the EWAS of both blood pressure phenotypes,
the authors conducted bi-directional Mendelian randomisation ana-
lyses to improve causal inference of DNAm changes identified in the
EWAS50. They presented evidence that variation in blood pressure
causes changes in DNAm at 4 sites, and evidence for the reverse at one
site. However, not all CpG sites could be instrumented and not all sites
identified in the EWAS were taken forward for the Mendelian rando-
misation analyses, withmore analyses being run to ascertain the effect
of blood pressure on DNAm than the reverse. Further, for the sites
taken forward, none had a large number of genetic instruments,
making evaluation of pleiotropy difficult. Therefore, it is plausible that
some of the sites identified in their EWAS are tagging causal genes and
this could not be tested by the authors. In addition to this, a GWAS of
blood pressure found that identified SNPs were enriched for associa-
tion with DNAm at CpG sites within 1Mb51. Similar, to our study, this

work also suggests that DNAm variation is tagging causal blood pres-
sure loci, without formally testing whether DNAm changes affect the
trait directly.

The latest urate EWAS is potentially in contrast with other EWAS,
whereby the authors find evidence that five CpGs are associated with
urate at the locuswith the strongestGWAS signal, SLC2A9, and that two
of these CpGs mediate some of the effect genetic variants have on
urate levels52. This makes it unsurprising that we found strong evi-
dence the overlap between genes in urate EWAS and GWAS is greater
than expected by chance.

If EWAS is discovering someDMPs that influence genes that cause
changes in the trait of interest, study power is the limiting factor for
detecting overlap. For traits with a weak polygenic architecture (few
genes explain most of the heritability), such as gene expression53,54,
discovering almost total overlap might be possible even with modest
sample sizes.

Little overlap with any GWAS
Little correlation was found between geneset enrichment scores for
GWAS and EWAS of different traits. In a scenario where DNAm was
capturing a specific facet of a trait one might expect a correlation
between EWAS of the original trait and GWAS of that facet. For
example, if changes in DNAm associated with smoking were mostly
responsible for the effect of smoking on lung cancer then one would
expect to observe an overlap between the genes and pathways iden-
tified by an EWAS of smoking and GWAS of lung cancer. This specific
example has been examined before, with studies suggesting either
methylation at two sites (of over 1000 smoking-related sites) mediate
over 30% of the effect of smoking on lung cancer55 or that there is little
evidence for a causal effect of DNAm on lung cancer11. The results of
either study suggest most sites will not mediate the effect of smoking
on lung cancer and thus there would be little overlap between genes
and pathways of an EWAS of smoking and a GWAS of lung cancer. This
is corroborated by the results of our study: there was little evidence
that correlation of pathway enrichment scores between the two, 0.15,
was greater than the mean correlation enrichment score across all
GWAS-GWAS and GWAS-EWAS correlations, 0.12 (FDR>0.05).

It is important to note that overlap between GWAS and EWAS
genesetsmaybemissed even if thismediationmodel is true for various
traits. As shown in the simulations, detecting this overlap depends on
individual studypower aswell as theunderlying genetic architectureof
the trait. There are further things that may limit the detection of
geneset overlap that are discussed in the limitations below.

Information gained from EWAS
The fact that genes and pathways identified from some GWAS and
EWAS of the same traits are seemingly very separate suggests we are
gaining new information from EWAS, even if interpreting the new
information may be difficult. Key to interpreting the EWAS results
would be to try and disentangle whether the EWAS results are likely
due to confounding. Interpreting EWAS can also be difficult due to cell
type heterogeneity and the complexity of mechanisms whichmediate
DNAm changes3,8,56–58. Due to these difficulties, it should not be con-
cluded that EWAS definitely help increase our biological under-
standing of complex traits. Rather, DNAm is capturing different
biological information. Regardless of biological insight gained, the
translational impact may still be gleaned from DNAm studies; DNAm
may aid diagnoses by acting as a reliable biomarker or could help
predict various health outcomes2.

There are also benefits to understanding the biological con-
sequences of a trait, something that EWAS might help identify and
GWAS will not (at least not directly). This does depend on further
research to understand how changes in DNAm downstream to com-
plex trait variation is relevant to human health. Further, establishing
where exactly DNAm may lie on the causal pathway may be difficult
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and work is ongoing to discover this for various traits22. Use of causal
inference methods such as Mendelian randomisation37,38,59 have been
applied, but this still comes with various caveats22,59. Some studies also
try and confirm effects experimentally1,11 and use previous biological
knowledge of the trait to try and understand EWAS results.

However, some of the biological knowledge of complex traits
relating to genes and pathways comes fromGWAS of those traits. This
study suggests that EWAS is unlikely to identify many genes proximal
to genetic variation pertinent to the trait of interest and further the
genesets are unlikely to overlap with those identified in GWAS.
Therefore, comparison of EWAS results to those of a corresponding
GWAS is unlikely to yield much insight. This maymake inference from
EWAS difficult, yet it seems likely the interpretability of DNAm studies
will continue to improve over the coming years, as understanding the
underlying epigenetic architecture of complex traits could still provide
translational benefits2.

Limitations
As discussed, detecting gene or pathway overlap depends on the
genetic and DNAm architecture of the trait. Here only 15 traits, two of
which are smoking behaviour traits and two of which are blood pres-
sure traits, have been studied. Further, these traits are mostly expo-
sures that precede disease. This means the results cannot be
generalised to all or even the majority of complex traits or diseases.
These analyses could be repeated by setting a less restrictive sample
size limit, but it was felt that would make the results less reliable and
impossible inmany circumstanceswhere too fewDNAmsites hadbeen
discovered by EWAS. For each of the EWAS used here, and for the
majority of high-powered EWAS, the number of DNAm sites measured
is small compared to the total number in the genome (less than 5%).
Unfortunately, imputation is not available for inferring DNAm levels,
and therefore much of the genome covered by the millions of genetic
variants that can be measured (and inferred) using genotyping arrays
will have beenmissed by the arrays used for the EWAS in this study. As
sample sizes increase and technologies measuring more DNAm sites
become more common, it would be interesting to repeat the analysis.

Often in GWAS and EWAS, prioritisation of SNPs and DMPs iden-
tified occurs before functionalmapping. Prioritisation for both studies
may be informed by prior knowledge of the trait, prior understanding
of molecular biology, predicted consequences of observed variation
(for example Ensembl’s Variant Effect Predictor60), replication of
findings or a number of other methods. In this study, we did not per-
form any prioritisation (besides the conventional P value threshold
cutoffs) and thus may have increased the amount of “noise” in the
signal taken forward for functional annotation. Unfortunately, this
extra prioritisation of sites is not tractable when comparing many
different association studies and may reduce power to detect any
overlap between genes and pathways. However, added noise is unli-
kely to prevent the detection of true overlap if that true overlap is
substantial, as shown by our simulations (Fig. 3).

The nearest gene, by chromosomal position, to a DMP or SNP is
not necessarily the gene of interest. SNPs may have effects on genes
distal to their position61 and the correlation between genetic variants
inflates associations of variants proximal to the true causal variant,
which may map to unrelated genes. Further, the correlation structure
inDNAmdatamay induce associations between complex traits at a site
far from where variation in DNAm causes complex trait changes61.
Therefore, themapping of DMPs and SNPs to genes in this study could
likely be improved. The “correct”method for this mapping has not yet
been established though and even though some tools are available
(such as eQTL studies), there are caveats to them too62,63. Further,
recent work by Mountjoy et al. suggests that the best predictor for
causal gene(s) is the distance between the gene(s) and GWAS signal64.

Our understanding of molecular pathways is not complete and
thus attributing genes to certain pathways or functionalities may be

erroneous. However, the results remained consistent across four dif-
ferent methods that annotate genes to pathway, suggesting differ-
ences in mapping genes to genesets should not impact our
conclusions.

Biological information gained from GWAS and EWAS may be
defined in various ways and depending on the interpretation of this,
one could alter methods used to extract biological information.
However, first exploring the genomic regions identified and then
mapping these to potentially relevant biological pathways is common
amongst GWAS and EWAS4–7,65–67 and provided a simple way to com-
pare the information from the two study types.

A simple explanation of EWAS genes not overlapping with GWAS
genes is that they are not causal. However, it is possible that GWAS
genes are limited to a small subset of causal genes in which functional
variation is evolutionarily permissible. Because epigenetic variation
canbemodified by the environment it’s possible that causal genes that
are unavailable to GWAS through lack of functional variation are
identified through EWAS. Such a scenario would reduce the power to
detect overlap using the simulation approaches that we employed
here. Another scenario is that the causal nature of DNA methyatlion is
similarly multi-factorial as the genetic component, which would entail
that with low power EWAS hits aremore likely to be reverse causal, but
forward causal EWAS hits (that by necessity have small effects) will
only be detected when sample sizes and genomic coverage rival that
of GWAS.

Overall, this study provides evidence that, for 13 of 15 complex
traits, there is little overlap between genes and genesets identified by
GWAS and EWAS of the same trait. Given the differences in properties
betweenDNAmand genetic variants the results presented in this study
may apply to other traits, but this is still to be confirmed.Where lack of
overlapbetweengenes andgenesets is found, it suggests EWASmaybe
providing new biological information, however, the interpretability of
EWAS is still in question and with current methods it is hard to
determine if EWAS results are attributable to confounding or reverse
causation. Regardless, as datasets grow and causal inference methods
improvewe are likely to be better able to interpret the role of DNAm in
complex traits.

Methods
Samples
EWAS summary data and GWAS summary data were extracted from
The EWAS Catalog23 and the IEU OpenGWAS Project31,32 respectively.
For traits that had multiple EWAS with a sample size of greater than
4500, the EWAS with the largest sample size was used, the same was
applied to the GWAS. The sample size, first authors, and PubMed IDs
can be found in Table 1.

All GWAS were conducted in European populations. EWAS were
conducted in European populations only, or were part of trans-
ancestry meta-analyses, that contained European individuals and het-
erogeneity analyses were conducted within each study showing high
correlation of associations between populations.

Overlapping genomic regions
Each chromosomewas divided into 500Kb blocks, each block that did
not contain a DNAm site measured by the Illumina Infinium Human-
Methylation450 BeadChip was removed. For each trait, the genome
blocks that had one or more EWAS sites and one or more GWAS sites
that reached the set p-value threshold were tallied. The p-value
threshold was set at a lenient P < 1 × 10−5 or if it was lower, the max-
imum reported p-value in the EWAS of that trait.

Mapping sites to genes and genesets
The R package biomaRt68 was used to extract Ensembl gene ids along
with chromosome positions of all genes. The package was also used to
extract gene ontology (GO) terms24,25 and map these to the Ensembl
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gene ids. The R package limma69 was used to extract KEGG terms26–28

and these were mapped to Ensembl gene ids.
Protein–protein interaction data, which includes data from

StringDB70 and IntAct71, and terms from the Reactome database29 were
extracted from EpiGraphDB30.

CpG sites associated with traits at P < 1 × 10−7 and SNPs associated
with traits at P < 5 × 10−8 were taken forward to be mapped to genes.
The correlation structure present in genetic and DNAm data makes it
difficult to ascertain the precise site driving any signal observed. Thus,
no filtering based on correlation between variants or CpG sites was
performed.

For each CpG site identified by EWAS and used in the analyses, it
was mapped to the nearest gene (Ensembl gene ID) by chromosome
position. If a CpG site lay within the bounds of multiple genes then the
site was mapped to all of those genes. Therefore, one CpG site could
map to multiple genes and one gene could map to multiple CpG sites.
The same gene mapping approach was used for variants identified in
GWAS. The positions of CpG sites were extracted using the R package
meffil72.

Methods for assessing overlap
To test the overlap between genes identified we generated ORs as so

ORgene�overlap =
oddsEG
oddsEnG

ð1Þ

whereoddsEG is the odds of a gene being identified in EWAS andGWAS
and oddsEnG is the odds of a gene being identified in EWAS, but not
in GWAS.

Genesmaymap to genesets by chance. Often in GWAS and EWAS,
enrichment for any genesets are tested by assessingwhether the genes
identified are more common in any geneset than expected by chance.
We tested mapping genes to genesets and directly assessing overlap
like in Eq. (1) against correlation between enrichment scores for each
geneset. Enrichment scores are also odds ratios generated in a similar
way to those in Eq. (1):

ORgeneset�enrichment =
oddsGS
oddsnGS

ð2Þ

where oddsGS is the odds of a gene being annotated to the geneset and
oddsnGS is the odds of a gene not being annotated to the geneset.

Formany genesets, genes annotated to that geneset would not be
identified in anGWASor EWAS, causing the enrichment score formany
genesets to be zero. Further, some genesets would have very large
enrichment scores. This made the relationship between enrichment
scores generated for the EWAS results and the enrichment scores
generated for the GWAS non-normal. Thus, to examine the relation-
ship between the two, we generated Spearman’s rank correlation
coefficients for the logarithm of enrichment scores.

Testing power to detect overlap
Simulations were setup as seen in Box 1.

The simulations iterated over each set of parameters 1000 times.
For each iteration, two sets of genes, GWAS genes and EWAS genes,
were sampled from the total set of genes. Each iteration assessed gene
overlap and geneset overlap between these gene sets using Eq. (1).
Equation (2) was used to generate enrichment scores for each gene set
and then the correlation between the enrichment scores was assessed.

GWAS genes were only sampled from a set of “causal” genes and a
proportion of EWAS genes were sampled from the set of causal genes
and the rest from the set of “associated” genes. Receiver operator
characteristic (ROC) curves were generated to assess whether it was
possible to predict the gene overlap, geneset overlap, and enrichment
score correlations for scenarios where the proportion of causal EWAS

geneswas greater than zero from the scenariowhere the proportionof
causal EWAS genes was zero. The area under these ROC curves were
then calculated in each case.

These simulations were repeated for each geneset and
protein–protein interaction database. The protein–protein interaction
and Reactome databases all map only to protein coding genes,
whereas the GO and KEGG databases map to all Ensembl gene IDs. To
compare predictive ability across annotation methods, we excluded
Ensembl gene IDs that were not protein coding genes. We also com-
pared the performance of models when mapping to all Ensembl gene
IDs and protein coding genes only for GO and KEGG databases. (Sup-
plementary Fig. 7).

From these simulations, the best method to assess geneset over-
lap, and the best geneset annotationmethod to assess that overlap and
the scenarios (i.e., study power required, proportion of DMPs that
need to be causal) in which we expect to be able to detect overlap
could be deduced.

Empirical analyses
The SNPs identified in the GWAS at P < 5 × 10−8 and the DNAm sites
identified in the EWAS at P < 1 × 10−7 and were mapped to genes and
genesets. Overlap between genes was calculated as before (Eq. (1)),
enrichment scores were generated and correlated as described above.

Expected overlap was generated to compare to the observed
results. For this, randompositionswere chosen in the genome equal to
the number of DMPs identified in the EWAS. These genes were then
used to assess gene and geneset overlap as for the observed results.
This was repeated 1000 times to generate a null distribution and a
z-test was used to assess whether there was a difference between the
observed results and the mean of the null distribution.

There is a correlation structure within DNAm data73, we hypo-
thesised this might contribute to the observed results. By randomly
sampling positions from the genome, a new correlation structure
between DMPs would be generated. We tested whether sampling the
genome in a non-random way, aimed at keeping some correlation
structure, altered the results. To generate new data whilst attempting
to keep a similar correlation structure, a fixed number of base pairs
were added to each of the DMPs identified in the empirical analysis
such that

BPnew = BPdmp + maxðGÞ× I ð3Þ

whereBPnew=basepair of new site, BPdmp =basepairofDMP identified
in the EWAS, G = gene size, and I = iteration.

If BPnew extended beyond the end of a chromosome the position
movedonto thenext chromosome,withpositionsmovingpast the end
of chromosome 22, being moved to chromosome 1.

Overall, the overlap between genes and genesets identified by
GWAS and EWAS did not change across null distribution sampling
methods.

Understanding architecture from geneset overlap
Simulations were setup as illustrated in Supplementary Fig. 4. Here we
describe simulations for a single trait. These were repeated for all
traits. Firstly, SNPs identified in the GWAS and DMPs identified in the
EWAS were mapped to genes as described above in ‘Empirical ana-
lyses’. Genes were then randomly sampled from Ensembl gene IDs and
were assigned as either “causal,” meaning changes in that gene effect
variation in the phenotype across individuals, or “associated,”meaning
changes in the gene are associated with the phenotype across indivi-
duals, but the nature of association is not known. The empirically
identified (or “known”) GWAS genes (KGG) were added to the list of
causal genes and the empirically identified (or “known”) EWAS genes
(KEG) were added to the list of associated genes. These combined set
of causal and associated genes can be thought of as all the genes
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related to the trait of interest. A number of genes, equal to the number
of KGG (NKGG), was sampled from the causal set of genes and assigned
tobe the “GWASgenes” in the simulations. A number of genes, equal to
the number of KEG (NKEG), was sampled from the associated set of
genes and assigned to be the “EWAS genes” in the simulations. Then
geneset enrichment analyses for both the GWAS and EWAS geneswere
performed (Eq. (2)) and correlation between the enrichment scores
was assessed as previously. In these simulations, the number of total
genes was varied and the number of causal and associated genes was
always set to be half of the total number of genes related to a trait. The
total number of genes was proportional to the total number of known
genes (NKTG = NKGG + NKEG). In each simulation, the number of asso-
ciated genes (and causal genes) equalled NKTG discovered multiplied
by 1, 2, 3, 5, 10, or 20. Therefore, the smallest number of total genes for
any simulation was double the number of NKTG and the greatest
number of total geneswas 40 timesNKTG. The other variable set to vary
between simulations was the proportion of overlap between causal
and associated genes. The proportion of overlap was 0, 0.01, 0.1, 0.5,
or 1, where 0 represented the scenario where only the overlap in KGG
and KEG would be present in the overlap between causal and asso-
ciated genes and 1 represented the scenario where the only “non-
causal” genes would be the KEG that did not overlap with KGG. For

each simulation scenario, the simulations were repeated 1000 times
and box plots show the range of output from those 1000 repeats.
Evidence for a difference in the empirically determined correlation of
geneset enrichment scores and the mean correlation of geneset
enrichment scores across simulations was assessed using a z-test for
difference.

Assessing the correlation between geneset enrichment results
GWAS were extracted from the IEU OpenGWAS Project31,32 with the
following criteria:

• Sample size > 5000
• European population
• For binary traits, number of cases and controls had to be greater

than 500
• Full genome-wide results, i.e., not just associations between a

molecular trait and variants in cis.

For each GWAS, all SNPs that associated with the trait at
P < 5 × 10−8 were extracted. CpGs associated with the 15 EWAS at
P < 1 × 10−7 were then extracted and mapped to genes. For each study,
enrichment scores were generated for GO terms as before (Eq. (2)) and
correlation between them assessed.

BOX 1
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When assessing whether gene overlap or geneset enrichment
score correlations were greater than themean, a z-test was performed.
Asmultiple tests were performedwe applied the Benjamini–Hochberg
method74 to limit the false discovery rate.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data used in this analysis is publicly available. Thirteen
EWAS summary statistics can be downloaded from The EWAS
Catalog23(http://ewascatalog.org/) under accession codes:
28002404_body_mass_index_discovery_and_replication, 27651444
_smoking_current_vs_never_smoking, 27651444_smoking_former
_vs_never_smoking, 27843151_alcohol_consumption_per_day_eur-
opean_ancestry, 27955697_creactive_protein_discovery, 29086
770_educational_attainment_basic_model, 31197173_Liu-J_fasting_
glucose_base, 31197173_Liu-J_fasting_insulin_base, 29198723_
Richard-MA_systolic_blood_pressure_meta-analysis, 29198723_Rich-
jard-MA_diastolic_blood_pressure_meta-analysis, 31015461_Kupers-
L_birthweight_meta_analysis_all_ancestries, 29311653_Marioni-R_cog-
nitive_abilities__digit_test_basic_adjusted_model, 31073081_Imboden-
M_fev1_meta-analysis. The two EWAS not included here are for eGFR
and urate. The eGFR EWAS summary statistics was downloaded from
https://ckdgen.imbi.uni-freiburg.de/files/Schlosser2021/eGFR.csv.
zip and the urate summary statistics was downloaded from https://
ckdgen.imbi.uni-freiburg.de/files/Tin2021/urate.csv.zip. The GWAS
summary statistics can be downloaded from the OpenGWAS
Project(31,32)(https://gwas.mrcieu.ac.uk/) under accession codes: ieu-
b-40, ieu-b-4877, ukb-b-2134, ieu-b-73, ieu-b-35, ieu-a-1239, ebi-a-
GCST005186, ebi-a-GCST005185, ieu-b-38, ieu-b-39, ieu-a-1083, ebi-
a-GCST006572, ukb-b-19657. The eGFR GWAS summary statistics
were downloaded from https://ckdgen.imbi.uni-freiburg.de/files/
Stanzick2021/metal_eGFR_meta_ea1.TBL.map.annot.gc.gzand the
urate GWAS summary statistics were downloaded from https://
ckdgen.imbi.uni-freiburg.de/files/Tin2019/urate_chr1_22_LQ_IQ06_
mac10_EA_60_prec1_nstud30_summac400_rsid.txt.gz. The data can
also be obtained from the original papers, the PubMed IDs can be
found in Table 1. The FEV1 and former versus never smoking GWAS
summary statistics are not published and were conducted within the
MRC Integrative Epidemiology Unit and uploaded to the OpenGWAS
Project database. Their GWAS IDs within the OpenGWAS Project are
ukb-b-19657 and ukb-b-2134 respectively. v6.5.6 of the OpenGWAS
Project was used to download the data. The R package biomaRt
(v2.50.3)68 was used to extract Ensembl gene ids along with chro-
mosome positions of all genes. The package was also used to extract
gene ontology (GO) terms24,25 andmap these to the Ensembl gene ids.
The R package limma (v3.50.3)69 was used to extract KEGG terms26–28

and these were mapped to Ensembl gene ids. Protein–protein inter-
action data, which includes data from StringDB70 and IntAct71, and
terms from the Reactome database29 were extracted from
EpiGraphDB (v1.0)30.

Code availability
Code used to run the analyses is available here: https://zenodo.org/
badge/latestdoi/521364771. The code is also on GitHub: https://github.
com/thomasbattram/ewas-gwas-comparisons Analyses were com-
pleted using R (version 3.6.2) and Python (version 3.7.4).
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