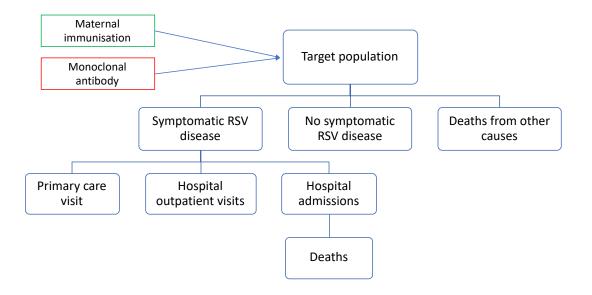
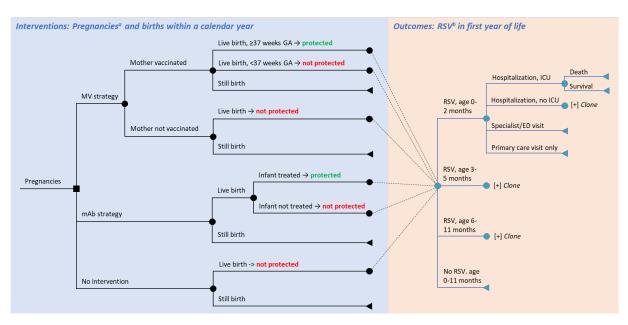
Article title: Cost-effectiveness of respiratory syncytial virus preventive interventions: a model comparison study

Appendix 1: Additional methods and results

Table of Contents

1	<i>s. N</i>	Iethods	.2
	1.1	Model structures	. 2
	1.2	Model input table	. 6
	1.3	Model description and expected differences in results	11
	1.4	Comparison of parameters assumed and fitted in the transmission model	20
	1.5	Supplement base case and scenario analyses	24
	1.6	Model comparison timeline and steps	28
	1.7	Changes made during this comparison	30
2	S. R	esults	32
	2.1	Disease burden estimates	32
	2.2	RSV disease burden averted with intervention	38
	2.3	One-way sensitivity analysis	46
	2.4	Sensitivity analysis on the impact of seasonal programmes and intervention	
	covera	ge	49
R	eferenc	е	51


1 S. Methods


Five models were included in this model comparison study: three static models developed by University of Antwerp (UA), Novavax (NV), Sanofi Pasteur (SPS: Sanofi Pasteur static model) and two dynamic models developed by Sanofi Pasteur and EPIMOD (SPD: Sanofi Pasteur dynamic model) and London School of Hygiene & Tropical Medicine (LSHTM). The UA, SPS, SPD and LSTHM models were adapted from a previously published costeffectiveness analyses for respiratory syncytial virus (RSV) preventive strategies in infants (1-4). The NV model is unpublished but is structurally similar to a published model for respiratory RSV vaccination in older adults (5).

1.1 Model structures

The model structures are presented in Figure 1 to Figure 5.

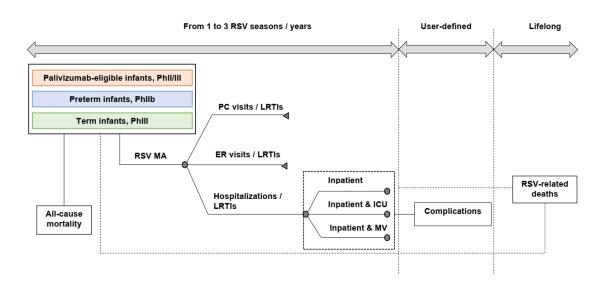


Figure 2: Novavax (NV) static model structure (Herring et al. unpublished)

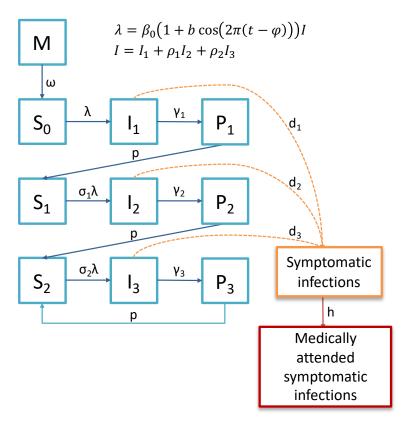
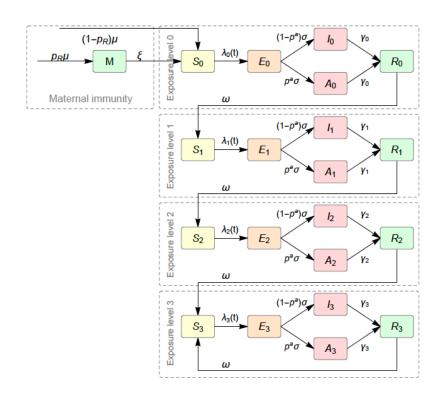
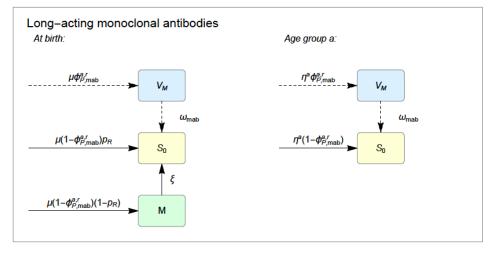

Footnote: ED: emergency department; GA: gestational age; ICU: intensive care unit; mAb: monoclonal antibody; MV: maternal vaccination; RSV: respiratory syncytial virus. ^a The model can be restricted to pregnancies due within the RSV season (October through April). ^b The incidence and severity (i.e., intensity of resource utilisation) of medically-attended RSV varies by age, intervention, and infant protection status.

Figure 3: Sanofi Pasteur static (SPS) model structure (Kieffer et al. 2022)


Footnote: RSV = respiratory syncytial virus; ER = Emergency Room; MA = Medically-attended; LRTI = Lower respiratory tract infections; ICU = Intensive care unit; MV = mechanical ventilation



Footnote: Newborns benefit from maternal antibody protection (M), after which they become susceptible (S_0) to primary RSV infection. After each infection (I_1 , I_2 and I_3), individuals recover and acquire short-term waning immunity (P1, P2, P3), before becoming susceptible again (S_1 , S_2).

Figure 5: London School of Hygiene & Tropical Medicine (LSHTM) dynamic model structure (Hodgson et al. 2020)

1.2 Model input table

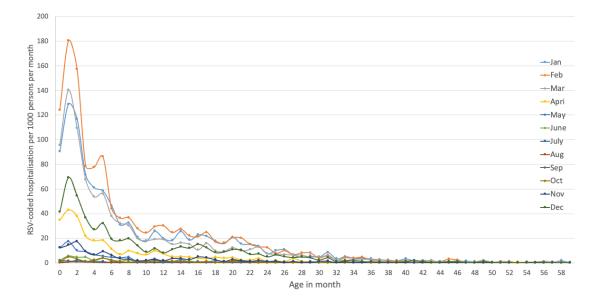
A standardised hypothetical input data template was reviewed and approved by each modelling group. Uncertainty distributions around input values were defined by each group separately, according to their model features. Table 1 shows the input data, assumptions, and references. The age- and calendar-specific RSV-coded hospitalisation is (detailly) presented in Figure 6.

Parameter	Value	Reference
Demographic data		
Birth cohort	100,000 live births	Hypothetical cohort
Stillbirth rate	7.8 per 100 live births	United Kingdom demographic
Preterm rate	3.3 per 1,000 live births	data and full lifetable were
Life expectancy at birth	83 years (both female and males)	provided (6)
Baseline age-specific	0-1 year: 0.000213	
mortality rate	1-2 years: 0.000213	
	2-3 years: 0.000127	
	3-4 years: 0.000098	
Disease burden	Mean	
RSV-coded hospital	By age (1-month intervals) and by	Norwegian Patient Registry
admissions rate per 1,000	calendar month:(details in Figure 6):	2008-2017 (7)
persons per year	0 month: 34.73 to 59 months: 0.13	

Table 1: Input parameters used in this study

RSV-coded hospital	By age (1-month intervals) and by	Data were provided by age (1-
outpatient visits rate per 1,000	calendar month	month intervals) and by
persons per year	0 month: 2.35 to 11 months: 1.44	calendar month. In this table,
	24-59 months: 0.13	only aggregated annual data are
		shown.
RSV-coded deaths per 1,000	By age (1-month intervals) and by	Norwegian Cause of Death
persons per year	calendar month:	Registry 2008-2017 (1)
	Age <6 months 0.0055	Data were provided by age (1-
	Age 6-11 months: 0.0111	month intervals) and by
	Age 1-5 years: 0.0010	calendar month. In this table,
		only aggregated annual data are
		shown.
Age-specific proportion of	0 months: 6.89%	Norwegian Patient Registry
RTI primary care visits in 0-5	1 month: 12.48%	2008-2017 (1)
months of age	2 months: 17.63%	
	3 months: 16.01%	
	4 months: 19.56%	
	5 months: 27.43%	
RSV-related primary care	Age <6 months: 5 primary care visits	Based on Cromer 2014 (8)
visits	for each hospitalisation	
	Age ≥6 months: 12 primary care	
	visits for each hospitalisation	

Proportion of Intensive Care	0 months: 1.85%	Scottish data (7). The ICU
Unit (ICU) admission per	1 month: 0.85%	proportion was analysed during
RSV hospital admission	2 months: 0.81%	the study, but they were not
	3 months: 0.76%	published in the article
	4 months: 0.39%	(personal communication from
	5 months: 0.87%	Dr. XXX name hidden per
	6 months: 0.27%	journal requirement)
	7-11 months: 0.20%	
	1-4 years: 0.77%	
Utility	Mean [95% Credible Intervals (CrI)]	
QALY loss per medically	0.0038 [0.0005-0.0128]	Hodgson 2019 (9)
attended (MA) episode		
(including hospital)		
QALY loss non-medically	0.0030 [0.0003-0.010]	-
attended (non-MA) episode		
Cost (in euros)	Mean	
Cost per hospitalisation	€627 per day	Dutch reference costs
Cost per hospital outpatient	€104	(Kostenhandleiding) (10)
visit		
Cost per primary care visit	€33	-
ICU admission	€2015 per day + €613 ambulance	-
	transfer	
Length of stay in hospital or	Hospitalisation: 5.8 days (SD = 4.8)	Blanken 2018 (11)
ICU	ICU admission: 8.1 days $(SD = 8)$	


Transportation for parents per	€0.19 per kilometre	Blanken 2018 (11)
hospitalisation or ICU	mean 187 kilometres	
admission		
Cost of productivity loss	Salary loss paid work per day €139	Blanken 2018 (11)
Workdays lost due to RSV-	1 day paid work lost per primary care	Assumptions
infected child	or hospital outpatient visit	
	Number of days paid work lost equal	
	to length of stay per hospitalisation	
	or ICU admission	
Single-dose maternal vaccine	€37.5 per dose	Assumption based on
(MV)		Meijboom 2012 (12)
Single-dose monoclonal	€50 per dose	Assumption
antibody (mAb)		
Delivery cost per dose	MV: €5 (year-round)	Assumption based on
	MV: seasonal programmes: €11.36	Meijboom 2012 (12)
	mAb: €8.32 (delivered at birth)	
Programme implementation	€200,000 for year-round programme	Assumption
costs (one-off)	€100,000 for seasonal programme	
Intervention characteristics	Mean [95% Credible Intervals (CrI)]	
Efficacy against hospital	MV: 44% [20 - 62%]	Phase 3 data MV (13) and
admission or hospital	mAb: 78% [52 -90%]	phase 2b results of mAb (14)
outpatient visit		
Efficacy against primary care	MV: 39% [5-61%]	
visit	mAb: 70% [52.3-81.2%]	
	l	

Duration of protection	MV: 90 days	Phase 3 data MV (13) and
	mAb: 150 days	phase 2b results of mAb (14),
		varied in scenario analysis
Coverage	Year-round / seasonal program	Based on UK vaccine coverage
	MV: 67% / 44%	data (15):
	mAb: 94% / 94%	MV year-round coverage based
		on maternal pertussis vaccine
		coverage, and seasonal MV
		coverage based on influenza
		vaccine coverage
		mAb year-round and seasonal
		programmes coverage based on
		rotavirus vaccine coverage
		(15).

Footnote: CrI: credible intervals; MV: maternal vaccine; mAb: monoclonal antibody.

Figure 6: RSV-coded hospitalisation rate by age (0-59 months) and calendar month per

1,000 persons

1.3 Model description and expected differences in results

Each group presented the model description in the beginning of the model comparison study. A group discussion was organised to predict the expected impact on model outcomes due to model structure before unblinding the test-run results.

Table 2: Key characteristics of the cost-effectiveness models involved in the model comparison

Model	UA	NV	SPS	SPD	LSHTM	Expected impact of differences on results?			
Background	ackground								
Representative	Li and Bilcke <i>et al</i> .	Herring et al. (2019)	Kieffer et al. (2022) (4)	Voirin <i>et al.</i> (2022) (2)	Hodgson <i>et al.</i> (2020) (3)	NA			
publication	(2022) (1)	Presented at project							
		workshop							
Country of the	Norway	United States	United States	United States	England and Wales	NA			
original model									
Provenance	Structure adapted from	Original	Original	Adapted from	Original	NA			
(original or	Cromer et al. 2017 (16)			Kinyanjui et al. 2015					
adapted)	and Li et al. 2020 (17)			(18) and Pan-Ngum et					
				al. 2017 (19)					

Model	UA	NV	SPS	SPD	LSHTM	Expected impact of differences on results?
Framework				1		
Target	Birth cohort followed by	Birth cohort, option to	Birth cohort structured	The entire population	The entire population (25	UA, NV and SPD and LSHTM models
population	month of birth	restrict birth cohort to infants	per subgroups	(32 age groups from 0	age groups).	assumed no impact of MV on RSV in (very)
		due during RSV season	• palivizumab eligible	months to 75+ years).	Birth cohort including	pre-terms. SPS model used adjustment rate
		(October – April)	(not in use in this	Elderly population	• palivizumab eligible (not	on MV antibody transfer.
			study)	(included, but effects	in use in this study)	Limited impact on results for MV evaluation
			• preterm not eligible to	not considered here)	 high risk population 	given the small number of pre-term infants.
			palivizumab		• all new-borns	
			• term infants		Elderly population	
			Each subgroup is		(included, but effects not	
			followed by month of		considered here)	
			birth			
Possible	MV, mAb, no	MV, mAb, no intervention	MV, mAb, no	MV, mAb, no	MV, mAb, no intervention	NA
interventions	intervention		intervention	intervention	(paediatric and older adults'	
to evaluate					vaccination are possible, but	
					not used in this study)	

Model	UA	NV	SPS	SPD	LSHTM	Expected impact of differences on results?
Immunisation	Year-round	Year-round	Year-round	Year-round	Year-round	No difference between models: year-round
programmes	Seasonal (Oct-Apr)	Seasonal (Oct-Apr)	Seasonal (Oct-Apr)	Seasonal (Oct-Apr)	Seasonal (Oct-Apr)	MV and year-round mAb infants. However,
	Seasonal mAb + catch-up		Seasonal mAb + catch-up	Seasonal mAb + catch-	Seasonal mAb + catch-up	NV model cannot incorporate the mAb
				up		catch-up programme.
Comparators	No RSV intervention	No RSV intervention	No RSV intervention	No RSV intervention	No RSV intervention	All models agreed to compare to no
						intervention to align the comparison
Time horizon	1 years	Eligible pregnancies during	1 year	10 years (after steady	10 years	The incremental costs and incremental
		one calendar year; outcomes		state)		QALY gain, the static models and dynamic
		from RSV occurring in				models cannot be compared directly due to
		infants during first 12				the time horizon, but ICER can be compared
		months of life				among all models.

Model	UA	NV	SPS	SPD	LSHTM	Expected impact of differences on results?			
Model structur	Model structure								
Type of model	Decision tree	Decision tree	Markov, monthly cycle	Transmission model	Transmission model	Dynamic models include:			
				(Compartmental)	(Compartmental)	 herd immunity, but impact likely limited given short duration of protection of interventions, limited evidence on mAb's impact on transmission, and limited contact with infants allow for shift in age distribution of RSV infection. This would lead to difference in older age-group (i.e., 6-11month, 1-5 years) 			
Model	Static, tracks infants age	Static cohort model, tracks	Static, tracks infants age	Age-structured	Age-structured (M)SEIRS	Dynamic models model the maternal			
structure	in months and time in	full-term infants over pre-	in months and time in	(M)SIRS model	model	protection explicitly, but expected limited			
	calendar months	defined months	calendar months			impact because the static models account			
						implicitly for maternal protection by using			
						age-specific observed disease burden which			
						reflect level of maternal protection			

Model	UA	NV	SPS	SPD	LSHTM	Expected impact of differences on results?			
Input paramete	Input parameters (How each group used/adapted the disease burden data provided via the input data template)								
Hospitalisation	Directly using the age-	Directly use age-specific	Calculation of distribution	Used age-specific	Equated the age-specific	The disease burden estimation without			
	specific RSV-related	RSV hospitalisation by birth	of cases over calendar	proportion of primary	RSV hospitalisation to the	intervention should be similar among the			
	hospitalisation by age in	month for ages 0-11 months	month (seasonality) and	care visits per	multiple of the model-	models, although SPD model was calibrated			
	month and calendar		average by age in months	hospitalised to estimate	predicted incidence and a	based on primary care visits, but LSHTM			
	month for infants 0-59		for infants 0-11 months	the hospitalisations	fitted parameter: the	model was fitted on hospitalisations			
	months of age.				detection rate of				
					hospitalisation.				
Hospital	Direct use (same as	Use age-specific RSV	same as hospitalisation	Multiply the age-	Equate the age-specific RSV				
outpatient	hospitalisation)	hospital outpatient rates		specific hospital	hospital outpatient cases				
visits		(specialist) by birth month to		outpatient rate by the					
		get overall hospital		population size					
		outpatient visits							

Model	UA	NV	SPS	SPD	LSHTM	Expected impact of differences on results?
Primary care	Age-specific ratio of	Age-specific ratio of primary	Age-specific ratio of	Calibrated the age-	Age-specific proportion of	
visits	primary care visits per	care visits per hospitalised to	primary care visits per	specific primary care	primary care visits per	
	hospitalised to RSV	get overall RSV-LRTI cases,	hospitalised to RSV	visits to fit with the age	hospitalised to RSV primary	
	primary care visits	assuming all hospitalisations	primary care visits	structure (32 age	care visits	
		are accompanied by one		groups)		
		primary care visit				
RSV-related	Multiply the age-specific	Apply age-specific RSV	Multiply the age-specific	The burden of deaths	Multiply the age-specific	No difference between models (for dynamic
deaths	mortality rate by the	mortality rates by age to	mortality rate by the	was computed as a	mortality rate by the	models: do not impact on transmission)
	population size	estimate the proportion of	population size	fraction of MA-LRTIs.	population size.	
		hospitalised cases		RSV related deaths	RSV related deaths were	
		• Assumption that death		were assumed to have	assumed to have no	
		only occurs among those		no influence on	influence on transmission.	
		hospitalised		transmission.		
		• Mortality risk does not				
		vary with vs. without				
		ICU stay				

Model	UA	NV	SPS	SPD	LSHTM	Expected impact of differences on results?
Life-years lost	Life expectancy without	Use a published study on	Life expectancy without	Quality adjusted life	Life expectancy without	SPD and NV models would have lower
due to RSV-	quality adjustment	infant mortality (20) to split	quality adjustment	expectancy (UK value)	quality adjustment	QALY averted compared to other model,
related		the non-RSV deaths age <1		(24)		because lifetime QALY lost are lower than
premature		year into 0-2, 3-5, and 6-11				the life-year lost.
death		months				
		Life expectancy with quality				
		adjustment (21-23)				
How was the	Seasonality is captured	RSV-burden among infants	Seasonality is captured by	Seasonal forcing of the	Fitting normal distributions	Limited impact, because difference between
seasonality	by tracking new-borns	initially specified by month	distributing the cases per	force of infection	with peak during the winter	fitted and observed seasonality should be
modelled?	with different disease	of birth and age in months.	calendar month	(cosine function), but	months.	limited, and only one full seasonal
	risks from each calendar	Seasonality of immunisation		death seasonality		programme is evaluated (October -April).
	month of the year	programs based on birth		ignored.		
		month (October – April)				
Disease	Transmission parameters	were not used (static model)	1	Taken into account	Taken into account	See above (dynamic vs static model).
transmission						

Model	UA	NV	SPS	SPD	LSHTM	Expected impact of differences on results?
Contact matri	x Not used			England and Wales	England and Wales	NA
				(Mossong and van	(Mossong and van Hoek)	
				Hoek) (25, 26)	(25, 26)	
Force of	Not used			See Table 3	See Table 3	Similar focus of infection would lead to
infection						similar outputs
Efficacy	Efficacy against primary	care visit and hospitalisation as	s provided	Only used efficacy	Efficacy against infection	Static models account for higher protection
	Did not use the severe hy	poxemia efficacy. SPS assume	d preterm infants would	against infection (proxy	(proxy of efficacy against	against severe (=hospitalised) RSV cases,
	have 20% of the protection	ve 20% of the protection from MV, but UA and NV models assumed preterm			primary care visit) and	potential leading to more favourable (for
	infants would have no pro	otection from MV.		primary care visit)	efficacy against	programmes) results than the dynamic
					hospitalisations	model (SPS) which only assumed efficacy
						against infections.
Waning	All or nothing approach:	When duration of efficacy	All or nothing approach:	All or nothing	Prior distribution was used	Potential impact: Models do not use all or
	full protection, then no	stopped mid-age range (i.e.,	full protection, then no	approach: full	for duration of immunity, the	nothing approach might have less prevention
	protection.	within ages 0-2, 3-5, or 6-11	protection.	protection, then no	mean of duration of the	in age- groups under 6 months while slightly
		months), the effect within		protection.	interventions were adjusted	more prevention in age-groups over 6
		the age range was scaled			to 3/5 months. Subsequent	months as compared to the ones used the
		proportionally			infections were also	approach.
					included, but less severe.	

Model	UA	NV	SPS	SPD	LSHTM	Expected impact of differences on results?
Calibration	NA			Simulated annealing	MCMC via a parallel	Expect limited impact between two dynamic
and/or					tempering algorithm	models, if the age-specific force of
validation						infections is comparable. More details in
method						Supplementary material 2
Others	I			I		
Model running	Analysis time to run all	Instantly available	Instantly available	Calibration process 8	Calibration process 8 hours	
time	base cases and scenarios:			hours	Analysis time: 3 hours	
	2 hours			Analysis time to run all		
				base cases and		
				scenarios: 10 seconds,		
				including compilation		

Footnote: LSHTM: London School of Hygiene & tropical medicine. gw: gestational week, MV: maternal vaccine, mAb: monoclonal antibody, LRTI: lower respiratory tract infections, ICU: intensive care unit, MCMC: Markov Chain

Monte Carlo, ICER: incremental cost-effectiveness ratio, PSA: probabilistic sensitivity analysis, EVPI: expected value of perfect information, EVPPI: expected value of partially perfect information.

1.4 Comparison of parameters assumed and fitted in the transmission model

Since dynamic models required more input parameters to model the RSV transmission, an indepth comparison between the parameters used and fitted in the two dynamic models are illustrated in Table 3

LSHTM model (SEIR)		Sanofi Dynamic (SIR)				
Parameters	Value	Parameters	Value			
Maternal protection parame	ters					
Daily number of births: μ	Provided: 100,000/365 = 274 per	Daily number of births	Provided: 100,000/365 =			
	day		274 per day			
Rate of loss of maternal-	60 days (fixed)	Duration of natural maternal	Fitted 58 days			
derived immunity: 1/ξ		protection 1/ω				
Proportion of infants born	1 (fixed)					
with protection at time t:						
p _R (t)						
Force of infection (λ) *	Mean (95% confidence interval)					
Probability of RSV	0.090 (0.063–0.099) (Fitted)					
transmission per physical						
contact: q _p						
Reduction in	0.008 (0.000–0.033) (Fitted)					
infectiousness of						
conversation contacts						
relative to physical						
contract: q _c						
Relative amplitude of	3.29 (2.68–4.61) (Fitted)					
transmission during peak:						
b 1						

Seasonal shift in	0.627 (0.593-0.649) (Fitted)		
transmission: φ			
Seasonality wavelength	0.22 (0.18–0.26) (Fitted)		
constant: ψ			
		Baseline per contact	Fitted 0.2377
		infection probability: β_0	
		Seasonality amplitude: b	Fitted: 0.0791
		Seasonality phase: φ	Fitted: 93.73 days
Susceptibility			
Secondary infection	0.89 (provided and fixed)	Susceptibility reduction after	0.89 (provided)
(relative to primary		1^{st} infection: σ_1	
infection): δ_1			
Tertiary infection (relative	0.81 (fixed)	Susceptibility reduction after	0.6 (assumed)
to secondary): δ_2		2^{nd} infection and beyond: σ_1	
Tertiary infection (relative	0.33 (fixed)		
to secondary): δ_3			
Asymptomatic infection			
Proportion of	By age:		
asymptomatic infections:	P ^{<1} :0.0916 (fixed)		
\mathbf{p}^{a}	p ¹⁻⁴ : 0.163 (fixed)		
	p ⁵⁻¹⁴ : 0.516 (fixed)		
	p ^{15+y} :0.753 (fixed)		
Infectiousness of	0.94 (0.79–0.99) (Fitted)		
asymptomatic infections is			
reduced by a fact: α			
		Infections	Value
		Reduction in infectiousness	0.75 (assumed)
		(2^{nd} infection): ρ_1	
l		1	

		Reduction in infectiousness	0.51 (assumed)
		$(3^{rd} infection): \rho_2$	
Transmission	<u> </u>		<u> </u>
Average duration of	4.98 days (fixed)		
exposure: 1/σ			
Average duration of	6.16 (provided and fixed)	Duration of infectious period	6.16 (provided)
primary infections (days):		$(1^{st} \text{ infection}) (days) 1/\gamma_1$	
1/ γ ₀			
Average duration of	$\gamma_1 \equiv \gamma_0(g_1)^{-1}$		
secondary infections			
(days): 1/ γ ₁			
Decrease in secondary	0.87 (provided and fixed)	Reduction of infectious	0.87 (provided)
infection duration relative		period (2 nd infection)	
to primary: g1		γ_1/γ_2	
Average duration of third	$\gamma_2 \equiv \gamma_0 (g_1 g_2)^{-1}$		
infections (days): $1/\gamma_2$			
Decrease in subsequent	0.79 (fixed)	Reduction of infectious	0.79 (provided)
infection duration relative		period (3 rd infection and	
to primary: g ₂		beyond) γ_2 / γ_3	
Average duration of forth	$\gamma_3 \equiv \gamma_0(g_1g_2g_3)^{-1}$		
infections (days): $1/\gamma_3$	g ₃ =1		
Average duration of post-	358.9 (fixed)	Average duration of post-	Fitted: 570 days
infection immunity (days):		infection immunity: 1/p	
1/ω			
Reporting		Proportion of LRTI	
Reporting probability: ε	Age-specific:	Proportion of infected	Fitted d _{1,a}
	0–3 m: 0.0620 (0.0542–0.0722)	individuals developing a	0-5m: 0.5
	4–6 m: 0.0235 (0.0208–0.0269)	LRTI (1 st infection):	6-11m:0.4
	7–11 m: 0.0110 (0.0098–0.0125)		12-17m: 0.3
	1 y: 0.0099 (0.0087–0.0114)		17-23m: 0.2

	2–4 y: 0.0029 (0.00250.0035)		2-10y: 0.15
	5–54 y: 2e-05 (2e-05 – 3e-05)		10-60y: 0.1
	55-64 y: 0.00018 (0.00014–		60-65y: 0.15
	0.00023)		65-75y: 0.25
	65–74 y: 0.0010 (0.0008–0.0012)		75y+: 0.4
	75 y: 0.0049 (0.0042–0.0059)		
		Reduction of LRTI	0.5 (assumed)
		probability (2 nd infection):	
		d _{2,a} /d _{1,a}	
		Reduction of LRTI	0.25 (assumed)
		probability (3rd infection):	
		$d_{3,a}/d_{1,a}$	
		Healthcare system use at age	1
		0: h ₀	
		Healthcare system use at age	0.3521 (fitted)
		75: h ₇₅	
		Changes of h parameter	0.0406 (fitted)
		number 1	
		changes of h parameter	0.00504(fitted)
		number 2	
Intervention parameters			
		Protected individuals less	0.5
		infectious by a factor: r ^{mAbs}	
Efficacy against	70.1%	Probability of successful	70.1%
symptomatic infections:		treatment: e ^{mAbs}	
e ^S _{mab}			
Efficacy against	78.4%		
hospitalisation infections:			
e^{H}_{mab}			

Average period of	150 days (median 103 days)	Average period of protection	150 days (no waning)
protection: ω_{mab}			
		mAb coverage: ξ ^{mAbs}	94% (provided)
Efficacy against	39% (provided)	Probability of successful	39% (provided)
symptomatic infections:		treatment: e ^{MV}	
e ^S _{mat}			
Efficacy against	44% (provided)		
hospitalisation infections:			
e^{H}_{mat}			
Average period of	90 days exponential wanning	Average period of protection	90 days exponential
protection: d ² mat	(median 62 days)	γων	wanning (gamma
			distribution, median 62
			days)
		Maternal vaccine coverage:	67% year-round 44%
		ξ ^{MV}	seasonal

Footnote: Note that the models are using different seasonal forcing assumptions, so the force of infection parameters cannot be compared directly.

1.5 Supplement base case and scenario analyses

As described in the main text, year-round and seasonal programmes compare to no intervention were evaluated using the input values from Table 1. An additional programme: mAb seasonal plus catch-up that infants under six months of age and born outside of the season would be administered mAb in the beginning of the RSV season (October), was also evaluated. Table 4 illustrates the overview of the programmes. Moreover, eight scenario analyses were included using different input values for coverage, intervention efficacy, duration of protection, or hospitalisation rate (Table 5). The upper and lower ranges of oneway sensitivity analysis are presented in Table 6. Table 4: Overview of the RSV disease prevention programs: Months indicated with a cross

Program	Non-RSV season					RSV season						
Month of birth	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
Year-round	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Seasonal						Х	Х	Х	Х	Х	Х	Х
Seasonal							Х	Х	Х	Х	Х	Х
catch-up (mAb only) ^a	Adm Oct	Adm Oct	Adm Oct	Adm Oct	Adm Oct	X						

refer to the months where the programmes was administered.

Table footnote: a Catch-up programmes: if infants were born during the RSV season (October to April), they would receive mAb

at birth; if born outside of the season (May to September), they would be called back to receive mAb before the start of the RSV season (October).

Table 5: pre-defined base-case and scenario analyses versus no intervention

Program	Efficacy: MV	Efficacy: mAb	Protection	Protection	Programmes	High/Low	Coverage:	Coverage:
	(13)	(14)	duration:	duration:		hospitalisatio	MV	mAb
			MV (days)	mAb (days)		n rate ^a		
Base case								
Year-round	mean: phase 3	mean: phase 2	phase 3	phase 2b	Year-around	1	67%	94%
	data	data	data: 90	data: 150				
	Against	Against						
	hospitalisation	hospitalisation						
	44%	78%						
	Against	Against						
	primary care	primary care						
	visits: 39%	visits: 70%						

Seasonal only ^b	mean: phase 3	mean: phase 2	90	150	Prevent	1	44%	94%
	data	data			infections for			
					infants born			
					in October to			
					April			
Seasonal +	NA	mean: phase 2	NA	150	mAb (only):	1	NA	94%
catch-up (mAb		data			within			
only)					season given			
					at birth.			
					Outside			
					season,			
					catch-up in			
					October			
Scenarios				<u> </u>				
Seasonal low	mean: phase 3	mean: phase 2	90	150	Prevent	1	30%	30%
coverage	data	data			infections for			
					infants born			
					in Oct to			
					April			
Seasonal high	mean: phase 3	mean: phase 2	90	150	Prevent	1	70%	70%
coverage	data	data			infections for			
					infants born			
					in Oct to			
					April			
Low efficacy	LCI: phase 3	LCI: phase 2	90	150	Year-around	1	67%	94%
(year-round)	data	data						
	Against	Against						
	hospitalisation	hospitalisation						
	20%	52%						

	Against	Against						
	primary care	primary care						
	visits: 5%	visits: 52.3%						
High efficacy	UCI: phase 3	UCI: phase 2	90	150	Year-around	1	67%	94%
(year-round)	data	data						
	Against	Against						
	hospitalisation	hospitalisation						
	62%	90%						
	Against	Against						
	primary care	primary care						
	visits: 61%	visits: 81.2%						
Short duration	mean: phase 3	mean: phase 2	60	120	Year-around	1	67%	94%
(year-round)	data	data						
Long duration	mean: phase 3	mean: phase 2	180	240	Year-around	1	67%	94%
(year-round)	data	data						
High hospital	mean: phase 3	mean: phase 2	90	150	Year-around	1.5	67%	94%
visits season	data	data						
(year-round)								
Low hospital	mean: phase 3	mean: phase 2	90	150	Year-around	0.5	67%	94%
visits season	data	data						
(year-round)								

Table footnote: ^a use as multiplicative factor for hospital visits; ^b For maternal vaccine, the seasonal programme only is for baby has delivery date within the RSV season. UCI: upper confidence interval, LCI: lower confidence interval, MV: maternal vaccine, mAb:

monoclonal antibody

Table 6: Upper and lower range for one-way sensitivity analysis

Parameters	Base case	Lower range	Upper range	Comments
Hospitalisation rate	1	90%	110%	Use as a multiplicative factor
Secondary outpatient rate	1	80%	120%	Use as a multiplicative factor
RSV-mortality rate	1	90%	110%	Use as a multiplicative factor

Probability of Intensive Care	1	90%	110%	Use as a multiplicative factor
Unit admission				
Cost per admission day	€ 627	80%	120%	Use as a multiplicative factor
Length-of-stay (days) hospital	5.8	1	11	Assumption
Length-of-stay (days) Intensive	8.1	4	16	Assumption
Care Unit				
Cost per primary care visit	€ 33	80%	120%	Use as a multiplicative factor
Cost per specialist visit	€ 104	80%	120%	Use as a multiplicative factor
Cost per dose delivery	1	80%	120%	Use as a multiplicative factor
Fixed implementation costs	€ 200,000	0	€ 300,000	Assumption
Paid work per day	€ 139	€ 70	€ 200	Loosely on OECD salary data
Sick leave (days) outpatient	1	0.5	2	Assumption
QALY loss medical (including	3.823x10^-3	0.492x10^-3	12.766x10^-3	Based on Hodgson 2020 (9)
hospital) care				
mAb cost per dose	€ 50	€ 30	€ 80	Assumption
MV cost per dose	€ 37.5	€ 20	€ 60	Assumption

1.6 Model comparison timeline and steps

An overview of the model comparison timeline is listed below:

- January 2017: An open invitation was sent out via the RESCEU network to express interest in joining a model comparison.
- May 2017: A workshop was organised to establish the framework for analysis and confirm interest. Eight modelling teams joined the initial meeting and expressed their interests to contribute to the model comparison (UA, LSHTM, PATH, National Institute for Public Health and the Environment (also known as RIVM), University of Groningen, Sanofi, Novavax and GlaxoSmithKline).
- May 2017-October 2020: Individual models were developed and refined independently by each group. A common input dataset was compiled by the academic lead partner

(UA). UA also continued to invite potential interesting groups to join the model comparison initiatives.

- November 2020: The formal model comparison was initiated. Prior to the meeting, two
 modelling groups decided not to participate due to potential conflict of interests and the
 geographical focus. During the kick-off meeting, each group presented their model
 structures (five groups with six models). Input template was designed and shared for
 feedback. A modelling group (University of Groningen), who focused only on an RSV
 older adults' vaccine, suggested to have a separate model comparison, hence it was not
 included in this comparison focusing on infants/children.
- January 2021: The input data (in the pre-defined input templates) were shared with all modelling groups for review and comments.
- April 2021: The input data set was discussed and approved by all groups. The output template was shared, including base case and a list of scenario analyses. One group withdrew their participation mainly due to the readiness of the model.
- May-July 2021: Each group performed an initial test-run on the three base cases and two scenarios of high and low coverage. The aim of this test-run was to ensure that the models could run smoothly, were able to use the input parameters, and could produce the predefined outputs under base case and the scenarios. A new group (LSHTM) confirmed their participation in May and performed this test-run. The outcome of this test-run was blinded, and the input and output templates were individually clarified by UA according to the feedback received.
- August 2021: A group meeting was held to examine the potential/expected differences in model outcomes by model structure/concept (the summary is presented in Table 2). Then, the group highlighted the issues, misunderstanding, and difficulties experienced during the test-run, but the test-run outputs were not shared.

- September 2021: UA shared the updated input and output templates. All groups approved the final input dataset and re-ran the test-run with the up-to-date information.
- October 2021: The results of the second test-run were unblinded during a group meeting and all groups were allowed to make changes to adjust misunderstandings about the input data and the translation of assumptions in their specific model applications. Moreover, the group defined the list of scenarios for final run.
- November to December 2021: Each group delivered the final-run outputs.
- January to February 2022: UA performed a consistency check for each model and discussed with the respective modelling groups if needed. Then UA compared the model outputs.
- March 2022: A group discussion was organised to discuss the preliminary model outputs and findings; the model outputs were unblinded during this meeting.
- April 2022: Results and manuscript outline were shared among authors and no numerical change has been made since April.
- May to July 2022: The manuscript was drafted, reviewed by co-authors, then the revised manuscript was further reviewed by three independent reviewers within RESCEU network. An independent reviewer (UA) also reviewed and checked the model comparison results in the main text and supplementary materials.

1.7 Changes made during this comparison

For the input file and output files, the following updates were made:

Input file:

• UA updated the hospitalisation rate and mortality rate among population 5-85 years+ for the dynamic models.

• UA clarified the assumption of pre-term and still birth rates: preterm infants were assumed to be protected by mAb, but not by MV. For still birth, cost of MV shall be included.

Output file:

- UA updated the age-group labelling from 0-3 months, 3-6 months, 7-12 months to 0-2 months, 3-5 months, 6-12 months for clarity.
- The list of scenarios was shortened after the group discussion (Table 5).
- The "asymptomatic infections" and "non-medically attended symptomatic infections" outcomes were added as requested outcomes for the dynamic models.
- The specific costs within each cost category were clarified, for example: non-medical cost (including: productivity losses and transportation), this cost should be included in the societal perspective.

2 S. Results

2.1 Disease burden estimates

This section presents the estimated RSV disease burden without any intervention per year. Table 7 shows the estimated number of primary care visits, hospital outpatient visits, hospitalisations, ICU admissions, non-medically attended (non-MA) symptomatic infections and asymptomatic infections within an RSV season (October to April) and over a calendar year.

	Ĩ	UA	I	NV		PS	S	PD	LSHTM	
Age	Within	Year-	Within	Year-	Within	Year-	Within	Year-	Within	Year-
	season	round	season	round	season	round	season	round	season	round
			birth #							
Primary care vis	sits									
0-2 months	2,930	3,051	2,941	3,051	2,920	3,051	2,657	2,890	2,385	2,547
3-5 months	4,963	5,195	3,102	5,195	4,973	5,195	3,560	3,858	4,419	4,691
6-11 months	5,848	6,116	2,032	6,116	5,855	6,116	4,894	5,268	5,231	5,504
12-23 months	7,135	7,406	-	-	-	-	6,355	6,852	6,702	7,045
24-59 months	3,264	3,457	-	-	-	-	2,629	2,826	3,505	3,695
0-11 month	13,741	14,361	8,074	14,361	13,748	14,361	11,111	12,016	12,034	12,742
0-59 month	24,141	25,224	-	-	-	-	20,095	21,695	22,241	23,481
Hospital outpati	ent visits									
0-2 months	113	117	113	117	112	117	108	117	86	91
3-5 months	109	114	69	114	109	114	105	114	91	97
6-11 months	98	104	34	104	100	104	96	104	94	99
12-23 months	89	92	-	-	-	-	86	92	80	84
24-59 months	36	38	-	-	-	-	36	38	52	54
0-11 months	320	335	215	335	321	335	309	335	270	287
0-59 months	445	466	-	-	-	-	430	465	402	426
Hospitalisations	(exclude ICU	<i>v</i>)				1			1	<u> </u>
0-2 months	1,014	1,057	1,007	1,045	1,012	1,057	865	939	831	887

Table 7: Estimated RSV-associated disease burden without any intervention per year

3-5 months	550	577	342	573	552	577	471	512	493	523
6-11 months	486	509	169	507	487	509	407	438	436	459
12-23 months	588	610	-	-	-	-	526	567	558	587
24-59 months	269	285	-	-	-	-	217	234	292	308
0-11 months	2,050	2,142	1,518	2,125	2,050	2,142	1,743	1,890	1,759	1,869
0-59 months	2,907	3,037	-	-	-	-	2,486	2,690	2,610	2,764
ICU admissions		l		<u>[</u>	l	l	<u> </u>	l		<u>[</u>
0-2 months	11	12	11	12	11	12	10	10	9	10
3-5 months	4	4	2	4	4	4	3	4	3	4
6-11 months	1	1	0	1	1	1	1	1	1	1
12-23 months	5	5	-	-	-	-	4	4	4	4
24-59 months	2	2	-	-	-	-	2	2	2	2
0-11 months	16	17	14	17	16	17	14	15	13	14
0-59 months	23	24	-	-	-	-	20	21	19	21
Deaths		<u> </u>		<u> </u>						
0-2 months	0.13	0.13	0.17	0.18	0.13	0.14	0.13	0.14	0.11	0.12
3-5 months	0.13	0.13	0.06	0.10	0.13	0.14	0.13	0.14	0.11	0.12
6-11 months	0.54	0.56	0.18	0.56	0.53	0.55	0.51	0.55	0.47	0.50
12-23 months	0.10	0.10			-	-	0.09	0.10	0.10	0.10
24-59 months	0.29	0.30			-	-	0.28	0.30	0.29	0.30
0-11 months	0.79	0.82	0.41	0.83	0.79	0.83	0.77	0.83	0.70	0.74
0-59 months	1.18	1.23	-	-	-	-	1.14	1.23	1.08	1.14
Non-medically att	tended sympt	omatic RSV	infections	<u> </u>			<u> </u>		<u> </u>	<u> </u>
0-2 months							133	144	6,836	7,294
3-5 months							631	684	10,216	10,847
6-11 months							1,990	2,142	26,650	28,036
12-23 months							5,848	6,296	36,603	38,485
24-59 months							4,344	4,670	67,061	70,703
0-11 months							2,754	2,970	43,701	46,177
0-59 months							12,946	13,936	147,365	155,365
Asymptomatic RS	<i>V infections</i>									
0-2 months							2,801	3,048	1,021	1,090

3-5 months			4,236	4,596	1,534	1,629
6-11 months			10,694	11,532	3,267	3,437
12-23 months			41,486	44,747	8,557	8,997
24-59 months			90,540	97,532	13,816	14,566
0-11 months			17,731	19,175	5,822	6,156
0-59 months			149,758	161,453	28,195	29,718

Table footnote: UA: University of Antwerp model, NV: Novavax model, SPS: Sanofi Pasteur static model, SPD: Sanofi Pasteur dynamic model, LSHTM: London School of Hygiene & Tropical Medicine model.

As shown in Table 7, large differences occurred between the two dynamic models when estimating the non-MA symptomatic and asymptomatic RSV. Among all RSV infections, the percentage of asymptomatic, non-MA symptomatic, and MA symptomatic cases were calculated (Table 8). In the age-group 0-2 months, SPD model estimated approximately half of the cases were asymptomatic infections compared to only 9% assumed by LSHTM model. LSHTM model projected approximately half of the symptomatic cases were MA versus almost all symptomatic cases were MA cases in SPD model in this age-group.

Table 8: percentage of asymptomatic, non-medically-attended symptomatic, and medicallyattended symptomatic cases in the two dynamic models

		SPD		LSHTM						
Age	% Asymptomatic	% Non-MA	% MA	Sum (all	% Asymptomatic	% Non-MA	% MA	Sum (all		
	infections	symptomatic	cases	infected	infections	symptomatic	cases	infected		
		infections		cases)		infections		cases)		
0-2 months	43%	2%	55%	100%	9%	61%	30%	100%		
3-5 months	47%	7%	46%	100%	9%	61%	30%	100%		
6-11 months	59%	11%	30%	100%	9%	75%	16%	100%		
12-23 months	53%	8%	39%	100%	9%	69%	22%	100%		
24-59 months	81%	7%	12%	100%	14%	73%	13%	100%		
0-11 months	43%	2%	55%	100%	9%	61%	30%	100%		
0-59 months	47%	7%	46%	100%	9%	61%	30%	100%		

Table footnote: SPD: Sanofi Pasteur dynamic model, LSHTM: London School of Hygiene & Tropical Medicine model. Non-MA:

non-medically-attended, MA: medically-attended.

Table 9 demonstrates the discounted cost and QALYs losses without intervention. The static models used 1-year time horizon, but the dynamic model used 10-year time horizon, we therefore multiplied the static model outputs by 10 and discounted both costs and QALYs annually. Overall, the NV model estimated 20% fewer QALY losses due to RSV compared to the other two static models because QALY losses for hospitalisations were implemented differently in the NV model than in the other two static models. In particular, the NV model did not assign separate QALY losses for the primary care visits assumed to be associated with each hospitalisation (i.e., one QALY loss was assigned per RSV case). The other two static models assigned separate primary care and hospital QALY losses to each primary care visit and each hospitalisation, respectively, including when they might concern the same patient. Moreover, the NV model also used quality-adjusted life expectancy, while the other two static models used life-expectancy without quality adjustment to estimate the discounted QALY losses of RSV-associated deaths (see Table 1 in main text and Table 2).

		UA			NV			SPS			SPD			LSHTM	
Discounted c	osts (in € mill	ion)													
Age	Direct	Non-	Total cost	Direct	Non-	Total cost	Direct	Non-	Total cost	Direct	Non-	Total cost	Direct	Non-	Total cost
	medical cost	medical		medical cost	medical		medical cost	medical		medical cost	medical		medical cost	medical	
		cost*			cost*			cost*			cost*			cost*	
0-2 months	€ 35.23	€ 11.89	€ 47.12	€ 34.76	€ 11.84	€ 48.95	€ 36.51	€ 11.81	€ 48.32	€ 33.27	€ 10.55	€ 43.82	€ 29.93	€ 9.66	€ 39.60
3-5 months	€ 20.10	€ 10.87	€ 30.97	€ 19.63	€ 11.66	€ 32.87	€ 20.62	€ 10.79	€ 31.41	€ 19.53	€ 8.53	€ 28.06	€ 18.34	€ 9.56	€ 27.90
6-11 months	€ 18.66	€ 11.61	€ 30.28	€ 17.40	€ 12.51	€ 29.91	€ 18.28	€ 11.37	€ 29.65	€ 17.85	€ 9.65	€ 27.50	€ 16.16	€ 10.04	€ 26.20
12-23	€ 22.43	€ 13.91	€ 36.34				-	-	-	€ 23.55	€ 12.51	€ 36.05	€ 21.08	€ 12.85	€ 33.93
months															
24-59	€ 10.53	€ 6.50	€ 17.04				-	-	-	€ 9.71	€ 5.16	€ 14.87	€ 11.17	€ 6.81	€ 17.98
months															
0-11	€ 73.99	€ 34.37	€ 108.36	€ 71.79	€ 36.00	€ 107.80	€ 75.42	€ 33.97	€ 109.38	€ 70.66	€ 28.73	€ 99.39	€ 64.44	€ 29.27	€ 93.71
months															
0-59	€ 106.95	€ 54.79	€ 161.74				-	-	-	€ 103.92	€ 46.39	€ 150.31	€ 96.69	€ 48.93	€ 145.62
months															

Table 9 estimated RSV-associated discounted cost and QALY without any interventions over 10 years (3% discounting rate)

		UA			NV			SPS			SPD			LSHTM	
Discounted Q	iscounted QALY Losses														
Age	episodes	deaths	Total	episodes	deaths	Total	episodes	deaths	Total	episodes	deaths	Total	episodes	deaths	Total
0-2 months	141.48	37.03	178.51	102.47	43.71	146.18	142.31	34.95	177.25	99.22	28.56	127.77	305.87	31.45	337.32
3-5 months	196.65	37.01	233.66	174.48	23.61	198.09	197.80	34.95	232.75	145.28	28.47	173.75	457.68	30.53	488.21
6-11 months	224.72	147.94	372.67	205.41	134.27	339.69	226.04	139.78	365.83	229.97	113.38	343.35	930.68	132.41	1,063.09
12-23	263.03	26.25	289.28				-	-	-	390.80	20.65	411.45	1,258.01	26.51	1,284.52
months															
24-59	117.75	73.79	191.55				-	-	-	215.36	61.51	276.87	1,978.63	78.24	2,056.88
months															
0-11	562.85	221.99	784.84	482.36	201.59	683.95	566.15	209.67	775.83	474.46	170.41	644.87	1,694.23	194.38	1,888.62
months															
0-59	943.63	322.04	1,265.67				-	-	-	1,080.62	252.56	1,333.19	4,930.87	299.14	5,230.01
months															

 Table footnote: UA: University of Antwerp model, NV: Novavax model, SPS: Sanofi Pasteur static model, SPD: Sanofi Pasteur dynamic model, LSHTM: London School of Hygiene & Tropical

Medicine model, QALY: quality adjusted life-years.

2.2 RSV disease burden averted with intervention

2.2.1 Year-round programmes

The estimated disease burden averted by age-group are presented in Table 10 (per static model) and Table 11 (per dynamic model). When comparing static model (Table 10), the NV model reported slightly more primary care visits averted by mAb because it used a weighted vaccine efficacy duration in the 3-5 months age-group (see: Table 1)

In contrast to the static models, both dynamic models assumed MV protection wanes and therefore estimated a relatively smaller disease burden averted in 0-2 month olds. Transitions out of the protected compartment were governed by an exponential function that assumed a mean duration of stay in the protected compartment of 90 days (implying a median duration of protection of 62 days, and a 37% probability of protection after 90 days). Moreover, The SPD model showed an age-shift increasing primary care visits in children >1 year. By contrast, the LSHTM model's herd effects reduced cases further in children >1 year (Table 11), because it accounted for reduced transmissibility through MV of both infants and mothers. In LSHTM model, 40% RSV infections averted in infants coming from the cessation of the transmission pathway between infants and vaccinated mothers.

			UA					NV		SPS					
Age	Primary care	Hospital	Hospitalisation	ICU	death	Primary care	Hospital	Hospitalisation	ICU	death	Primary care	Hospital	Hospitalisation	ICU	death
	visit	outpatient				visit	outpatient				visit	outpatient			
MV			1			I									
0-2 months	705	31	280	3	0.04	735	26	287	3	0.05	749	29	293	3	0.04
3-5 months	0	0	0	0	0.00	0	0	0	0	0.00	0	0	0	0	0.00
6-11 months	0	0	0	0	0.00	0	0	0	0	0.00	0	0	0	0	0.00
12-23 months	0	0	0	0	0.00	0	0	0	0	0.00	0	0	0	0	0.00
24-59 months	0	0	0	0	0.00	0	0	0	0	0.00	0	0	0	0	0.00
0-11 months	705	31	280	3	0.04	735	26	287	3	0.05	749	29	293	3	0.04
0-59 months	705	31	280	3	0.04	0	0	0	0	0.00	0	0	0	0	0.00
mAb															
0-2 months	1984	84	759	8	0.10	2010	72	779	9	0.13	2010	77	779	8	0.10
3-5 months	1907	52	278	2	0.07	2282	49	283	2	0.05	1933	48	285	2	0.07
6-11 months	0	0	0	0	0.00	0	0	0	0	0.00	0	0	0	0	0.00
12-23 months	0	0	0	0	0.00	0	0	0	0	0.00	0	0	0	0	0.00
24-59 months	0	0	0	0	0.00	0	0	0	0	0.00	0	0	0	0	0.00
0-11 months	3891	137	1037	10	0.17	4292	122	1062	11	0.18	3943	125	1064	9	0.17
0-59 months	3891	137	1037	10	0.17	0	0	0	0	0.00	0	0	0	0	0.00

Table 10: year-round programme: estimated disease burden averted by three static models

				SPD							LSHTM			
Age	Asymptomatic	Non-MA	Primary care	Hospital	Hospitalisation	ICU	Death	Asymptomatic	Non-MA	Primary	Hospital	Hospitalisation	ICU	Death
	infection	symptomatic	visit	outpatient				infection	symptomatic	care visit	outpatient			
		infection							infection					
MV					1									
0-2 months	165	7	157	6	43	0	0.01	84	565	194	7	70	1	0.01
3-5 months	138	20	116	3	24	0	0.00	89	598	251	5	29	0	0.01
6-11 months	106	16	47	1	4	0	0.00	105	850	177	3	15	0	0.02
12-23 months	-108	-36	-37	-1	-3	0	0.00	85	365	67	1	6	0	0.00
24-59 months	-154	-24	-15	0	-1	0	0.00	83	405	21	0	2	0	0.00
0-11 months	408	43	320	11	71	1	0.02	279	2014	622	16	113	1	0.03
0-59 months	147	-18	268	10	66	1	0.01	447	2784	710	17	121	1	0.03
mAb														
0-2 months	-1981	95	1908	77	555	6	0.09	529	3552	1193	43	454	6	0.06
3-5 months	-1935	262	1705	48	302	2	0.06	375	2531	1039	23	122	1	0.03
6-11 months	38	7	17	0	1	0	0.00	244	1938	439	8	37	0	0.04
12-23 months	308	38	44	1	4	0	0.00	430	1840	337	4	28	0	0.00
24-59 months	60	-15	-9	0	-1	0	0.00	228	1108	57	1	5	0	0.00
0-11 months	-3879	363	3630	126	858	8	0.15	1147	8021	2670	73	612	7	0.13
0-59 months	-3511	386	3665	126	861	8	0.15	1805	10970	3064	78	645	7	0.14

Table 11: year-round programme: estimated disease burden averted by two dynamic models

The base case incremental cost-effectiveness ratios (ICERs) are presented in Table 2 in the main text. From a societal perspective, the UA and the SPS models estimated ICERs of \notin 11,658 and \notin 1,635 per QALY gained, respectively, whereas the NV model reported mAb to be dominant. The higher ICER for the UA model is likely caused by an artefact of the probabilistic implementation, which used the log-normal distribution to sample hospital length-of-stay (LoS) and the interventions' efficacy (sample size = 1,000, random seed number in R: 20190118). The resulting sampled means were slightly lower than the provided mean (which was directly used in the other two static models). Changes in sample size or random seed in the UA model would therefore lead to changes in its output, although sensitivity analysis demonstrated no effect on the qualitative results and ranking of the strategies.

In addition to the base case, Table 12 illustrates the ICERs from both dynamic models when excluding the QALY gain from non-MA symptomatic cases. The within-dynamic model differences are still large, but it supported the main reasons explained in the main text: for MV, the SPD model estimated 40-50% less MA cases averted compared to the LSHTM model and more than 50% less QALY gained due to the age-shift of infections and not considering indirect protection from the vaccinated mothers (Table 11). For mAb, the SPD model assumed all-or-nothing protection over 5 months, resulting in more disease burden averted compared to the LSHTM model, hence more direct medical cost averted, QALY gained and lower ICERs from both perspectives.

Table 12: year-round programs exclude the QALY gain from the non-MA symptomatic infections: Expected incremental cost-effectiveness ratios (discount rate 3%, cumulative value over 10 years)

					-			
	QALY gain from	Direct medical	Intervention	Direct costs	ICER per	Non-medical	Total costs	ICER per
	MA cases #	cost	costs ^a		QALY gained	cost		QALY gained
					(payer)			(societal)
					([//			(,
MV (67%	coverage)	1		1	1	1	1	1
	coverage)							
SPD	12	-€2,383,575	€24,800,671	€22,417,095	€1,896,565	€2,530,847	-€823,597	€ 1,826,886
0. 2		02,000,070	02 .)000)07 2	022, 127,000	,,	02,000,017	0010,000	,,-,
LSHTM	28	-€4,158,218	€23,677,256	€19,519,038	€699,094	€699,094	-€1,757,456	€ 636,149
2011111	-0	01,100,210	623,077,230	010,010,000		0000,001	01,737,130	0000,215
m4h (949	% coverage)			L		L	L	
111/10 (34/	o coverage)							
SPD	153	-€31,071,021	€47,561,842	€16,490,821	€107,969	€136,235	-€10,901,641	€ 36,593
51.5	100	001,071,021	017,001,012	010, 190,021	0107,505	0100,200	010,001,011	000,000
LSHTM	125	-€22,150,079	€46,382,850	€24,232,770	€194,189	€194,189	-€8,513,684	€ 125,965
LJIIIVI	125	222,130,075	0,302,030	627,232,770	C154,105	0154,105	20,513,004	C 125,505
L Table foot	l tnote: [#] exclude the	Al Y gain from	n the non-MA s	/mntomatic infe	tions ^a interve	ntion costs in	l cludes cost of	
1 4210 1001		s as a gain noi						

intervention, delivery costs, and implementation costs. SPD: Sanofi Pasteur dynamic model, LSHTM: London School of Hygiene & Tropical Medicine model. MV: maternal vaccine, mAb: monoclonal antibody

2.2.2 Seasonal programmes

For the MV and mAb seasonal programmes, the percentage reductions in primary care visits and non-ICU hospitalisations are reported in Figure 7, where a similar trend as the year-round programme is observed. The expected ICERs per intervention are presented in Table 13. Both MV and mAb seasonal programmes prevented less RSV disease burden compared to year-round programmes. Three static models estimated MV seasonal programme would avert approximately 17% of non-ICU hospitalisations, whereas mAb would avert 70% of non-ICU hospitalisations. Both dynamic models also estimated lower percentages of primary care visits and non-ICU hospitalisations averted for both MV and mAb seasonal programmes compared to their estimates of year-round programmes.

In terms of cost-effectiveness, all five models calculated lower ICERs for both MV and mAb seasonal programmes compared to the year-round programs from payer's and societal perspectives. For mAb, four models assuming all-or-nothing waning concluded that mAb was

dominant versus no prevention from a societal perspective. However, LSHTM model which assumed exponential waning, showed an ICER below €16,000 from a societal perspective over a 10-year horizon (Table 13).

Figure 7: seasonal programmes: model-based primary care visits (left column) and non-ICU hospitalisations averted by maternal vaccine (MV: top row) and monoclonal antibody (mAb: bottom row) compared to the disease burden estimates without any intervention.

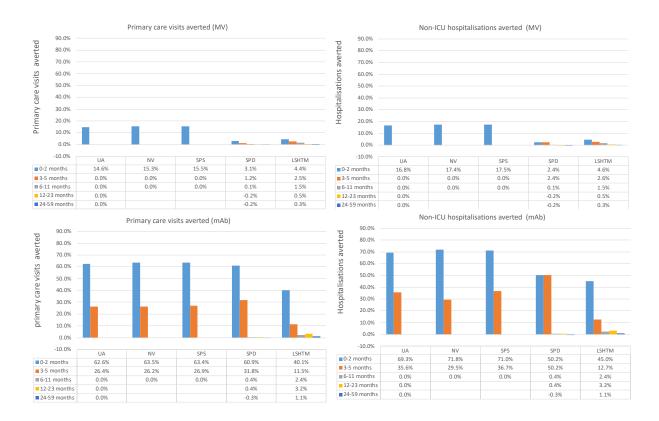


Table 13: seasonal programs: QALYs gained, incremental costs and incremental costeffectiveness ratios of either MV or mAB versus current practice, from the health care payer's and societal perspectives (discount rate 3% per year MV: \in 37.5 per dose and \in 8.32 delivery cost, mAb: \in 50 per dose and \in 5 delivery cost)

	QALY	Direct medical	Intervention	Direct costs	ICER per	Non-medical	Total costs	ICER per
	gains	cost	costs ^a		QALY gained	cost averted		QALY gained
					(payer)			(societal)
MV								
UA^	3	-€ 670,933	€ 1,194,433	€ 523,500	€ 198,717	-€ 217,867	€ 305,633	€ 129,280
NV ^	3	-€ 712,700	€ 1,194,433	€ 481,733	€ 182,852	-€ 232,559	€ 249,175	€ 94,579
SPS ^	3	-€ 722,222	€ 1,190,833	€ 468,611	€ 142,378	-€ 226,475	€ 242,136	€ 73,568
SPD*	5	-€ 1,205,960	€ 9,624,137	€ 8,418,178	€ 1,733,256	-€ 399,284	€ 8,018,894	€ 1,651,046
LSHTM*	57	€ 2,245,670	€ 9,703,034	€ 7,457,363	€ 131,423	€ 921,321	€ 6,536,043	€ 115,186
mAb								
UA^	21	-€ 3,560,217	€ 3,397,880	-€ 162,337	Dominant	-€ 1,280,944	-€ 1,443,281	Dominant
NV^	17	-€ 3,625,946	€ 3,297,880	-€ 328,066	Dominant	-€ 1,343,334	-€ 1,671,400	Dominant
SPS^	21	-€ 3,768,411	€ 3,297,880	-€ 470,531	Dominant	-€ 1,298,979	-€ 1,769,510	Dominant
SPD*	135	-€ 26,363,196	€ 27,827,741	€ 1,464,545	€ 10,867	-€ 9,169,981	-€ 7,705,436	Dominant
LSHTM*	289	-€ 17,025,670	€ 27,530,639	€ 10,504,969	€ 36,376	€ 6,074,306	€ 4,430,663	€ 15,342

Table footnote: * Cumulative value over 10 years. ^ ICERs are calculated for children under age 1 year. ^a intervention costs includes cost of intervention, delivery costs, and implementation costs UA: University of Antwerp model, NV: Novavax model, SPS: Sanofi Pasteur static model, SPD: Sanofi Pasteur dynamic model, LSHTM: London School of Hygiene & Tropical Medicine model.

2.2.3 The mAb seasonal plus a catch-up programme

The estimates of disease burden averted by age-group are presented in Table 14 (per static model) and Table 15 (per dynamic model). NV model was initially developed for MV and cannot perform this scenario. The expected ICERs from healthcare payer's and societal perspectives are reported in Table 16. Compared to the year-round and seasonal mAb programmes without catch-up, the mAb seasonal programme with catch-up had similar MA

cases averted among children in the 0-2 months age-group, but the catch-up component

further reduced MA cases in the 3-5 months and 6-11 months age-groups in all four models.

Table 14:mAb seasonal plus a catch-up programme: estimated disease burden averted by two static models

			UA					SPS		
Age	Primary	Hospital	Hospital	ICU	death	Primary	Hospital	Hospitalis	ICU	death
	care visit	outpatient	isation			care visit	outpatient	ation		
mAb										
0-2 months	1951	83	744	8	0	1976	76	763	8	0
3-5 months	3370	82	413	3	0	2917	66	377	2	0
6-11 months	1619	33	149	0	0	1653	30	154	0	0
12-23 months	0	0	0	0	0	0	0	0	0	0
24-59 months	0	0	0	0	0	6546	171	1294	10	0
0-11 months	6940	197	1306	11	0	0	0	0	0	0
0-59 months	6940	197	1306	11	0	0	0	0	0	0

Table 15: mAb seasonal plus a catch-up programme: estimated disease burden averted by

two dynamic models

			SPD							LSH	ГМ			
Age	Asymptomatic	Non-MA	Primary	Hospital	Hospital	ICU	death	Asymptomatic	Non-MA	Primary	Hospital	Hospital	ICU	death
	infection	symptomatic	care visit	outpatient	isation			infection	symptomatic	care visit	outpatient	isation		
		infection							infection					
0-2 months	-1878	91	1808	74	576	6	0.09	514	3455	1165	42	439	5	0.06
3-5 months	-2616	389	2261	66	314	2	0.08	517	3448	1485	31	166	1	0.04
6-11 months	-1786	478	1399	32	116	0	0.14	565	4499	1000	19	83	0	0.08
12-23 months	460	59	67	1	6	0	0.00	653	2792	511	6	43	0	0.01
24-59 months	49	-24	-15	0	-1	0	0.00	335	1631	84	1	7	0	0.01
0-11 months	-6280	958	5467	171	1006	9	0.30	1597	11403	3650	91	689	7	0.18
0-59 months	-5772	993	5520	172	1010	9	0.30	2585	15826	4245	99	738	7	0.20

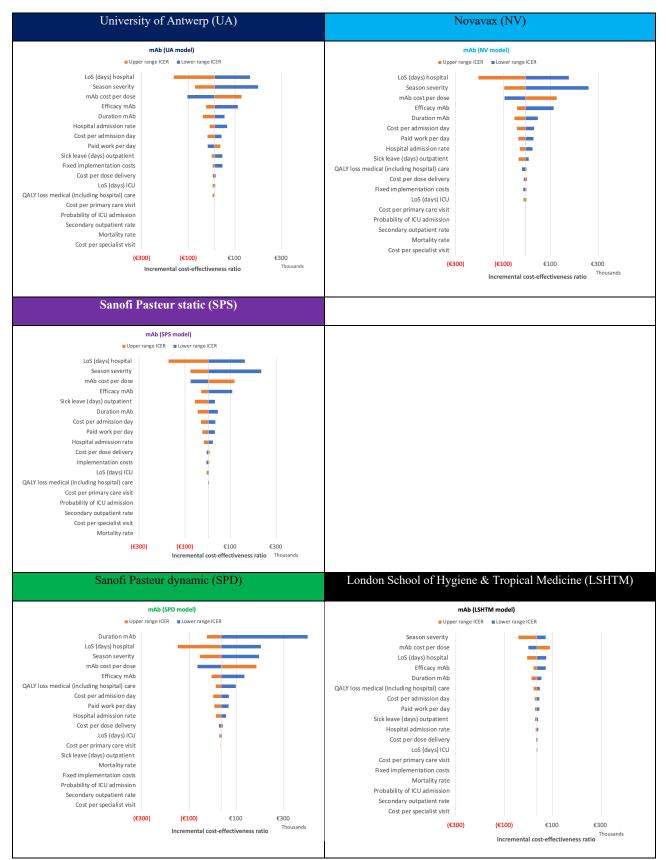
UA: University of Antwerp model, SPS: Sanofi Pasteur static model, SPD: Sanofi Pasteur dynamic model, LSHTM: London

School of Hygiene & Tropical Medicine model, MV: maternal vaccine, mAb: monoclonal antibody

Table 16: mAb seasonal plus catch-up programs: QALYs gained, incremental costs and incremental cost-effectiveness ratios of either MV or mAB versus current practice, from the health care payer's and societal perspectives (discount rate 3% per year, MV: \in 37.5 per dose and \in 8.32 delivery cost, mAb: \in 50 per dose and \in 5 delivery cost)

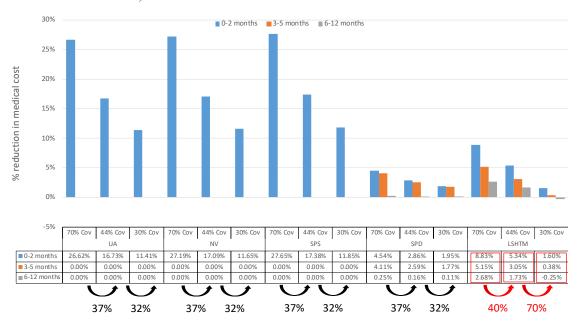
	QALY	Direct medical	Intervention	Incremental	ICER per	Non-medical	Incremental	ICER per
	gains	cost	costs ^a	direct costs	QALY gained	cost	total costs	QALY gained
					(payer)			(societal)
mAb (94%	coverage)						
UA^	42	-€ 5,063,767	€ 5,682,080	€ 618,313	€ 14,640	-€ 2,127,102	-€ 1,508,789	Dominant
SPS^	40	-€ 5,109,345	€ 5,682,080	€ 572,735	€ 14,240	-€ 2,034,840	-€ 1,462,105	Dominant
SPD*	271	-€ 37,228,886	€ 47,561,842	€ 10,332,955	€ 38,168	-€ 14,271,701	-€ 3,938,746	Dominant
LSHTM*	632	-€ 25,491,150	€ 46,683,568	€ 21,192,418	€ 33,548	-€ 10,639,867	€ 10,552,552	€ 16,705

Table footnote: [#] excluding the QALY gain from the non-MA symptomatic infections averted. ^a intervention costs includes cost of intervention, delivery costs, and implementation costs UA: University of Antwerp model, NV: Novavax model, SPS: Sanofi Pasteur static model, SPD: Sanofi Pasteur dynamic model, LSHTM: London School of Hygiene & Tropical Medicine model. MV: maternal vaccine, mAb: monoclonal antibody


2.3 One-way sensitivity analysis

The impact of each of the individual parameters on the ICER from a societal perspective per intervention per model are presented in tornado diagrams. As illustrated in Figure 8 and Figure 9, the top five key drivers are similar, but they rank differently for MV and mAb across models.

Figure 8: Tornado diagrams for maternal vaccines year-round programs: impact on ICER from a societal perspective.


Figure 9: Tornado diagrams for monoclonal antibody year-round programs: impact on ICER from a societal perspective.

2.4 Sensitivity analysis: impact of seasonal programmes and intervention coverage

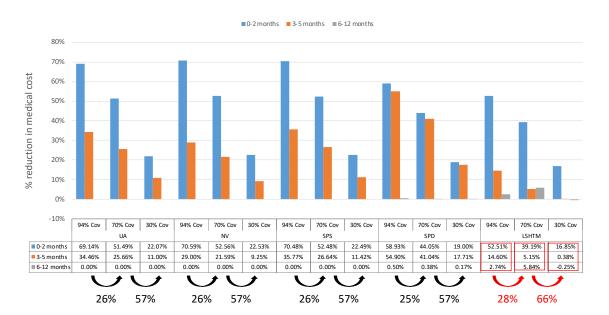

We further investigated the impact of interventions' coverage under two scenarios of 70% and 30% coverage for both MV and mAb seasonal programmes compared to the base case seasonal programmes (Coverage: MV 44% and mAb 94%). The reductions of RSV-associated medical costs (without intervention costs) for three coverages are demonstrated per model and intervention in Figure 10 and Figure 11. By default, static models found medical costs averted to scale linearly with coverage (i.e., 37% decrease in MV coverage from 70% to 44% led to 37% reduction in medical costs averted). Between the two dynamic models, SPD model showed close to linear changes across all age-groups for both MV and mAb, but the LSHTM model showed a non-linear reduction for both MV and mAb due to herd immunity.

Figure 10: maternal vaccine (MV) seasonal programmes: % reduction of medical cost averted with 70%, 44% and 30% coverage. The arrows show the relative decreases in costs from 70% coverage to 44% and 44% to 30% (black arrows: linear reduction, red arrows:

non-linear reduction)

Figure 11: monoclonal antibody (mAb) seasonal programmes: reduction of medical cost with 94%, 70% and 30% coverage. The arrows show the relative decreases in costs from 94% coverage to 70% and 70% to 30% (black arrows: linear reduction, red arrows: non-linear reduction).

Reference

1. Li X, Bilcke J, Vazquez Fernandez L, et al. Cost-effectiveness of Respiratory Syncytial Virus Disease Prevention Strategies: Maternal Vaccine Versus Seasonal or Year-Round Monoclonal Antibody Program in Norwegian Children. J Infect Dis. 2022.

2. Voirin N, Virlogeux V, Demont C, et al. Potential Impact of Nirsevimab on RSV Transmission and Medically Attended Lower Respiratory Tract Illness Caused by RSV: A Disease Transmission Model. Infect Dis Ther. 2022; 11: 277-92.

3. Hodgson D, Pebody R, Panovska-Griffiths J, et al. Evaluating the next generation of RSV intervention strategies: a mathematical modelling study and cost-effectiveness analysis. BMC Med. 2020; 18: 348.

4. Kieffer A, Beuvelet M, Sardesai A, et al. Expected Impact of Universal Immunization With Nirsevimab Against RSV-Related Outcomes and Costs Among All US Infants in Their First RSV Season: A Static Model. J Infect Dis. 2022; 226: S282-S92.

5. Herring WL, Zhang Y, Shinde V, et al. Clinical and economic outcomes associated with respiratory syncytial virus vaccination in older adults in the United States. Vaccine. 2022; 40: 483-93.

6. Office for National Statistics. Population estimates: Summary for the UK, mid-2020. Office for National Statistics, 2021.

7. Reeves RM, van Wijhe M, Tong S, et al. Respiratory Syncytial Virus-Associated Hospital Admissions in Children Younger Than 5 Years in 7 European Countries Using Routinely Collected Datasets. J Infect Dis. 2020; 222: S599-S605.

8. Cromer D, van Hoek AJ, Jit M, et al. The burden of influenza in England by age and clinical risk group: a statistical analysis to inform vaccine policy. J Infect. 2014; 68: 363-71.

9. Hodgson D, Atkins KE, Baguelin M, et al. Estimates for quality of life loss due to Respiratory Syncytial Virus. Influenza Other Respir Viruses. 2020; 14: 19-27.

10. Institute for Medical Technology Assessment Erasmus Universiteit Rotterdam. Kostenhandleiding: Methodologie van kostenonderzoek en referentieprijzen voor economische evaluaties in de gezondheidszorg. Kostenhandleiding: - Zorginstituut Nederland, 2016.

11. Blanken MO, Frederix GW, Nibbelke EE, et al. Cost-effectiveness of rule-based immunoprophylaxis against respiratory syncytial virus infections in preterm infants. Eur J Pediatr. 2018; 177: 133-44.

12. Meijboom MJ, Rozenbaum MH, Benedictus A, et al. Cost-effectiveness of potential infant vaccination against respiratory syncytial virus infection in The Netherlands. Vaccine. 2012; 30: 4691-700.

13. Griffin MP, Yuan Y, Takas T, et al. Single-Dose Nirsevimab for Prevention of RSV in Preterm Infants. N Engl J Med. 2020; 383: 415-25.

14. Madhi SA, Polack FP, Piedra PA, et al. Respiratory Syncytial Virus Vaccination during Pregnancy and Effects in Infants. N Engl J Med. 2020; 383: 426-39.

15. GOV.UK. Vaccine uptake guidance and the latest coverage data. 2021.

16. Cromer D, van Hoek AJ, Newall AT, et al. Burden of paediatric respiratory syncytial virus disease and potential effect of different immunisation strategies: a modelling and cost-effectiveness analysis for England. Lancet Public Health. 2017; 2: e367-e74.

17. Li X, Willem L, Antillon M, et al. Health and economic burden of respiratory syncytial virus (RSV) disease and the cost-effectiveness of potential interventions against RSV among children under 5 years in 72 Gavi-eligible countries. BMC Med. 2020; 18: 82.

18. Kinyanjui TM, House TA, Kiti MC, et al. Vaccine Induced Herd Immunity for Control of Respiratory Syncytial Virus Disease in a Low-Income Country Setting. PLoS One. 2015; 10: e0138018.

19. Pan-Ngum W, Kinyanjui T, Kiti M, et al. Predicting the relative impacts of maternal and neonatal respiratory syncytial virus (RSV) vaccine target product profiles: A consensus modelling approach. Vaccine. 2017; 35: 403-09.

20. Ely DM, Driscoll AK, Matthews TJ. Infant Mortality by Age at Death in the United States, 2016. NCHS Data Brief. 2018: 1-8.

21. In: Szende A, Janssen B, Cabases J, eds., Self-Reported Population Health: An International Perspective based on EQ-5D. Dordrecht (NL), 2014.

22. Briggs AH, Goldstein DA, Kirwin E, et al. Estimating (quality-adjusted) life-year losses associated with deaths: With application to COVID-19. Health Econ. 2021; 30: 699-707.

23. Janssen B, Szende A. Population Norms for the EQ-5D. In: Szende A, Janssen B, Cabases J, eds., Self-Reported Population Health: An International Perspective based on EQ-5D. Dordrecht (NL), 2014.

24. van den Berg B. Sf-6d population norms. Health Econ. 2012; 21: 1508-12.

25. Mossong J, Hens N, Jit M, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008; 5: e74.

26. van Hoek AJ, Andrews N, Campbell H, et al. The social life of infants in the context of infectious disease transmission; social contacts and mixing patterns of the very young. PLoS One. 2013; 8: e76180.