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Abstract 

Background The effectiveness of malaria vector control interventions is often evaluated using cluster randomized 
trials (CRT) with outcomes assessed using repeated cross-sectional surveys. A key requirement for appropriate 
design and analysis of longitudinal CRTs is accounting for the intra-cluster correlation coefficient (ICC). In addition 
to exchangeable correlation (constant ICC over time), correlation structures proposed for longitudinal CRT are block 
exchangeable (allows a different within- and between-period ICC) and exponential decay (allows between-period 
ICC to decay exponentially). More flexible correlation structures are available in statistical software packages and, 
although not formally proposed for longitudinal CRTs, may offer some advantages. Our objectives were to empirically 
explore the impact of these correlation structures on treatment effect inferences, identify gaps in the methodological 
literature, and make practical recommendations.

Methods We obtained data from a parallel-arm CRT conducted in Tanzania to compare four different types of insec-
ticide-treated bed-nets. Malaria prevalence was assessed in cross-sectional surveys of 45 households in each of 84 
villages at baseline, 12-, 18- and 24-months post-randomization. We re-analyzed the data using mixed-effects logistic 
regression according to a prespecified analysis plan but under five different correlation structures as well as a robust 
variance estimator under exchangeable correlation and compared the estimated correlations and treatment effects. A 
proof-of-concept simulation was conducted to explore general conclusions.

Results The estimated correlation structures varied substantially across different models. The unstructured model 
was the best-fitting model based on information criteria. Although point estimates and confidence intervals for the 
treatment effect were similar, allowing for more flexible correlation structures led to different conclusions based on 
statistical significance. Use of robust variance estimators generally led to wider confidence intervals. Simulation results 
showed that under-specification can lead to coverage probabilities much lower than nominal levels, but over-specifi-
cation is more likely to maintain nominal coverage.

Conclusion More flexible correlation structures should not be ruled out in longitudinal CRTs. This may be particularly 
important in malaria trials where outcomes may fluctuate over time. In the absence of robust methods for selecting 
the best-fitting correlation structure, researchers should examine sensitivity of results to different assumptions about 
the ICC and consider robust variance estimators.
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Introduction
Cluster randomized trials (CRTs) are commonly used 
to evaluate the effectiveness of different types of insec-
ticide-treated nets against malaria, a parasitic disease 
transmitted by mosquito vectors [1]. In these trials, ran-
domization often involves entire communities, villages 
or larger administrative units [2], referred to as “clusters”. 
Cluster randomization can simplify logistics and help 
avoid contamination among individuals allocated to dif-
ferent types of nets within the same geographical area. 
Despite its advantages in this setting, cluster randomi-
zation complicates trial design and analysis due to the 
necessity to account for the similarity of responses from 
multiple individuals in the same cluster. This similarity is 
usually measured using the intra-cluster correlation coef-
ficient (ICC) [3]. A typical assumption in CRTs is that the 
correlation between any two individuals in the same clus-
ter is constant, called an “exchangeable correlation” [4]. 
When a CRT is analyzed using mixed-effects regression, 
an exchangeable correlation is obtained by including a 
random intercept for clusters, in which case the ICC can 
be estimated as the ratio of the between-cluster variance 
to the total variance of the outcome.

In malaria trials, outcomes (e.g., prevalence of malaria 
infection) are often assessed using repeated cross-sec-
tional surveys before and after introduction of the inter-
vention. This design is known as a longitudinal CRT. 
Longitudinal CRTs are more complex to design and ana-
lyze. Substantial development for novel types of longitu-
dinal CRT designs such as stepped wedge and multiple 
cluster cross-over designs has taken place in recent years 
[4–6]. A focus of this literature has been on accounting 
for complex within- and between-period intra-cluster 
correlations. In short, when data across all time peri-
ods are analyzed in one overall model, the assumption 
of an exchangeable ICC may not be plausible: [5–7] it is 
more reasonable to allow the correlation between two 
individuals measured in the same cluster but in differ-
ent periods (called the between-period ICC) to be dif-
ferent (often weaker) than the correlation between two 
individuals measured in the same cluster but in the same 
period (called the within-period ICC) [5, 6, 8]. Two types 
of correlation structures that allow both a within-period 
and between-period ICC are nested exchangeable [5, 7] 
and exponential decay [6]. Sample size calculation proce-
dures for longitudinal CRTs under exchangeable, nested 
exchangeable and exponential decay structures are now 
readily available [9]. Parameters that need to be speci-
fied for sample size calculation include the within-period 
ICC and the Cluster Autocorrelation Coefficient (CAC), 
defined as the ratio of the between-period ICC to within-
period ICC, or alternatively, as the rate of decay per 
period.

Despite substantial methodological development for 
novel longitudinal designs in recent years, relatively less 
attention has been paid to longitudinal parallel-arm 
CRTs. Parallel-arm CRTs differ from stepped-wedge and 
cluster cross-over designs in some important ways. For 
example, when the treatment effect is expected to vary 
over time, the analysis of post-intervention data from a 
parallel-arm design may involve data pooled across all 
periods with treatment, period and treatment-by-period 
interactions specified as fixed effects and adjusting for the 
baseline measure (e.g., cluster malaria prevalence before 
randomization) as a covariate. Period-specific treatment 
effect estimates may then be obtained as least square 
mean differences from the model. In contrast, existing 
methods for SW-CRTs and cluster cross-over designs 
typically assume that the intervention effect of inter-
est is the time-averaged difference between intervention 
and control conditions. Furthermore, cluster cross-over 
and stepped wedge CRTs are usually designed with equal 
step lengths, whereas parallel-arm CRTs may have differ-
ent durations between successive cross-sections, which 
means that some types of correlation structures (e.g., 
exponential decay) may not be meaningful. Finally, more 
flexible correlation structures may be required in malaria 
trials where seasonal effects, and complex time by treat-
ment interactions may imply that correlations do not 
necessarily decay or do not decay in a consistent pattern.

In this manuscript, we use data from a parallel-arm 
longitudinal malaria vector control trial conducted 
in Tanzania [10] to introduce readers to five different 
types of correlation structures available for longitudinal 
CRTs. We present empirical estimates for different cor-
relation structures using data from this trial and con-
sider the implications for inferences about the treatment 
effect. We identify gaps in the methodological literature 
and make practical recommendations for investigators 
designing and analysing longitudinal parallel-arm CRTs. 
Finally, we present results from a proof-of-concept simu-
lation study to demonstrate the potential implications of 
random effects misspecification.

Correlation structures for longitudinal CRTs
A good overview of available correlation structures in 
linear mixed-effects regression analyses of longitudi-
nal CRT designs is provided in Li et  al. [11] They dis-
tinguish between three main correlation structures 
for cross-sectional designs with continuous outcomes: 
exchangeable, nested exchangeable, and exponential 
decay [4–6]. Table  1 provides diagrams correspond-
ing to these structures. Unlike an exchangeable corre-
lation, the nested exchangeable correlation assumes a 
constant between-period ICC which is allowed to dif-
fer from the within-period ICC. An exponential decay 
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structure allows the between-period ICC to decay at an 
exponential rate over time. The underlying analytical 
models and definitions for these correlation structures 
under linear mixed models are available in Li et al. [11] 

For binary outcomes, similar correlation structures can 
be defined on the latent outcome scale by applying the 
logistic variance definition ( π

2

3
 ) in place of the usual 

residual variance [12].
Although parsimonious, these three correlation 

structures may be unnecessarily restrictive. Two alter-
native correlation structures are Toeplitz and unstruc-
tured models [13], also illustrated in Table 1. Assuming 
the number of clusters is relatively large, these models 
could feasibly be fitted using available statistical soft-
ware packages, although such models have not been 
formally proposed for analyzing longitudinal CRTs. The 
Toeplitz and exponential decay structures are similar 
in that they assume equally spaced measurements and 
equal pairwise correlations between measurements 
that are the same distance apart, but under the Toeplitz 
structure, the correlations are not required to decay or 
decay in a consistent pattern. The unstructured struc-
ture is the most flexible allowing the pairwise cor-
relations to be different (and even increase) at each 
timepoint, and it does not force the within-period ICCs 
to be equal. As such, the unstructured correlation does 
not require measurements to be equally spaced.

Kasza and Forbes [14] considered the implications 
of misspecification of the correlation structure for lon-
gitudinal CRTs, specifically assuming an exchangeable 
or nested exchangeable correlation when exponential 
decay holds. They showed that standard errors can be 
either over- or under-estimated, depending on the type 
of CRT design: stepped wedge, cross-over or paral-
lel with post-baseline repeated measures. The choice of 
correlation structure therefore has important implica-
tions for the inferences from the trial, but to date, there 
is no definitive method for determining the best correla-
tion structure for longitudinal CRTs [15]. For continuous 
outcomes, one possibility is to use information criteria, 
such as Akaike Information Criteria (AIC) and Bayesian 
Information Criteria (BIC). Although Murray et  al. [16] 
pointed out that the AIC- and BIC-preferred models do 
not always protect the Type I error rate, a recent publi-
cation by Rezaei-Darzi et al. [17] found that for continu-
ous outcomes with larger numbers of clusters, periods 
and participants per cluster-period, AIC and BIC both 
perform adequately in identifying the correct within-
cluster correlation structure. However, for smaller total 
sample sizes, these criteria do not perform well and when 
the degree of dependence between observations in adja-
cent periods is large and the number of periods is small, 
neither criterion is able to distinguish between different 
correlation structures. These authors recommend that, 
if sample sizes are adequate, AIC or BIC can be used in 
the absence of other compelling justifications for a spe-
cific correlation structure and that researchers conduct 

Table 1 Visualization of five possible correlation structures for 
longitudinal cluster randomized trials

ρw/ρwi = within-period ICC, ρb/ρbi = between-period ICC, ρij = the correlation 
between two within-cluster observations collected during the i-th and j-th 
period, r = cluster autocorrelation

Each correlation matrix shows a design with 3 periods and 2 cluster-period sizes. 
Across blocks, it shows the between period correlations between any individual 
from two periods. Within each block, correlations show the correlation between 
two individuals within the same period. ρij is equal to ρji

Correlation 
structure

Intracluster correlation matrices

Exchangeable

 

Nested  
Exchangeable

   

Exponential  
decay

   

Toeplitz

   

Unstructured
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sensitivity analyses under alternative correlation struc-
tures. Other studies have investigated using AIC and BIC 
for various conditions, including covariance heterogene-
ity, and found that they performed rather poorly [18]. To 
our knowledge, the use of these information criteria has 
not been examined for non-continuous outcomes. In the 
absence of reliable methods for choosing the best-fitting 
correlation structure, an alternative is to use robust vari-
ance estimators (RVE) which can yield consistent vari-
ance estimates for the treatment effect even when the 
correlation is misspecified [19].

Motivating example
The motiving example is a longitudinal, parallel-arm CRT 
conducted in Northwestern Tanzania between Octo-
ber 2018 and January 2021 [10, 20]. This trial included 
84 clusters comprised of 72 villages covering a total of 
39,307 households. The trial aimed to determine the 
comparative effectiveness of three new dual active ingre-
dient long-lasting insecticidal nets (LLINs) that combine 
a pyrethroid insecticide with another insecticide or syn-
ergist in reducing malaria transmitted by mosquito vec-
tors that are resistant to standard insecticides. The three 
interventions, all different types of dual active ingredi-
ent LLINs (denoted hereafter as intervention 2, 3 and 4), 
were compared against a single-insecticide, pyrethroid-
only LLIN (intervention 1).

Malaria prevalence in children aged 6 months to 
14 years (the primary trial outcome) was assessed 
through a baseline survey in 2018, and trial clusters 
were subsequently allocated to one of the four inter-
vention arms by covariate constrained randomization 
with 21 clusters allocated to each arm. To evaluate the 
impact of trial interventions on malaria prevalence, 
repeated cross-sectional measures of malaria prev-
alence were then taken at fixed (equally spaced) 
timepoints: 12-, 18- and 24-months following the dis-
tribution of LLINs in the study area in January 2019. 
The primary endpoint was specified as malaria preva-
lence at 24 months. The baseline survey and each sub-
sequent cross-sectional measure targeted 50 children 
per cluster. The average malaria prevalence at baseline 
ranged from 42.0%–46.6% across intervention arms. 
The overall prevalence of malaria at each post-inter-
vention timepoint was 22.0%, 46.7% and 37.3%. Malaria 
prevalence was higher in all arms at the 18-month 
timepoint, which occurred following the main malaria 
transmission season in July/August of 2021, compared 
to the 12- and 24-month timepoints that occurred 
following the short malaria transmission seasons in 
January/February of 2020 and 2021, respectively. In 
this trial, according to a prespecified analytical plan, 

all three post-intervention measurements were ana-
lyzed in a single model with fixed effects for interven-
tion, period, period-by-intervention, logit-transformed 
baseline cluster mean malaria prevalence, and all vari-
ables used in the restricted randomization. The corre-
lation structure was specified as nested exchangeable. 
Further details on the trial design and the results of 
the primary trial analysis are available in the published 
protocol [20] and primary trial report [10].

Methods of analysis
We re-analyzed the trial data using mixed-effects logis-
tic regression following the same analytical plan as in 
the published trial but fitting five different correlation 
structures: (1) exchangeable, (2) nested exchangeable, 
(3) exponential decay, (4) Toeplitz, and (5) unstruc-
tured. In addition, we fitted the models using the RVE 
under an exchangeable working correlation. Estimates of 
intervention effects on malaria prevalence at each post-
intervention timepoint (i.e., 12-, 18- and 24-months) 
were obtained as adjusted and unadjusted least square 
mean differences from the model. These results were 
reported as odds ratios (ORs) with associated 95% con-
fidence intervals (CIs). All analyses were conducted in 
SAS 9.4 (Cary, NC, USA) using PROC GLIMMIX. The 
SAS code for conducting the analyses and estimating the 
correlations is provided in the Additional file 1. The esti-
mation procedure was adaptive quadrature [21, 22], and 
we used the default degree of freedom option (between-
within method) in SAS. As the investigators prespecified 
the comparison of each new type of net to the refer-
ence net as the primary comparisons of interest [23], the 
alpha value for evaluating statistical significance was set 
as 0.017. For each assumed correlation structure, esti-
mates for the correlations were obtained first on the logit 
scale [12] assuming the residual variance to be π

2

3
 , and 

then on the proportions scale using linear mixed model 
approximations. We present both covariate-adjusted and 
unadjusted ICCs. We also extracted information criteria, 
corrected AIC (AICC), BIC, and negative log-likelihood 
from each model.

Results
Estimated correlations
The estimated correlation structures on the logit scale are 
presented in Table 2. (The estimates on the proportions 
scale are presented in Additional file  2, Table  S1). Not 
surprisingly, the exchangeable model (which assumes 
a constant ICC across all periods) returned the lowest 
ICC (0.16 before covariate adjustment). After covari-
ate adjustment, the ICC decreased substantially to 0.05, 
which indicates that the covariates explain a substantial 
proportion of the between-cluster variability in this trial. 
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As expected, under structures which allowed for a dif-
ferent between-period ICC, the within-period ICC was 
higher (0.19 under nested exchangeable, exponential 
decay and Toeplitz structures before covariate adjust-
ment; 0.08 with covariate adjustment). The estimated 
correlation matrix was similar between exponential 
decay and Toeplitz models, which indicates the extra flex-
ibility of the Toeplitz model may not be necessary. Most 
notably, the estimated within-period ICC in the unstruc-
tured correlation varied over time from 0.091 in the first 
period, 0.052 in the middle period, to 0.118 in the final 
period. All other correlation structures forced the within-
period ICC to be the same over time. Furthermore, in the 
unstructured correlation, the between-period ICC did 
not decay every period but increased from the second to 
third period.

Information criteria under the different models are 
reported in Table  3. There was some disagreement 
between the criteria: AICC reached its minimum value 
for the unstructured model whereas BIC (which is known 
to prefer a simpler model) indicated that exponential 
decay model resulted in the best-fitting model.

Estimated treatment effects from models
The observed cluster-specific malaria prevalence esti-
mates in each arm at baseline, 12, 18 and 24 months are 
presented in Fig. 1 using boxplots. The model-based least 
square mean differences, expressed as adjusted ORs with 
95% CIs, obtained from the covariate-adjusted mod-
els at each timepoint are presented in Fig.  2 (the unad-
justed estimates are presented in Additional file  2, Fig. 
S1). For all intervention arms, the exchangeable model 
generally resulted in the narrowest confidence intervals 
at 12- and 24 months, but unstructured had the narrow-
est confidence intervals at 18 months. Exponential decay 
and Toeplitz models often returned very similar ORs and 
confidence intervals. It is worth noting that treatment 
effect estimates showed an “up and down” trend over 
time with intervention effects generally being stronger 
at 12 and 24 months. This is because the 18-month point 
was following the long rainy season where the prevalence 
of malaria was higher and more variable in all arms (see 
Fig. 1). Intervention 4 was the only type of net with confi-
dence intervals excluding the null at all time points; inter-
ventions 2 and 3 had confidence intervals overlapping 

Table 2 Estimated ICC values under five different correlation structures for the example trial on the logit scale, unadjusted and 
adjusted for prespecified covariates

 WPICC: Within-period ICC, CAC: Cluster autocorrelation coefficient
a Each cell [i, j] represent correlation between two within-cluster individuals collected in different i and j periods

Unadjusted Adjusted

Correlation structures WPICC (ρw) CAC Intra-cluster correlation  matrixa WPICC (ρw) CAC Intra-cluster correlation  matrixa

Exchangeable 0.160 1




0.160 0.160 0.160

0.160 0.160 0.160

0.160 0.160 0.160





0.054 1




0.054 0.054 0.054

0.054 0.054 0.054

0.054 0.054 0.054





Nested Exchangeable 0.187 0.774 0.187 0.145 0.145

0.145 0.187 0.145

0.145 0.145 0.187

0.084 0.421




0.084 0.035 0.035

0.035 0.084 0.035

0.035 0.035 0.084





Exponential decay 0.189 0.822




0.189 0.156 0.128

0.156 0.189 0.156

0.128 0.156 0.189





0.084 0.505




0.084 0.043 0.021

0.043 0.084 0.043

0.021 0.043 0.084





  

Toeplitz 0.189 –




0.189 0.153 0.136

0.153 0.189 0.153

0.136 0.153 0.189





0.084 –




0.084 0.041 0.028

0.041 0.084 0.041

0.028 0.041 0.084





Unstructured – –




0.216 0.140 0.149

0.140 0.156 0.150

0.149 0.150 0.199





– –




0.091 0.017 0.039

0.017 0.052 0.054

0.039 0.054 0.118





Table 3 Fit statistics for the example trial, using mixed-effects 
logistic regression models under five different correlation 
structures, adjusting for pre-specified covariates (minimized 
values bolded)

Model AICC BIC -2 Log Likelihood

Exchangeable 16,432.99 16,479.13 16,394.94

Nested Exchangeable 16,299.18 16,347.73 16,259.12

Exponential decay 16,298.42 16,346.98 16,258.36

Toeplitz 16,299.72 16,350.70 16,257.66

Unstructured 16,291.87 16,350.12 16,243.78



Page 6 of 10Ouyang et al. BMC Medical Research Methodology           (2023) 23:64 

Fig. 1 Boxplot of cluster-specific malaria prevalence at baseline, 12 months, 18 months and 24 months by intervention

Fig. 2 Comparison of intervention effect estimates and 95% confidence intervals using mixed-effects logistic regression adjusted for prespecified 
covariates and assuming five different correlation structures as well as assuming robust variance estimators with exchangeable correlation
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with the null in at least some of the correlation structures 
at all time points. Unsurprisingly, use of the RVE led to 
estimates similar to those from the exchangeable mod-
els but with wider confidence intervals. All adjusted and 
unadjusted estimates and their confidence intervals are 
presented in the Additional file 2, Table S2-S3.

Discussion
Correct specification of the correlation structure is 
important in the design and analysis of longitudinal 
CRTs. A mis-specified correlation structure could reduce 
statistical efficiency or worse, lead to incorrect infer-
ences. Although models that allow correlations to decay 
have received substantial attention in the literature for 
stepped wedge and cluster cross-over designs, more flex-
ible correlation structures that do not require a decay, 
may be warranted in the case of longitudinal parallel-arm 
CRTs, especially when intervals are unequally spaced. 
In this re-analysis of a previously published longitudi-
nal, parallel-arm CRT to evaluate malaria vector control 
interventions, we empirically compared the implications 
of alternative assumptions about the correlation struc-
tures on inferences about the treatment effect.

First, we demonstrated that within-period ICCs can be 
substantially different over time — yet correlation struc-
tures currently recommended in the methodological lit-
erature (i.e., nested exchangeable and exponential decay) 
assume a common within-period ICC over time. Second, 
we demonstrated that between-period ICCs do not nec-
essarily decay. For both reasons, more flexible correla-
tion structures (e.g., unstructured) may be required for 
parallel-arm longitudinal CRTs. This flexibility seems to 
be important in general for malaria trials. The heteroge-
neity in malaria transmission in space and time is likely 
to change between-cluster variations, thus requiring 
more complex correlation structures. For example, due 
to seasonal effects in the prevalence of malaria, it is pos-
sible that the between-cluster variability changes over 
time, and due to complex mechanisms of action for the 
intervention (e.g., an initial strong effect followed by a 
rebound), the correlation between different measure-
ments from the same cluster may increase rather than 
decrease with increasing time separation. More generally, 
variation in within-period correlations could also arise 
due to limitations in the use of correlations to quantify 
similarity for binary data with quite varying prevalence.

In our analyses, although one might expect more 
efficient estimation of the treatment effect under an 
exchangeable model (due to a smaller number of param-
eters to be estimated), we found that the confidence 
interval around the estimated treatment effect was nar-
rower under the unstructured model at the 18-month 
timepoint. This may be related to the fact that the 

within-period ICC at 18 months was less than half the 
within-period ICC at 24 months, and only the unstruc-
tured model would allow for this flexibility. Our results 
under a Bonferroni correction showed that different con-
clusions would have been reached under different corre-
lation structures when using only statistical significance 
(Additional file 2, Table S2).

Our analysis demonstrates that there are some gaps in 
the existing methodological literature. Information crite-
ria may not perform reliably in choosing between alter-
native models and further work is required to determine 
best strategies for model selection. A potential strategy 
is to always favour a more flexible correlation structure, 
i.e., to over-specify the correlation structures. Kasza and 
Forbes [14] found that for continuous outcomes, over-
specification asymptotically does not lead to bias. How-
ever, this approach may not always be feasible. A more 
complex correlation structure requires more parameters 
to be estimated, which requires larger cluster sizes and 
more clusters. Therefore, although complex correlation 
structures appear to be more attractive, it is not always 
practical, especially with small CRTs. Furthermore, com-
putational challenges may be encountered when fitting 
models with more complex correlation structures. Some 
mitigating strategies may be available [24], for example, 
in SAS, METHOD = FASTQUAD may offer a less com-
putationally expensive solution [22, 25]. One practical 
strategy to investigate whether a more complex correla-
tion structure is essential may be to empirically examine 
the assumption of common within-period ICCs by fitting 
an initial unstructured model or fitting separate models 
at each cross-section of time; if the estimated ICCs vary 
considerably over time, models which assume a common 
within-period ICC over time may not be reasonable.

An alternative approach is to fit models with RVEs, 
which has been shown to yield consistent variance esti-
mates even under model misspecification. However, 
this method generally results in larger confidence inter-
vals than the “correctly” specified model and could lead 
to different conclusions about effectiveness. The loss of 
efficiency can be an important consideration in smaller 
CRTs. Ultimately, in the absence of guidelines to select 
the best correlation structure in longitudinal CRTs, a 
good recommendation is to always examine sensitivity of 
results to different assumptions.

Proof‑of‑concept simulation
To complement our example, we conducted a proof-
of-concept simulation study. We simulated data for a 
continuous outcome matching the malaria trial charac-
teristics and investigated: 1) the impact of analyzing the 
data using exchangeable, nested exchangeable, expo-
nential decay, and Toeplitz structures when the data 
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were generated from unstructured models (under-spec-
ification); and 2) the impact of analyzing the data using 
exponential decay, Toeplitz, and unstructured models 
when the data were generated from exchangeable mod-
els (over-specification). For reference, the true correla-
tion structure was also fitted. For completeness, we also 
examined use of RVE with an exchangeable correlation. 
Based on the malaria trial, the simulation study consid-
ered 84 clusters, 4 periods (one baseline and three follow-
ups), a cluster period size of 45, and a treatment effect 
size of zero. We investigated ICCs of 0.05 and 0.1 when 
the true model was exchangeable. We investigated sce-
narios in which the within-period ICC increases linearly, 
decreases linearly, or changes in any direction when the 
true model was unstructured. We considered the impli-
cations for bias of the estimated treatment effect and 
coverage of a 95% confidence interval (CI) around the 
estimated treatment effect; we also examined the rela-
tive error of the model-based standard error (SE) to the 
Monte Carlo standard deviation, and the ratio of the SE 
from the model under consideration to that under the 
true data generating model. The details for the simulation 
scenarios and corresponding results are presented in the 
Additional file 3 and are summarized here.

Although random effects were mis-specified, estimated 
treatment effects were unbiased in all scenarios exam-
ined. When the model was under-specified, we found 
that the bias of the model-based standard error was as 
large as 75% under the exchangeable model, leading to 
95% coverage around 40%; when we allowed for a decay, 
coverage was closer to, but still below, the nominal level. 
Depending on how the within-period and between-
period ICCs changed over time, the exponential decay 
and Toeplitz models achieved coverage either below 
or above 95%, and the estimated model-based SE were 
either smaller or larger than the model-based SE from 
the unstructured model. Adding RVEs to the exchangea-
ble model maintained the validity of statistical inferences 
while a loss in efficiency was noted (the SE was inflated 
by 7% to 49%).

When the model was over-specified, we found that the 
nominal level of coverage was maintained. The average 
model-based standard error was slightly inflated (by no 
more than 7%), indicating a potential loss of efficiency. It 
is worthwhile noting that over-specification led to sub-
stantial non-convergence: among all simulation runs, 
more than 86% of Toeplitz and unstructured models 
failed to converge. In this case, the exchangeable model 
with RVE was a good solution with minimal loss of effi-
ciency from the use of RVE.

To summarize, our limited simulation study suggests 
that fitting more flexible correlation structures may 
be required to maintain statistical validity; in cases of 

non-convergence, the exchangeable model with RVEs is a 
reasonable solution, although the loss of efficiency can be 
large in some cases.

Conclusions and recommendations for future 
research
We have shown that less restrictive correlation struc-
tures, such as Toeplitz and unstructured, may be more 
reasonable for some longitudinal CRTs. However, their 
properties have not been well-studied in CRTs, and we 
are unaware of any sample size calculation methodolo-
gies for these two correlation structures. Future papers 
and more extensive simulation studies may examine 
implications of choosing exchangeable, nested exchange-
able or exponential decay models, when a more flexible 
correlation structure holds. Thompson et  al. [26] have 
shown that mis-specifying random effects could lead to 
serious under coverage and biased treatment estimates 
for mixed-effects logistic regression analysis of binary 
outcomes. However, they only considered simple correla-
tion structures (e.g., exchangeable, and nested exchange-
able). Our limited simulation study showed that similar 
results may apply in the case of more complex correla-
tion structures, but future work is required to specifi-
cally address the implications of misspecification under 
more complex correlation structures. Investigators also 
urgently need guidance as to selecting the most appropri-
ate correlation structures, especially for binary outcomes.

In this paper we assumed that the analytical model 
is based on data from all periods with a treatment-by-
period interaction and with least square mean differences 
obtained from the model to express the intervention 
effect. An alternative analytical strategy which avoids 
the added complexity of the longitudinal trial is to ana-
lyze data from each timepoint separately. Planned future 
research will examine how to choose a relevant estimand 
for parallel-arm longitudinal CRTs as well as the advan-
tages and disadvantages of analyzing separate cross-sec-
tions as opposed to data from all periods in one overall 
analytical model.

RVEs have been widely used in generalized estimating 
equations (GEEs) but not often in the context of mixed-
effect models. In principle, while RVEs are robust against 
misspecification of the correlation structure, they might 
yield more efficient variance estimates when the speci-
fied correlation structure is closer to the true model. 
An important question to address is what working cor-
relation structure should be specified to obtain the larg-
est gain in efficiency without unnecessarily complicating 
the model. More comprehensive simulation studies are 
required to quantify the actual gain of using RVEs with 
mixed-effects regression in longitudinal CRTs as com-
pared to model-based variance estimators when the 
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working correlation structure is only mildly different 
from the true correlation structure.

The main contribution of this paper is to provide 
a case study where more flexible correlation struc-
tures are desirable. Although Toeplitz and unstruc-
tured correlation structures are commonly considered 
in individually randomized longitudinal trials, to our 
knowledge, they have not been formally considered in 
longitudinal CRTs. Further theoretical and more exten-
sive simulation work is required to generate firm rec-
ommendations for use of these methods in practice. 
This study can serve as a motivation for future theoreti-
cal exploration of more complex correlation structures 
in longitudinal parallel-arm CRTs.
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