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Genetic insights into smoking 
behaviours in 10,558 men of African 
ancestry from continental Africa 
and the UK
Noemi‑Nicole Piga1, Palwende Romuald Boua2,3,4, Chisom Soremekun5,6,7, Nick Shrine1, 
Kayesha Coley1, Jean‑Tristan Brandenburg3, Martin D. Tobin1,8, Michèle Ramsay3,4, 
Segun Fatumo6,7,9, Ananyo Choudhury3,10 & Chiara Batini1,10*

Smoking is a leading risk factor for many of the top ten causes of death worldwide. Of the 1.3 billion 
smokers globally, 80% live in low‑ and middle‑income countries, where the number of deaths due to 
tobacco use is expected to double in the next decade according to the World Health Organization. 
Genetic studies have helped to identify biological pathways for smoking behaviours, but have 
mostly focussed on individuals of European ancestry or living in either North America or Europe. We 
performed a genome‑wide association study of two smoking behaviour traits in 10,558 men of African 
ancestry living in five African countries and the UK. Eight independent variants were associated with 
either smoking initiation or cessation at P‑value < 5 ×  10–6, four being monomorphic or rare in European 
populations. Gene prioritisation strategy highlighted five genes, including SEMA6D, previously 
described as associated with several smoking behaviour traits. These results confirm the importance 
of analysing underrepresented populations in genetic epidemiology, and the urgent need for larger 
genomic studies to boost discovery power to better understand smoking behaviours, as well as many 
other traits.

Smoking is a leading risk factor for many of the top ten causes of death worldwide, including heart and lung 
 diseases1. Each year, tobacco use is directly responsible for 7 million deaths and 25% of all cancer fatalities 
 globally2. However, smoking prevalence varies among world regions, and of the 1.3 billion tobacco users world-
wide, 80% live in low- and middle-income countries (LMICs)3.

Reassuringly, prediction models by the World Health Organization (WHO) show a reduction in smoking 
prevalence in most areas from 2010 to 2025 thanks to tobacco control  strategies4,5. However, in parallel to this 
decline in American and European populations, the tobacco industry and market has recently expanded in Africa, 
due to the fast population growth and the improvement in buying  power6. In line with this, sub-Saharan Africa 
has experienced a 52% increase in tobacco use from 1980 to  20167 and a further 9 million people are expected to 
take up smoking in the African region by  20258. In addition, the support for smokers wishing to quit and training 
for healthcare professionals in smoking cessation is still very limited across the  continent9. To help counteract 
these changes, as of November 2018, over forty African countries supported the WHO Framework Convention 
on Tobacco Control and twenty were involved in the Protocol to Eliminate Illicit Trade in Tobacco  Products6.
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Currently, there are 94 million male and 13 million female tobacco users in Africa, with one in five ado-
lescents using tobacco, and an increasing prevalence of smoking among young  women6. The type of tobacco 
used varies among countries and sexes, and its consumption has been associated with alcohol drinking, lower 
income status, education levels, and professional  activity10,11. Using Demographic Health Surveys data for 30 
sub-Saharan African countries, Sreeramareddy et al. compared smoking with the use of smokeless tobacco and 
showed that while the first is more prevalent among men, the majority of women preferentially uses the second, 
and more specifically chewing  tobacco10. Similar patterns were confirmed by a recent study focusing on tobacco 
and alcohol use in rural and urban settings in four sub-Saharan African  countries11.

Tobacco use patterns are different when we focus on communities of African descent in the UK. In 2019, 14% 
of adults in the UK smoked regularly, with differences between men and women (15.9% and 12.5%, respectively), 
resulting in a ratio of men to women smoking prevalence of 1.27. In the same year, among the 9.6% of Black 
ethnic minorities in the UK who smoked, this ratio was 1.8712. However, contrary to the rise in tobacco use in 
continental Africa, smoking prevalence among Black adults in the UK decreased from 13.3 to 9.6% between 
2014 and  201912.

In the US, African-American (AA) individuals have been shown, on average, to start smoking later and 
smoke fewer cigarettes per day than European-American  individuals13. However, they show comparable levels 
of nicotine equivalents, are less likely to successfully quit smoking, and have a higher risk of smoking-related 
lung  cancer13,14.

Genetic factors have been shown to play a role in smoking behaviour traits. Genome-wide association studies 
(GWASs) identify genetic variants associated with the trait of interest, which inform biological understanding 
and highlight functional pathways and potential drug targets for precision medicine approaches to  treatment15. 
The strongest associations with smoking behaviours have been consistently shown at locus 15q25.1, containing 
the cluster of CHRNA5-A3-B4 genes which encode subunits of the nicotinic acetylcholine receptors (nAChRs), 
for both amount smoked and nicotine  dependence16. In the brain, nicotine binds to nAChRs stimulating the 
release of several neurotransmitters, impacting the reward pathway, learning and  memory16. To date, the larg-
est GWAS of smoking behaviour traits included 1.2 million individuals and highlighted genes which encode 
proteins involved in neurotransmission of nicotine, dopamine and  glutamate17. However, as in most GWASs, 
it only includes individuals of European ancestry failing on the representation of global human  diversity18,19.

Previous genetic epidemiology studies of smoking behaviours in individuals of African descent have only 
included AA participants and identified six genetic variants associated with different traits. In the Study of 
Tobacco in Minority Populations (n = 32,389 AA individuals) only one variant, rs2036527 on chromosome 
(chr) 15, ~ 6 kb from the 5’ of CHRNA5, was associated with cigarettes smoked per  day13. In another study 
including ~ 1000 AA participants, Chenoweth et al. found three independent variants on chr 19 (rs12459249, 
rs111645190, rs185430475) associated with nicotine metabolite ratio (NMR)14. These variants showed low link-
age disequilibrium with four signals previously identified in a Finnish cohort and located in the genomic region 
of the CYP2A6 gene which encodes the key enzyme of nicotine  metabolism14,16. Hancock et al. performed a 
trans-ethnic analysis including 28,677 European and 9,925 AA smokers, and identified variant rs910083 on chr 
20 as associated with nicotine  dependence20. Finally, Xu et al. studied smoking trajectories in almost 300,000 
individuals from the Million Veteran Program (MVP), including > 54,000 AAs, which aimed to capture the 
variation of smoking status over  time21. They found an association on chr 1 with variant rs4478781 in AAs only, 
and 14 associated loci in a trans-ethnic meta-analysis including European-Americans and Hispanic-Americans, 
mainly driven by the results from the European ancestry  group21.

Despite these interesting findings, individuals of African descent, and especially those living in continental 
Africa, remain heavily underrepresented in large-scale genetic  studies18,19. Here we present the first GWAS of 
smoking behaviour traits in 10,558 men of African ancestry living in five African countries and the UK. Because 
of the sex biases in smoking behaviour and the low smoking prevalence in women (ranging between 0.5% and 
7%) in the African datasets included  here10,11, we decided that the study would be less biased if women were 
excluded from all discovery analyses. This was important as we included African ancestry individuals living in 
Africa and the UK, with different cultural influences that affected the prevalence of smoking among women, 
but not men.

Materials and methods
Participants. This study used genetic data and smoking behaviour information from three different 
cohorts: the Africa Wits-INDEPTH Partnership for Genomic Studies (AWI-Gen)22, the Uganda Genome 
 Resource23(UGR) and the individuals of African ancestry in UK Biobank (UKB-AFR)24.

AWI-Gen is a cross-sectional population study including ~ 12,000 individuals from Ghana, Burkina Faso, 
Kenya and South Africa, aged 40–60 + years, aimed at understanding the genomic and environmental factors 
that contribute to body composition and cardio-metabolic diseases. For the purpose of this study, with the aim of 
accounting for the local population structure, the AWI-Gen cohort was divided into three datasets representing 
three geographical areas: AWI-East (Kenya), AWI-South (South Africa) and AWI-West (Ghana and Burkina 
Faso).

The UGR includes ~ 6,400 individuals, and it is a subset of the General Population Cohort (GPC)25, a popu-
lation-based open cohort aimed at understanding HIV infections in Uganda. The UGR was built with the aim 
of improving local resources for public health and to allow large genetic epidemiology  studies23.

UKB is a large longitudinal study in the UK which includes samples from over 500,000 volunteers aged 
40–69 years at  baseline24. Since 2006, it has collected extensive phenotypic and biological data to allow approved 
researchers to investigate the genetic and/or environmental determinants of a wide range of diseases and 
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health-related phenotypes. Using genetic data for population stratification, we identified ~ 7,800 individuals of 
African ancestry in  UKB26.

Description of phenotypes. We have analysed two binary smoking behaviour traits: Smoking Initiation 
(SI) and Smoking Cessation (SC), defined using relevant answers in questionnaire data available in each cohort. 
Overall, SI compares ‘never’ smokers (controls) versus ‘ever’ smokers (cases), in which the former represents 
individuals who have never, or only very rarely, smoked in their life and the latter are participants who smoked 
or currently smoke every day or occasionally. SC only includes ‘ever’ smokers and it compares ‘current’ smokers 
(cases), who were smoking every day or occasionally at the time of answering the questionnaire, to ‘previous’ 
smokers (controls), who were not. The detailed description of the phenotype definitions and the specific ques-
tions used for each cohort are available in Supplementary Note 1.

The number of cases and controls for each phenotype in each cohort is presented in Table 1; we reported the 
sample sizes for females in Supplementary Table 1.

Genotyping and imputation quality control. The AWI-Gen individuals were genotyped at ~ 2.4  M 
SNPs using the Illumina Infinium H3Africa SNP array, which is designed to be specific and sensitive to the 
genomic diversity of African  populations22. Imputation at ~ 39 M autosomal variants was performed using the 
Haplotype Reference Consortium (HRC)  panel27 on the Michigan Imputation Server. Details of quality control 
(QC) and imputation settings are presented in Choudhury et al.  202028.

The UGR individuals were genotyped at ~ 2.2 M autosomal markers using the HumanOmni2.5-8 chip array. 
Imputation at ~ 98 M variants was performed using a combined reference panel with sequence data from three 
different studies (African Genome Variation  Project29, Uganda 2000 Genomes and 1000 Genomes Project Phase 
3  [1000GP]30). Details of QC and imputation settings are presented in Gurdasani et al.23.

UK Biobank individuals were genotyped at ~ 800,000 variants using the UK Biobank Axiom Array. Imputation 
at ~ 93 M autosomal variants was performed using the  HRC27, the  UK10K31 and the 1000  GP30 reference panels 
combined. Details of QC and imputation settings are presented in Bycroft et al.24.

Details of genotyping QC are reported in Supplementary Table 2. Additional QC was performed across all 
datasets to ensure that effect alleles were consistently aligned between cohorts. Imputed autosomal variants with 
a minor allele count (MAC) ≥ 20 or minor allele frequency (MAF) > 0.01, and an imputation info score ≥ 0.3 were 
included in all further analyses (Supplementary Fig. 1).

In order to compare population structure among the cohorts we have performed a principal components 
analysis (PCA) with  smartpca32 for each cohort including the African populations from the  1000GP30. The vari-
ant QC for this analysis and the calculation of the PCs loadings were performed on the 1000GP populations 
only, using the same parameters reported in Supplementary Table 2 in order to allow comparison among the 
plots (Supplementary Fig. 2).

Study level genome‑wide association analyses. Genome-wide association analyses were performed 
using a univariate linear mixed model (LMM) and significance was evaluated using a likelihood ratio test as 
implemented in GEMMA v0.98.133. Covariates included age, age squared and as many principal components 
(PCs) as required in each dataset (AWI-East 5PCs; AWI-South 14PCs; AWI-West 11PCs; UGR 10PCs; UKB-
AFR 9PCs). PCs were calculated for each dataset from a PC analysis using independent genotyped SNPs in 
PLINK v1.9034. For AWI-Gen and UKB-AFR datasets, we determined the number of PCs to include by using 
the eigenvalues to assess when adding further components would not contribute additional information. In an 
iterative process, we stopped at the first PC for which the contribution of the three previous PCs was not greater 
than the contribution of the following three (Supplementary Fig. 3). For UGR, 10 PCs were used as in Gurdasani 
et al.23. The genetic relatedness matrix (GRM) included in the LMM was calculated for each full cohort with 
GEMMA v0.98.133 using independent SNPs. Details of the QC used for genotyped variants and the number 
of variants used to perform the PCA and to calculate the GRM for each cohort are reported in Supplementary 
Table 2. Manhattan and quantile–quantile (qq-) plots were visualised using the qqman package in  R35. The LD 
score regression intercept was calculated to assess the presence of genomic inflation using ldsc v1.0.136. LD scores 
were calculated including the African superpopulation from  1000GP30. When the LD score intercept was above 
1.05, the association P-value was recalculated as follows: corrected.se = se ∗

√
(LDScoreregressionintercept) ; 

Table 1.  Sample size (and mean age) for each phenotype in each dataset for cases (1) and controls (0). 
AWI Africa Wits-INDEPTH Partnership for Genomic Studies, UGR  Uganda Genome Resource, UKB-AFR 
individuals of African ancestry in UK Biobank, yrs years.

Cohort

SI-Smoking initiation ever (1) vs never (0) SC-Smoking cessation current (1) vs previous (0)

Ever Never Current Previous

AWI-East 425 (50yrs) 374 (49yrs) 185 (49yrs) 239 (50yrs)

AWI-South 1343 (53yrs) 811 (56yrs) 876 (51yrs) 466 (56yrs)

AWI-West 782 (50yrs) 1045 (50yrs) 481 (50yrs) 301 (51yrs)

UGR 544 (50yrs) 2100 (27yrs) 420 (49yrs) 124 (57yrs)

UKB-AFR 1167 (52yrs) 1967 (51yrs) 509 (50yrs) 656 (54yrs)
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z = −| estimate
corrected.se | ; corrected.pvalue = P(Z < −z)+ P(Z > z) . Where corrected.se and se are the corrected and 

original standard error of the estimate effect size respectively; z is the z-score used to calculate the corrected 
P-value using two-sided test statistics.

Meta‑analysis. We performed a two-step meta-analysis. In step1, we included the three AWI-Gen datasets 
(AWI-East, AWI-South, AWI-West) to obtain AWI-Gen cohort-level summary statistics. In step2, we included 
AWI-Gen, UGR and UKB-AFR. In each step, we used the modified random effect model (RE2) as implemented 
in  METASOFT37. Variants were included in the analysis if they were present in at least two out of three stud-
ies. Supplementary Fig. 1 shows the number of variants for each meta-analysis and phenotype. Results were 
visualised using Manhattan and qq-plots, and LD score regression intercept was calculated to evaluate genomic 
inflation, as done for the study-level association analyses.

Definition of associated and sentinel variants. For each trait, variants were divided into three tiers 
defined using different significance thresholds which take into account the results of the meta-analysis and the 
cohort-level summary statistics (AWI-Gen, UGR and UKB-AFR). Tier1 included variants with meta-analysis 
P-value < 5 ×  10–8 and P-value < 0.05 in each cohort; tier2, variants with a meta-analysis P-value < 5 ×  10–6 and 
P-value < 0.05 in each cohort; tier3, variants with a P-value < 5 ×  10–8 in at least one of the cohort genome-wide 
association analyses.

For each tier, sentinel variants were defined in an iterative process as the variants with the lowest P-value in 
a region of 200 kb centered on the variant.

Conditional analysis. To assess the presence of any additional independent signals, we utilized the GCTA 
v1.93.238 stepwise model selection for the conditional analysis (option –vcojo-slct) in a region of + /- 100 kb from 
each sentinel variant and using the populations of African ancestry in  1000GP30 as a reference for LD patterns.

Fine‑mapping analysis. Regions of + /- 100 kb from each sentinel variant were analysed to retrieve the 
99% credible set variants using FINEMAP v1.4  software39 with a shotgun stochastic algorithm assuming one 
causal variant. The shotgun stochastic search algorithm uses iterations and random picking: at each round a 
causal configuration is chosen and slightly modified to create a pool of ‘nearby’ casual configurations with com-
parable or better posterior probability. This is saved for memory efficiency and from this pool the algorithm 
stochastically chooses one as starting causal configuration for the following  iteration39.

We then created the refined credible sets by filtering for a Posterior Inclusion Probability (PIP) greater than 
or equal to 1%. LD proxy variants of these SNPs were identified in the African populations in  1000GP30 within 
the regions defined by the 99% credible sets extended by ± 100 kb using PLINK v1.9034. Variants with both 
D’ ≥ 0.9 and  r2 ≥ 0.6 were retained. Supplementary Fig. 1 and Supplementary Table 3 show the 99% credible sets, 
the refined credible sets and the proxy variants for each locus. The refined credible set variants and their proxies 
were used for all follow up analyses.

Replication and lookup analyses. The replication of our meta-analysis step2 results was performed 
using two publicly available datasets: (a) the genome-wide summary statistics for smoking trajectories in indi-
viduals of African ancestry included in the  MVP21; (b) and the genome-wide summary statistics from the SI 
and SC meta-analyses in individuals of European ancestry released by the GWAS & Sequencing Consortium of 
Alcohol and Nicotine use (GSCAN)17. The number of independent sentinel variants was used to calculate the 
Bonferroni corrected P-value threshold for the replication analyses (0.007 SI; 0.05 SC).

We performed two lookup analyses aiming to understand if our discovered loci were previously described as 
associated with any smoking phenotypes or any other trait.

For the first analysis, we compiled a list of variants described in 14  studies13,17,20,21,40–49 as associated with 9 
smoking behaviour traits (Smoking Initiation; Smoking Cessation; Age of Initiation; Cigarettes per Day; Fag-
erström Test for Nicotine Dependence; Pack Years; Trajectory Contrast I; Trajectory Contrast II; Time to the 
First Cigarette).

For the second analysis, we queried GWAS Catalog v1.0.250 (see URLs) to identify variants associated with 
any other phenotype.

Follow up analyses. Gene prioritisation. We combined results from four analyses in order to identify 
the genes influenced by the SNPs in the refined credible sets and their proxies. First, we assessed the predicted 
pathogenicity of the variants using the Combined Annotation Dependent Depletion (CADD)  score51 as imple-
mented in the Ensembl Variant Effect Predictor (VEP)52. We defined as pathogenic those variants with a CADD 
score greater than or equal to 15.

We then investigated if the variants influenced the expression of a gene or the protein level using eQTL 
and pQTL data respectively. We used the eQTL Mapping option in the Functional Mapping and Annotation 
of Genome-Wide Association Studies (FUMA) v1.3.653 which collects eQTL data from 14 data sources (see 
URLs). Significant eQTLs are defined on either P-value or FDR thresholds based on the specific data source (see 
URLs) and we retrieved results from blood, brain or lung tissues. For the pQTL analysis, we used data from 90 
cardiovascular genes of the SCALLOP  Consortium54 and followed their definition of significant pQTLs. They 
defined signals more than 1 Mb away from the protein encoding gene as trans-pQTLs, and signals that were 
closer than 1 Mb as cis-pQTLs54.
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Finally, we used the Chromatin Interaction Mapping tool as implemented in FUMA v1.3.653 to gain insights 
into possible epigenetic properties of the interrogated variants using the blood, brain and lung tissues (see URLs).

We selected those variants that were identified by at least one of the analyses described above and retrieved 
the list of prioritised genes for SI and SC.

Pathway analysis. The prioritised genes were queried to investigate biological function and potential implica-
tion in smoking behaviour using the webtool  Metascape55 which performs pathway enrichment and protein–
protein interaction analyses combining information from different databases and -omics data using hierarchi-
cal  clustering55. Pathway enrichment is based on an overrepresentation  analysis55, while the protein–protein 
interaction makes use of the MCODE  algorithm56, which captures densely connected regions in a complex 
 network55,56. For both analyses, we used the default option of Metascape and the Entrez Gene ID as gene name. 
We considered a pathway being enriched if represented by prioritised genes linked to distinct meta-analysis 
step2 associated loci.

PheWAS analysis. Variants in the refined credible set for the locus of chr 15 and passing at least one of the 
criteria for our gene prioritisation strategy were included in a PheWAS using the PheWAS R  package57 in three 
datasets available from the Integrative Epidemiology Unit (IEU) OpenGWAS project (see URLs)58,59: (i) ‘IEU 
analysis of UK Biobank phenotypes’60 (ukb-b, see URLs) and (ii) ‘Neale lab analysis of UK Biobank phenotypes, 
round 2’ (ukb-d, see URLs) for European individuals, and (iii) ‘Pan-ancestry genetic analysis of the UK Biobank 
performed at the Broad Institute’61 (ukb-e, see URLs) for African individuals only. PheWAS results from ukb-b 
and ukb-d were combined together since they include distinct phenotypes and refer to the same ancestry group. 
For each ancestry group we filtered for significant associations after applying a Bonferroni correction for each 
variant based on the number of tested phenotypes.

Ethics approvals. The AWI-Gen study was approved by the Human Research Ethics Committee (Medi-
cal) of the University of the Witwatersrand (Wits) (protocol numbers M121029 and M170880). In addition, 
each research site obtained approval from their local ethics review board prior to commencing any participant-
related activities. Uganda Genome Resource was approved by the Science and Ethics Committee of the UVRI, 
the Ugandan National Council for Science and Technology (UNCST #SS 4283), and the East of England-Cam-
bridge South NHS Research Ethics Committee United Kingdom. This research has been conducted using the 
UK Biobank Resource under approved Application 4892. Informed consent was obtained from all participants 
and all research was performed in accordance with relevant guidelines and regulations.

Results
Discovery analyses. We performed a genome-wide association analysis for each dataset and phenotype 
combination in a total of 10,558 men for SI and 4,257 for SC. A modified random effect model was implemented 
for both steps of the meta-analysis on variants present in at least two of the individual datasets. Step1 included 
the three AWI-Gen datasets and step2 meta-analysed the results of step1 with UGR and UKB-AFR (Supplemen-
tary Fig. 1). Results for the individual studies and meta-analysis step1 are presented in Supplementary Note 2.

For SI, step2 analysed 14,459,454 SNPs: no genome-wide significant variant was observed, while 99 variants 
passed the suggestive significance threshold (Fig. 1a). The qq-plot showed no residual population structure (Sup-
plementary Fig. 4a) and the LD score regression intercept was 0.94. For SC, step2 analysed a total of 14,057,868 
variants: no SNPs passed the genome-wide significant threshold and 45 SNPs were below the suggestive sig-
nificance threshold (Fig. 1b). The qq-plot showed no residual population structure (Supplementary Fig. 4b), 
confirmed by an LD-score regression intercept value of 0.88. Following our tier criteria and our definition of 
sentinel variants, we identify (i) no variant in tier1 for either trait; (ii) 7 sentinel variants for SI and one for SC 
in tier2; and (iii) one variant in tier3 for SI (rs114033989 in UGR). In the meta-analysis, the 8 sentinel variants 
from tier2 show low heterogeneity  (I2) of effect sizes, as well as having a consistent direction of effect among 
studies and an imputation info score ranging 0.82–0.99 in all cohorts (Table 2 and Supplementary Fig. 5). We 
focused our follow up analyses on the sentinel variants in tier2.

Conditional analyses did not identify any additional independent signals in the 200 kb loci we defined around 
our 8 sentinel variants in tier2. For each locus, we first identified the 99% credible set with a Bayesian approach, 
which included a total of 2,243 potentially causal variants for SI and 120 for SC (Supplementary Table 3). These 
99% credible sets spanned regions of 47.6 to ~ 200 kb (see Supplementary Fig. 6), with the only exception of the 
99% credible set being on chr 19 which included only one variant. We then identified the refined credible sets to 
include only those variants with a PIP > 0.01 and their LD proxies (D’ ≥ 0.9 and  r2 ≥ 0.6) reducing the number of 
SNPs to 136 for SI and 36 for SC (Supplementary Fig. 1 and Supplementary Table 3).

Replication and literature lookup analyses. We performed replication analyses using the refined cred-
ible sets and their proxy variants in two different datasets: (a) an analysis of smoking trajectory contrasts per-
formed in individuals of African  ancestry21; and (b) two meta-analyses of SI and SC in European  individuals17. 
The smoking trajectory contrasts represent a comparison of either (I) current vs never or (II) current vs mixed 
smokers, defined using electronic health records data, and capturing SI and SC  respectively21.

When using dataset (a)21, 9 out of the 69 variants in the refined credible set on chr 15 passed the Bonferroni 
corrected threshold for SI (Supplementary Table 4a). Four out of 5 variants on chr 1 passed the nominal signifi-
cance threshold, and no variants on chr 10 showed evidence of replication. No dataset (a) variants were found 
for the loci on chr 4, 7, 16 and 19. When using (b)17, all the variants in the refined credible set on chr 15 passed 
the Bonferroni corrected threshold for SI, with four of these being genome-wide significant and having the same 
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direction of effect as in our analysis (Supplementary Table 4b). No variants on chr 7, 16 and 19 showed evidence 
of replication for SI or SC and no dataset (b) variants were found for the loci on chr 1, 4 and 10.

We investigated if any of the variants included in the credible sets had been previously described as associated 
with any smoking behaviour trait or any other phenotype. From both analyses, we only obtained results for the SI 
trait. One variant on chr 15 (rs9646181) was previously described as associated with smoking trajectory contrast 
I (P-value 4.8 ×  10–10) (Supplementary Table 4c), in a trans-ethnic meta-analysis including individuals of African, 
European and Hispanic ancestries and it was mapped as an intronic variant in the gene SEMA6D21. Looking 
beyond smoking behaviour traits, we interrogated the GWAS Catalog and found that the variant rs4624724 on 
chr 4 had been previously described as associated with adolescent idiopathic scoliosis (P-value 4 ×  10–8; Sup-
plementary Table 4d)62.

Figure 1.  Manhattan plots of step2 GWAS meta-analysis: (a) smoking initiation, (b) smoking cessation; 
continuous line, suggestive p-value (P) significance threshold (5 ×  10–6); dashed line, genome-wide significance 
threshold (5 ×  10–8). Number of participants and variants analysed is reported in Supplementary Fig. 1.

Table 2.  Meta-analysis sentinel variants for smoking initiation (SI) and smoking cessation (SC). rsID rs 
number, CHR chromosome, POS b37 position, EA effect allele, NEA non-effect allele, OR odds ratio, CI 95% 
confidence interval. I2: percentage of total variation across studies due to heterogeneity. Direction of effect: in 
order, AWI-Gen, UKB-AFR, UGR. AFR_EAF: effect allele frequency in AFR  1000GP30. EUR_EAF: effect allele 
frequency in EUR  1000GP30.

Trait rsID CHR POS EA NEA OR CI P-value I2 Direction of effect AFR_EAF EUR_EAF

SI rs116934871 1 12,772,253 A G 0.810 [0.742–0.884] 3.57 ×  10–6 0 −/−/− 0.149 0.000

rs114828540 4 6,488,077 C G 1.530 [1.297–1.804] 5.91 ×  10–7 0 +/+/+ 0.028 0.000

rs75104774 7 156,210,294 T C 1.530 [1.273–1.839] 4.77 ×  10–6 4.962 +/+/+ 0.027 0.000

rs10160111 10 44,936,177 T C 1.465 [1.252–1.715] 2.68 ×  10–6 0 +/+/+ 0.033 0.001

rs11636198 15 47,879,004 C A 0.859 [0.808–0.913] 1.70 ×  10–6 0 −/−/− 0.277 0.553

rs74019935 16 51,217,700 T A 0.822 [0.762–0.888] 7.27 ×  10–7 0 −/−/− 0.169 0.013

rs4808946 19 15,193,912 C T 1.175 [1.106–1.249] 1.78 ×  10–7 0 +/+/+ 0.595 0.873

SC rs12443715 16 55,782,924 A G 1.377 [1.205–1.572] 2.97 ×  10–6 0.641 +/+/+ 0.148 0.711
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Functional follow up analyses. Gene prioritisation analyses. In our gene prioritisation strategy we com-
bined the results of four different analyses: variant annotation with VEP and its CADD score estimate, eQTL and 
pQTL mapping, and chromatin interaction mapping.

For both traits, all queried variants were annotated as non-coding, or as part of upstream or downstream 
regulatory regions  (VEP52) and no variants were identified as a pQTL using the 90 cardiovascular proteins of 
the SCALLOP  Consortium54.

For SI, we retrieved a total of 95 genes. Specifically, the CADD scores highlighted a total of six possible delete-
rious variants affecting two genes, RP11-552E10.1 and SEMA6D (Supplementary Table 5a). The eQTL mapping 
showed that 6 variants affect the expression of 4 genes (AC073133.1, FBN1, MAN2B2 and SLC1A6) in different 
brain tissue datasets (BRAINEAC (see URLs), Common Mind  Consortium63,  eQTLGen64,  PsychENCODE65; 
Supplementary Table 5a). Finally, the chromatin interaction analysis highlighted 42 unique variants, at least one 
for each associated locus, having an effect on a total of 92 genes in either brain tissues or lung fibroblast  cells65–67 
(Supplementary Table 5a).

Three of the 95 genes identified were mapped by two of the prioritisation analyses (AC073133.1, MAN2B2, 
and SEMA6D; Supplementary Table 5a). AC073133.1 showed significant results for eQTLs for brain tissue with 
one variant (rs6969023) and for chromatin interaction in lung fibroblasts mediated by three variants (rs1165302
11,rs76374118,rs79338905; Supplementary Table 5a). MAN2B2 was identified by variant rs73207830 as being an 
eQTL in blood, and variant rs116755844 indicated chromatin interaction in the Promoter anchored Hi-C loops 
data from  PsychENCODE65 (Supplementary Table 5a). SEMA6D showed evidence of both pathogenicity based 
on a high CADD score and chromatin interaction in lung fibroblast cells (Supplementary Table 5a).

For SC, only one variant had a CADD score higher than or equal to 15 but it was annotated as intergenic, thus 
not supporting any specific gene. The combination of the eQTL and the chromatin interaction mapping defined 
a total of 30 genes associated with 18 distinct variants (Supplementary Table 5b). The eQTL mapping identified 
two genes, CES1 and LPCAT2. While LPCAT2 was highlighted by only one dataset in blood  (eQTLGen64), CES1 
was retrieved by six datasets  (BIOSQTL68,  DICE69,  eQLTCatalogue70,  eQTLGen64,  GTExv871,  PsychENCODE65) 
including several blood cell types (B cells, monocytes, and T cells), and lung and brain tissues (Supplementary 
Table 5b). Both genes showed significant chromatin interaction values discovered in IMR90, a lung fibroblast 
cell  line66 (Supplementary Table 5b). The remaining 28 genes showed SNP-mediated chromatin interaction both 
in the IMR90 cell  line66 and in the Promoter anchored Hi-C loops data from  PsychENCODE65 (Supplementary 
Table 5b).

Pathway analysis. We performed a pathway analysis to investigate biological interactions between the pri-
oritised genes using the web-based tool Metascape developed for overrepresentation analysis of genes in bio-
logical pathways and protein–protein  interaction55. We decided to focus only on pathways enriched with genes 
implicated by different loci, and so we performed this analysis only on the genes prioritised for SI. Fifty-five 
out of the ninety-five genes had an Entrez Gene ID and were analysed by Metascape resulting in two enriched 
pathways from Gene Ontology (GO) Resource. ‘Metanephros development’, the process to form the definitive 
kidney (GO:0,001,656), was enriched for FBN1, SHH and WFS1 genes (Log(P-value): − 3.50; Supplementary 
Table 6); the ‘developmental growth involved in morphogenesis’ (GO:0,060,560), a large GeneOntology category 
including several classes of morphogenesis activities was enriched for PDPN, SALL1, SEMA6D and SHH genes 
(Log(P-value): − 2.25; Supplementary Table 6). The protein–protein interaction network analysis identified two 
interactions: CYP4F3 with CYP4F8, and FBN1 with WFS1.

PheWAS analysis. We selected variants in the locus on chr 15 for a PheWAS analysis, as this was the only locus 
to replicate and it harboured SEMA6D, which was previously identified by other studies on smoking behaviour 
traits (see Discussion). We limited the PheWASs to variants supported by at least one of the four criteria of our 
gene prioritisation analysis obtaining a total of 4 variants: rs11634974, rs11636198, rs12905212, and rs7273389. 
The number of tested phenotypes for European individuals (ukb-d and ukb-d) differed among variants: from 
2,443 (rs7273389), to 3,338 (rs11634974), to 3,342 (rs11636198 and rs12905212). For PheWASs in African 
ancestry individuals, all variants were tested for 1,152 distinct phenotypes.

We found Bonferroni-corrected significant results for fifteen traits only in European individuals: rs11634974, 
rs11636198 and rs12905212 showed association with the same 6 traits, including ‘Current tobacco smoking’ 
which had the same direction of effect as in this study, and ‘Qualifications: College or University degree’ with 
opposite direction of effect (Supplementary Table 7). The fourth variant, rs7273389, showed nine significant 
associations, seven of which were with body fat measures (Supplementary Table 7).

Discussion
Smoking is a preventable risk factor for several diseases  worldwide1 with 80% of smokers living in LMICs and a 
rising prevalence in  Africa3. GWASs have shown that genetics plays a role in smoking  behaviours16,17, but simi-
larly to other traits, most studies have been performed in individuals of European ancestry, thus underestimating 
the role of genetic diversity for these traits  globally18,19. Disentangling the genetics of smoking in sub-Saharan 
Africa is essential to shed light onto its biology in this region and globally, and to help elucidate its role as a risk 
factor for non-communicable diseases, either directly or through  interaction72.

In this study we focussed on understanding the genetics of two smoking behaviour traits, smoking initia-
tion and cessation, in 10,558 men of African ancestry living in five countries in the African continent and the 
UK, including participants from three cohorts: AWI-Gen22, divided into three geographical areas (East, South 
and West), UGR 23, and UKB-AFR24. After a two-step meta-analysis, we identified 7 loci associated with SI and 
one with SC, all in tier2 (variants with a meta-analysis P-value < 5 ×  10–6 and P-value < 0.05 in each cohort). We 
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selected variants for in silico functional follow up analyses based on their posterior inclusion probability of 
being causal, obtaining 136 variants for SI and 36 for SC. We compared the allele frequencies at these variants 
between the African (AFR) and European (EUR) superpopulations from  1000GP30 obtained via  VEP52. All but 
one variant of five associated loci with SI (on chr 1, 4, 7, 10 and 16) were monomorphic or had a MAF < 2% in 
EUR, while they were common (MAF ranging 2–25%) in AFR (Supplementary Table 8). Despite being common 
in both AFR and EUR, most variants on chr 15 showed allele frequencies 2–5 times higher in AFR, and the only 
variant for chr 19 was common for both groups (Supplementary Table 8). Variants in the chr 16 locus associated 
with SC showed a general higher frequency in EUR (Supplementary Table 8). The variants identified by the few 
studies including AA individuals described in the  introduction13,14,20,21 did not replicate in our study, with the 
caveat that they focused on smoking phenotypes different from our traits.

Our gene prioritisation strategy highlighted AC073133.1, MAN2B2, and SEMA6D for SI and CES1 and 
LPCAT2 for SC, as genes supported by two out of the four analyses included (CADD score, eQTLs, pQTLs and 
chromatin interaction). A detailed description of their function, and of the genes highlighted by the pathway 
and protein–protein interaction analyses is included in Supplementary Note 3. Only SEMA6D on chr 15 will be 
described in detail here as this locus shows strong evidence of replication, is involved in one of the two pathways 
identified, and includes eQTLs for a gene involved in a protein–protein interaction (FBN1). This gene is a member 
of the semaphorin family that encodes both secreted and membrane proteins involved in axon guiding, which 
may have a role in maintaining and remodelling neuronal connections (see URLs). It was already identified as 
associated with smoking initiation, cessation and amount by five  studies17,21,45–47 including the largest study to 
date by the  GSCAN17 consortium and the recent trans-ethnic GWAS meta-analysis of smoking trajectories in the 
MVP  cohort21. Querying GWAS Catalog for SEMA6D (as of July 2021), we found reported associations for 63 
traits (see URLs), including smoking and drinking behaviour phenotypes, depression and cognitive ability (see 
URLs). In agreement with our PheWAS, educational attainment and body mass index phenotypes were among 
the top five trait classes associated with SEMA6D (Supplementary Table 7).

We are aware this study has its limitations. The underrepresentation of individuals of African ancestry in 
biobank-scale cohorts affects several aspects of this work: from the limited sample sizes to the availability of 
additional datasets for larger meta-analyses, replication and follow up analyses. Not only does this influence the 
number of datasets available for genomics studies, but also the number of variants that can be tested for asso-
ciation, as shown by half of the tier2 loci being monomorphic or rare in EUR from  1000GP30 (Supplementary 
Table 8). The gender bias in smoking behaviours observed in our datasets led us to restrict the analyses to men 
only (Supplementary Table 1), impacting further on sample sizes and calling for specific attention to the cultural 
habits of tobacco consumption in some African populations. While it is true that smoking prevalence tends to 
be low among women in many African  countries10,11, it is growing among  girls6. The widespread use of chewing 
tobacco in some areas suggests that a new way of collecting data on tobacco use should be considered when 
developing studies that explore nicotine dependence at a population level.

This study adds support to a locus previously identified from large European and trans-ethnic studies, 
SEMA6D. Importantly it highlights the need for additional large African cohorts with tobacco exposure data 
to be developed and maintained and for different sub-phenotypes to be investigated in men and women. This 
is essential if we aim to overcome the limitations described above and be in a position to perform statistically 
powerful large-scale association studies across smoking behaviour phenotypes, as well as many other traits cur-
rently understudied in African populations.

Data availability
Complete summary statistics from the meta-analysis step2 for SI and SC are being deposited to NHGRI-
EBI GWAS catalog [https:// www. ebi. ac. uk/ gwas/] (Study accession numbers: SI, GCST90091238; SC, 
GCST90091239). Individual-level genetic and phenotypic data from the AWI-Gen (EGAD00010001996), Uganda 
Genome Resource (EGAS00001000545) and UK Biobank are available to approved researchers upon application 
or data access request.  File handling and individual analyses were performed using a combination of bash and 
R scripts, available upon request from the authors.
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