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Geographical classification 
of malaria parasites 
through applying machine learning 
to whole genome sequence data
Wouter Deelder 1,2, Emilia Manko 1, Jody E. Phelan 1, Susana Campino 1,4, Luigi Palla 1,3,4 & 
Taane G. Clark 1,4*

Malaria, caused by Plasmodium parasites, is a major global health challenge. Whole genome 
sequencing (WGS) of Plasmodium falciparum and Plasmodium vivax genomes is providing insights 
into parasite genetic diversity, transmission patterns, and can inform decision making for clinical 
and surveillance purposes. Advances in sequencing technologies are helping to generate timely 
and big genomic datasets, with the prospect of applying Artificial Intelligence analytical techniques 
(e.g., machine learning) to support programmatic malaria control and elimination. Here, we assess 
the potential of applying deep learning convolutional neural network approaches to predict the 
geographic origin of infections (continents, countries, GPS locations) using WGS data of P. falciparum 
(n = 5957; 27 countries) and P. vivax (n = 659; 13 countries) isolates. Using identified high-quality 
genome-wide single nucleotide polymorphisms (SNPs) (P. falciparum: 750 k, P. vivax: 588 k), an 
analysis of population structure and ancestry revealed clustering at the country-level. When predicting 
locations for both species, classification (compared to regression) methods had the lowest distance 
errors, and > 90% accuracy at a country level. Our work demonstrates the utility of machine learning 
approaches for geo-classification of malaria parasites. With timelier WGS data generation across more 
malaria-affected regions, the performance of machine learning approaches for geo-classification will 
improve, thereby supporting disease control activities.

Malaria, caused by Plasmodium parasites and transmitted by Anopheles mosquitoes, remains a pressing global 
health problem, with a mortality and morbidity burden heavily concentrated among children less than five years 
old. The morbidity and mortality impacts of Plasmodium falciparum malaria are predominantly concentrated in 
Sub-Saharan Africa, whereas the burdens of Plasmodium vivax are most heavily felt in Asia and South  America1. 
The complex co-evolutionary history between Plasmodium parasites, humans, and Anopheles mosquitoes is con-
tained within the genome of each organism, and genomic tools and data are of key importance for understanding 
the fundamental genetic underpinning of malaria, its geo-spatial distribution and control strategies to eliminate 
it. There is a rapidly growing number of P. falciparum and P. vivax isolate DNA that have undergone whole 
genome sequencing (WGS), with continued advances in genomic technologies likely to accelerate the timely 
generation of datasets from clinical and surveillance blood samples to inform disease epidemiology and control.

The rich information contained in WGS data can be used to infer transmission patterns, detect drug resist-
ance, and support wider malaria control initiatives and elimination  strategies2,3. WGS data in combination with 
population genomic methods can detect selective sweeps associated with drug resistance and infer the geographic 
origin of infections, including if infections are found to be imported or drug resistant and whether treatment 
should be adapted accordingly. It is known that malaria parasites have a population structure primarily based 
on  geography4,5. Several informative molecular barcodes for speciation and geography have been  developed2,3, 
but typically these barcodes have not used the whole genome due to the high-dimensionality of the data and the 
associated computational  cost3. However, machine learning (a subfield of Artificial Intelligence) with its ability to 
incorporate and analyse very large and high-dimensional datasets in an efficient manner, seems potentially well 
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suited for geo-predicting using WGS data. Machine learning can be applied for classification, which concerns 
predicting a label (e.g., country, continental region), and regression, which involves predicting a quantity (e.g., 
longitude or latitude).

Machine learning has been applied effectively across a variety of problems in malaria research, including 
the detection of evolutionary selection associated with drug  resistance6,7, the classification and detection of 
parasites in red blood  cells8–11, and antimalarial drug  discovery12. Deep learning is a subset of machine learning 
where algorithms aim to extract and learn series of hierarchical representations, often leveraging large amounts 
of data. The application of deep learning, and especially neural networks, has been explored within population 
 genetics13,14, including for other  pathogens15,16. Pioneering work has also shown that machine learning, includ-
ing deep learning convolutional neural networks (CNNs), can be used to predict geographic locations from 
human, mosquito and P. falciparum genetic  variation17, building on methods and the use of large genotyping 
chips or WGS for population structure  assessment18,19. Here, we aim to further expand on the application of 
geo-prediction for malaria parasites by using a very large dataset of isolates sourced globally, (P. falciparum, 
n = 5957, 27 countries; P. vivax, n = 659, 13 countries) across 11 regions (South East Asia (SEA), Southern SEA 
(SSEA), South Asia, South America, West Africa, Central Africa, South Central Africa, East Africa, Horn of 
Africa, Southern Africa, Oceania). We explore the potential of both regular machine learning approaches that 
aim to learn representations from sequence and geographical data, as well as deep learning approaches that aim 
to learn and extract layers of hierarchical representations of SNP combinations linked to geography. We compare 
four commonly applied approaches, including classification methods that predict locations and subsequently 
interpolate to specific coordinates, as well as compare the performance across geographies (countries) both 
including the observations within those and excluding them from the training sets used to develop the models.

Materials and methods
Processing of raw sequencing data. Publicly available raw Illumina (> 150 bp paired end) sequence data 
from previously published studies of P. falciparum and P. vivax was downloaded from the ENA repository (see 
S1 Table and S2 Table for accession numbers), and accompanied by meta-data including locations of sampling 
(see S1 Table and S2 Table for latitude and longitude coordinates). The data included public raw sequence and 
GPS data from MalariaGEN projects (www. malar iagen. net). Raw WGS data for P. falciparum (n = 5957) and P. 
vivax (n = 659) were aligned with the Pf3D7 (v3) and PvP01 (v1) reference genomes, respectively, using bwa-
mem software (v0.7.12) using default parameter settings (e.g., concerning mismatch and sequence read clipping 
penalties; see http:// bio- bwa. sourc eforge. net/ bwa. shtml). The samtools (v1.9) functions fixmate and markdup 
were applied to the resulting BAM files to call a set of potential  variants20. For variant quality control, calibra-
tion assessments were performed using the GATK’s BaseRecalibrator and ApplyBQSR functions, benchmarking 
off known high quality variants from genetic crosses for P. falciparum5,21 and previously curated datasets for P. 
vivax20. A revised set of SNPs and insertions/deletions (indels) was called with GATK’s HaplotypeCaller (ver-
sion 4.1.4.1) using the option -ERC  GVCF5,22. Variants were then assigned a quality score using GATK’s Variant 
Quality Score Recalibration (VQSR), and those with a VQSLOD score < 0, representing variants more likely to 
be false than true, were filtered  out7,22. Additionally, SNPs were removed if they had more than 10% missing 
 alleles7,22.The resulting dataset comprised of parasite genomes of P. falciparum (5,957 isolates, 750 k SNPs) and of 
P. vivax (659 isolates, 588 k SNPs). The population structure was assessed using a principal component analysis 
(PCA) of between isolate SNP differences. In parallel, ADMIXTURE  analysis23 was performed to understand 
the composition of ancestral groups across geography, where the optimal number of groups (K) was established 
using cross validation with values ranging between 1 and 20. This cross validation analysis led to 10 ancestral 
groups for both P. falciparum and P. vivax (K = 10).

Statistical models and performance. Using machine learning (ML) and deep learning (DL) statisti-
cal models, the goal was to use SNPs to predict geographical source at a location (GPS), country, and regional 
resolution. We applied two standard models for classification at a country and region level: (1) penalized multi-
nomial logistic regression classifier (LOG-C; ML); (2) CNN (CNN-C; DL). Subsequently, we used the predictive 
probabilities placed on different locations to perform a weighted interpolation between these locations and make 
predictions at the GPS coordinate level.

In particular, the final prediction location (longitude and latitude) was determined by a weighted average of 
classifier predictions, where weights are the probabilities placed by the model on each location.

We also applied two regression models for GPS coordinate prediction: (iii) penalised linear regression model 
(LIN-R; ML); (iv) CNN (CNN-R; DL). The LOG-C and LIN-R models were tuned on the regularization strength 
C for the L1 penalty (LASSO) and implemented in the sklearn Python package (https:// scikit- learn. org). The 
penalty parameters were tuned using cross-validation (see below, S3 Table). The deep learning CNN architecture 
was implemented using the Keras library (version 2.2.4)24 in Python. Our CNN models had an architecture with a 
soft-max prediction layer and regularization through  dropout25 to prevent overfitting and support transferability. 
The main model had one convolutional layer with 4 filters, with respective filter size of (40, 9) followed by two 
drop-out and dense layers with ReLu activation (similar  to17), and applied the Stochastic Gradient Descent algo-
rithm for optimisation. We trained and validated the models for 1000 epochs. The parameterisation of the models 
is summarised (S3 Table). We created a stratified three-fold split in the dataset (80% training, 10% validation, 
10% test) for all models, and used the validation dataset to cross-validate parameters (S3 Table). The LOG-C and 
LIN-R models were cross-validated (stratified, four-fold) on the regularization strength C for the L1 penalty. The 
reported scores (accuracy, mean weighted distance error) were calculated by making predictions on the hold-out 
test set (see S3 Table for the final parameter set). In addition, we conducted a “leave-one-geography-out”, where 

http://www.malariagen.net
http://bio-bwa.sourceforge.net/bwa.shtml
https://scikit-learn.org
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each single geography in the training dataset was omitted in turn, with the model trained on the remaining 
geographies, to understand generalizability towards previously unseen  locations26.

Classification accuracy was determined after assigning predicted latitude and longitude pairs to individual 
countries. For the classification models, a mean (weighted) distance error was calculated using the Haversine 
method to allow for (angular) distance calculations along a sphere, based on the difference of the actual and 
estimated location. The latter was determined by a weighted average of classifier predictions, where weights are 
the probabilities placed by the model on each location. The accuracy was calculated based on the labels of the 
prediction versus the test data. In particular, the baseline accuracy using a naive prediction based on the most 
common country would be 18.8% for P. falciparum (Cambodia) and 24.3% for P. vivax (Thailand). For the regres-
sion models, the error was calculated using the Haversine method based on the difference between the predicted 
and actual latitude and longitude using angular distance.

Results
Malaria isolate sequence data and population structure. Raw WGS data with accompanying geo-
graphic origin information was available in the public domain for P. falciparum (n = 5957, 27 countries) and P. 
vivax (n = 659, 13 countries) (Table 1), which represent the global distributions for each parasite. Most P. falci-
parum isolates were sourced from SEA (2,648, 44.5%) followed by West Africa (2,042, 34.3%) and East Africa 
(451, 7.6%). Whilst, for P. vivax, most isolates were sourced from SEA (282, 42.9%) followed by South America 
(220, 33.4%) and SSEA (48) (Table 1). By analysing each species separately, high quality genome-wide SNPs 
were identified across the isolates (P. falciparum 750 k SNPs, P. vivax 588 k SNPs). Most SNPs have low minor 
allele frequencies (SNPs with MAF < 1%: P. falciparum 94.6%, P. vivax 77.6%) (S1 Figure). Most SNPs were in 
genic regions (P. falciparum 76.5%, P. vivax 54.3%), with a high proportion of non-synonymous (NS) amino acid 

Table 1.  Sample origin and SNP Diversity by geographic location. Pf P. falciparum, Pv P. vivax; PNG Papua 
New Guinea; DRC Democratic Republic of Congo.

Region Country Pf. SNP Diversity Pf. N* Pf. % Pv. SNP Diversity Pv. N** Pv. %

West Africa

Benin 0.040 76 1.3 – – –

Burkina Faso 0.028 86 1.4 – – –

Gambia 0.035 164 2.8 – – –

Ghana 0.033 928 15.6 – – –

Guinea 0.040 161 2.7 – – –

Ivory Coast 0.034 70 1.2 – – –

Mali 0.034 378 6.3 – – –

Mauritania 0.035 77 1.3 – – –

Nigeria 0.050 18 0.3 – – –

Senegal 0.039 84 1.4 – – –

East Africa

Kenya 0.035 116 1.9 – – –

Tanzania 0.035 320 5.4 – – –

Uganda 0.053 15 0.3 – – –

Horn of Africa Ethiopia 0.048 25 0.4 0.060 44 6.7

Central Africa Cameroon 0.033 237 4.0 – – –

South Central Africa DRC 0.032 339 5.7 – – –

Southern Africa
Madagascar 0.040 24 0.4 – – –

Malawi 0.027 29 0.5 – – –

South Asia
India – – – 0.062 40 6.1

Bangladesh 0.037 83 1.4 – – –

South East Asia (SEA)

Cambodia 0.040 1118 18.8 0.049 70 10.6

Laos 0.039 126 2.1 – – –

Myanmar 0.039 246 4.1 0.061 27 4.1

Thailand 0.038 928 15.6 0.056 160 24.3

Vietnam 0.036 147 2.5 0.048 13 2.0

China – – – 0.066 12 1.8

Southern SEA (SSEA) Malaysia – – – 0.040 48 7.3

South America

Colombia 0.046 16 0.3 0.055 30 4.6

Peru 0.037 24 0.4 0.059 88 13.4

Brazil – – – 0.061 82 12.5

Mexico – – – 0.039 20 3.0

Oceania PNG 0.040 120 2.0 0.037 24 3.6

Total – – 5955 100 – 658 100
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changes (P. falciparum 63.0%, P. vivax 42.5%). The genetic diversity amongst P. falciparum isolates was relatively 
homogeneous across the 27 countries (SNP π: median 0.037, range 0.027–0.053), and lower in magnitude than 
P. vivax, whose data was sourced from 13 countries (SNP π: median 0.056, range 0.037–0.066) (Table 1).

Unsupervised clustering methods were applied to the genome-wide SNPs of each species to reveal the extent 
of their population structure and linked (pseudo-)ancestral patterns. Principal component analysis (PCA) of P. 
falciparum and P. vivax isolates revealed the expected separation by continent, and clear evidence of population 
structure at both the regional and country level (Fig. 1). An analysis of population structure and ancestry using 
ADMIXTURE  software23 determined the number of ancestral groups (P. falciparum K = 10, P. vivax K = 10), and 
their relative abundance for each isolate was estimated (Fig. 2). For P. falciparum, there were dominant ancestral 
groups across region and continent (Africa 4, SEA 4, Oceania 1, South America 1), with some evidence of mixture 
of ancestries (e.g., SEA isolates with 3 ancestral populations), but a general consistency within country. For P. 
vivax, the numbers of dominant ancestral groups by region differed from P. falciparum (South America 4, SEA 
2, SSEA 2, East Africa 1, South Asia 1), due to sampling and Plasmodium species endemicity differences, such as 
the near absence of P. vivax in Africa. Overall, there was more homogeneity of ancestral groups within P. vivax 
isolates, with some groups broadly linked to neighbouring countries (comparison with Fig. 1). These analyses 
confirmed that spatial-genomic clustering and classification is possible using WGS data.

Application of geo-classification models. For P. falciparum, the predictive performance of the clas-
sification methods (LOG-C, CNN-C) was stronger than for the regression models (LIN-R, CNN-R) in regional 
(Table 2) and country-wide (Table 3) analyses (mean distance error (km): LIN-R 470, LOG-C 93, CNN-R 245, 
CNN-C 77). For locations included in the training dataset, the performance of the classification models was 
close to 100% at the regional level, and close to 90% at the country level (S4 Table, S5 Table). The poorest per-

Figure 1.  Population structure using principal component analysis based on all high-quality SNPs. Axes show 
percentage of variation explained by each principal component (PC).
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formance of the models was for African populations, for example, the mean distance error for CNN-C was high 
in West African (267 km) and East African countries (117 km, especially Kenya and Uganda), as well as Malawi 
(530 km) (Table 3), compared to other regions. This observation is consistent with the complex ancestries in 
African populations (Fig. 2), as well as another deep learning  analysis17. As expected, where we predicted coun-
tries absent in data used by the training models, the distance errors (km) were at least ~ five-fold larger (LIN-R 
2246, LOG-C 1848, CNN-R 1983, CNN-C 1540), with the poorest predictions for Peru (Table 4). The best per-
forming model in this setting was the CNN-C classifier (Fig. 3).

Figure 2.  ADMIXTURE analysis involving 10 inferred ancestral populations (denoted as K1 to K10).
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For P. vivax, the predictive performance of the classification methods (LOG-C, CNN-C) was also superior 
compared to regression models (LIN-R, CNN-R) across regional (Table 2) and country-wide (Table 3) analyses 
(mean distance error (km): LIN-R 890, LOG-C 33, CNN-R 819, CNN-C 36) (Table 3). For locations included 
in the training dataset, the performance of the classification models was close to 100% at both the regional and 
country level, with the poorest performance in neighbouring China and Myanmar (S4 Table, S5 Table). The 
(mean) distance error for the countries not used in the development of the model is distinctively larger (km: 
LIN-R 1481, LOG-C 2508, CNN-R 2512, CNN-C 2405), with the poorest predictions for Ethiopia and Peru 
(Table 4). The best performing model in this setting was a LIN-R regression (Fig. 3).

Discussion
WGS data of Plasmodium parasites can detect imported infections, drug resistance, and transmission patterns, 
thereby assisting decision making in clinical and malaria control settings. With the implementation of WGS 
gaining traction across health systems, there is an opportunity to implement statistical learning methodologies 
to assist surveillance activities. A clear use-case includes the determination of the geographical origin of isolates, 
building on insights from previous work which shows that genomic data can be used to cluster parasites by 
 geography2–5. Our work reveals that machine learning approaches, particularly those focusing on classification 
(e.g., deep learning CNNs), have the potential to accurately predict geographic locations at a GPS and country-
level resolution. As expected, the performance was much stronger for isolates of which the geographic origin 
was already represented at the country level in the dataset, demonstrating the need for WGS to be implemented 
more widely to fill country gaps in genetic diversity. The weakest predictions were for P. falciparum in West and 
East Africa, where common ancestries, mixed infections, movement of people, drug resistance and malaria 
endemicities can complicate genetic diversity analysis. The distance errors are similar to a previous machine 
learning analysis of P. falciparum (median < 20 km), which implemented a single deep learning approach on a 
smaller  dataset17. Our CNN for classification approach appeared to perform well across parasite species, was 
implemented with measures to minimise the effects of over-fitting, and its performance is likely to improve with 
greater isolate sampling and WGS data.

Whilst we have implemented a limited set of machine learning methods, there is scope to test alterna-
tive approaches (e.g., gradient boosted trees, support vector machines)16 or further optimise our model para-
metrisations (beyond the default settings) to improve performance. For example, while L1-penalized regres-
sion approaches are generally quite competitive, stability selection on top of the LASSO leads generally to 
 improvements27. Moreover, the resulting model is white box and leads to a set of interpretable SNPs. CNNs are 
the most utilised deep learning network type, and known to outperform alternative  approaches28. However, one 
limitation of CNN models is their “black box” nature, with a complex architecture consisting of several layers, 
and in our context (and  others17) making it difficult to establish which (combinations of) SNPs are informative 
for the geographical profiling. Other studies have used population genomic approaches to determine informa-
tive SNPs, with a focus on applying genotyping assays or amplicon sequencing for resource poor  settings2,3. 
We provide computer code to implement the models, to assist future assessments in simulation or empirical 
studies. Future work should focus on the development of an online “geo-locator” tool that reveals a prediction 
of location, which can be assessed for its plausibility against the actual position, if known, and feedback into 
the model building and learning process. Such a framework could also be extended to integrate explicit drug 
resistance  markers29, as well as genomic data for malaria  vectors17, and use sequences generated on portable 

Table 2.  Mean distance Error (km) per model by region using geographies included in the training data. Pf 
P. falciparum, Pv P. vivax, * mean [range], CNN Convolutional Neural Network, SC South Central, SEA South 
East Asia; LOG-C multinomial logistic regression classifier; CNN-C CNN classifier; LIN-R penalised linear 
regression model; CNN-R CNN regression model.

Parasite Region N LIN-R* LOG-C* CNN–R CNN –C*

Pf

West Africa 2042 665 [375–1354] 302 [5–681] 368 [161–1169] 267 [45–728]

East Africa 451 708 [693–1198] 200 [3–1581] 297 [289–856] 117 [0–1856]

Horn of Africa 25 569 [569–569] 0 [0–0] 124 [124–124] 0 [0–0]

Central Africa 237 635 [635–635] 29 [29–29] 184 [184–184] 0 [0–0]

SC Africa 339 478 [478–478] 3 [3–3] 34 [34–34] 0 [0–0]

Southern Africa 53 490 [490–968] 7 [7–433] 1543 [1018–1543] 0 [0–530]

SEA 2648 312 [247–744] 19 [8–121] 152 [39–559] 7 [0–53]

South America 40 1936 [1820–2053] 3 [0–7] 3683 [2535–4832] 0 [0–0]

Oceania 120 488 [488–488] 0 [0–0] 697 [697–697] 0 [0–0]

Pv

Horn of Africa 44 334 [334–334] 0 [0–0] 142 [142- 142] 0 [0–0]

South Asia 40 500 [500–500] 0 [0–0] 517 [517–517] 0 [0–0]

South East Asia 282 616 [156–2751] 25 [0–1033] 578 [288–704] 0 [0–1463]

Southern SEA 48 213 [213–213] 0 [0–0] 957 [957–957] 0 [0–0]

South America 220 906 [134–3080] 0 [0–0] 667 [574–2773] 0 [0–0]

Oceania 24 175 [175–175] 0 [0–0] 1103 [1103–1103] 0 [0–0]
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and field deployable sequencing platforms (e.g., Oxford Nanopore Technology MinION). Such tools would be 
of immediate value to malaria control programs in endemic countries, including those that are implementing 
elimination activities who wish to differentiate between locally acquired or imported infections. It would also 
assist those countries with low malaria burden, including through the detection of imported parasites that could 
threaten malaria elimination targets.

In summary, our study has demonstrated that machine learning methods can play an informative role in 
determining the geographic origin of WGS isolates, thereby providing important insights for both control and 
surveillance activities. Further, such approaches will be scalable when WGS becomes routine and cost effective, 
resulting in a setting with increasingly “big data” being available for decision making. The utility of this “learning” 

Table 3.  Mean distance error (km) per model on test data using those countries included in the training 
data. DRC Democratic Republic of Congo; PNG Papua New Guinea; CNN Convolutional Neural Network; 
LOG-C multinomial logistic regression classifier; CNN-C CNN deep learnerclassifier; LIN-R penalised linear 
regression model; CNN-R Penalised CNN regression model; SC South Central; SEA South East Asia; SSEA 
Southern SEA.

Parasite Region Location LIN-R LOG-C CNN-R CNN-C

P. falciparum

West Africa

Benin 700 4 354 45

Burkina Faso 374 96 161 88

Gambia 775 132 317 107

Ghana 401 48 193 52

Guinea 751 515 459 402

Ivory Coast 630 681 695 728

Mali 563 345 208 271

Mauritania 615 676 382 410

Nigeria 1039 329 1169 329

Senegal 1354 274 565 263

East Africa

Kenya 693 200 297 117

Tanzania 707 3 289 0

Uganda 1198 1581 856 1856

Horn of Africa Ethiopia 568 0 124 0

Central Africa Cameroon 635 28 184 0

SC Africa DRC 477 2 34 0

Southern Africa
Madagascar 490 6 1543 0

Malawi 968 432 1018 530

SEA

Bangladesh 743 9 159 0

Cambodia 312 18 112 21

Laos 276 121 152 53

Myanmar 360 10 559 0

Thailand 247 7 39 7

Vietnam 356 90 199 0

South America
Colombia 2052 0 4832 0

Peru 1820 7 2535 0

Oceania PNG 488 0 697 0

Mean 470 93 245 77

P. vivax

Horn of Africa Ethiopia 334 0 142 0

South Asia India 500 0 517 0

SEA

Cambodia 638 25 648 0

China 2751 1033 704 1463

Myanmar 616 311 350 311

Thailand 604 0 288 0

Vietnam 156 0 578 0

SSEA Malaysia 213 0 957 0

South America

Brazil 3080 0 2773 6

Colombia 1057 0 667 0

Mexico 134 0 1502 0

Peru 755 0 574 0

Oceania PNG 175 0 1103 0

Mean 890 33 819 36
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system will improve with time, as underlying methodologies and model performances improve with more data 
becoming available, and they are implemented within informatic tools to assist surveillance and clinical decision 
making. This utility underscores the benefit of making sequencing data and linked geographical information 
publicly available to global databases in a more-timely fashion to understand infection dynamics, the advantages 
of which have also been demonstrated by the COVID-19 crisis.

Table 4.  Mean distance error (km) per model on test data for unseen geographies. CNN Convolutional Neural 
Network; DRC Democratic Republic of Congo; LOG-C multinomial logistic regression classifier; CNN-C 
CNN deep learning classifier; LIN-R penalised linear regression model; CNN-R Penalised CNN regression 
model.

Parasite Location LIN-R LOG-C CNN-R CNN-C

P. falciparum

Cambodia 496 669 322 628

Cameroon 959 1545 1472 1636

DRC 1150 2331 2531 2456

Ethiopia 1118 1760 1252 1394

Myanmar 703 731 470 728

Peru 9050 4050 5856 2400

Mean 2246 1848 1983 1540

P. vivax

Cambodia 591 323 1709 564

Ethiopia 2499 5174 3528 4140

Malaysia 459 1594 3617 2064

Peru 2376 2943 1196 2852

Mean 1481 2508 2512 2405

Figure 3.  Maps with predicted vs. actual locations for the best predictive models. Blue points are the actual 
locations in the dataset, red points are the predicted locations (where different to actual), with red lines link 
the actual and the predicted locations. CNN-C deep learning Convolutional Neural Network classifier. LOG-C 
penalised multinomial logistic regression classifier.
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Conclusion
Advances in sequencing technologies are making real time genomics-informed surveillance and clinical manage-
ment a reality. With the resulting big genomic datasets, our study has shown that machine learning methods, a 
subset of Artificial Intelligence, can accurately predict the geographical source of malaria parasites from sequence 
data. With greater geographical coverage and informatics infrastructure, such approaches will improve in per-
formance and assist malaria control and elimination activities.

Data availability
The raw WGS data is available from the European Nucleotide Archive (ENA) (see S1 Table and S2 Table for 
project accession numbers). Computing code and machine learning models are available from https:// github. 
com/ WDee/ GeoCo mpari son.
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